xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision a8a28aff)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/gfp.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dma-contiguous.h>
22 #include <linux/highmem.h>
23 #include <linux/memblock.h>
24 #include <linux/slab.h>
25 #include <linux/iommu.h>
26 #include <linux/io.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/memory.h>
31 #include <asm/highmem.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mach/arch.h>
35 #include <asm/dma-iommu.h>
36 #include <asm/mach/map.h>
37 #include <asm/system_info.h>
38 #include <asm/dma-contiguous.h>
39 
40 #include "mm.h"
41 
42 /*
43  * The DMA API is built upon the notion of "buffer ownership".  A buffer
44  * is either exclusively owned by the CPU (and therefore may be accessed
45  * by it) or exclusively owned by the DMA device.  These helper functions
46  * represent the transitions between these two ownership states.
47  *
48  * Note, however, that on later ARMs, this notion does not work due to
49  * speculative prefetches.  We model our approach on the assumption that
50  * the CPU does do speculative prefetches, which means we clean caches
51  * before transfers and delay cache invalidation until transfer completion.
52  *
53  */
54 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
55 		size_t, enum dma_data_direction);
56 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
57 		size_t, enum dma_data_direction);
58 
59 /**
60  * arm_dma_map_page - map a portion of a page for streaming DMA
61  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
62  * @page: page that buffer resides in
63  * @offset: offset into page for start of buffer
64  * @size: size of buffer to map
65  * @dir: DMA transfer direction
66  *
67  * Ensure that any data held in the cache is appropriately discarded
68  * or written back.
69  *
70  * The device owns this memory once this call has completed.  The CPU
71  * can regain ownership by calling dma_unmap_page().
72  */
73 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
74 	     unsigned long offset, size_t size, enum dma_data_direction dir,
75 	     struct dma_attrs *attrs)
76 {
77 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
78 		__dma_page_cpu_to_dev(page, offset, size, dir);
79 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
80 }
81 
82 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
83 	     unsigned long offset, size_t size, enum dma_data_direction dir,
84 	     struct dma_attrs *attrs)
85 {
86 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
87 }
88 
89 /**
90  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
91  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
92  * @handle: DMA address of buffer
93  * @size: size of buffer (same as passed to dma_map_page)
94  * @dir: DMA transfer direction (same as passed to dma_map_page)
95  *
96  * Unmap a page streaming mode DMA translation.  The handle and size
97  * must match what was provided in the previous dma_map_page() call.
98  * All other usages are undefined.
99  *
100  * After this call, reads by the CPU to the buffer are guaranteed to see
101  * whatever the device wrote there.
102  */
103 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
104 		size_t size, enum dma_data_direction dir,
105 		struct dma_attrs *attrs)
106 {
107 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
108 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
109 				      handle & ~PAGE_MASK, size, dir);
110 }
111 
112 static void arm_dma_sync_single_for_cpu(struct device *dev,
113 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
114 {
115 	unsigned int offset = handle & (PAGE_SIZE - 1);
116 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
117 	__dma_page_dev_to_cpu(page, offset, size, dir);
118 }
119 
120 static void arm_dma_sync_single_for_device(struct device *dev,
121 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
122 {
123 	unsigned int offset = handle & (PAGE_SIZE - 1);
124 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
125 	__dma_page_cpu_to_dev(page, offset, size, dir);
126 }
127 
128 struct dma_map_ops arm_dma_ops = {
129 	.alloc			= arm_dma_alloc,
130 	.free			= arm_dma_free,
131 	.mmap			= arm_dma_mmap,
132 	.get_sgtable		= arm_dma_get_sgtable,
133 	.map_page		= arm_dma_map_page,
134 	.unmap_page		= arm_dma_unmap_page,
135 	.map_sg			= arm_dma_map_sg,
136 	.unmap_sg		= arm_dma_unmap_sg,
137 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
138 	.sync_single_for_device	= arm_dma_sync_single_for_device,
139 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
140 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
141 	.set_dma_mask		= arm_dma_set_mask,
142 };
143 EXPORT_SYMBOL(arm_dma_ops);
144 
145 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
146 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
147 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
148 				  dma_addr_t handle, struct dma_attrs *attrs);
149 
150 struct dma_map_ops arm_coherent_dma_ops = {
151 	.alloc			= arm_coherent_dma_alloc,
152 	.free			= arm_coherent_dma_free,
153 	.mmap			= arm_dma_mmap,
154 	.get_sgtable		= arm_dma_get_sgtable,
155 	.map_page		= arm_coherent_dma_map_page,
156 	.map_sg			= arm_dma_map_sg,
157 	.set_dma_mask		= arm_dma_set_mask,
158 };
159 EXPORT_SYMBOL(arm_coherent_dma_ops);
160 
161 static int __dma_supported(struct device *dev, u64 mask, bool warn)
162 {
163 	unsigned long max_dma_pfn;
164 
165 	/*
166 	 * If the mask allows for more memory than we can address,
167 	 * and we actually have that much memory, then we must
168 	 * indicate that DMA to this device is not supported.
169 	 */
170 	if (sizeof(mask) != sizeof(dma_addr_t) &&
171 	    mask > (dma_addr_t)~0 &&
172 	    dma_to_pfn(dev, ~0) < max_pfn) {
173 		if (warn) {
174 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
175 				 mask);
176 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
177 		}
178 		return 0;
179 	}
180 
181 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
182 
183 	/*
184 	 * Translate the device's DMA mask to a PFN limit.  This
185 	 * PFN number includes the page which we can DMA to.
186 	 */
187 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
188 		if (warn)
189 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
190 				 mask,
191 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
192 				 max_dma_pfn + 1);
193 		return 0;
194 	}
195 
196 	return 1;
197 }
198 
199 static u64 get_coherent_dma_mask(struct device *dev)
200 {
201 	u64 mask = (u64)DMA_BIT_MASK(32);
202 
203 	if (dev) {
204 		mask = dev->coherent_dma_mask;
205 
206 		/*
207 		 * Sanity check the DMA mask - it must be non-zero, and
208 		 * must be able to be satisfied by a DMA allocation.
