1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/bootmem.h> 13 #include <linux/module.h> 14 #include <linux/mm.h> 15 #include <linux/gfp.h> 16 #include <linux/errno.h> 17 #include <linux/list.h> 18 #include <linux/init.h> 19 #include <linux/device.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/dma-contiguous.h> 22 #include <linux/highmem.h> 23 #include <linux/memblock.h> 24 #include <linux/slab.h> 25 #include <linux/iommu.h> 26 #include <linux/io.h> 27 #include <linux/vmalloc.h> 28 #include <linux/sizes.h> 29 30 #include <asm/memory.h> 31 #include <asm/highmem.h> 32 #include <asm/cacheflush.h> 33 #include <asm/tlbflush.h> 34 #include <asm/mach/arch.h> 35 #include <asm/dma-iommu.h> 36 #include <asm/mach/map.h> 37 #include <asm/system_info.h> 38 #include <asm/dma-contiguous.h> 39 40 #include "mm.h" 41 42 /* 43 * The DMA API is built upon the notion of "buffer ownership". A buffer 44 * is either exclusively owned by the CPU (and therefore may be accessed 45 * by it) or exclusively owned by the DMA device. These helper functions 46 * represent the transitions between these two ownership states. 47 * 48 * Note, however, that on later ARMs, this notion does not work due to 49 * speculative prefetches. We model our approach on the assumption that 50 * the CPU does do speculative prefetches, which means we clean caches 51 * before transfers and delay cache invalidation until transfer completion. 52 * 53 */ 54 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 55 size_t, enum dma_data_direction); 56 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 57 size_t, enum dma_data_direction); 58 59 /** 60 * arm_dma_map_page - map a portion of a page for streaming DMA 61 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 62 * @page: page that buffer resides in 63 * @offset: offset into page for start of buffer 64 * @size: size of buffer to map 65 * @dir: DMA transfer direction 66 * 67 * Ensure that any data held in the cache is appropriately discarded 68 * or written back. 69 * 70 * The device owns this memory once this call has completed. The CPU 71 * can regain ownership by calling dma_unmap_page(). 72 */ 73 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 74 unsigned long offset, size_t size, enum dma_data_direction dir, 75 struct dma_attrs *attrs) 76 { 77 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 78 __dma_page_cpu_to_dev(page, offset, size, dir); 79 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 80 } 81 82 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 83 unsigned long offset, size_t size, enum dma_data_direction dir, 84 struct dma_attrs *attrs) 85 { 86 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 87 } 88 89 /** 90 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 91 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 92 * @handle: DMA address of buffer 93 * @size: size of buffer (same as passed to dma_map_page) 94 * @dir: DMA transfer direction (same as passed to dma_map_page) 95 * 96 * Unmap a page streaming mode DMA translation. The handle and size 97 * must match what was provided in the previous dma_map_page() call. 98 * All other usages are undefined. 99 * 100 * After this call, reads by the CPU to the buffer are guaranteed to see 101 * whatever the device wrote there. 102 */ 103 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 104 size_t size, enum dma_data_direction dir, 105 struct dma_attrs *attrs) 106 { 107 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 108 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 109 handle & ~PAGE_MASK, size, dir); 110 } 111 112 static void arm_dma_sync_single_for_cpu(struct device *dev, 113 dma_addr_t handle, size_t size, enum dma_data_direction dir) 114 { 115 unsigned int offset = handle & (PAGE_SIZE - 1); 116 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 117 __dma_page_dev_to_cpu(page, offset, size, dir); 118 } 119 120 static void arm_dma_sync_single_for_device(struct device *dev, 121 dma_addr_t handle, size_t size, enum dma_data_direction dir) 122 { 123 unsigned int offset = handle & (PAGE_SIZE - 1); 124 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 125 __dma_page_cpu_to_dev(page, offset, size, dir); 126 } 127 128 struct dma_map_ops arm_dma_ops = { 129 .alloc = arm_dma_alloc, 130 .free = arm_dma_free, 131 .mmap = arm_dma_mmap, 132 .get_sgtable = arm_dma_get_sgtable, 133 .map_page = arm_dma_map_page, 134 .unmap_page = arm_dma_unmap_page, 135 .map_sg = arm_dma_map_sg, 136 .unmap_sg = arm_dma_unmap_sg, 137 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 138 .sync_single_for_device = arm_dma_sync_single_for_device, 139 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 140 .sync_sg_for_device = arm_dma_sync_sg_for_device, 141 .set_dma_mask = arm_dma_set_mask, 142 }; 143 EXPORT_SYMBOL(arm_dma_ops); 144 145 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 146 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs); 147 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 148 dma_addr_t handle, struct dma_attrs *attrs); 149 150 struct dma_map_ops arm_coherent_dma_ops = { 151 .alloc = arm_coherent_dma_alloc, 152 .free = arm_coherent_dma_free, 153 .mmap = arm_dma_mmap, 154 .get_sgtable = arm_dma_get_sgtable, 155 .map_page = arm_coherent_dma_map_page, 156 .map_sg = arm_dma_map_sg, 157 .set_dma_mask = arm_dma_set_mask, 158 }; 159 EXPORT_SYMBOL(arm_coherent_dma_ops); 160 161 static int __dma_supported(struct device *dev, u64 mask, bool warn) 162 { 163 unsigned long max_dma_pfn; 164 165 /* 166 * If the mask allows for more memory than we can address, 167 * and we actually have that much memory, then we must 168 * indicate that DMA to this device is not supported. 169 */ 170 if (sizeof(mask) != sizeof(dma_addr_t) && 171 mask > (dma_addr_t)~0 && 172 dma_to_pfn(dev, ~0) < max_pfn) { 173 if (warn) { 174 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n", 175 mask); 176 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n"); 177 } 178 return 0; 179 } 180 181 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); 182 183 /* 184 * Translate the device's DMA mask to a PFN limit. This 185 * PFN number includes the page which we can DMA to. 186 */ 187 if (dma_to_pfn(dev, mask) < max_dma_pfn) { 188 if (warn) 189 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", 190 mask, 191 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, 192 max_dma_pfn + 1); 193 return 0; 194 } 195 196 return 1; 197 } 198 199 static u64 get_coherent_dma_mask(struct device *dev) 200 { 201 u64 mask = (u64)DMA_BIT_MASK(32); 202 203 if (dev) { 204 mask = dev->coherent_dma_mask; 205 206 /* 207 * Sanity check the DMA mask - it must be non-zero, and 208 * must be able to be satisfied by a DMA allocation. 209 */ 210 if (mask == 0) { 211 dev_warn(dev, "coherent DMA mask is unset\n"); 212 return 0; 213 } 214 215 if (!__dma_supported(dev, mask, true)) 216 return 0; 217 } 218 219 return mask; 220 } 221 222 static void __dma_clear_buffer(struct page *page, size_t size) 223 { 224 /* 225 * Ensure that the allocated pages are zeroed, and that any data 226 * lurking in the kernel direct-mapped region is invalidated. 