xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision b34e08d5)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/gfp.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dma-contiguous.h>
22 #include <linux/highmem.h>
23 #include <linux/memblock.h>
24 #include <linux/slab.h>
25 #include <linux/iommu.h>
26 #include <linux/io.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/memory.h>
31 #include <asm/highmem.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mach/arch.h>
35 #include <asm/dma-iommu.h>
36 #include <asm/mach/map.h>
37 #include <asm/system_info.h>
38 #include <asm/dma-contiguous.h>
39 
40 #include "mm.h"
41 
42 /*
43  * The DMA API is built upon the notion of "buffer ownership".  A buffer
44  * is either exclusively owned by the CPU (and therefore may be accessed
45  * by it) or exclusively owned by the DMA device.  These helper functions
46  * represent the transitions between these two ownership states.
47  *
48  * Note, however, that on later ARMs, this notion does not work due to
49  * speculative prefetches.  We model our approach on the assumption that
50  * the CPU does do speculative prefetches, which means we clean caches
51  * before transfers and delay cache invalidation until transfer completion.
52  *
53  */
54 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
55 		size_t, enum dma_data_direction);
56 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
57 		size_t, enum dma_data_direction);
58 
59 /**
60  * arm_dma_map_page - map a portion of a page for streaming DMA
61  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
62  * @page: page that buffer resides in
63  * @offset: offset into page for start of buffer
64  * @size: size of buffer to map
65  * @dir: DMA transfer direction
66  *
67  * Ensure that any data held in the cache is appropriately discarded
68  * or written back.
69  *
70  * The device owns this memory once this call has completed.  The CPU
71  * can regain ownership by calling dma_unmap_page().
72  */
73 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
74 	     unsigned long offset, size_t size, enum dma_data_direction dir,
75 	     struct dma_attrs *attrs)
76 {
77 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
78 		__dma_page_cpu_to_dev(page, offset, size, dir);
79 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
80 }
81 
82 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
83 	     unsigned long offset, size_t size, enum dma_data_direction dir,
84 	     struct dma_attrs *attrs)
85 {
86 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
87 }
88 
89 /**
90  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
91  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
92  * @handle: DMA address of buffer
93  * @size: size of buffer (same as passed to dma_map_page)
94  * @dir: DMA transfer direction (same as passed to dma_map_page)
95  *
96  * Unmap a page streaming mode DMA translation.  The handle and size
97  * must match what was provided in the previous dma_map_page() call.
98  * All other usages are undefined.
99  *
100  * After this call, reads by the CPU to the buffer are guaranteed to see
101  * whatever the device wrote there.
102  */
103 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
104 		size_t size, enum dma_data_direction dir,
105 		struct dma_attrs *attrs)
106 {
107 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
108 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
109 				      handle & ~PAGE_MASK, size, dir);
110 }
111 
112 static void arm_dma_sync_single_for_cpu(struct device *dev,
113 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
114 {
115 	unsigned int offset = handle & (PAGE_SIZE - 1);
116 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
117 	__dma_page_dev_to_cpu(page, offset, size, dir);
118 }
119 
120 static void arm_dma_sync_single_for_device(struct device *dev,
121 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
122 {
123 	unsigned int offset = handle & (PAGE_SIZE - 1);
124 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
125 	__dma_page_cpu_to_dev(page, offset, size, dir);
126 }
127 
128 struct dma_map_ops arm_dma_ops = {
129 	.alloc			= arm_dma_alloc,
130 	.free			= arm_dma_free,
131 	.mmap			= arm_dma_mmap,
132 	.get_sgtable		= arm_dma_get_sgtable,
133 	.map_page		= arm_dma_map_page,
134 	.unmap_page		= arm_dma_unmap_page,
135 	.map_sg			= arm_dma_map_sg,
136 	.unmap_sg		= arm_dma_unmap_sg,
137 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
138 	.sync_single_for_device	= arm_dma_sync_single_for_device,
139 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
140 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
141 	.set_dma_mask		= arm_dma_set_mask,
142 };
143 EXPORT_SYMBOL(arm_dma_ops);
144 
145 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
146 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
147 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
148 				  dma_addr_t handle, struct dma_attrs *attrs);
149 
150 struct dma_map_ops arm_coherent_dma_ops = {
151 	.alloc			= arm_coherent_dma_alloc,
152 	.free			= arm_coherent_dma_free,
153 	.mmap			= arm_dma_mmap,
154 	.get_sgtable		= arm_dma_get_sgtable,
155 	.map_page		= arm_coherent_dma_map_page,
156 	.map_sg			= arm_dma_map_sg,
157 	.set_dma_mask		= arm_dma_set_mask,
158 };
159 EXPORT_SYMBOL(arm_coherent_dma_ops);
160 
161 static int __dma_supported(struct device *dev, u64 mask, bool warn)
162 {
163 	unsigned long max_dma_pfn;
164 
165 	/*
166 	 * If the mask allows for more memory than we can address,
167 	 * and we actually have that much memory, then we must
168 	 * indicate that DMA to this device is not supported.
169 	 */
170 	if (sizeof(mask) != sizeof(dma_addr_t) &&
171 	    mask > (dma_addr_t)~0 &&
172 	    dma_to_pfn(dev, ~0) < max_pfn) {
173 		if (warn) {
174 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
175 				 mask);
176 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
177 		}
178 		return 0;
179 	}
180 
181 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
182 
183 	/*
184 	 * Translate the device's DMA mask to a PFN limit.  This
185 	 * PFN number includes the page which we can DMA to.
186 	 */
187 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
188 		if (warn)
189 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
190 				 mask,
191 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
192 				 max_dma_pfn + 1);
193 		return 0;
194 	}
195 
196 	return 1;
197 }
198 
199 static u64 get_coherent_dma_mask(struct device *dev)
200 {
201 	u64 mask = (u64)DMA_BIT_MASK(32);
202 
203 	if (dev) {
204 		mask = dev->coherent_dma_mask;
205 
206 		/*
207 		 * Sanity check the DMA mask - it must be non-zero, and
208 		 * must be able to be satisfied by a DMA allocation.
209 		 */
210 		if (mask == 0) {
211 			dev_warn(dev, "coherent DMA mask is unset\n");
212 			return 0;
213 		}
214 
215 		if (!__dma_supported(dev, mask, true))
216 			return 0;
217 	}
218 
219 	return mask;
220 }
221 
222 static void __dma_clear_buffer(struct page *page, size_t size)
223 {
224 	/*
225 	 * Ensure that the allocated pages are zeroed, and that any data
226 	 * lurking in the kernel direct-mapped region is invalidated.
227 	 */
228 	if (PageHighMem(page)) {
229 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
230 		phys_addr_t end = base + size;
231 		while (size > 0) {
232 			void *ptr = kmap_atomic(page);
233 			memset(ptr, 0, PAGE_SIZE);
234 			dmac_flush_range(ptr, ptr + PAGE_SIZE);
235 			kunmap_atomic(ptr);
236 			page++;
237 			size -= PAGE_SIZE;
238 		}
239 		outer_flush_range(base, end);
240 	} else {
241 		void *ptr = page_address(page);
242 		memset(ptr, 0, size);
243 		dmac_flush_range(ptr, ptr + size);
244 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
245 	}
246 }
247 
248 /*
249  * Allocate a DMA buffer for 'dev' of size 'size' using the
250  * specified gfp mask.  Note that 'size' must be page aligned.