209 		 */
210 		if (mask == 0) {
211 			dev_warn(dev, "coherent DMA mask is unset\n");
212 			return 0;
213 		}
214 
215 		if (!__dma_supported(dev, mask, true))
216 			return 0;
217 	}
218 
219 	return mask;
220 }
221 
222 static void __dma_clear_buffer(struct page *page, size_t size)
223 {
224 	/*
225 	 * Ensure that the allocated pages are zeroed, and that any data
226 	 * lurking in the kernel direct-mapped region is invalidated.
227 	 */
228 	if (PageHighMem(page)) {
229 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
230 		phys_addr_t end = base + size;
231 		while (size > 0) {
232 			void *ptr = kmap_atomic(page);
233 			memset(ptr, 0, PAGE_SIZE);
234 			dmac_flush_range(ptr, ptr + PAGE_SIZE);
235 			kunmap_atomic(ptr);
236 			page++;
237 			size -= PAGE_SIZE;
238 		}
239 		outer_flush_range(base, end);
240 	} else {
241 		void *ptr = page_address(page);
242 		memset(ptr, 0, size);
243 		dmac_flush_range(ptr, ptr + size);
244 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
245 	}
246 }
247 
248 /*
249  * Allocate a DMA buffer for 'dev' of size 'size' using the
250  * specified gfp mask.  Note that 'size' must be page aligned.
251  */
252 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
253 {
254 	unsigned long order = get_order(size);
255 	struct page *page, *p, *e;
256 
257 	page = alloc_pages(gfp, order);
258 	if (!page)
259 		return NULL;
260 
261 	/*
262 	 * Now split the huge page and free the excess pages
263 	 */
264 	split_page(page, order);
265 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
266 		__free_page(p);
267 
268 	__dma_clear_buffer(page, size);
269 
270 	return page;
271 }
272 
273 /*
274  * Free a DMA buffer.  'size' must be page aligned.
275  */
276 static void __dma_free_buffer(struct page *page, size_t size)
277 {
278 	struct page *e = page + (size >> PAGE_SHIFT);
279 
280 	while (page < e) {
281 		__free_page(page);
282 		page++;
283 	}
284 }
285 
286 #ifdef CONFIG_MMU
287 
288 static void *__alloc_from_contiguous(struct device *dev, size_t size,
289 				     pgprot_t prot, struct page **ret_page,
290 				     const void *caller);
291 
292 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
293 				 pgprot_t prot, struct page **ret_page,
294 				 const void *caller);
295 
296 static void *
297 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
298 	const void *caller)
299 {
300 	struct vm_struct *area;
301 	unsigned long addr;
302 
303 	/*
304 	 * DMA allocation can be mapped to user space, so lets
305 	 * set VM_USERMAP flags too.
306 	 */
307 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
308 				  caller);
309 	if (!area)
310 		return NULL;
311 	addr = (unsigned long)area->addr;
312 	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
313 
314 	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
315 		vunmap((void *)addr);
316 		return NULL;
317 	}
318 	return (void *)addr;
319 }
320 
321 static void __dma_free_remap(void *cpu_addr, size_t size)
322 {
323 	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
324 	struct vm_struct *area = find_vm_area(cpu_addr);
325 	if (!area || (area->flags & flags) != flags) {
326 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
327 		return;
328 	}
329 	unmap_kernel_range((unsigned long)cpu_addr, size);
330 	vunmap(cpu_addr);
331 }
332 
333 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
334 
335 struct dma_pool {
336 	size_t size;
337 	spinlock_t lock;
338 	unsigned long *bitmap;
339 	unsigned long nr_pages;
340 	void *vaddr;
341 	struct page **pages;
342 };
343 
344 static struct dma_pool atomic_pool = {
345 	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
346 };
347 
348 static int __init early_coherent_pool(char *p)
349 {
350 	atomic_pool.size = memparse(p, &p);
351 	return 0;
352 }
353 early_param("coherent_pool", early_coherent_pool);
354 
355 void __init init_dma_coherent_pool_size(unsigned long size)
356 {
357 	/*
358 	 * Catch any attempt to set the pool size too late.
359 	 */
360 	BUG_ON(atomic_pool.vaddr);
361 
362 	/*
363 	 * Set architecture specific coherent pool size only if
364 	 * it has not been changed by kernel command line parameter.
365 	 */
366 	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
367 		atomic_pool.size = size;
368 }
369 
370 /*
371  * Initialise the coherent pool for atomic allocations.
372  */
373 static int __init atomic_pool_init(void)
374 {
375 	struct dma_pool *pool = &atomic_pool;
376 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
377 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
378 	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
379 	unsigned long *bitmap;
380 	struct page *page;
381 	struct page **pages;
382 	void *ptr;
383 	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
384 
385 	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
386 	if (!bitmap)
387 		goto no_bitmap;
388 
389 	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
390 	if (!pages)
391 		goto no_pages;
392 
393 	if (dev_get_cma_area(NULL))
394 		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
395 					      atomic_pool_init);
396 	else
397 		ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
398 					   atomic_pool_init);
399 	if (ptr) {
400 		int i;
401 
402 		for (i = 0; i < nr_pages; i++)
403 			pages[i] = page + i;
404 
405 		spin_lock_init(&pool->lock);
406 		pool->vaddr = ptr;
407 		pool->pages = pages;
408 		pool->bitmap = bitmap;
409 		pool->nr_pages = nr_pages;
410 		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
411 		       (unsigned)pool->size / 1024);
412 		return 0;
413 	}
414 
415 	kfree(pages);
416 no_pages:
417 	kfree(bitmap);
418 no_bitmap:
419 	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
420 	       (unsigned)pool->size / 1024);
421 	return -ENOMEM;
422 }
423 /*
424  * CMA is activated by core_initcall, so we must be called after it.