227 */ 228 if (PageHighMem(page)) { 229 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 230 phys_addr_t end = base + size; 231 while (size > 0) { 232 void *ptr = kmap_atomic(page); 233 memset(ptr, 0, PAGE_SIZE); 234 dmac_flush_range(ptr, ptr + PAGE_SIZE); 235 kunmap_atomic(ptr); 236 page++; 237 size -= PAGE_SIZE; 238 } 239 outer_flush_range(base, end); 240 } else { 241 void *ptr = page_address(page); 242 memset(ptr, 0, size); 243 dmac_flush_range(ptr, ptr + size); 244 outer_flush_range(__pa(ptr), __pa(ptr) + size); 245 } 246 } 247 248 /* 249 * Allocate a DMA buffer for 'dev' of size 'size' using the 250 * specified gfp mask. Note that 'size' must be page aligned. 251 */ 252 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) 253 { 254 unsigned long order = get_order(size); 255 struct page *page, *p, *e; 256 257 page = alloc_pages(gfp, order); 258 if (!page) 259 return NULL; 260 261 /* 262 * Now split the huge page and free the excess pages 263 */ 264 split_page(page, order); 265 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 266 __free_page(p); 267 268 __dma_clear_buffer(page, size); 269 270 return page; 271 } 272 273 /* 274 * Free a DMA buffer. 'size' must be page aligned. 275 */ 276 static void __dma_free_buffer(struct page *page, size_t size) 277 { 278 struct page *e = page + (size >> PAGE_SHIFT); 279 280 while (page < e) { 281 __free_page(page); 282 page++; 283 } 284 } 285 286 #ifdef CONFIG_MMU 287 288 static void *__alloc_from_contiguous(struct device *dev, size_t size, 289 pgprot_t prot, struct page **ret_page, 290 const void *caller); 291 292 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 293 pgprot_t prot, struct page **ret_page, 294 const void *caller); 295 296 static void * 297 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 298 const void *caller) 299 { 300 struct vm_struct *area; 301 unsigned long addr; 302 303 /* 304 * DMA allocation can be mapped to user space, so lets 305 * set VM_USERMAP flags too. 306 */ 307 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP, 308 caller); 309 if (!area) 310 return NULL; 311 addr = (unsigned long)area->addr; 312 area->phys_addr = __pfn_to_phys(page_to_pfn(page)); 313 314 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) { 315 vunmap((void *)addr); 316 return NULL; 317 } 318 return (void *)addr; 319 } 320 321 static void __dma_free_remap(void *cpu_addr, size_t size) 322 { 323 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP; 324 struct vm_struct *area = find_vm_area(cpu_addr); 325 if (!area || (area->flags & flags) != flags) { 326 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 327 return; 328 } 329 unmap_kernel_range((unsigned long)cpu_addr, size); 330 vunmap(cpu_addr); 331 } 332 333 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 334 335 struct dma_pool { 336 size_t size; 337 spinlock_t lock; 338 unsigned long *bitmap; 339 unsigned long nr_pages; 340 void *vaddr; 341 struct page **pages; 342 }; 343 344 static struct dma_pool atomic_pool = { 345 .size = DEFAULT_DMA_COHERENT_POOL_SIZE, 346 }; 347 348 static int __init early_coherent_pool(char *p) 349 { 350 atomic_pool.size = memparse(p, &p); 351 return 0; 352 } 353 early_param("coherent_pool", early_coherent_pool); 354 355 void __init init_dma_coherent_pool_size(unsigned long size) 356 { 357 /* 358 * Catch any attempt to set the pool size too late. 359 */ 360 BUG_ON(atomic_pool.vaddr); 361 362 /* 363 * Set architecture specific coherent pool size only if 364 * it has not been changed by kernel command line parameter. 365 */ 366 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE) 367 atomic_pool.size = size; 368 } 369 370 /* 371 * Initialise the coherent pool for atomic allocations. 372 */ 373 static int __init atomic_pool_init(void) 374 { 375 struct dma_pool *pool = &atomic_pool; 376 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 377 gfp_t gfp = GFP_KERNEL | GFP_DMA; 378 unsigned long nr_pages = pool->size >> PAGE_SHIFT; 379 unsigned long *bitmap; 380 struct page *page; 381 struct page **pages; 382 void *ptr; 383 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long); 384 385 bitmap = kzalloc(bitmap_size, GFP_KERNEL); 386 if (!bitmap) 387 goto no_bitmap; 388 389 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL); 390 if (!pages) 391 goto no_pages; 392 393 if (IS_ENABLED(CONFIG_DMA_CMA)) 394 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page, 395 atomic_pool_init); 396 else 397 ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page, 398 atomic_pool_init); 399 if (ptr) { 400 int i; 401 402 for (i = 0; i < nr_pages; i++) 403 pages[i] = page + i; 404 405 spin_lock_init(&pool->lock); 406 pool->vaddr = ptr; 407 pool->pages = pages; 408 pool->bitmap = bitmap; 409 pool->nr_pages = nr_pages; 410 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n", 411 (unsigned)pool->size / 1024); 412 return 0; 413 } 414 415 kfree(pages); 416 no_pages: 417 kfree(bitmap); 418 no_bitmap: 419 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n", 420 (unsigned)pool->size / 1024); 421 return -ENOMEM; 422 } 423 /* 424 * CMA is activated by core_initcall, so we must be called after it. 425 */ 426 postcore_initcall(atomic_pool_init); 427 428 struct dma_contig_early_reserve { 429 phys_addr_t base; 430 unsigned long size; 431 }; 432 433 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 434 435 static int dma_mmu_remap_num __initdata; 436 437 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 438 { 439 dma_mmu_remap[dma_mmu_remap_num].base = base; 440 dma_mmu_remap[dma_mmu_remap_num].size = size; 441 dma_mmu_remap_num++; 442 } 443 444 void __init dma_contiguous_remap(void) 445 { 446 int i; 447 for (i = 0; i < dma_mmu_remap_num; i++) { 448 phys_addr_t start = dma_mmu_remap[i].base; 449 phys_addr_t end = start + dma_mmu_remap[i].size; 450 struct map_desc map; 451 unsigned long addr; 452 453 if (end > arm_lowmem_limit) 454 end = arm_lowmem_limit; 455 if (start >= end) 456 continue; 457 458 map.pfn = __phys_to_pfn(start); 459 map.virtual = __phys_to_virt(start); 460 map.length = end - start; 461 map.type = MT_MEMORY_DMA_READY; 462 463 /* 464 * Clear previous low-memory mapping 465 */ 466 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 467 addr += PMD_SIZE) 468 pmd_clear(pmd_off_k(addr)); 469 470 iotable_init(&map, 1); 471 } 472 } 473 474 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 475 void *data) 476 { 477 struct page *page = virt_to_page(addr); 478 pgprot_t prot = *(pgprot_t *)data; 479 480 set_pte_ext(pte, mk_pte(page, prot), 0); 481 return 0; 482 } 483 484 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 485 { 486 unsigned long start = (unsigned long) page_address(page); 487 unsigned end = start + size; 488 489 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 490 flush_tlb_kernel_range(start, end); 491 } 492 493 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 494 pgprot_t prot, struct page **ret_page, 495 const void *caller) 496 { 497 struct page *page; 498 void *ptr; 499 page = __dma_alloc_buffer(dev, size, gfp); 500 if (!page) 501 return NULL; 502 503 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 504 if (!ptr) { 505 __dma_free_buffer(page, size); 506 return NULL; 507 } 508 509 *ret_page = page; 510 return ptr; 511 } 512 513 static void *__alloc_from_pool(size_t size, struct page **ret_page) 514 { 515 struct dma_pool *pool = &atomic_pool; 516 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 517 unsigned int pageno; 518 unsigned long flags; 519 void *ptr = NULL; 520 unsigned long align_mask; 521 522 if (!pool->vaddr) { 523 WARN(1, "coherent pool not initialised!