251  */
252 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
253 {
254 	unsigned long order = get_order(size);
255 	struct page *page, *p, *e;
256 
257 	page = alloc_pages(gfp, order);
258 	if (!page)
259 		return NULL;
260 
261 	/*
262 	 * Now split the huge page and free the excess pages
263 	 */
264 	split_page(page, order);
265 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
266 		__free_page(p);
267 
268 	__dma_clear_buffer(page, size);
269 
270 	return page;
271 }
272 
273 /*
274  * Free a DMA buffer.  'size' must be page aligned.
275  */
276 static void __dma_free_buffer(struct page *page, size_t size)
277 {
278 	struct page *e = page + (size >> PAGE_SHIFT);
279 
280 	while (page < e) {
281 		__free_page(page);
282 		page++;
283 	}
284 }
285 
286 #ifdef CONFIG_MMU
287 
288 static void *__alloc_from_contiguous(struct device *dev, size_t size,
289 				     pgprot_t prot, struct page **ret_page,
290 				     const void *caller);
291 
292 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
293 				 pgprot_t prot, struct page **ret_page,
294 				 const void *caller);
295 
296 static void *
297 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
298 	const void *caller)
299 {
300 	struct vm_struct *area;
301 	unsigned long addr;
302 
303 	/*
304 	 * DMA allocation can be mapped to user space, so lets
305 	 * set VM_USERMAP flags too.
306 	 */
307 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
308 				  caller);
309 	if (!area)
310 		return NULL;
311 	addr = (unsigned long)area->addr;
312 	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
313 
314 	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
315 		vunmap((void *)addr);
316 		return NULL;
317 	}
318 	return (void *)addr;
319 }
320 
321 static void __dma_free_remap(void *cpu_addr, size_t size)
322 {
323 	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
324 	struct vm_struct *area = find_vm_area(cpu_addr);
325 	if (!area || (area->flags & flags) != flags) {
326 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
327 		return;
328 	}
329 	unmap_kernel_range((unsigned long)cpu_addr, size);
330 	vunmap(cpu_addr);
331 }
332 
333 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
334 
335 struct dma_pool {
336 	size_t size;
337 	spinlock_t lock;
338 	unsigned long *bitmap;
339 	unsigned long nr_pages;
340 	void *vaddr;
341 	struct page **pages;
342 };
343 
344 static struct dma_pool atomic_pool = {
345 	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
346 };
347 
348 static int __init early_coherent_pool(char *p)
349 {
350 	atomic_pool.size = memparse(p, &p);
351 	return 0;
352 }
353 early_param("coherent_pool", early_coherent_pool);
354 
355 void __init init_dma_coherent_pool_size(unsigned long size)
356 {
357 	/*
358 	 * Catch any attempt to set the pool size too late.
359 	 */
360 	BUG_ON(atomic_pool.vaddr);
361 
362 	/*
363 	 * Set architecture specific coherent pool size only if
364 	 * it has not been changed by kernel command line parameter.
365 	 */
366 	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
367 		atomic_pool.size = size;
368 }
369 
370 /*
371  * Initialise the coherent pool for atomic allocations.
372  */
373 static int __init atomic_pool_init(void)
374 {
375 	struct dma_pool *pool = &atomic_pool;
376 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
377 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
378 	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
379 	unsigned long *bitmap;
380 	struct page *page;
381 	struct page **pages;
382 	void *ptr;
383 	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
384 
385 	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
386 	if (!bitmap)
387 		goto no_bitmap;
388 
389 	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
390 	if (!pages)
391 		goto no_pages;
392 
393 	if (IS_ENABLED(CONFIG_DMA_CMA))
394 		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
395 					      atomic_pool_init);
396 	else
397 		ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
398 					   atomic_pool_init);
399 	if (ptr) {
400 		int i;
401 
402 		for (i = 0; i < nr_pages; i++)
403 			pages[i] = page + i;
404 
405 		spin_lock_init(&pool->lock);
406 		pool->vaddr = ptr;
407 		pool->pages = pages;
408 		pool->bitmap = bitmap;
409 		pool->nr_pages = nr_pages;
410 		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
411 		       (unsigned)pool->size / 1024);
412 		return 0;
413 	}
414 
415 	kfree(pages);
416 no_pages:
417 	kfree(bitmap);
418 no_bitmap:
419 	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
420 	       (unsigned)pool->size / 1024);
421 	return -ENOMEM;
422 }
423 /*
424  * CMA is activated by core_initcall, so we must be called after it.
425  */
426 postcore_initcall(atomic_pool_init);
427 
428 struct dma_contig_early_reserve {
429 	phys_addr_t base;
430 	unsigned long size;
431 };
432 
433 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
434 
435 static int dma_mmu_remap_num __initdata;
436 
437 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
438 {
439 	dma_mmu_remap[dma_mmu_remap_num].base = base;
440 	dma_mmu_remap[dma_mmu_remap_num].size = size;
441 	dma_mmu_remap_num++;
442 }
443 
444 void __init dma_contiguous_remap(void)
445 {
446 	int i;
447 	for (i = 0; i < dma_mmu_remap_num; i++) {
448 		phys_addr_t start = dma_mmu_remap[i].base;
449 		phys_addr_t end = start + dma_mmu_remap[i].size;
450 		struct map_desc map;
451 		unsigned long addr;
452 
453 		if (end > arm_lowmem_limit)
454 			end = arm_lowmem_limit;
455 		if (start >= end)
456 			continue;
457 
458 		map.pfn = __phys_to_pfn(start);
459 		map.virtual = __phys_to_virt(start);
460 		map.length = end - start;
461 		map.type = MT_MEMORY_DMA_READY;
462 
463 		/*
464 		 * Clear previous low-memory mapping
465 		 */
466 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
467 		     addr += PMD_SIZE)
468 			pmd_clear(pmd_off_k(addr));
469 
470 		iotable_init(&map, 1);
471 	}
472 }
473 
474 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
475 			    void *data)
476 {
477 	struct page *page = virt_to_page(addr);
478 	pgprot_t prot = *(pgprot_t *)data;
479 
480 	set_pte_ext(pte, mk_pte(page, prot), 0);
481 	return 0;
482 }
483 
484 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
485 {
486 	unsigned long start = (unsigned long) page_address(page);
487 	unsigned end = start + size;
488 
489 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
490 	flush_tlb_kernel_range(start, end);
491 }
492 
493 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
494 				 pgprot_t prot, struct page **ret_page,
495 				 const void *caller)
496 {
497 	struct page *page;
498 	void *ptr;
499 	page = __dma_alloc_buffer(dev, size, gfp);
500 	if (!page)
501 		return NULL;
502 
503 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
504 	if (!ptr) {
505 		__dma_free_buffer(page, size);
506 		return NULL;
507 	}
508 
509 	*ret_page = page;
510 	return ptr;
511 }
512 
513 static void *__alloc_from_pool(size_t size, struct page **ret_page)
514 {
515 	struct dma_pool *pool = &atomic_pool;
516 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
517 	unsigned int pageno;
518 	unsigned long flags;
519 	void *ptr = NULL;
520 	unsigned long align_mask;
521 
522 	if (!pool->vaddr) {
523 		WARN(1, "coherent pool not initialised!\n");
524 		return NULL;
525 	}
526 
527 	/*
528 	 * Align the region allocation - allocations from pool are rather
529 	 * small, so align them to their order in pages, minimum is a page
530 	 * size. This helps reduce fragmentation of the DMA space.