425  */
426 postcore_initcall(atomic_pool_init);
427 
428 struct dma_contig_early_reserve {
429 	phys_addr_t base;
430 	unsigned long size;
431 };
432 
433 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
434 
435 static int dma_mmu_remap_num __initdata;
436 
437 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
438 {
439 	dma_mmu_remap[dma_mmu_remap_num].base = base;
440 	dma_mmu_remap[dma_mmu_remap_num].size = size;
441 	dma_mmu_remap_num++;
442 }
443 
444 void __init dma_contiguous_remap(void)
445 {
446 	int i;
447 	for (i = 0; i < dma_mmu_remap_num; i++) {
448 		phys_addr_t start = dma_mmu_remap[i].base;
449 		phys_addr_t end = start + dma_mmu_remap[i].size;
450 		struct map_desc map;
451 		unsigned long addr;
452 
453 		if (end > arm_lowmem_limit)
454 			end = arm_lowmem_limit;
455 		if (start >= end)
456 			continue;
457 
458 		map.pfn = __phys_to_pfn(start);
459 		map.virtual = __phys_to_virt(start);
460 		map.length = end - start;
461 		map.type = MT_MEMORY_DMA_READY;
462 
463 		/*
464 		 * Clear previous low-memory mapping
465 		 */
466 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
467 		     addr += PMD_SIZE)
468 			pmd_clear(pmd_off_k(addr));
469 
470 		iotable_init(&map, 1);
471 	}
472 }
473 
474 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
475 			    void *data)
476 {
477 	struct page *page = virt_to_page(addr);
478 	pgprot_t prot = *(pgprot_t *)data;
479 
480 	set_pte_ext(pte, mk_pte(page, prot), 0);
481 	return 0;
482 }
483 
484 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
485 {
486 	unsigned long start = (unsigned long) page_address(page);
487 	unsigned end = start + size;
488 
489 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
490 	flush_tlb_kernel_range(start, end);
491 }
492 
493 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
494 				 pgprot_t prot, struct page **ret_page,
495 				 const void *caller)
496 {
497 	struct page *page;
498 	void *ptr;
499 	page = __dma_alloc_buffer(dev, size, gfp);
500 	if (!page)
501 		return NULL;
502 
503 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
504 	if (!ptr) {
505 		__dma_free_buffer(page, size);
506 		return NULL;
507 	}
508 
509 	*ret_page = page;
510 	return ptr;
511 }
512 
513 static void *__alloc_from_pool(size_t size, struct page **ret_page)
514 {
515 	struct dma_pool *pool = &atomic_pool;
516 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
517 	unsigned int pageno;
518 	unsigned long flags;
519 	void *ptr = NULL;
520 	unsigned long align_mask;
521 
522 	if (!pool->vaddr) {
523 		WARN(1, "coherent pool not initialised!\n");
524 		return NULL;
525 	}
526 
527 	/*
528 	 * Align the region allocation - allocations from pool are rather
529 	 * small, so align them to their order in pages, minimum is a page
530 	 * size. This helps reduce fragmentation of the DMA space.
531 	 */
532 	align_mask = (1 << get_order(size)) - 1;
533 
534 	spin_lock_irqsave(&pool->lock, flags);
535 	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
536 					    0, count, align_mask);
537 	if (pageno < pool->nr_pages) {
538 		bitmap_set(pool->bitmap, pageno, count);
539 		ptr = pool->vaddr + PAGE_SIZE * pageno;
540 		*ret_page = pool->pages[pageno];
541 	} else {
542 		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
543 			    "Please increase it with coherent_pool= kernel parameter!\n",
544 			    (unsigned)pool->size / 1024);
545 	}
546 	spin_unlock_irqrestore(&pool->lock, flags);
547 
548 	return ptr;
549 }
550 
551 static bool __in_atomic_pool(void *start, size_t size)
552 {
553 	struct dma_pool *pool = &atomic_pool;
554 	void *end = start + size;
555 	void *pool_start = pool->vaddr;
556 	void *pool_end = pool->vaddr + pool->size;
557 
558 	if (start < pool_start || start >= pool_end)
559 		return false;
560 
561 	if (end <= pool_end)
562 		return true;
563 
564 	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
565 	     start, end - 1, pool_start, pool_end - 1);
566 
567 	return false;
568 }
569 
570 static int __free_from_pool(void *start, size_t size)
571 {
572 	struct dma_pool *pool = &atomic_pool;
573 	unsigned long pageno, count;
574 	unsigned long flags;
575 
576 	if (!__in_atomic_pool(start, size))
577 		return 0;
578 
579 	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
580 	count = size >> PAGE_SHIFT;
581 
582 	spin_lock_irqsave(&pool->lock, flags);
583 	bitmap_clear(pool->bitmap, pageno, count);
584 	spin_unlock_irqrestore(&pool->lock, flags);
585 
586 	return 1;
587 }
588 
589 static void *__alloc_from_contiguous(struct device *dev, size_t size,
590 				     pgprot_t prot, struct page **ret_page,
591 				     const void *caller)
592 {
593 	unsigned long order = get_order(size);
594 	size_t count = size >> PAGE_SHIFT;
595 	struct page *page;
596 	void *ptr;
597 
598 	page = dma_alloc_from_contiguous(dev, count, order);
599 	if (!page)
600 		return NULL;
601 
602 	__dma_clear_buffer(page, size);
603 
604 	if (PageHighMem(page)) {
605 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
606 		if (!ptr) {
607 			dma_release_from_contiguous(dev, page, count);
608 			return NULL;
609 		}
610 	} else {
611 		__dma_remap(page, size, prot);
612 		ptr = page_address(page);
613 	}
614 	*ret_page = page;
615 	return ptr;
616 }
617 
618 static void __free_from_contiguous(struct device *dev, struct page *page,
619 				   void *cpu_addr, size_t size)
620 {
621 	if (PageHighMem(page))
622 		__dma_free_remap(cpu_addr, size);
623 	else
624 		__dma_remap(page, size, PAGE_KERNEL);
625 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
626 }
627 
628 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
629 {
630 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
631 			    pgprot_writecombine(prot) :
632 			    pgprot_dmacoherent(prot);
633 	return prot;
634 }
635 
636 #define nommu() 0
637 
638 #else	/* !CONFIG_MMU */
639 
640 #define nommu() 1
641 
642 #define __get_dma_pgprot(attrs, prot)	__pgprot(0)
643 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
644 #define __alloc_from_pool(size, ret_page)			NULL
645 #define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
646 #define __free_from_pool(cpu_addr, size)			0
647 #define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
648 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
649 
650 #endif	/* CONFIG_MMU */
651 
652 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
653 				   struct page **ret_page)
654 {
655 	struct page *page;
656 	page = __dma_alloc_buffer(dev, size, gfp);
657 	if (!page)
658 		return NULL;
659 
660 	*ret_page = page;
661 	return page_address(page);
662 }
663 
664 
665 
666 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
667 			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
668 {
669 	u64 mask = get_coherent_dma_mask(dev);
670 	struct page *page = NULL;
671 	void *addr;
672 
673 #ifdef CONFIG_DMA_API_DEBUG
674 	u64 limit = (mask + 1) & ~mask;
675 	if (limit && size >= limit) {
676 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
677 			size, mask);
678 		return NULL;
679 	}
680 #endif
681 
682 	if (!mask)
683 		return NULL;
684 
685 	if (mask < 0xffffffffULL)
686 		gfp |= GFP_DMA;
687 
688 	/*
689 	 * Following is a work-around (a.k.a. hack) to prevent pages
690 	 * with __GFP_COMP being passed to split_page() which cannot
691 	 * handle them.  The real problem is that this flag probably
692 	 * should be 0 on ARM as it is not supported on this
693 	 * platform; see CONFIG_HUGETLBFS.