\n"); 524 return NULL; 525 } 526 527 /* 528 * Align the region allocation - allocations from pool are rather 529 * small, so align them to their order in pages, minimum is a page 530 * size. This helps reduce fragmentation of the DMA space. 531 */ 532 align_mask = (1 << get_order(size)) - 1; 533 534 spin_lock_irqsave(&pool->lock, flags); 535 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages, 536 0, count, align_mask); 537 if (pageno < pool->nr_pages) { 538 bitmap_set(pool->bitmap, pageno, count); 539 ptr = pool->vaddr + PAGE_SIZE * pageno; 540 *ret_page = pool->pages[pageno]; 541 } else { 542 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n" 543 "Please increase it with coherent_pool= kernel parameter!\n", 544 (unsigned)pool->size / 1024); 545 } 546 spin_unlock_irqrestore(&pool->lock, flags); 547 548 return ptr; 549 } 550 551 static bool __in_atomic_pool(void *start, size_t size) 552 { 553 struct dma_pool *pool = &atomic_pool; 554 void *end = start + size; 555 void *pool_start = pool->vaddr; 556 void *pool_end = pool->vaddr + pool->size; 557 558 if (start < pool_start || start >= pool_end) 559 return false; 560 561 if (end <= pool_end) 562 return true; 563 564 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n", 565 start, end - 1, pool_start, pool_end - 1); 566 567 return false; 568 } 569 570 static int __free_from_pool(void *start, size_t size) 571 { 572 struct dma_pool *pool = &atomic_pool; 573 unsigned long pageno, count; 574 unsigned long flags; 575 576 if (!__in_atomic_pool(start, size)) 577 return 0; 578 579 pageno = (start - pool->vaddr) >> PAGE_SHIFT; 580 count = size >> PAGE_SHIFT; 581 582 spin_lock_irqsave(&pool->lock, flags); 583 bitmap_clear(pool->bitmap, pageno, count); 584 spin_unlock_irqrestore(&pool->lock, flags); 585 586 return 1; 587 } 588 589 static void *__alloc_from_contiguous(struct device *dev, size_t size, 590 pgprot_t prot, struct page **ret_page, 591 const void *caller) 592 { 593 unsigned long order = get_order(size); 594 size_t count = size >> PAGE_SHIFT; 595 struct page *page; 596 void *ptr; 597 598 page = dma_alloc_from_contiguous(dev, count, order); 599 if (!page) 600 return NULL; 601 602 __dma_clear_buffer(page, size); 603 604 if (PageHighMem(page)) { 605 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 606 if (!ptr) { 607 dma_release_from_contiguous(dev, page, count); 608 return NULL; 609 } 610 } else { 611 __dma_remap(page, size, prot); 612 ptr = page_address(page); 613 } 614 *ret_page = page; 615 return ptr; 616 } 617 618 static void __free_from_contiguous(struct device *dev, struct page *page, 619 void *cpu_addr, size_t size) 620 { 621 if (PageHighMem(page)) 622 __dma_free_remap(cpu_addr, size); 623 else 624 __dma_remap(page, size, PAGE_KERNEL); 625 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 626 } 627 628 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot) 629 { 630 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ? 631 pgprot_writecombine(prot) : 632 pgprot_dmacoherent(prot); 633 return prot; 634 } 635 636 #define nommu() 0 637 638 #else /* !CONFIG_MMU */ 639 640 #define nommu() 1 641 642 #define __get_dma_pgprot(attrs, prot) __pgprot(0) 643 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL 644 #define __alloc_from_pool(size, ret_page) NULL 645 #define __alloc_from_contiguous(dev, size, prot, ret, c) NULL 646 #define __free_from_pool(cpu_addr, size) 0 647 #define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0) 648 #define __dma_free_remap(cpu_addr, size) do { } while (0) 649 650 #endif /* CONFIG_MMU */ 651 652 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 653 struct page **ret_page) 654 { 655 struct page *page; 656 page = __dma_alloc_buffer(dev, size, gfp); 657 if (!page) 658 return NULL; 659 660 *ret_page = page; 661 return page_address(page); 662 } 663 664 665 666 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 667 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller) 668 { 669 u64 mask = get_coherent_dma_mask(dev); 670 struct page *page = NULL; 671 void *addr; 672 673 #ifdef CONFIG_DMA_API_DEBUG 674 u64 limit = (mask + 1) & ~mask; 675 if (limit && size >= limit) { 676 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 677 size, mask); 678 return NULL; 679 } 680 #endif 681 682 if (!mask) 683 return NULL; 684 685 if (mask < 0xffffffffULL) 686 gfp |= GFP_DMA; 687 688 /* 689 * Following is a work-around (a.k.a. hack) to prevent pages 690 * with __GFP_COMP being passed to split_page() which cannot 691 * handle them. The real problem is that this flag probably 692 * should be 0 on ARM as it is not supported on this 693 * platform; see CONFIG_HUGETLBFS. 694 */ 695 gfp &= ~(__GFP_COMP); 696 697 *handle = DMA_ERROR_CODE; 698 size = PAGE_ALIGN(size); 699 700 if (is_coherent || nommu()) 701 addr = __alloc_simple_buffer(dev, size, gfp, &page); 702 else if (!(gfp & __GFP_WAIT)) 703 addr = __alloc_from_pool(size, &page); 704 else if (!IS_ENABLED(CONFIG_DMA_CMA)) 705 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller); 706 else 707 addr = __alloc_from_contiguous(dev, size, prot, &page, caller); 708 709 if (addr) 710 *handle = pfn_to_dma(dev, page_to_pfn(page)); 711 712 return addr; 713 } 714 715 /* 716 * Allocate DMA-coherent memory space and return both the kernel remapped 717 * virtual and bus address for that space. 718 */ 719 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 720 gfp_t gfp, struct dma_attrs *attrs) 721 { 722 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 723 void *memory; 724 725 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 726 return memory; 727 728 return __dma_alloc(dev, size, handle, gfp, prot, false, 729 __builtin_return_address(0)); 730 } 731 732 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 733 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 734 { 735 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 736 void *memory; 737 738 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 739 return memory; 740 741 return __dma_alloc(dev, size, handle, gfp, prot, true, 742 __builtin_return_address(0)); 743 } 744 745 /* 746 * Create userspace mapping for the DMA-coherent memory. 747 */ 748 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 749 void *cpu_addr, dma_addr_t dma_addr, size_t size, 750 struct dma_attrs *attrs) 751 { 752 int ret = -ENXIO; 753 #ifdef CONFIG_MMU 754 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 755 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 756 unsigned long pfn = dma_to_pfn(dev, dma_addr); 757 unsigned long off = vma->vm_pgoff; 758 759 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 760 761 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 762 return ret; 763 764 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 765 ret = remap_pfn_range(vma, vma->vm_start, 766 pfn + off, 767 vma->vm_end - vma->vm_start, 768 vma->vm_page_prot); 769 } 770 #endif /* CONFIG_MMU */ 771 772 return ret; 773 } 774 775 /* 776 * Free a buffer as defined by the above mapping. 