531 	 */
532 	align_mask = (1 << get_order(size)) - 1;
533 
534 	spin_lock_irqsave(&pool->lock, flags);
535 	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
536 					    0, count, align_mask);
537 	if (pageno < pool->nr_pages) {
538 		bitmap_set(pool->bitmap, pageno, count);
539 		ptr = pool->vaddr + PAGE_SIZE * pageno;
540 		*ret_page = pool->pages[pageno];
541 	} else {
542 		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
543 			    "Please increase it with coherent_pool= kernel parameter!\n",
544 			    (unsigned)pool->size / 1024);
545 	}
546 	spin_unlock_irqrestore(&pool->lock, flags);
547 
548 	return ptr;
549 }
550 
551 static bool __in_atomic_pool(void *start, size_t size)
552 {
553 	struct dma_pool *pool = &atomic_pool;
554 	void *end = start + size;
555 	void *pool_start = pool->vaddr;
556 	void *pool_end = pool->vaddr + pool->size;
557 
558 	if (start < pool_start || start >= pool_end)
559 		return false;
560 
561 	if (end <= pool_end)
562 		return true;
563 
564 	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
565 	     start, end - 1, pool_start, pool_end - 1);
566 
567 	return false;
568 }
569 
570 static int __free_from_pool(void *start, size_t size)
571 {
572 	struct dma_pool *pool = &atomic_pool;
573 	unsigned long pageno, count;
574 	unsigned long flags;
575 
576 	if (!__in_atomic_pool(start, size))
577 		return 0;
578 
579 	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
580 	count = size >> PAGE_SHIFT;
581 
582 	spin_lock_irqsave(&pool->lock, flags);
583 	bitmap_clear(pool->bitmap, pageno, count);
584 	spin_unlock_irqrestore(&pool->lock, flags);
585 
586 	return 1;
587 }
588 
589 static void *__alloc_from_contiguous(struct device *dev, size_t size,
590 				     pgprot_t prot, struct page **ret_page,
591 				     const void *caller)
592 {
593 	unsigned long order = get_order(size);
594 	size_t count = size >> PAGE_SHIFT;
595 	struct page *page;
596 	void *ptr;
597 
598 	page = dma_alloc_from_contiguous(dev, count, order);
599 	if (!page)
600 		return NULL;
601 
602 	__dma_clear_buffer(page, size);
603 
604 	if (PageHighMem(page)) {
605 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
606 		if (!ptr) {
607 			dma_release_from_contiguous(dev, page, count);
608 			return NULL;
609 		}
610 	} else {
611 		__dma_remap(page, size, prot);
612 		ptr = page_address(page);
613 	}
614 	*ret_page = page;
615 	return ptr;
616 }
617 
618 static void __free_from_contiguous(struct device *dev, struct page *page,
619 				   void *cpu_addr, size_t size)
620 {
621 	if (PageHighMem(page))
622 		__dma_free_remap(cpu_addr, size);
623 	else
624 		__dma_remap(page, size, PAGE_KERNEL);
625 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
626 }
627 
628 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
629 {
630 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
631 			    pgprot_writecombine(prot) :
632 			    pgprot_dmacoherent(prot);
633 	return prot;
634 }
635 
636 #define nommu() 0
637 
638 #else	/* !CONFIG_MMU */
639 
640 #define nommu() 1
641 
642 #define __get_dma_pgprot(attrs, prot)	__pgprot(0)
643 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
644 #define __alloc_from_pool(size, ret_page)			NULL
645 #define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
646 #define __free_from_pool(cpu_addr, size)			0
647 #define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
648 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
649 
650 #endif	/* CONFIG_MMU */
651 
652 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
653 				   struct page **ret_page)
654 {
655 	struct page *page;
656 	page = __dma_alloc_buffer(dev, size, gfp);
657 	if (!page)
658 		return NULL;
659 
660 	*ret_page = page;
661 	return page_address(page);
662 }
663 
664 
665 
666 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
667 			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
668 {
669 	u64 mask = get_coherent_dma_mask(dev);
670 	struct page *page = NULL;
671 	void *addr;
672 
673 #ifdef CONFIG_DMA_API_DEBUG
674 	u64 limit = (mask + 1) & ~mask;
675 	if (limit && size >= limit) {
676 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
677 			size, mask);
678 		return NULL;
679 	}
680 #endif
681 
682 	if (!mask)
683 		return NULL;
684 
685 	if (mask < 0xffffffffULL)
686 		gfp |= GFP_DMA;
687 
688 	/*
689 	 * Following is a work-around (a.k.a. hack) to prevent pages
690 	 * with __GFP_COMP being passed to split_page() which cannot
691 	 * handle them.  The real problem is that this flag probably
692 	 * should be 0 on ARM as it is not supported on this
693 	 * platform; see CONFIG_HUGETLBFS.
694 	 */
695 	gfp &= ~(__GFP_COMP);
696 
697 	*handle = DMA_ERROR_CODE;
698 	size = PAGE_ALIGN(size);
699 
700 	if (is_coherent || nommu())
701 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
702 	else if (!(gfp & __GFP_WAIT))
703 		addr = __alloc_from_pool(size, &page);
704 	else if (!IS_ENABLED(CONFIG_DMA_CMA))
705 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
706 	else
707 		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
708 
709 	if (addr)
710 		*handle = pfn_to_dma(dev, page_to_pfn(page));
711 
712 	return addr;
713 }
714 
715 /*
716  * Allocate DMA-coherent memory space and return both the kernel remapped
717  * virtual and bus address for that space.
718  */
719 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
720 		    gfp_t gfp, struct dma_attrs *attrs)
721 {
722 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
723 	void *memory;
724 
725 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
726 		return memory;
727 
728 	return __dma_alloc(dev, size, handle, gfp, prot, false,
729 			   __builtin_return_address(0));
730 }
731 
732 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
733 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
734 {
735 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
736 	void *memory;
737 
738 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
739 		return memory;
740 
741 	return __dma_alloc(dev, size, handle, gfp, prot, true,
742 			   __builtin_return_address(0));
743 }
744 
745 /*
746  * Create userspace mapping for the DMA-coherent memory.
747  */
748 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
749 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
750 		 struct dma_attrs *attrs)
751 {
752 	int ret = -ENXIO;
753 #ifdef CONFIG_MMU
754 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
755 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
756 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
757 	unsigned long off = vma->vm_pgoff;
758 
759 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
760 
761 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
762 		return ret;
763 
764 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
765 		ret = remap_pfn_range(vma, vma->vm_start,
766 				      pfn + off,
767 				      vma->vm_end - vma->vm_start,
768 				      vma->vm_page_prot);
769 	}
770 #endif	/* CONFIG_MMU */
771 
772 	return ret;
773 }
774 
775 /*
776  * Free a buffer as defined by the above mapping.