694 	 */
695 	gfp &= ~(__GFP_COMP);
696 
697 	*handle = DMA_ERROR_CODE;
698 	size = PAGE_ALIGN(size);
699 
700 	if (is_coherent || nommu())
701 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
702 	else if (!(gfp & __GFP_WAIT))
703 		addr = __alloc_from_pool(size, &page);
704 	else if (!dev_get_cma_area(dev))
705 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
706 	else
707 		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
708 
709 	if (addr)
710 		*handle = pfn_to_dma(dev, page_to_pfn(page));
711 
712 	return addr;
713 }
714 
715 /*
716  * Allocate DMA-coherent memory space and return both the kernel remapped
717  * virtual and bus address for that space.
718  */
719 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
720 		    gfp_t gfp, struct dma_attrs *attrs)
721 {
722 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
723 	void *memory;
724 
725 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
726 		return memory;
727 
728 	return __dma_alloc(dev, size, handle, gfp, prot, false,
729 			   __builtin_return_address(0));
730 }
731 
732 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
733 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
734 {
735 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
736 	void *memory;
737 
738 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
739 		return memory;
740 
741 	return __dma_alloc(dev, size, handle, gfp, prot, true,
742 			   __builtin_return_address(0));
743 }
744 
745 /*
746  * Create userspace mapping for the DMA-coherent memory.
747  */
748 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
749 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
750 		 struct dma_attrs *attrs)
751 {
752 	int ret = -ENXIO;
753 #ifdef CONFIG_MMU
754 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
755 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
756 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
757 	unsigned long off = vma->vm_pgoff;
758 
759 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
760 
761 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
762 		return ret;
763 
764 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
765 		ret = remap_pfn_range(vma, vma->vm_start,
766 				      pfn + off,
767 				      vma->vm_end - vma->vm_start,
768 				      vma->vm_page_prot);
769 	}
770 #endif	/* CONFIG_MMU */
771 
772 	return ret;
773 }
774 
775 /*
776  * Free a buffer as defined by the above mapping.
777  */
778 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
779 			   dma_addr_t handle, struct dma_attrs *attrs,
780 			   bool is_coherent)
781 {
782 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
783 
784 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
785 		return;
786 
787 	size = PAGE_ALIGN(size);
788 
789 	if (is_coherent || nommu()) {
790 		__dma_free_buffer(page, size);
791 	} else if (__free_from_pool(cpu_addr, size)) {
792 		return;
793 	} else if (!dev_get_cma_area(dev)) {
794 		__dma_free_remap(cpu_addr, size);
795 		__dma_free_buffer(page, size);
796 	} else {
797 		/*
798 		 * Non-atomic allocations cannot be freed with IRQs disabled
799 		 */
800 		WARN_ON(irqs_disabled());
801 		__free_from_contiguous(dev, page, cpu_addr, size);
802 	}
803 }
804 
805 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
806 		  dma_addr_t handle, struct dma_attrs *attrs)
807 {
808 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
809 }
810 
811 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
812 				  dma_addr_t handle, struct dma_attrs *attrs)
813 {
814 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
815 }
816 
817 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
818 		 void *cpu_addr, dma_addr_t handle, size_t size,
819 		 struct dma_attrs *attrs)
820 {
821 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
822 	int ret;
823 
824 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
825 	if (unlikely(ret))
826 		return ret;
827 
828 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
829 	return 0;
830 }
831 
832 static void dma_cache_maint_page(struct page *page, unsigned long offset,
833 	size_t size, enum dma_data_direction dir,
834 	void (*op)(const void *, size_t, int))
835 {
836 	unsigned long pfn;
837 	size_t left = size;
838 
839 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
840 	offset %= PAGE_SIZE;
841 
842 	/*
843 	 * A single sg entry may refer to multiple physically contiguous
844 	 * pages.  But we still need to process highmem pages individually.
845 	 * If highmem is not configured then the bulk of this loop gets
846 	 * optimized out.