777 */ 778 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 779 dma_addr_t handle, struct dma_attrs *attrs, 780 bool is_coherent) 781 { 782 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 783 784 if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) 785 return; 786 787 size = PAGE_ALIGN(size); 788 789 if (is_coherent || nommu()) { 790 __dma_free_buffer(page, size); 791 } else if (__free_from_pool(cpu_addr, size)) { 792 return; 793 } else if (!IS_ENABLED(CONFIG_DMA_CMA)) { 794 __dma_free_remap(cpu_addr, size); 795 __dma_free_buffer(page, size); 796 } else { 797 /* 798 * Non-atomic allocations cannot be freed with IRQs disabled 799 */ 800 WARN_ON(irqs_disabled()); 801 __free_from_contiguous(dev, page, cpu_addr, size); 802 } 803 } 804 805 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 806 dma_addr_t handle, struct dma_attrs *attrs) 807 { 808 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 809 } 810 811 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 812 dma_addr_t handle, struct dma_attrs *attrs) 813 { 814 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 815 } 816 817 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 818 void *cpu_addr, dma_addr_t handle, size_t size, 819 struct dma_attrs *attrs) 820 { 821 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 822 int ret; 823 824 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 825 if (unlikely(ret)) 826 return ret; 827 828 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 829 return 0; 830 } 831 832 static void dma_cache_maint_page(struct page *page, unsigned long offset, 833 size_t size, enum dma_data_direction dir, 834 void (*op)(const void *, size_t, int)) 835 { 836 unsigned long pfn; 837 size_t left = size; 838 839 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 840 offset %= PAGE_SIZE; 841 842 /* 843 * A single sg entry may refer to multiple physically contiguous 844 * pages. But we still need to process highmem pages individually. 845 * If highmem is not configured then the bulk of this loop gets 846 * optimized out. 847 */ 848 do { 849 size_t len = left; 850 void *vaddr; 851 852 page = pfn_to_page(pfn); 853 854 if (PageHighMem(page)) { 855 if (len + offset > PAGE_SIZE) 856 len = PAGE_SIZE - offset; 857 858 if (cache_is_vipt_nonaliasing()) { 859 vaddr = kmap_atomic(page); 860 op(vaddr + offset, len, dir); 861 kunmap_atomic(vaddr); 862 } else { 863 vaddr = kmap_high_get(page); 864 if (vaddr) { 865 op(vaddr + offset, len, dir); 866 kunmap_high(page); 867 } 868 } 869 } else { 870 vaddr = page_address(page) + offset; 871 op(vaddr, len, dir); 872 } 873 offset = 0; 874 pfn++; 875 left -= len; 876 } while (left); 877 } 878 879 /* 880 * Make an area consistent for devices. 881 * Note: Drivers should NOT use this function directly, as it will break 882 * platforms with CONFIG_DMABOUNCE. 883 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 884 */ 885 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 886 size_t size, enum dma_data_direction dir) 887 { 888 unsigned long paddr; 889 890 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 891 892 paddr = page_to_phys(page) + off; 893 if (dir == DMA_FROM_DEVICE) { 894 outer_inv_range(paddr, paddr + size); 895 } else { 896 outer_clean_range(paddr, paddr + size); 897 } 898 /* FIXME: non-speculating: flush on bidirectional mappings? */ 899 } 900 901 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 902 size_t size, enum dma_data_direction dir) 903 { 904 unsigned long paddr = page_to_phys(page) + off; 905 906 /* FIXME: non-speculating: not required */ 907 /* don't bother invalidating if DMA to device */ 908 if (dir != DMA_TO_DEVICE) 909 outer_inv_range(paddr, paddr + size); 910 911 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 912 913 /* 914 * Mark the D-cache clean for these pages to avoid extra flushing. 915 */ 916 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 917 unsigned long pfn; 918 size_t left = size; 919 920 pfn = page_to_pfn(page) + off / PAGE_SIZE; 921 off %= PAGE_SIZE; 922 if (off) { 923 pfn++; 924 left -= PAGE_SIZE - off; 925 } 926 while (left >= PAGE_SIZE) { 927 page = pfn_to_page(pfn++); 928 set_bit(PG_dcache_clean, &page->flags); 929 left -= PAGE_SIZE; 930 } 931 } 932 } 933 934 /** 935 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 936 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 937 * @sg: list of buffers 938 * @nents: number of buffers to map 939 * @dir: DMA transfer direction 940 * 941 * Map a set of buffers described by scatterlist in streaming mode for DMA. 942 * This is the scatter-gather version of the dma_map_single interface. 943 * Here the scatter gather list elements are each tagged with the 944 * appropriate dma address and length. They are obtained via 945 * sg_dma_{address,length}. 946 * 947 * Device ownership issues as mentioned for dma_map_single are the same 948 * here. 949 */ 950 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 951 enum dma_data_direction dir, struct dma_attrs *attrs) 952 { 953 struct dma_map_ops *ops = get_dma_ops(dev); 954 struct scatterlist *s; 955 int i, j; 956 957 for_each_sg(sg, s, nents, i) { 958 #ifdef CONFIG_NEED_SG_DMA_LENGTH 959 s->dma_length = s->length; 960 #endif 961 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 962 s->length, dir, attrs); 963 if (dma_mapping_error(dev, s->dma_address)) 964 goto bad_mapping; 965 } 966 return nents; 967 968 bad_mapping: 969 for_each_sg(sg, s, i, j) 970 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 971 return 0; 972 } 973 974 /** 975 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 976 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 977 * @sg: list of buffers 978 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 979 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 980 * 981 * Unmap a set of streaming mode DMA translations. Again, CPU access 982 * rules concerning calls here are the same as for dma_unmap_single(). 983 */ 984 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 985 enum dma_data_direction dir, struct dma_attrs *attrs) 986 { 987 struct dma_map_ops *ops = get_dma_ops(dev); 988 struct scatterlist *s; 989 990 int i; 991 992 for_each_sg(sg, s, nents, i) 993 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 994 } 995 996 /** 997 * arm_dma_sync_sg_for_cpu 998 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 999 * @sg: list of buffers 1000 * @nents: number of buffers to map (returned from dma_map_sg) 1001 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1002 */ 1003 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1004 int nents, enum dma_data_direction dir) 1005 { 1006 struct dma_map_ops *ops = get_dma_ops(dev); 1007 struct scatterlist *s; 1008 int i; 1009 1010 for_each_sg(sg, s, nents, i) 1011 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 1012 dir); 1013 } 1014 1015 /** 1016 * arm_dma_sync_sg_for_device 1017 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1018 * @sg: list of buffers 1019 * @nents: number of buffers to map (returned from dma_map_sg) 1020 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1021 */ 1022 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1023 int nents, enum dma_data_direction dir) 1024 { 1025 struct dma_map_ops *ops = get_dma_ops(dev); 1026 struct scatterlist *s; 1027 int i; 1028 1029 for_each_sg(sg, s, nents, i) 1030 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 1031 dir); 1032 } 1033 1034 /* 1035 * Return whether the given device DMA address mask can be supported 1036 * properly. For example, if your device can only drive the low 24-bits 1037 * during bus mastering, then you would pass 0x00ffffff as the mask 1038 * to this function. 