777  */
778 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
779 			   dma_addr_t handle, struct dma_attrs *attrs,
780 			   bool is_coherent)
781 {
782 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
783 
784 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
785 		return;
786 
787 	size = PAGE_ALIGN(size);
788 
789 	if (is_coherent || nommu()) {
790 		__dma_free_buffer(page, size);
791 	} else if (__free_from_pool(cpu_addr, size)) {
792 		return;
793 	} else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
794 		__dma_free_remap(cpu_addr, size);
795 		__dma_free_buffer(page, size);
796 	} else {
797 		/*
798 		 * Non-atomic allocations cannot be freed with IRQs disabled
799 		 */
800 		WARN_ON(irqs_disabled());
801 		__free_from_contiguous(dev, page, cpu_addr, size);
802 	}
803 }
804 
805 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
806 		  dma_addr_t handle, struct dma_attrs *attrs)
807 {
808 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
809 }
810 
811 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
812 				  dma_addr_t handle, struct dma_attrs *attrs)
813 {
814 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
815 }
816 
817 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
818 		 void *cpu_addr, dma_addr_t handle, size_t size,
819 		 struct dma_attrs *attrs)
820 {
821 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
822 	int ret;
823 
824 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
825 	if (unlikely(ret))
826 		return ret;
827 
828 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
829 	return 0;
830 }
831 
832 static void dma_cache_maint_page(struct page *page, unsigned long offset,
833 	size_t size, enum dma_data_direction dir,
834 	void (*op)(const void *, size_t, int))
835 {
836 	unsigned long pfn;
837 	size_t left = size;
838 
839 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
840 	offset %= PAGE_SIZE;
841 
842 	/*
843 	 * A single sg entry may refer to multiple physically contiguous
844 	 * pages.  But we still need to process highmem pages individually.
845 	 * If highmem is not configured then the bulk of this loop gets
846 	 * optimized out.
847 	 */
848 	do {
849 		size_t len = left;
850 		void *vaddr;
851 
852 		page = pfn_to_page(pfn);
853 
854 		if (PageHighMem(page)) {
855 			if (len + offset > PAGE_SIZE)
856 				len = PAGE_SIZE - offset;
857 
858 			if (cache_is_vipt_nonaliasing()) {
859 				vaddr = kmap_atomic(page);
860 				op(vaddr + offset, len, dir);
861 				kunmap_atomic(vaddr);
862 			} else {
863 				vaddr = kmap_high_get(page);
864 				if (vaddr) {
865 					op(vaddr + offset, len, dir);
866 					kunmap_high(page);
867 				}
868 			}
869 		} else {
870 			vaddr = page_address(page) + offset;
871 			op(vaddr, len, dir);
872 		}
873 		offset = 0;
874 		pfn++;
875 		left -= len;
876 	} while (left);
877 }
878 
879 /*
880  * Make an area consistent for devices.
881  * Note: Drivers should NOT use this function directly, as it will break
882  * platforms with CONFIG_DMABOUNCE.
883  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
884  */
885 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
886 	size_t size, enum dma_data_direction dir)
887 {
888 	unsigned long paddr;
889 
890 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
891 
892 	paddr = page_to_phys(page) + off;
893 	if (dir == DMA_FROM_DEVICE) {
894 		outer_inv_range(paddr, paddr + size);
895 	} else {
896 		outer_clean_range(paddr, paddr + size);
897 	}
898 	/* FIXME: non-speculating: flush on bidirectional mappings? */
899 }
900 
901 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
902 	size_t size, enum dma_data_direction dir)
903 {
904 	unsigned long paddr = page_to_phys(page) + off;
905 
906 	/* FIXME: non-speculating: not required */
907 	/* don't bother invalidating if DMA to device */
908 	if (dir != DMA_TO_DEVICE)
909 		outer_inv_range(paddr, paddr + size);
910 
911 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
912 
913 	/*
914 	 * Mark the D-cache clean for these pages to avoid extra flushing.
915 	 */
916 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
917 		unsigned long pfn;
918 		size_t left = size;
919 
920 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
921 		off %= PAGE_SIZE;
922 		if (off) {
923 			pfn++;
924 			left -= PAGE_SIZE - off;
925 		}
926 		while (left >= PAGE_SIZE) {
927 			page = pfn_to_page(pfn++);
928 			set_bit(PG_dcache_clean, &page->flags);
929 			left -= PAGE_SIZE;
930 		}
931 	}
932 }
933 
934 /**
935  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
936  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
937  * @sg: list of buffers
938  * @nents: number of buffers to map
939  * @dir: DMA transfer direction
940  *
941  * Map a set of buffers described by scatterlist in streaming mode for DMA.
942  * This is the scatter-gather version of the dma_map_single interface.
943  * Here the scatter gather list elements are each tagged with the
944  * appropriate dma address and length.  They are obtained via
945  * sg_dma_{address,length}.
946  *
947  * Device ownership issues as mentioned for dma_map_single are the same
948  * here.
949  */
950 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
951 		enum dma_data_direction dir, struct dma_attrs *attrs)
952 {
953 	struct dma_map_ops *ops = get_dma_ops(dev);
954 	struct scatterlist *s;
955 	int i, j;
956 
957 	for_each_sg(sg, s, nents, i) {
958 #ifdef CONFIG_NEED_SG_DMA_LENGTH
959 		s->dma_length = s->length;
960 #endif
961 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
962 						s->length, dir, attrs);
963 		if (dma_mapping_error(dev, s->dma_address))
964 			goto bad_mapping;
965 	}
966 	return nents;
967 
968  bad_mapping:
969 	for_each_sg(sg, s, i, j)
970 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
971 	return 0;
972 }
973 
974 /**
975  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
976  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
977  * @sg: list of buffers
978  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
979  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
980  *
981  * Unmap a set of streaming mode DMA translations.  Again, CPU access
982  * rules concerning calls here are the same as for dma_unmap_single().
983  */
984 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
985 		enum dma_data_direction dir, struct dma_attrs *attrs)
986 {
987 	struct dma_map_ops *ops = get_dma_ops(dev);
988 	struct scatterlist *s;
989 
990 	int i;
991 
992 	for_each_sg(sg, s, nents, i)
993 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
994 }
995 
996 /**
997  * arm_dma_sync_sg_for_cpu
998  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
999  * @sg: list of buffers
1000  * @nents: number of buffers to map (returned from dma_map_sg)
1001  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1002  */
1003 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1004 			int nents, enum dma_data_direction dir)
1005 {
1006 	struct dma_map_ops *ops = get_dma_ops(dev);
1007 	struct scatterlist *s;
1008 	int i;
1009 
1010 	for_each_sg(sg, s, nents, i)
1011 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1012 					 dir);
1013 }
1014 
1015 /**
1016  * arm_dma_sync_sg_for_device
1017  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1018  * @sg: list of buffers
1019  * @nents: number of buffers to map (returned from dma_map_sg)
1020  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1021  */
1022 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1023 			int nents, enum dma_data_direction dir)
1024 {
1025 	struct dma_map_ops *ops = get_dma_ops(dev);
1026 	struct scatterlist *s;
1027 	int i;
1028 
1029 	for_each_sg(sg, s, nents, i)
1030 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1031 					    dir);
1032 }
1033 
1034 /*
1035  * Return whether the given device DMA address mask can be supported
1036  * properly.  For example, if your device can only drive the low 24-bits
1037  * during bus mastering, then you would pass 0x00ffffff as the mask
1038  * to this function.