847 	 */
848 	do {
849 		size_t len = left;
850 		void *vaddr;
851 
852 		page = pfn_to_page(pfn);
853 
854 		if (PageHighMem(page)) {
855 			if (len + offset > PAGE_SIZE)
856 				len = PAGE_SIZE - offset;
857 
858 			if (cache_is_vipt_nonaliasing()) {
859 				vaddr = kmap_atomic(page);
860 				op(vaddr + offset, len, dir);
861 				kunmap_atomic(vaddr);
862 			} else {
863 				vaddr = kmap_high_get(page);
864 				if (vaddr) {
865 					op(vaddr + offset, len, dir);
866 					kunmap_high(page);
867 				}
868 			}
869 		} else {
870 			vaddr = page_address(page) + offset;
871 			op(vaddr, len, dir);
872 		}
873 		offset = 0;
874 		pfn++;
875 		left -= len;
876 	} while (left);
877 }
878 
879 /*
880  * Make an area consistent for devices.
881  * Note: Drivers should NOT use this function directly, as it will break
882  * platforms with CONFIG_DMABOUNCE.
883  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
884  */
885 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
886 	size_t size, enum dma_data_direction dir)
887 {
888 	phys_addr_t paddr;
889 
890 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
891 
892 	paddr = page_to_phys(page) + off;
893 	if (dir == DMA_FROM_DEVICE) {
894 		outer_inv_range(paddr, paddr + size);
895 	} else {
896 		outer_clean_range(paddr, paddr + size);
897 	}
898 	/* FIXME: non-speculating: flush on bidirectional mappings? */
899 }
900 
901 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
902 	size_t size, enum dma_data_direction dir)
903 {
904 	phys_addr_t paddr = page_to_phys(page) + off;
905 
906 	/* FIXME: non-speculating: not required */
907 	/* in any case, don't bother invalidating if DMA to device */
908 	if (dir != DMA_TO_DEVICE) {
909 		outer_inv_range(paddr, paddr + size);
910 
911 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
912 	}
913 
914 	/*
915 	 * Mark the D-cache clean for these pages to avoid extra flushing.
916 	 */
917 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
918 		unsigned long pfn;
919 		size_t left = size;
920 
921 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
922 		off %= PAGE_SIZE;
923 		if (off) {
924 			pfn++;
925 			left -= PAGE_SIZE - off;
926 		}
927 		while (left >= PAGE_SIZE) {
928 			page = pfn_to_page(pfn++);
929 			set_bit(PG_dcache_clean, &page->flags);
930 			left -= PAGE_SIZE;
931 		}
932 	}
933 }
934 
935 /**
936  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
937  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
938  * @sg: list of buffers
939  * @nents: number of buffers to map
940  * @dir: DMA transfer direction
941  *
942  * Map a set of buffers described by scatterlist in streaming mode for DMA.
943  * This is the scatter-gather version of the dma_map_single interface.
944  * Here the scatter gather list elements are each tagged with the
945  * appropriate dma address and length.  They are obtained via
946  * sg_dma_{address,length}.
947  *
948  * Device ownership issues as mentioned for dma_map_single are the same
949  * here.
950  */
951 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
952 		enum dma_data_direction dir, struct dma_attrs *attrs)
953 {
954 	struct dma_map_ops *ops = get_dma_ops(dev);
955 	struct scatterlist *s;
956 	int i, j;
957 
958 	for_each_sg(sg, s, nents, i) {
959 #ifdef CONFIG_NEED_SG_DMA_LENGTH
960 		s->dma_length = s->length;
961 #endif
962 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
963 						s->length, dir, attrs);
964 		if (dma_mapping_error(dev, s->dma_address))
965 			goto bad_mapping;
966 	}
967 	return nents;
968 
969  bad_mapping:
970 	for_each_sg(sg, s, i, j)
971 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
972 	return 0;
973 }
974 
975 /**
976  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
977  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
978  * @sg: list of buffers
979  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
980  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
981  *
982  * Unmap a set of streaming mode DMA translations.  Again, CPU access
983  * rules concerning calls here are the same as for dma_unmap_single().
984  */
985 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
986 		enum dma_data_direction dir, struct dma_attrs *attrs)
987 {
988 	struct dma_map_ops *ops = get_dma_ops(dev);
989 	struct scatterlist *s;
990 
991 	int i;
992 
993 	for_each_sg(sg, s, nents, i)
994 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
995 }
996 
997 /**
998  * arm_dma_sync_sg_for_cpu
999  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1000  * @sg: list of buffers
1001  * @nents: number of buffers to map (returned from dma_map_sg)
1002  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1003  */
1004 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1005 			int nents, enum dma_data_direction dir)
1006 {
1007 	struct dma_map_ops *ops = get_dma_ops(dev);
1008 	struct scatterlist *s;
1009 	int i;
1010 
1011 	for_each_sg(sg, s, nents, i)
1012 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1013 					 dir);
1014 }
1015 
1016 /**
1017  * arm_dma_sync_sg_for_device
1018  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1019  * @sg: list of buffers
1020  * @nents: number of buffers to map (returned from dma_map_sg)
1021  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1022  */
1023 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1024 			int nents, enum dma_data_direction dir)
1025 {
1026 	struct dma_map_ops *ops = get_dma_ops(dev);
1027 	struct scatterlist *s;
1028 	int i;
1029 
1030 	for_each_sg(sg, s, nents, i)
1031 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1032 					    dir);
1033 }
1034 
1035 /*
1036  * Return whether the given device DMA address mask can be supported
1037  * properly.  For example, if your device can only drive the low 24-bits
1038  * during bus mastering, then you would pass 0x00ffffff as the mask
1039  * to this function.