1039 */ 1040 int dma_supported(struct device *dev, u64 mask) 1041 { 1042 return __dma_supported(dev, mask, false); 1043 } 1044 EXPORT_SYMBOL(dma_supported); 1045 1046 int arm_dma_set_mask(struct device *dev, u64 dma_mask) 1047 { 1048 if (!dev->dma_mask || !dma_supported(dev, dma_mask)) 1049 return -EIO; 1050 1051 *dev->dma_mask = dma_mask; 1052 1053 return 0; 1054 } 1055 1056 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 1057 1058 static int __init dma_debug_do_init(void) 1059 { 1060 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 1061 return 0; 1062 } 1063 fs_initcall(dma_debug_do_init); 1064 1065 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1066 1067 /* IOMMU */ 1068 1069 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 1070 1071 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1072 size_t size) 1073 { 1074 unsigned int order = get_order(size); 1075 unsigned int align = 0; 1076 unsigned int count, start; 1077 unsigned long flags; 1078 dma_addr_t iova; 1079 int i; 1080 1081 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1082 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1083 1084 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1085 align = (1 << order) - 1; 1086 1087 spin_lock_irqsave(&mapping->lock, flags); 1088 for (i = 0; i < mapping->nr_bitmaps; i++) { 1089 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1090 mapping->bits, 0, count, align); 1091 1092 if (start > mapping->bits) 1093 continue; 1094 1095 bitmap_set(mapping->bitmaps[i], start, count); 1096 break; 1097 } 1098 1099 /* 1100 * No unused range found. Try to extend the existing mapping 1101 * and perform a second attempt to reserve an IO virtual 1102 * address range of size bytes. 1103 */ 1104 if (i == mapping->nr_bitmaps) { 1105 if (extend_iommu_mapping(mapping)) { 1106 spin_unlock_irqrestore(&mapping->lock, flags); 1107 return DMA_ERROR_CODE; 1108 } 1109 1110 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1111 mapping->bits, 0, count, align); 1112 1113 if (start > mapping->bits) { 1114 spin_unlock_irqrestore(&mapping->lock, flags); 1115 return DMA_ERROR_CODE; 1116 } 1117 1118 bitmap_set(mapping->bitmaps[i], start, count); 1119 } 1120 spin_unlock_irqrestore(&mapping->lock, flags); 1121 1122 iova = mapping->base + (mapping->size * i); 1123 iova += start << PAGE_SHIFT; 1124 1125 return iova; 1126 } 1127 1128 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1129 dma_addr_t addr, size_t size) 1130 { 1131 unsigned int start, count; 1132 unsigned long flags; 1133 dma_addr_t bitmap_base; 1134 u32 bitmap_index; 1135 1136 if (!size) 1137 return; 1138 1139 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping->size; 1140 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 1141 1142 bitmap_base = mapping->base + mapping->size * bitmap_index; 1143 1144 start = (addr - bitmap_base) >> PAGE_SHIFT; 1145 1146 if (addr + size > bitmap_base + mapping->size) { 1147 /* 1148 * The address range to be freed reaches into the iova 1149 * range of the next bitmap. This should not happen as 1150 * we don't allow this in __alloc_iova (at the 1151 * moment). 1152 */ 1153 BUG(); 1154 } else 1155 count = size >> PAGE_SHIFT; 1156 1157 spin_lock_irqsave(&mapping->lock, flags); 1158 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 1159 spin_unlock_irqrestore(&mapping->lock, flags); 1160 } 1161 1162 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1163 gfp_t gfp, struct dma_attrs *attrs) 1164 { 1165 struct page **pages; 1166 int count = size >> PAGE_SHIFT; 1167 int array_size = count * sizeof(struct page *); 1168 int i = 0; 1169 1170 if (array_size <= PAGE_SIZE) 1171 pages = kzalloc(array_size, gfp); 1172 else 1173 pages = vzalloc(array_size); 1174 if (!pages) 1175 return NULL; 1176 1177 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) 1178 { 1179 unsigned long order = get_order(size); 1180 struct page *page; 1181 1182 page = dma_alloc_from_contiguous(dev, count, order); 1183 if (!page) 1184 goto error; 1185 1186 __dma_clear_buffer(page, size); 1187 1188 for (i = 0; i < count; i++) 1189 pages[i] = page + i; 1190 1191 return pages; 1192 } 1193 1194 /* 1195 * IOMMU can map any pages, so himem can also be used here 1196 */ 1197 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1198 1199 while (count) { 1200 int j, order = __fls(count); 1201 1202 pages[i] = alloc_pages(gfp, order); 1203 while (!pages[i] && order) 1204 pages[i] = alloc_pages(gfp, --order); 1205 if (!pages[i]) 1206 goto error; 1207 1208 if (order) { 1209 split_page(pages[i], order); 1210 j = 1 << order; 1211 while (--j) 1212 pages[i + j] = pages[i] + j; 1213 } 1214 1215 __dma_clear_buffer(pages[i], PAGE_SIZE << order); 1216 i += 1 << order; 1217 count -= 1 << order; 1218 } 1219 1220 return pages; 1221 error: 1222 while (i--) 1223 if (pages[i]) 1224 __free_pages(pages[i], 0); 1225 if (array_size <= PAGE_SIZE) 1226 kfree(pages); 1227 else 1228 vfree(pages); 1229 return NULL; 1230 } 1231 1232 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1233 size_t size, struct dma_attrs *attrs) 1234 { 1235 int count = size >> PAGE_SHIFT; 1236 int array_size = count * sizeof(struct page *); 1237 int i; 1238 1239 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) { 1240 dma_release_from_contiguous(dev, pages[0], count); 1241 } else { 1242 for (i = 0; i < count; i++) 1243 if (pages[i]) 1244 __free_pages(pages[i], 0); 1245 } 1246 1247 if (array_size <= PAGE_SIZE) 1248 kfree(pages); 1249 else 1250 vfree(pages); 1251 return 0; 1252 } 1253 1254 /* 1255 * Create a CPU mapping for a specified pages 1256 */ 1257 static void * 1258 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1259 const void *caller) 1260 { 1261 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1262 struct vm_struct *area; 1263 unsigned long p; 1264 1265 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP, 1266 caller); 1267 if (!area) 1268 return NULL; 1269 1270 area->pages = pages; 1271 area->nr_pages = nr_pages; 1272 p = (unsigned long)area->addr; 1273 1274 for (i = 0; i < nr_pages; i++) { 1275 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i])); 1276 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot)) 1277 goto err; 1278 p += PAGE_SIZE; 1279 } 1280 return area->addr; 1281 err: 1282 unmap_kernel_range((unsigned long)area->addr, size); 1283 vunmap(area->addr); 1284 return NULL; 1285 } 1286 1287 /* 1288 * Create a mapping in device IO address space for specified pages 1289 */ 1290 static dma_addr_t 1291 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size) 1292 { 1293 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1294 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1295 dma_addr_t dma_addr, iova; 1296 int i, ret = DMA_ERROR_CODE; 1297 1298 dma_addr = __alloc_iova(mapping, size); 1299 if (dma_addr == DMA_ERROR_CODE) 1300 return dma_addr; 1301 1302 iova = dma_addr; 1303 for (i = 0; i < count; ) { 1304 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1305 phys_addr_t phys = page_to_phys(pages[i]); 1306 unsigned int len, j; 1307 1308 for (j = i + 1; j < count; j++, next_pfn++) 1309 if (page_to_pfn(pages[j]) != next_pfn) 1310 break; 1311 1312 len = (j - i) << PAGE_SHIFT; 1313 ret = iommu_map(mapping->domain, iova, phys, len, 1314 IOMMU_READ|IOMMU_WRITE); 1315 if (ret < 0) 1316 goto fail; 1317 iova += len; 1318 i = j; 1319 } 1320 return dma_addr; 1321 fail: 1322 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1323 __free_iova(mapping, dma_addr, size); 1324 return DMA_ERROR_CODE; 1325 } 1326 1327 