1039  */
1040 int dma_supported(struct device *dev, u64 mask)
1041 {
1042 	return __dma_supported(dev, mask, false);
1043 }
1044 EXPORT_SYMBOL(dma_supported);
1045 
1046 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1047 {
1048 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1049 		return -EIO;
1050 
1051 	*dev->dma_mask = dma_mask;
1052 
1053 	return 0;
1054 }
1055 
1056 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1057 
1058 static int __init dma_debug_do_init(void)
1059 {
1060 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1061 	return 0;
1062 }
1063 fs_initcall(dma_debug_do_init);
1064 
1065 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1066 
1067 /* IOMMU */
1068 
1069 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1070 
1071 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1072 				      size_t size)
1073 {
1074 	unsigned int order = get_order(size);
1075 	unsigned int align = 0;
1076 	unsigned int count, start;
1077 	unsigned long flags;
1078 	dma_addr_t iova;
1079 	int i;
1080 
1081 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1082 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1083 
1084 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1085 	align = (1 << order) - 1;
1086 
1087 	spin_lock_irqsave(&mapping->lock, flags);
1088 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1089 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1090 				mapping->bits, 0, count, align);
1091 
1092 		if (start > mapping->bits)
1093 			continue;
1094 
1095 		bitmap_set(mapping->bitmaps[i], start, count);
1096 		break;
1097 	}
1098 
1099 	/*
1100 	 * No unused range found. Try to extend the existing mapping
1101 	 * and perform a second attempt to reserve an IO virtual
1102 	 * address range of size bytes.
1103 	 */
1104 	if (i == mapping->nr_bitmaps) {
1105 		if (extend_iommu_mapping(mapping)) {
1106 			spin_unlock_irqrestore(&mapping->lock, flags);
1107 			return DMA_ERROR_CODE;
1108 		}
1109 
1110 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1111 				mapping->bits, 0, count, align);
1112 
1113 		if (start > mapping->bits) {
1114 			spin_unlock_irqrestore(&mapping->lock, flags);
1115 			return DMA_ERROR_CODE;
1116 		}
1117 
1118 		bitmap_set(mapping->bitmaps[i], start, count);
1119 	}
1120 	spin_unlock_irqrestore(&mapping->lock, flags);
1121 
1122 	iova = mapping->base + (mapping->size * i);
1123 	iova += start << PAGE_SHIFT;
1124 
1125 	return iova;
1126 }
1127 
1128 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1129 			       dma_addr_t addr, size_t size)
1130 {
1131 	unsigned int start, count;
1132 	unsigned long flags;
1133 	dma_addr_t bitmap_base;
1134 	u32 bitmap_index;
1135 
1136 	if (!size)
1137 		return;
1138 
1139 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping->size;
1140 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1141 
1142 	bitmap_base = mapping->base + mapping->size * bitmap_index;
1143 
1144 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1145 
1146 	if (addr + size > bitmap_base + mapping->size) {
1147 		/*
1148 		 * The address range to be freed reaches into the iova
1149 		 * range of the next bitmap. This should not happen as
1150 		 * we don't allow this in __alloc_iova (at the
1151 		 * moment).
1152 		 */
1153 		BUG();
1154 	} else
1155 		count = size >> PAGE_SHIFT;
1156 
1157 	spin_lock_irqsave(&mapping->lock, flags);
1158 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1159 	spin_unlock_irqrestore(&mapping->lock, flags);
1160 }
1161 
1162 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1163 					  gfp_t gfp, struct dma_attrs *attrs)
1164 {
1165 	struct page **pages;
1166 	int count = size >> PAGE_SHIFT;
1167 	int array_size = count * sizeof(struct page *);
1168 	int i = 0;
1169 
1170 	if (array_size <= PAGE_SIZE)
1171 		pages = kzalloc(array_size, gfp);
1172 	else
1173 		pages = vzalloc(array_size);
1174 	if (!pages)
1175 		return NULL;
1176 
1177 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1178 	{
1179 		unsigned long order = get_order(size);
1180 		struct page *page;
1181 
1182 		page = dma_alloc_from_contiguous(dev, count, order);
1183 		if (!page)
1184 			goto error;
1185 
1186 		__dma_clear_buffer(page, size);
1187 
1188 		for (i = 0; i < count; i++)
1189 			pages[i] = page + i;
1190 
1191 		return pages;
1192 	}
1193 
1194 	/*
1195 	 * IOMMU can map any pages, so himem can also be used here
1196 	 */
1197 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1198 
1199 	while (count) {
1200 		int j, order = __fls(count);
1201 
1202 		pages[i] = alloc_pages(gfp, order);
1203 		while (!pages[i] && order)
1204 			pages[i] = alloc_pages(gfp, --order);
1205 		if (!pages[i])
1206 			goto error;
1207 
1208 		if (order) {
1209 			split_page(pages[i], order);
1210 			j = 1 << order;
1211 			while (--j)
1212 				pages[i + j] = pages[i] + j;
1213 		}
1214 
1215 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1216 		i += 1 << order;
1217 		count -= 1 << order;
1218 	}
1219 
1220 	return pages;
1221 error:
1222 	while (i--)
1223 		if (pages[i])
1224 			__free_pages(pages[i], 0);
1225 	if (array_size <= PAGE_SIZE)
1226 		kfree(pages);
1227 	else
1228 		vfree(pages);
1229 	return NULL;
1230 }
1231 
1232 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1233 			       size_t size, struct dma_attrs *attrs)
1234 {
1235 	int count = size >> PAGE_SHIFT;
1236 	int array_size = count * sizeof(struct page *);
1237 	int i;
1238 
1239 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1240 		dma_release_from_contiguous(dev, pages[0], count);
1241 	} else {
1242 		for (i = 0; i < count; i++)
1243 			if (pages[i])
1244 				__free_pages(pages[i], 0);
1245 	}
1246 
1247 	if (array_size <= PAGE_SIZE)
1248 		kfree(pages);
1249 	else
1250 		vfree(pages);
1251 	return 0;
1252 }
1253 
1254 /*
1255  * Create a CPU mapping for a specified pages
1256  */
1257 static void *
1258 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1259 		    const void *caller)
1260 {
1261 	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1262 	struct vm_struct *area;
1263 	unsigned long p;
1264 
1265 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1266 				  caller);
1267 	if (!area)
1268 		return NULL;
1269 
1270 	area->pages = pages;
1271 	area->nr_pages = nr_pages;
1272 	p = (unsigned long)area->addr;
1273 
1274 	for (i = 0; i < nr_pages; i++) {
1275 		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1276 		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1277 			goto err;
1278 		p += PAGE_SIZE;
1279 	}
1280 	return area->addr;
1281 err:
1282 	unmap_kernel_range((unsigned long)area->addr, size);
1283 	vunmap(area->addr);
1284 	return NULL;
1285 }
1286 
1287 /*
1288  * Create a mapping in device IO address space for specified pages
1289  */
1290 static dma_addr_t
1291 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1292 {
1293 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1294 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1295 	dma_addr_t dma_addr, iova;
1296 	int i, ret = DMA_ERROR_CODE;
1297 
1298 	dma_addr = __alloc_iova(mapping, size);
1299 	if (dma_addr == DMA_ERROR_CODE)
1300 		return dma_addr;
1301 
1302 	iova = dma_addr;
1303 	for (i = 0; i < count; ) {
1304 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1305 		phys_addr_t phys = page_to_phys(pages[i]);
1306 		unsigned int len, j;
1307 
1308 		for (j = i + 1; j < count; j++, next_pfn++)
1309 			if (page_to_pfn(pages[j]) != next_pfn)
1310 				break;
1311 
1312 		len = (j - i) << PAGE_SHIFT;
1313 		ret = iommu_map(mapping->domain, iova, phys, len,
1314 				IOMMU_READ|IOMMU_WRITE);
1315 		if (ret < 0)
1316 			goto fail;
1317 		iova += len;
1318 		i = j;
1319 	}
1320 	return dma_addr;
1321 fail:
1322 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1323 	__free_iova(mapping, dma_addr, size);
1324 	return DMA_ERROR_CODE;
1325 }
1326 
1327 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1328 {
1329 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1330 
1331 	/*
1332 	 * add optional in-page offset from iova to size and align
1333 	 * result to page size
1334 	 */
1335 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1336 	iova &= PAGE_MASK;
1337 
1338 	iommu_unmap(mapping->domain, iova, size);
1339 	__free_iova(mapping, iova, size);
1340 	return 0;
1341 }
1342 
1343 static struct page **__atomic_get_pages(void *addr)