1040  */
1041 int dma_supported(struct device *dev, u64 mask)
1042 {
1043 	return __dma_supported(dev, mask, false);
1044 }
1045 EXPORT_SYMBOL(dma_supported);
1046 
1047 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1048 {
1049 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1050 		return -EIO;
1051 
1052 	*dev->dma_mask = dma_mask;
1053 
1054 	return 0;
1055 }
1056 
1057 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1058 
1059 static int __init dma_debug_do_init(void)
1060 {
1061 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1062 	return 0;
1063 }
1064 fs_initcall(dma_debug_do_init);
1065 
1066 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1067 
1068 /* IOMMU */
1069 
1070 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1071 
1072 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1073 				      size_t size)
1074 {
1075 	unsigned int order = get_order(size);
1076 	unsigned int align = 0;
1077 	unsigned int count, start;
1078 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1079 	unsigned long flags;
1080 	dma_addr_t iova;
1081 	int i;
1082 
1083 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1084 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1085 
1086 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1087 	align = (1 << order) - 1;
1088 
1089 	spin_lock_irqsave(&mapping->lock, flags);
1090 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1091 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1092 				mapping->bits, 0, count, align);
1093 
1094 		if (start > mapping->bits)
1095 			continue;
1096 
1097 		bitmap_set(mapping->bitmaps[i], start, count);
1098 		break;
1099 	}
1100 
1101 	/*
1102 	 * No unused range found. Try to extend the existing mapping
1103 	 * and perform a second attempt to reserve an IO virtual
1104 	 * address range of size bytes.
1105 	 */
1106 	if (i == mapping->nr_bitmaps) {
1107 		if (extend_iommu_mapping(mapping)) {
1108 			spin_unlock_irqrestore(&mapping->lock, flags);
1109 			return DMA_ERROR_CODE;
1110 		}
1111 
1112 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1113 				mapping->bits, 0, count, align);
1114 
1115 		if (start > mapping->bits) {
1116 			spin_unlock_irqrestore(&mapping->lock, flags);
1117 			return DMA_ERROR_CODE;
1118 		}
1119 
1120 		bitmap_set(mapping->bitmaps[i], start, count);
1121 	}
1122 	spin_unlock_irqrestore(&mapping->lock, flags);
1123 
1124 	iova = mapping->base + (mapping_size * i);
1125 	iova += start << PAGE_SHIFT;
1126 
1127 	return iova;
1128 }
1129 
1130 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1131 			       dma_addr_t addr, size_t size)
1132 {
1133 	unsigned int start, count;
1134 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1135 	unsigned long flags;
1136 	dma_addr_t bitmap_base;
1137 	u32 bitmap_index;
1138 
1139 	if (!size)
1140 		return;
1141 
1142 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1143 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1144 
1145 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1146 
1147 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1148 
1149 	if (addr + size > bitmap_base + mapping_size) {
1150 		/*
1151 		 * The address range to be freed reaches into the iova
1152 		 * range of the next bitmap. This should not happen as
1153 		 * we don't allow this in __alloc_iova (at the
1154 		 * moment).
1155 		 */
1156 		BUG();
1157 	} else
1158 		count = size >> PAGE_SHIFT;
1159 
1160 	spin_lock_irqsave(&mapping->lock, flags);
1161 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1162 	spin_unlock_irqrestore(&mapping->lock, flags);
1163 }
1164 
1165 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1166 					  gfp_t gfp, struct dma_attrs *attrs)
1167 {
1168 	struct page **pages;
1169 	int count = size >> PAGE_SHIFT;
1170 	int array_size = count * sizeof(struct page *);
1171 	int i = 0;
1172 
1173 	if (array_size <= PAGE_SIZE)
1174 		pages = kzalloc(array_size, gfp);
1175 	else
1176 		pages = vzalloc(array_size);
1177 	if (!pages)
1178 		return NULL;
1179 
1180 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1181 	{
1182 		unsigned long order = get_order(size);
1183 		struct page *page;
1184 
1185 		page = dma_alloc_from_contiguous(dev, count, order);
1186 		if (!page)
1187 			goto error;
1188 
1189 		__dma_clear_buffer(page, size);
1190 
1191 		for (i = 0; i < count; i++)
1192 			pages[i] = page + i;
1193 
1194 		return pages;
1195 	}
1196 
1197 	/*
1198 	 * IOMMU can map any pages, so himem can also be used here
1199 	 */
1200 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1201 
1202 	while (count) {
1203 		int j, order = __fls(count);
1204 
1205 		pages[i] = alloc_pages(gfp, order);
1206 		while (!pages[i] && order)
1207 			pages[i] = alloc_pages(gfp, --order);
1208 		if (!pages[i])
1209 			goto error;
1210 
1211 		if (order) {
1212 			split_page(pages[i], order);
1213 			j = 1 << order;
1214 			while (--j)
1215 				pages[i + j] = pages[i] + j;
1216 		}
1217 
1218 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1219 		i += 1 << order;
1220 		count -= 1 << order;
1221 	}
1222 
1223 	return pages;
1224 error:
1225 	while (i--)
1226 		if (pages[i])
1227 			__free_pages(pages[i], 0);
1228 	if (array_size <= PAGE_SIZE)
1229 		kfree(pages);
1230 	else
1231 		vfree(pages);
1232 	return NULL;
1233 }
1234 
1235 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1236 			       size_t size, struct dma_attrs *attrs)
1237 {
1238 	int count = size >> PAGE_SHIFT;
1239 	int array_size = count * sizeof(struct page *);
1240 	int i;
1241 
1242 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1243 		dma_release_from_contiguous(dev, pages[0], count);
1244 	} else {
1245 		for (i = 0; i < count; i++)
1246 			if (pages[i])
1247 				__free_pages(pages[i], 0);
1248 	}
1249 
1250 	if (array_size <= PAGE_SIZE)
1251 		kfree(pages);
1252 	else
1253 		vfree(pages);
1254 	return 0;
1255 }
1256 
1257 /*
1258  * Create a CPU mapping for a specified pages
1259  */
1260 static void *