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1328 { 1329 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1330 1331 /* 1332 * add optional in-page offset from iova to size and align 1333 * result to page size 1334 */ 1335 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1336 iova &= PAGE_MASK; 1337 1338 iommu_unmap(mapping->domain, iova, size); 1339 __free_iova(mapping, iova, size); 1340 return 0; 1341 } 1342 1343 static struct page **__atomic_get_pages(void *addr) 1344 { 1345 struct dma_pool *pool = &atomic_pool; 1346 struct page **pages = pool->pages; 1347 int offs = (addr - pool->vaddr) >> PAGE_SHIFT; 1348 1349 return pages + offs; 1350 } 1351 1352 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs) 1353 { 1354 struct vm_struct *area; 1355 1356 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1357 return __atomic_get_pages(cpu_addr); 1358 1359 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1360 return cpu_addr; 1361 1362 area = find_vm_area(cpu_addr); 1363 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1364 return area->pages; 1365 return NULL; 1366 } 1367 1368 static void *__iommu_alloc_atomic(struct device *dev, size_t size, 1369 dma_addr_t *handle) 1370 { 1371 struct page *page; 1372 void *addr; 1373 1374 addr = __alloc_from_pool(size, &page); 1375 if (!addr) 1376 return NULL; 1377 1378 *handle = __iommu_create_mapping(dev, &page, size); 1379 if (*handle == DMA_ERROR_CODE) 1380 goto err_mapping; 1381 1382 return addr; 1383 1384 err_mapping: 1385 __free_from_pool(addr, size); 1386 return NULL; 1387 } 1388 1389 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1390 dma_addr_t handle, size_t size) 1391 { 1392 __iommu_remove_mapping(dev, handle, size); 1393 __free_from_pool(cpu_addr, size); 1394 } 1395 1396 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1397 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 1398 { 1399 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1400 struct page **pages; 1401 void *addr = NULL; 1402 1403 *handle = DMA_ERROR_CODE; 1404 size = PAGE_ALIGN(size); 1405 1406 if (!(gfp & __GFP_WAIT)) 1407 return __iommu_alloc_atomic(dev, size, handle); 1408 1409 /* 1410 * Following is a work-around (a.k.a. hack) to prevent pages 1411 * with __GFP_COMP being passed to split_page() which cannot 1412 * handle them. The real problem is that this flag probably 1413 * should be 0 on ARM as it is not supported on this 1414 * platform; see CONFIG_HUGETLBFS. 1415 */ 1416 gfp &= ~(__GFP_COMP); 1417 1418 pages = __iommu_alloc_buffer(dev, size, gfp, attrs); 1419 if (!pages) 1420 return NULL; 1421 1422 *handle = __iommu_create_mapping(dev, pages, size); 1423 if (*handle == DMA_ERROR_CODE) 1424 goto err_buffer; 1425 1426 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1427 return pages; 1428 1429 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1430 __builtin_return_address(0)); 1431 if (!addr) 1432 goto err_mapping; 1433 1434 return addr; 1435 1436 err_mapping: 1437 __iommu_remove_mapping(dev, *handle, size); 1438 err_buffer: 1439 __iommu_free_buffer(dev, pages, size, attrs); 1440 return NULL; 1441 } 1442 1443 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1444 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1445 struct dma_attrs *attrs) 1446 { 1447 unsigned long uaddr = vma->vm_start; 1448 unsigned long usize = vma->vm_end - vma->vm_start; 1449 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1450 1451 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1452 1453 if (!pages) 1454 return -ENXIO; 1455 1456 do { 1457 int ret = vm_insert_page(vma, uaddr, *pages++); 1458 if (ret) { 1459 pr_err("Remapping memory failed: %d\n", ret); 1460 return ret; 1461 } 1462 uaddr += PAGE_SIZE; 1463 usize -= PAGE_SIZE; 1464 } while (usize > 0); 1465 1466 return 0; 1467 } 1468 1469 /* 1470 * free a page as defined by the above mapping. 1471 * Must not be called with IRQs disabled. 1472 */ 1473 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1474 dma_addr_t handle, struct dma_attrs *attrs) 1475 { 1476 struct page **pages; 1477 size = PAGE_ALIGN(size); 1478 1479 if (__in_atomic_pool(cpu_addr, size)) { 1480 __iommu_free_atomic(dev, cpu_addr, handle, size); 1481 return; 1482 } 1483 1484 pages = __iommu_get_pages(cpu_addr, attrs); 1485 if (!pages) { 1486 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1487 return; 1488 } 1489 1490 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) { 1491 unmap_kernel_range((unsigned long)cpu_addr, size); 1492 vunmap(cpu_addr); 1493 } 1494 1495 __iommu_remove_mapping(dev, handle, size); 1496 __iommu_free_buffer(dev, pages, size, attrs); 1497 } 1498 1499 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1500 void *cpu_addr, dma_addr_t dma_addr, 1501 size_t size, struct dma_attrs *attrs) 1502 { 1503 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1504 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1505 1506 if (!pages) 1507 return -ENXIO; 1508 1509 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1510 GFP_KERNEL); 1511 } 1512 1513 static int __dma_direction_to_prot(enum dma_data_direction dir) 1514 { 1515 int prot; 1516 1517 switch (dir) { 1518 case DMA_BIDIRECTIONAL: 1519 prot = IOMMU_READ | IOMMU_WRITE; 1520 break; 1521 case DMA_TO_DEVICE: 1522 prot = IOMMU_READ; 1523 break; 1524 case DMA_FROM_DEVICE: 1525 prot = IOMMU_WRITE; 1526 break; 1527 default: 1528 prot = 0; 1529 } 1530 1531 return prot; 1532 } 1533 1534 /* 1535 * Map a part of the scatter-gather list into contiguous io address space 1536 */ 1537 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1538 size_t size, dma_addr_t *handle, 1539 enum dma_data_direction dir, struct dma_attrs *attrs, 1540 bool is_coherent) 1541 { 1542 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1543 dma_addr_t iova, iova_base; 1544 int ret = 0; 1545 unsigned int count; 1546 struct scatterlist *s; 1547 int prot; 1548 1549 size = PAGE_ALIGN(size); 1550 *handle = DMA_ERROR_CODE; 1551 1552 iova_base = iova = __alloc_iova(mapping, size); 1553 if (iova == DMA_ERROR_CODE) 1554 return -ENOMEM; 1555 1556 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1557 phys_addr_t phys = page_to_phys(sg_page(s)); 1558 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1559 1560 if (!is_coherent && 1561 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1562 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1563 1564 prot = __dma_direction_to_prot(dir); 1565 1566 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1567 if (ret < 0) 1568 goto fail; 1569 count += len >> PAGE_SHIFT; 1570 iova += len; 1571 } 1572 *handle = iova_base; 1573 1574 return 0; 1575 fail: 1576 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1577 __free_iova(mapping, iova_base, size); 1578 return ret; 1579 } 1580 1581 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1582 enum dma_data_direction dir, struct dma_attrs *attrs, 1583 bool is_coherent) 1584 { 1585 struct scatterlist *s = sg, *dma = sg, *start = sg; 1586 int i, count = 0; 1587 unsigned int offset = s->offset; 1588 unsigned int size = s->offset + s->length; 1589 unsigned int max = dma_get_max_seg_size(dev); 1590 1591 for (i = 1; i < nents; i++) { 1592 s = sg_next(s); 1593 1594 s->dma_address = DMA_ERROR_CODE; 1595 s->dma_length = 0; 1596 1597 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1598 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1599 dir, attrs, is_coherent) < 0) 1600 goto bad_mapping; 1601 1602 dma->dma_address += offset; 1603 dma->dma_length = size - offset; 1604 1605 size = offset = s->offset; 1606 start = s; 1607 dma = sg_next(dma); 1608 count += 1; 1609 } 1610 size += s->length; 1611 } 1612 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1613 is_coherent) < 0) 1614 goto bad_mapping; 1615 1616 dma->dma_address += offset; 1617 dma->dma_length = size - offset; 1618 1619 return count+1; 1620 1621 bad_mapping: 1622 for_each_sg(sg, s, count, i) 1623 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1624 return 0; 1625 } 1626 1627 /** 1628 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1629 * @dev: valid struct device pointer 1630 * @sg: list of buffers 1631 * @nents: number of buffers to map 1632 * @dir: DMA transfer direction 1633 * 1634 * Map a set of i/o coherent buffers described by scatterlist in streaming 1635 * mode for DMA. The scatter gather list elements are merged together (if 1636 * possible) and tagged with the appropriate dma address and length. They are 1637 * obtained via sg_dma_{address,length}. 