1344 {
1345 	struct dma_pool *pool = &atomic_pool;
1346 	struct page **pages = pool->pages;
1347 	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1348 
1349 	return pages + offs;
1350 }
1351 
1352 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1353 {
1354 	struct vm_struct *area;
1355 
1356 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1357 		return __atomic_get_pages(cpu_addr);
1358 
1359 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1360 		return cpu_addr;
1361 
1362 	area = find_vm_area(cpu_addr);
1363 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1364 		return area->pages;
1365 	return NULL;
1366 }
1367 
1368 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1369 				  dma_addr_t *handle)
1370 {
1371 	struct page *page;
1372 	void *addr;
1373 
1374 	addr = __alloc_from_pool(size, &page);
1375 	if (!addr)
1376 		return NULL;
1377 
1378 	*handle = __iommu_create_mapping(dev, &page, size);
1379 	if (*handle == DMA_ERROR_CODE)
1380 		goto err_mapping;
1381 
1382 	return addr;
1383 
1384 err_mapping:
1385 	__free_from_pool(addr, size);
1386 	return NULL;
1387 }
1388 
1389 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1390 				dma_addr_t handle, size_t size)
1391 {
1392 	__iommu_remove_mapping(dev, handle, size);
1393 	__free_from_pool(cpu_addr, size);
1394 }
1395 
1396 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1397 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1398 {
1399 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1400 	struct page **pages;
1401 	void *addr = NULL;
1402 
1403 	*handle = DMA_ERROR_CODE;
1404 	size = PAGE_ALIGN(size);
1405 
1406 	if (!(gfp & __GFP_WAIT))
1407 		return __iommu_alloc_atomic(dev, size, handle);
1408 
1409 	/*
1410 	 * Following is a work-around (a.k.a. hack) to prevent pages
1411 	 * with __GFP_COMP being passed to split_page() which cannot
1412 	 * handle them.  The real problem is that this flag probably
1413 	 * should be 0 on ARM as it is not supported on this
1414 	 * platform; see CONFIG_HUGETLBFS.
1415 	 */
1416 	gfp &= ~(__GFP_COMP);
1417 
1418 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1419 	if (!pages)
1420 		return NULL;
1421 
1422 	*handle = __iommu_create_mapping(dev, pages, size);
1423 	if (*handle == DMA_ERROR_CODE)
1424 		goto err_buffer;
1425 
1426 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1427 		return pages;
1428 
1429 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1430 				   __builtin_return_address(0));
1431 	if (!addr)
1432 		goto err_mapping;
1433 
1434 	return addr;
1435 
1436 err_mapping:
1437 	__iommu_remove_mapping(dev, *handle, size);
1438 err_buffer:
1439 	__iommu_free_buffer(dev, pages, size, attrs);
1440 	return NULL;
1441 }
1442 
1443 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1444 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1445 		    struct dma_attrs *attrs)
1446 {
1447 	unsigned long uaddr = vma->vm_start;
1448 	unsigned long usize = vma->vm_end - vma->vm_start;
1449 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1450 
1451 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1452 
1453 	if (!pages)
1454 		return -ENXIO;
1455 
1456 	do {
1457 		int ret = vm_insert_page(vma, uaddr, *pages++);
1458 		if (ret) {
1459 			pr_err("Remapping memory failed: %d\n", ret);
1460 			return ret;
1461 		}
1462 		uaddr += PAGE_SIZE;
1463 		usize -= PAGE_SIZE;
1464 	} while (usize > 0);
1465 
1466 	return 0;
1467 }
1468 
1469 /*
1470  * free a page as defined by the above mapping.
1471  * Must not be called with IRQs disabled.
1472  */
1473 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1474 			  dma_addr_t handle, struct dma_attrs *attrs)
1475 {
1476 	struct page **pages;
1477 	size = PAGE_ALIGN(size);
1478 
1479 	if (__in_atomic_pool(cpu_addr, size)) {
1480 		__iommu_free_atomic(dev, cpu_addr, handle, size);
1481 		return;
1482 	}
1483 
1484 	pages = __iommu_get_pages(cpu_addr, attrs);
1485 	if (!pages) {
1486 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1487 		return;
1488 	}
1489 
1490 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1491 		unmap_kernel_range((unsigned long)cpu_addr, size);
1492 		vunmap(cpu_addr);
1493 	}
1494 
1495 	__iommu_remove_mapping(dev, handle, size);
1496 	__iommu_free_buffer(dev, pages, size, attrs);
1497 }
1498 
1499 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1500 				 void *cpu_addr, dma_addr_t dma_addr,
1501 				 size_t size, struct dma_attrs *attrs)
1502 {
1503 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1504 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1505 
1506 	if (!pages)
1507 		return -ENXIO;
1508 
1509 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1510 					 GFP_KERNEL);
1511 }
1512 
1513 static int __dma_direction_to_prot(enum dma_data_direction dir)
1514 {
1515 	int prot;
1516 
1517 	switch (dir) {
1518 	case DMA_BIDIRECTIONAL:
1519 		prot = IOMMU_READ | IOMMU_WRITE;
1520 		break;
1521 	case DMA_TO_DEVICE:
1522 		prot = IOMMU_READ;
1523 		break;
1524 	case DMA_FROM_DEVICE:
1525 		prot = IOMMU_WRITE;
1526 		break;
1527 	default:
1528 		prot = 0;
1529 	}
1530 
1531 	return prot;
1532 }
1533 
1534 /*
1535  * Map a part of the scatter-gather list into contiguous io address space
1536  */
1537 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1538 			  size_t size, dma_addr_t *handle,
1539 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1540 			  bool is_coherent)
1541 {
1542 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1543 	dma_addr_t iova, iova_base;
1544 	int ret = 0;
1545 	unsigned int count;
1546 	struct scatterlist *s;
1547 	int prot;
1548 
1549 	size = PAGE_ALIGN(size);
1550 	*handle = DMA_ERROR_CODE;
1551 
1552 	iova_base = iova = __alloc_iova(mapping, size);
1553 	if (iova == DMA_ERROR_CODE)
1554 		return -ENOMEM;
1555 
1556 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1557 		phys_addr_t phys = page_to_phys(sg_page(s));
1558 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1559 
1560 		if (!is_coherent &&
1561 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1562 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1563 
1564 		prot = __dma_direction_to_prot(dir);
1565 
1566 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1567 		if (ret < 0)
1568 			goto fail;
1569 		count += len >> PAGE_SHIFT;
1570 		iova += len;
1571 	}
1572 	*handle = iova_base;
1573 
1574 	return 0;
1575 fail:
1576 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1577 	__free_iova(mapping, iova_base, size);
1578 	return ret;
1579 }
1580 
1581 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1582 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1583 		     bool is_coherent)
1584 {
1585 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1586 	int i, count = 0;
1587 	unsigned int offset = s->offset;
1588 	unsigned int size = s->offset + s->length;
1589 	unsigned int max = dma_get_max_seg_size(dev);
1590 
1591 	for (i = 1; i < nents; i++) {
1592 		s = sg_next(s);
1593 
1594 		s->dma_address = DMA_ERROR_CODE;
1595 		s->dma_length = 0;
1596 
1597 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1598 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1599 			    dir, attrs, is_coherent) < 0)
1600 				goto bad_mapping;
1601 
1602 			dma->dma_address += offset;
1603 			dma->dma_length = size - offset;
1604 
1605 			size = offset = s->offset;
1606 			start = s;
1607 			dma = sg_next(dma);
1608 			count += 1;
1609 		}
1610 		size += s->length;
1611 	}
1612 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1613 		is_coherent) < 0)
1614 		goto bad_mapping;
1615 
1616 	dma->dma_address += offset;
1617 	dma->dma_length = size - offset;
1618 
1619 	return count+1;
1620 
1621 bad_mapping:
1622 	for_each_sg(sg, s, count, i)
1623 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1624 	return 0;
1625 }
1626 
1627 /**
1628  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1629  * @dev: valid struct device pointer
1630  * @sg: list of buffers
1631  * @nents: number of buffers to map
1632  * @dir: DMA transfer direction
1633  *
1634  * Map a set of i/o coherent buffers described by scatterlist in streaming
1635  * mode for DMA. The scatter gather list elements are merged together (if
1636  * possible) and tagged with the appropriate dma address and length. They are
1637  * obtained via sg_dma_{address,length}.