1261 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1262 		    const void *caller)
1263 {
1264 	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1265 	struct vm_struct *area;
1266 	unsigned long p;
1267 
1268 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1269 				  caller);
1270 	if (!area)
1271 		return NULL;
1272 
1273 	area->pages = pages;
1274 	area->nr_pages = nr_pages;
1275 	p = (unsigned long)area->addr;
1276 
1277 	for (i = 0; i < nr_pages; i++) {
1278 		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1279 		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1280 			goto err;
1281 		p += PAGE_SIZE;
1282 	}
1283 	return area->addr;
1284 err:
1285 	unmap_kernel_range((unsigned long)area->addr, size);
1286 	vunmap(area->addr);
1287 	return NULL;
1288 }
1289 
1290 /*
1291  * Create a mapping in device IO address space for specified pages
1292  */
1293 static dma_addr_t
1294 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1295 {
1296 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1297 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1298 	dma_addr_t dma_addr, iova;
1299 	int i, ret = DMA_ERROR_CODE;
1300 
1301 	dma_addr = __alloc_iova(mapping, size);
1302 	if (dma_addr == DMA_ERROR_CODE)
1303 		return dma_addr;
1304 
1305 	iova = dma_addr;
1306 	for (i = 0; i < count; ) {
1307 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1308 		phys_addr_t phys = page_to_phys(pages[i]);
1309 		unsigned int len, j;
1310 
1311 		for (j = i + 1; j < count; j++, next_pfn++)
1312 			if (page_to_pfn(pages[j]) != next_pfn)
1313 				break;
1314 
1315 		len = (j - i) << PAGE_SHIFT;
1316 		ret = iommu_map(mapping->domain, iova, phys, len,
1317 				IOMMU_READ|IOMMU_WRITE);
1318 		if (ret < 0)
1319 			goto fail;
1320 		iova += len;
1321 		i = j;
1322 	}
1323 	return dma_addr;
1324 fail:
1325 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1326 	__free_iova(mapping, dma_addr, size);
1327 	return DMA_ERROR_CODE;
1328 }
1329 
1330 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1331 {
1332 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1333 
1334 	/*
1335 	 * add optional in-page offset from iova to size and align
1336 	 * result to page size
1337 	 */
1338 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1339 	iova &= PAGE_MASK;
1340 
1341 	iommu_unmap(mapping->domain, iova, size);
1342 	__free_iova(mapping, iova, size);
1343 	return 0;
1344 }
1345 
1346 static struct page **__atomic_get_pages(void *addr)
1347 {
1348 	struct dma_pool *pool = &atomic_pool;
1349 	struct page **pages = pool->pages;
1350 	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1351 
1352 	return pages + offs;
1353 }
1354 
1355 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1356 {
1357 	struct vm_struct *area;
1358 
1359 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1360 		return __atomic_get_pages(cpu_addr);
1361 
1362 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1363 		return cpu_addr;
1364 
1365 	area = find_vm_area(cpu_addr);
1366 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1367 		return area->pages;
1368 	return NULL;
1369 }
1370 
1371 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1372 				  dma_addr_t *handle)
1373 {
1374 	struct page *page;
1375 	void *addr;
1376 
1377 	addr = __alloc_from_pool(size, &page);
1378 	if (!addr)
1379 		return NULL;
1380 
1381 	*handle = __iommu_create_mapping(dev, &page, size);
1382 	if (*handle == DMA_ERROR_CODE)
1383 		goto err_mapping;
1384 
1385 	return addr;
1386 
1387 err_mapping:
1388 	__free_from_pool(addr, size);
1389 	return NULL;
1390 }
1391 
1392 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1393 				dma_addr_t handle, size_t size)
1394 {
1395 	__iommu_remove_mapping(dev, handle, size);
1396 	__free_from_pool(cpu_addr, size);
1397 }
1398 
1399 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1400 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1401 {
1402 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1403 	struct page **pages;
1404 	void *addr = NULL;
1405 
1406 	*handle = DMA_ERROR_CODE;
1407 	size = PAGE_ALIGN(size);
1408 
1409 	if (!(gfp & __GFP_WAIT))
1410 		return __iommu_alloc_atomic(dev, size, handle);
1411 
1412 	/*
1413 	 * Following is a work-around (a.k.a. hack) to prevent pages
1414 	 * with __GFP_COMP being passed to split_page() which cannot
1415 	 * handle them.  The real problem is that this flag probably
1416 	 * should be 0 on ARM as it is not supported on this
1417 	 * platform; see CONFIG_HUGETLBFS.
1418 	 */
1419 	gfp &= ~(__GFP_COMP);
1420 
1421 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1422 	if (!pages)
1423 		return NULL;
1424 
1425 	*handle = __iommu_create_mapping(dev, pages, size);
1426 	if (*handle == DMA_ERROR_CODE)
1427 		goto err_buffer;
1428 
1429 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1430 		return pages;
1431 
1432 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1433 				   __builtin_return_address(0));
1434 	if (!addr)
1435 		goto err_mapping;
1436 
1437 	return addr;
1438 
1439 err_mapping:
1440 	__iommu_remove_mapping(dev, *handle, size);
1441 err_buffer:
1442 	__iommu_free_buffer(dev, pages, size, attrs);
1443 	return NULL;
1444 }
1445 
1446 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1447 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1448 		    struct dma_attrs *attrs)
1449 {
1450 	unsigned long uaddr = vma->vm_start;
1451 	unsigned long usize = vma->vm_end - vma->vm_start;
1452 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1453 
1454 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1455 
1456 	if (!pages)
1457 		return -ENXIO;
1458 
1459 	do {
1460 		int ret = vm_insert_page(vma, uaddr, *pages++);
1461 		if (ret) {
1462 			pr_err("Remapping memory failed: %d\n", ret);
1463 			return ret;
1464 		}
1465 		uaddr += PAGE_SIZE;
1466 		usize -= PAGE_SIZE;
1467 	} while (usize > 0);
1468 
1469 	return 0;
1470 }
1471 
1472 /*
1473  * free a page as defined by the above mapping.
1474  * Must not be called with IRQs disabled.