1638 */ 1639 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1640 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1641 { 1642 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1643 } 1644 1645 /** 1646 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1647 * @dev: valid struct device pointer 1648 * @sg: list of buffers 1649 * @nents: number of buffers to map 1650 * @dir: DMA transfer direction 1651 * 1652 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1653 * The scatter gather list elements are merged together (if possible) and 1654 * tagged with the appropriate dma address and length. They are obtained via 1655 * sg_dma_{address,length}. 1656 */ 1657 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1658 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1659 { 1660 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1661 } 1662 1663 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1664 int nents, enum dma_data_direction dir, struct dma_attrs *attrs, 1665 bool is_coherent) 1666 { 1667 struct scatterlist *s; 1668 int i; 1669 1670 for_each_sg(sg, s, nents, i) { 1671 if (sg_dma_len(s)) 1672 __iommu_remove_mapping(dev, sg_dma_address(s), 1673 sg_dma_len(s)); 1674 if (!is_coherent && 1675 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1676 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1677 s->length, dir); 1678 } 1679 } 1680 1681 /** 1682 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1683 * @dev: valid struct device pointer 1684 * @sg: list of buffers 1685 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1686 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1687 * 1688 * Unmap a set of streaming mode DMA translations. Again, CPU access 1689 * rules concerning calls here are the same as for dma_unmap_single(). 1690 */ 1691 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1692 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1693 { 1694 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1695 } 1696 1697 /** 1698 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1699 * @dev: valid struct device pointer 1700 * @sg: list of buffers 1701 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1702 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1703 * 1704 * Unmap a set of streaming mode DMA translations. Again, CPU access 1705 * rules concerning calls here are the same as for dma_unmap_single(). 1706 */ 1707 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1708 enum dma_data_direction dir, struct dma_attrs *attrs) 1709 { 1710 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1711 } 1712 1713 /** 1714 * arm_iommu_sync_sg_for_cpu 1715 * @dev: valid struct device pointer 1716 * @sg: list of buffers 1717 * @nents: number of buffers to map (returned from dma_map_sg) 1718 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1719 */ 1720 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1721 int nents, enum dma_data_direction dir) 1722 { 1723 struct scatterlist *s; 1724 int i; 1725 1726 for_each_sg(sg, s, nents, i) 1727 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1728 1729 } 1730 1731 /** 1732 * arm_iommu_sync_sg_for_device 1733 * @dev: valid struct device pointer 1734 * @sg: list of buffers 1735 * @nents: number of buffers to map (returned from dma_map_sg) 1736 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1737 */ 1738 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1739 int nents, enum dma_data_direction dir) 1740 { 1741 struct scatterlist *s; 1742 int i; 1743 1744 for_each_sg(sg, s, nents, i) 1745 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1746 } 1747 1748 1749 /** 1750 * arm_coherent_iommu_map_page 1751 * @dev: valid struct device pointer 1752 * @page: page that buffer resides in 1753 * @offset: offset into page for start of buffer 1754 * @size: size of buffer to map 1755 * @dir: DMA transfer direction 1756 * 1757 * Coherent IOMMU aware version of arm_dma_map_page() 1758 */ 1759 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1760 unsigned long offset, size_t size, enum dma_data_direction dir, 1761 struct dma_attrs *attrs) 1762 { 1763 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1764 dma_addr_t dma_addr; 1765 int ret, prot, len = PAGE_ALIGN(size + offset); 1766 1767 dma_addr = __alloc_iova(mapping, len); 1768 if (dma_addr == DMA_ERROR_CODE) 1769 return dma_addr; 1770 1771 prot = __dma_direction_to_prot(dir); 1772 1773 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1774 if (ret < 0) 1775 goto fail; 1776 1777 return dma_addr + offset; 1778 fail: 1779 __free_iova(mapping, dma_addr, len); 1780 return DMA_ERROR_CODE; 1781 } 1782 1783 /** 1784 * arm_iommu_map_page 1785 * @dev: valid struct device pointer 1786 * @page: page that buffer resides in 1787 * @offset: offset into page for start of buffer 1788 * @size: size of buffer to map 1789 * @dir: DMA transfer direction 1790 * 1791 * IOMMU aware version of arm_dma_map_page() 1792 */ 1793 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1794 unsigned long offset, size_t size, enum dma_data_direction dir, 1795 struct dma_attrs *attrs) 1796 { 1797 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1798 __dma_page_cpu_to_dev(page, offset, size, dir); 1799 1800 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1801 } 1802 1803 /** 1804 * arm_coherent_iommu_unmap_page 1805 * @dev: valid struct device pointer 1806 * @handle: DMA address of buffer 1807 * @size: size of buffer (same as passed to dma_map_page) 1808 * @dir: DMA transfer direction (same as passed to dma_map_page) 1809 * 1810 * Coherent IOMMU aware version of arm_dma_unmap_page() 1811 */ 1812 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1813 size_t size, enum dma_data_direction dir, 1814 struct dma_attrs *attrs) 1815 { 1816 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1817 dma_addr_t iova = handle & PAGE_MASK; 1818 int offset = handle & ~PAGE_MASK; 1819 int len = PAGE_ALIGN(size + offset); 1820 1821 if (!iova) 1822 return; 1823 1824 iommu_unmap(mapping->domain, iova, len); 1825 __free_iova(mapping, iova, len); 1826 } 1827 1828 /** 1829 * arm_iommu_unmap_page 1830 * @dev: valid struct device pointer 1831 * @handle: DMA address of buffer 1832 * @size: size of buffer (same as passed to dma_map_page) 1833 * @dir: DMA transfer direction (same as passed to