1638  */
1639 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1640 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1641 {
1642 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1643 }
1644 
1645 /**
1646  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1647  * @dev: valid struct device pointer
1648  * @sg: list of buffers
1649  * @nents: number of buffers to map
1650  * @dir: DMA transfer direction
1651  *
1652  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1653  * The scatter gather list elements are merged together (if possible) and
1654  * tagged with the appropriate dma address and length. They are obtained via
1655  * sg_dma_{address,length}.
1656  */
1657 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1658 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1659 {
1660 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1661 }
1662 
1663 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1664 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1665 		bool is_coherent)
1666 {
1667 	struct scatterlist *s;
1668 	int i;
1669 
1670 	for_each_sg(sg, s, nents, i) {
1671 		if (sg_dma_len(s))
1672 			__iommu_remove_mapping(dev, sg_dma_address(s),
1673 					       sg_dma_len(s));
1674 		if (!is_coherent &&
1675 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1676 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1677 					      s->length, dir);
1678 	}
1679 }
1680 
1681 /**
1682  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1683  * @dev: valid struct device pointer
1684  * @sg: list of buffers
1685  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1686  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1687  *
1688  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1689  * rules concerning calls here are the same as for dma_unmap_single().
1690  */
1691 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1692 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1693 {
1694 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1695 }
1696 
1697 /**
1698  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1699  * @dev: valid struct device pointer
1700  * @sg: list of buffers
1701  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1702  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1703  *
1704  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1705  * rules concerning calls here are the same as for dma_unmap_single().
1706  */
1707 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1708 			enum dma_data_direction dir, struct dma_attrs *attrs)
1709 {
1710 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1711 }
1712 
1713 /**
1714  * arm_iommu_sync_sg_for_cpu
1715  * @dev: valid struct device pointer
1716  * @sg: list of buffers
1717  * @nents: number of buffers to map (returned from dma_map_sg)
1718  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1719  */
1720 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1721 			int nents, enum dma_data_direction dir)
1722 {
1723 	struct scatterlist *s;
1724 	int i;
1725 
1726 	for_each_sg(sg, s, nents, i)
1727 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1728 
1729 }
1730 
1731 /**
1732  * arm_iommu_sync_sg_for_device
1733  * @dev: valid struct device pointer
1734  * @sg: list of buffers
1735  * @nents: number of buffers to map (returned from dma_map_sg)
1736  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1737  */
1738 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1739 			int nents, enum dma_data_direction dir)
1740 {
1741 	struct scatterlist *s;
1742 	int i;
1743 
1744 	for_each_sg(sg, s, nents, i)
1745 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1746 }
1747 
1748 
1749 /**
1750  * arm_coherent_iommu_map_page
1751  * @dev: valid struct device pointer
1752  * @page: page that buffer resides in
1753  * @offset: offset into page for start of buffer
1754  * @size: size of buffer to map
1755  * @dir: DMA transfer direction
1756  *
1757  * Coherent IOMMU aware version of arm_dma_map_page()
1758  */
1759 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1760 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1761 	     struct dma_attrs *attrs)
1762 {
1763 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1764 	dma_addr_t dma_addr;
1765 	int ret, prot, len = PAGE_ALIGN(size + offset);
1766 
1767 	dma_addr = __alloc_iova(mapping, len);
1768 	if (dma_addr == DMA_ERROR_CODE)
1769 		return dma_addr;
1770 
1771 	prot = __dma_direction_to_prot(dir);
1772 
1773 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1774 	if (ret < 0)
1775 		goto fail;
1776 
1777 	return dma_addr + offset;
1778 fail:
1779 	__free_iova(mapping, dma_addr, len);
1780 	return DMA_ERROR_CODE;
1781 }
1782 
1783 /**
1784  * arm_iommu_map_page
1785  * @dev: valid struct device pointer
1786  * @page: page that buffer resides in
1787  * @offset: offset into page for start of buffer
1788  * @size: size of buffer to map
1789  * @dir: DMA transfer direction
1790  *
1791  * IOMMU aware version of arm_dma_map_page()
1792  */
1793 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1794 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1795 	     struct dma_attrs *attrs)
1796 {
1797 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1798 		__dma_page_cpu_to_dev(page, offset, size, dir);
1799 
1800 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1801 }
1802 
1803 /**
1804  * arm_coherent_iommu_unmap_page
1805  * @dev: valid struct device pointer
1806  * @handle: DMA address of buffer
1807  * @size: size of buffer (same as passed to dma_map_page)
1808  * @dir: DMA transfer direction (same as passed to dma_map_page)
1809  *
1810  * Coherent IOMMU aware version of arm_dma_unmap_page()
1811  */
1812 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1813 		size_t size, enum dma_data_direction dir,
1814 		struct dma_attrs *attrs)
1815 {
1816 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1817 	dma_addr_t iova = handle & PAGE_MASK;
1818 	int offset = handle & ~PAGE_MASK;
1819 	int len = PAGE_ALIGN(size + offset);
1820 
1821 	if (!iova)
1822 		return;
1823 
1824 	iommu_unmap(mapping->domain, iova, len);
1825 	__free_iova(mapping, iova, len);
1826 }
1827 
1828 /**
1829  * arm_iommu_unmap_page
1830  * @dev: valid struct device pointer
1831  * @handle: DMA address of buffer
1832  * @size: size of buffer (same as passed to dma_map_page)
1833  * @dir: DMA transfer direction (same as passed to dma_map_page)
1834  *
1835  * IOMMU aware version of arm_dma_unmap_page()
1836  */
1837 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1838 		size_t size, enum dma_data_direction dir,
1839 		struct dma_attrs *attrs)
1840 {
1841 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1842 	dma_addr_t iova = handle & PAGE_MASK;
1843 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1844 	int offset = handle & ~PAGE_MASK;
1845 	int len = PAGE_ALIGN(size + offset);
1846 
1847 	if (!iova)
1848 		return;
1849 
1850 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1851 		__dma_page_dev_to_cpu(page, offset, size, dir);