dma_map_page) 1834 * 1835 * IOMMU aware version of arm_dma_unmap_page() 1836 */ 1837 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1838 size_t size, enum dma_data_direction dir, 1839 struct dma_attrs *attrs) 1840 { 1841 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1842 dma_addr_t iova = handle & PAGE_MASK; 1843 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1844 int offset = handle & ~PAGE_MASK; 1845 int len = PAGE_ALIGN(size + offset); 1846 1847 if (!iova) 1848 return; 1849 1850 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1851 __dma_page_dev_to_cpu(page, offset, size, dir); 1852 1853 iommu_unmap(mapping->domain, iova, len); 1854 __free_iova(mapping, iova, len); 1855 } 1856 1857 static void arm_iommu_sync_single_for_cpu(struct device *dev, 1858 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1859 { 1860 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1861 dma_addr_t iova = handle & PAGE_MASK; 1862 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1863 unsigned int offset = handle & ~PAGE_MASK; 1864 1865 if (!iova) 1866 return; 1867 1868 __dma_page_dev_to_cpu(page, offset, size, dir); 1869 } 1870 1871 static void arm_iommu_sync_single_for_device(struct device *dev, 1872 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1873 { 1874 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1875 dma_addr_t iova = handle & PAGE_MASK; 1876 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1877 unsigned int offset = handle & ~PAGE_MASK; 1878 1879 if (!iova) 1880 return; 1881 1882 __dma_page_cpu_to_dev(page, offset, size, dir); 1883 } 1884 1885 struct dma_map_ops iommu_ops = { 1886 .alloc = arm_iommu_alloc_attrs, 1887 .free = arm_iommu_free_attrs, 1888 .mmap = arm_iommu_mmap_attrs, 1889 .get_sgtable = arm_iommu_get_sgtable, 1890 1891 .map_page = arm_iommu_map_page, 1892 .unmap_page = arm_iommu_unmap_page, 1893 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 1894 .sync_single_for_device = arm_iommu_sync_single_for_device, 1895 1896 .map_sg = arm_iommu_map_sg, 1897 .unmap_sg = arm_iommu_unmap_sg, 1898 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 1899 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 1900 1901 .set_dma_mask = arm_dma_set_mask, 1902 }; 1903 1904 struct dma_map_ops iommu_coherent_ops = { 1905 .alloc = arm_iommu_alloc_attrs, 1906 .free = arm_iommu_free_attrs, 1907 .mmap = arm_iommu_mmap_attrs, 1908 .get_sgtable = arm_iommu_get_sgtable, 1909 1910 .map_page = arm_coherent_iommu_map_page, 1911 .unmap_page = arm_coherent_iommu_unmap_page, 1912 1913 .map_sg = arm_coherent_iommu_map_sg, 1914 .unmap_sg = arm_coherent_iommu_unmap_sg, 1915 1916 .set_dma_mask = arm_dma_set_mask, 1917 }; 1918 1919 /** 1920 * arm_iommu_create_mapping 1921 * @bus: pointer to the bus holding the client device (for IOMMU calls) 1922 * @base: start address of the valid IO address space 1923 * @size: maximum size of the valid IO address space 1924 * 1925 * Creates a mapping structure which holds information about used/unused 1926 * IO address ranges, which is required to perform memory allocation and 1927 * mapping with IOMMU aware functions. 1928 * 1929 * The client device need to be attached to the mapping with 1930 * arm_iommu_attach_device function. 1931 */ 1932 struct dma_iommu_mapping * 1933 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size) 1934 { 1935 unsigned int bits = size >> PAGE_SHIFT; 1936 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 1937 struct dma_iommu_mapping *mapping; 1938 int extensions = 1; 1939 int err = -ENOMEM; 1940 1941 if (!bitmap_size) 1942 return ERR_PTR(-EINVAL); 1943 1944 if (bitmap_size > PAGE_SIZE) { 1945 extensions = bitmap_size / PAGE_SIZE; 1946 bitmap_size = PAGE_SIZE; 1947 } 1948 1949 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 1950 if (!mapping) 1951 goto err; 1952 1953 mapping->bitmap_size = bitmap_size; 1954 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *), 1955 GFP_KERNEL); 1956 if (!mapping->bitmaps) 1957 goto err2; 1958 1959 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 1960 if (!mapping->bitmaps[0]) 1961 goto err3; 1962 1963 mapping->nr_bitmaps = 1; 1964 mapping->extensions = extensions; 1965 mapping->base = base; 1966 mapping->size = bitmap_size << PAGE_SHIFT; 1967 mapping->bits = BITS_PER_BYTE * bitmap_size; 1968 1969 spin_lock_init(&mapping->lock); 1970 1971 mapping->domain = iommu_domain_alloc(bus); 1972 if (!mapping->domain) 1973 goto err4; 1974 1975 kref_init(&mapping->kref); 1976 return mapping; 1977 err4: 1978 kfree(mapping->bitmaps[0]); 1979 err3: 1980 kfree(mapping->bitmaps); 1981 err2: 1982 kfree(mapping); 1983 err: 1984 return ERR_PTR(err); 1985 } 1986 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 1987 1988 static void release_iommu_mapping(struct kref *kref) 1989 { 1990 int i; 1991 struct dma_iommu_mapping *mapping = 1992 container_of(kref, struct dma_iommu_mapping, kref); 1993 1994 iommu_domain_free(mapping->domain); 1995 for (i = 0; i < mapping->nr_bitmaps; i++) 1996 kfree(mapping->bitmaps[i]); 1997 kfree(mapping->bitmaps); 1998 kfree(mapping); 1999 } 2000 2001 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 2002 { 2003 int next_bitmap; 2004 2005 if (mapping->nr_bitmaps > mapping->extensions) 2006 return -EINVAL; 2007 2008 next_bitmap = mapping->nr_bitmaps; 2009 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 2010 GFP_ATOMIC); 2011 if (!mapping->bitmaps[next_bitmap]) 2012 return -ENOMEM; 2013 2014 mapping->nr_bitmaps++; 2015 2016 return 0; 2017 } 2018 2019 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 2020 { 2021 if (mapping) 2022 kref_put(&mapping->kref, release_iommu_mapping); 2023 } 2024 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 2025 2026 /** 2027 * arm_iommu_attach_device 2028 * @dev: valid struct device pointer 2029 * @mapping: io address space mapping structure (returned from 2030 * arm_iommu_create_mapping) 2031 * 2032 * Attaches specified io address space mapping to the provided device, 2033 * this replaces the dma operations (dma_map_ops pointer) with the 2034 * IOMMU aware version. More than one client might be attached to 2035 * the same io address space mapping. 2036 */ 2037 int arm_iommu_attach_device(struct device *dev, 2038 struct dma_iommu_mapping *mapping) 2039 { 2040 int err; 2041 2042 err = iommu_attach_device(mapping->domain, dev); 2043 if (err) 2044 return err; 2045 2046 kref_get(&mapping->kref); 2047 dev->archdata.mapping = mapping; 2048 set_dma_ops(dev, &iommu_ops); 2049 2050 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 2051 return 0; 2052 } 2053 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 2054 2055 /** 2056 * arm_iommu_detach_device 2057 * @dev: valid struct device pointer 2058 * 2059 * Detaches the provided device from a previously attached map. 2060 * This voids the dma operations (dma_map_ops pointer) 2061 */ 2062 void arm_iommu_detach_device(struct device *dev) 2063 { 2064 struct dma_iommu_mapping *mapping; 2065 2066 mapping = to_dma_iommu_mapping(dev); 2067 if (!mapping) { 2068 dev_warn(dev, "Not attached\n"); 2069 return; 2070 } 2071 2072 iommu_detach_device(mapping->domain, dev); 2073 kref_put(&mapping->kref, release_iommu_mapping); 2074 dev->archdata.mapping = NULL; 2075 set_dma_ops(dev, NULL); 2076 2077 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 2078 } 2079 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 2080 2081 #endif 2082