1852 
1853 	iommu_unmap(mapping->domain, iova, len);
1854 	__free_iova(mapping, iova, len);
1855 }
1856 
1857 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1858 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1859 {
1860 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1861 	dma_addr_t iova = handle & PAGE_MASK;
1862 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1863 	unsigned int offset = handle & ~PAGE_MASK;
1864 
1865 	if (!iova)
1866 		return;
1867 
1868 	__dma_page_dev_to_cpu(page, offset, size, dir);
1869 }
1870 
1871 static void arm_iommu_sync_single_for_device(struct device *dev,
1872 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1873 {
1874 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1875 	dma_addr_t iova = handle & PAGE_MASK;
1876 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1877 	unsigned int offset = handle & ~PAGE_MASK;
1878 
1879 	if (!iova)
1880 		return;
1881 
1882 	__dma_page_cpu_to_dev(page, offset, size, dir);
1883 }
1884 
1885 struct dma_map_ops iommu_ops = {
1886 	.alloc		= arm_iommu_alloc_attrs,
1887 	.free		= arm_iommu_free_attrs,
1888 	.mmap		= arm_iommu_mmap_attrs,
1889 	.get_sgtable	= arm_iommu_get_sgtable,
1890 
1891 	.map_page		= arm_iommu_map_page,
1892 	.unmap_page		= arm_iommu_unmap_page,
1893 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1894 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1895 
1896 	.map_sg			= arm_iommu_map_sg,
1897 	.unmap_sg		= arm_iommu_unmap_sg,
1898 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1899 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1900 
1901 	.set_dma_mask		= arm_dma_set_mask,
1902 };
1903 
1904 struct dma_map_ops iommu_coherent_ops = {
1905 	.alloc		= arm_iommu_alloc_attrs,
1906 	.free		= arm_iommu_free_attrs,
1907 	.mmap		= arm_iommu_mmap_attrs,
1908 	.get_sgtable	= arm_iommu_get_sgtable,
1909 
1910 	.map_page	= arm_coherent_iommu_map_page,
1911 	.unmap_page	= arm_coherent_iommu_unmap_page,
1912 
1913 	.map_sg		= arm_coherent_iommu_map_sg,
1914 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1915 
1916 	.set_dma_mask	= arm_dma_set_mask,
1917 };
1918 
1919 /**
1920  * arm_iommu_create_mapping
1921  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1922  * @base: start address of the valid IO address space
1923  * @size: maximum size of the valid IO address space
1924  *
1925  * Creates a mapping structure which holds information about used/unused
1926  * IO address ranges, which is required to perform memory allocation and
1927  * mapping with IOMMU aware functions.
1928  *
1929  * The client device need to be attached to the mapping with
1930  * arm_iommu_attach_device function.
1931  */
1932 struct dma_iommu_mapping *
1933 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1934 {
1935 	unsigned int bits = size >> PAGE_SHIFT;
1936 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1937 	struct dma_iommu_mapping *mapping;
1938 	int extensions = 1;
1939 	int err = -ENOMEM;
1940 
1941 	if (!bitmap_size)
1942 		return ERR_PTR(-EINVAL);
1943 
1944 	if (bitmap_size > PAGE_SIZE) {
1945 		extensions = bitmap_size / PAGE_SIZE;
1946 		bitmap_size = PAGE_SIZE;
1947 	}
1948 
1949 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1950 	if (!mapping)
1951 		goto err;
1952 
1953 	mapping->bitmap_size = bitmap_size;
1954 	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1955 				GFP_KERNEL);
1956 	if (!mapping->bitmaps)
1957 		goto err2;
1958 
1959 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1960 	if (!mapping->bitmaps[0])
1961 		goto err3;
1962 
1963 	mapping->nr_bitmaps = 1;
1964 	mapping->extensions = extensions;
1965 	mapping->base = base;
1966 	mapping->size = bitmap_size << PAGE_SHIFT;
1967 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1968 
1969 	spin_lock_init(&mapping->lock);
1970 
1971 	mapping->domain = iommu_domain_alloc(bus);
1972 	if (!mapping->domain)
1973 		goto err4;
1974 
1975 	kref_init(&mapping->kref);
1976 	return mapping;
1977 err4:
1978 	kfree(mapping->bitmaps[0]);
1979 err3:
1980 	kfree(mapping->bitmaps);
1981 err2:
1982 	kfree(mapping);
1983 err:
1984 	return ERR_PTR(err);
1985 }
1986 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1987 
1988 static void release_iommu_mapping(struct kref *kref)
1989 {
1990 	int i;
1991 	struct dma_iommu_mapping *mapping =
1992 		container_of(kref, struct dma_iommu_mapping, kref);
1993 
1994 	iommu_domain_free(mapping->domain);
1995 	for (i = 0; i < mapping->nr_bitmaps; i++)
1996 		kfree(mapping->bitmaps[i]);
1997 	kfree(mapping->bitmaps);
1998 	kfree(mapping);
1999 }
2000 
2001 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2002 {
2003 	int next_bitmap;
2004 
2005 	if (mapping->nr_bitmaps > mapping->extensions)
2006 		return -EINVAL;
2007 
2008 	next_bitmap = mapping->nr_bitmaps;
2009 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2010 						GFP_ATOMIC);
2011 	if (!mapping->bitmaps[next_bitmap])
2012 		return -ENOMEM;
2013 
2014 	mapping->nr_bitmaps++;
2015 
2016 	return 0;
2017 }
2018 
2019 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2020 {
2021 	if (mapping)
2022 		kref_put(&mapping->kref, release_iommu_mapping);
2023 }
2024 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2025 
2026 /**
2027  * arm_iommu_attach_device
2028  * @dev: valid struct device pointer
2029  * @mapping: io address space mapping structure (returned from
2030  *	arm_iommu_create_mapping)
2031  *
2032  * Attaches specified io address space mapping to the provided device,
2033  * this replaces the dma operations (dma_map_ops pointer) with the
2034  * IOMMU aware version. More than one client might be attached to
2035  * the same io address space mapping.
2036  */
2037 int arm_iommu_attach_device(struct device *dev,
2038 			    struct dma_iommu_mapping *mapping)
2039 {
2040 	int err;
2041 
2042 	err = iommu_attach_device(mapping->domain, dev);
2043 	if (err)
2044 		return err;
2045 
2046 	kref_get(&mapping->kref);
2047 	dev->archdata.mapping = mapping;
2048 	set_dma_ops(dev, &iommu_ops);
2049 
2050 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2051 	return 0;
2052 }
2053 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2054 
2055 /**
2056  * arm_iommu_detach_device
2057  * @dev: valid struct device pointer
2058  *
2059  * Detaches the provided device from a previously attached map.
2060  * This voids the dma operations (dma_map_ops pointer)
2061  */
2062 void arm_iommu_detach_device(struct device *dev)
2063 {
2064 	struct dma_iommu_mapping *mapping;
2065 
2066 	mapping = to_dma_iommu_mapping(dev);
2067 	if (!mapping) {
2068 		dev_warn(dev, "Not attached\n");
2069 		return;
2070 	}
2071 
2072 	iommu_detach_device(mapping->domain, dev);
2073 	kref_put(&mapping->kref, release_iommu_mapping);
2074 	dev->archdata.mapping = NULL;
2075 	set_dma_ops(dev, NULL);
2076 
2077 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2078 }
2079 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2080 
2081 #endif
2082