1475  */
1476 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1477 			  dma_addr_t handle, struct dma_attrs *attrs)
1478 {
1479 	struct page **pages;
1480 	size = PAGE_ALIGN(size);
1481 
1482 	if (__in_atomic_pool(cpu_addr, size)) {
1483 		__iommu_free_atomic(dev, cpu_addr, handle, size);
1484 		return;
1485 	}
1486 
1487 	pages = __iommu_get_pages(cpu_addr, attrs);
1488 	if (!pages) {
1489 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1490 		return;
1491 	}
1492 
1493 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1494 		unmap_kernel_range((unsigned long)cpu_addr, size);
1495 		vunmap(cpu_addr);
1496 	}
1497 
1498 	__iommu_remove_mapping(dev, handle, size);
1499 	__iommu_free_buffer(dev, pages, size, attrs);
1500 }
1501 
1502 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1503 				 void *cpu_addr, dma_addr_t dma_addr,
1504 				 size_t size, struct dma_attrs *attrs)
1505 {
1506 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1507 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1508 
1509 	if (!pages)
1510 		return -ENXIO;
1511 
1512 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1513 					 GFP_KERNEL);
1514 }
1515 
1516 static int __dma_direction_to_prot(enum dma_data_direction dir)
1517 {
1518 	int prot;
1519 
1520 	switch (dir) {
1521 	case DMA_BIDIRECTIONAL:
1522 		prot = IOMMU_READ | IOMMU_WRITE;
1523 		break;
1524 	case DMA_TO_DEVICE:
1525 		prot = IOMMU_READ;
1526 		break;
1527 	case DMA_FROM_DEVICE:
1528 		prot = IOMMU_WRITE;
1529 		break;
1530 	default:
1531 		prot = 0;
1532 	}
1533 
1534 	return prot;
1535 }
1536 
1537 /*
1538  * Map a part of the scatter-gather list into contiguous io address space
1539  */
1540 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1541 			  size_t size, dma_addr_t *handle,
1542 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1543 			  bool is_coherent)
1544 {
1545 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1546 	dma_addr_t iova, iova_base;
1547 	int ret = 0;
1548 	unsigned int count;
1549 	struct scatterlist *s;
1550 	int prot;
1551 
1552 	size = PAGE_ALIGN(size);
1553 	*handle = DMA_ERROR_CODE;
1554 
1555 	iova_base = iova = __alloc_iova(mapping, size);
1556 	if (iova == DMA_ERROR_CODE)
1557 		return -ENOMEM;
1558 
1559 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1560 		phys_addr_t phys = page_to_phys(sg_page(s));
1561 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1562 
1563 		if (!is_coherent &&
1564 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1565 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1566 
1567 		prot = __dma_direction_to_prot(dir);
1568 
1569 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1570 		if (ret < 0)
1571 			goto fail;
1572 		count += len >> PAGE_SHIFT;
1573 		iova += len;
1574 	}
1575 	*handle = iova_base;
1576 
1577 	return 0;
1578 fail:
1579 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1580 	__free_iova(mapping, iova_base, size);
1581 	return ret;
1582 }
1583 
1584 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1585 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1586 		     bool is_coherent)
1587 {
1588 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1589 	int i, count = 0;
1590 	unsigned int offset = s->offset;
1591 	unsigned int size = s->offset + s->length;
1592 	unsigned int max = dma_get_max_seg_size(dev);
1593 
1594 	for (i = 1; i < nents; i++) {
1595 		s = sg_next(s);
1596 
1597 		s->dma_address = DMA_ERROR_CODE;
1598 		s->dma_length = 0;
1599 
1600 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1601 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1602 			    dir, attrs, is_coherent) < 0)
1603 				goto bad_mapping;
1604 
1605 			dma->dma_address += offset;
1606 			dma->dma_length = size - offset;
1607 
1608 			size = offset = s->offset;
1609 			start = s;
1610 			dma = sg_next(dma);
1611 			count += 1;
1612 		}
1613 		size += s->length;
1614 	}
1615 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1616 		is_coherent) < 0)
1617 		goto bad_mapping;
1618 
1619 	dma->dma_address += offset;
1620 	dma->dma_length = size - offset;
1621 
1622 	return count+1;
1623 
1624 bad_mapping:
1625 	for_each_sg(sg, s, count, i)
1626 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1627 	return 0;
1628 }
1629 
1630 /**
1631  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1632  * @dev: valid struct device pointer
1633  * @sg: list of buffers
1634  * @nents: number of buffers to map
1635  * @dir: DMA transfer direction
1636  *
1637  * Map a set of i/o coherent buffers described by scatterlist in streaming
1638  * mode for DMA. The scatter gather list elements are merged together (if
1639  * possible) and tagged with the appropriate dma address and length. They are
1640  * obtained via sg_dma_{address,length}.
1641  */
1642 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1643 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1644 {
1645 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1646 }
1647 
1648 /**
1649  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1650  * @dev: valid struct device pointer
1651  * @sg: list of buffers
1652  * @nents: number of buffers to map
1653  * @dir: DMA transfer direction
1654  *
1655  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1656  * The scatter gather list elements are merged together (if possible) and
1657  * tagged with the appropriate dma address and length. They are obtained via
1658  * sg_dma_{address,length}.
1659  */
1660 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1661 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1662 {
1663 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1664 }
1665 
1666 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1667 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1668 		bool is_coherent)
1669 {
1670 	struct scatterlist *s;
1671 	int i;
1672 
1673 	for_each_sg(sg, s, nents, i) {
1674 		if (sg_dma_len(s))
1675 			__iommu_remove_mapping(dev, sg_dma_address(s),
1676 					       sg_dma_len(s));
1677 		if (!is_coherent &&
1678 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1679 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1680 					      s->length, dir);
1681 	}
1682 }
1683 
1684 /**
1685  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1686  * @dev: valid struct device pointer
1687  * @sg: list of buffers
1688  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1689  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1690  *
1691  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1692  * rules concerning calls here are the same as for dma_unmap_single().
1693  */
1694 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1695 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1696 {
1697 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1698 }
1699 
1700 /**
1701  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1702  * @dev: valid struct device pointer
1703  * @sg: list of buffers
1704  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1705  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1706  *
1707  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1708  * rules concerning calls here are the same as for dma_unmap_single().
1709  */
1710 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1711 			enum dma_data_direction dir, struct dma_attrs *attrs)
1712 {
1713 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1714 }
1715 
1716 /**
1717  * arm_iommu_sync_sg_for_cpu
1718  * @dev: valid struct device pointer
1719  * @sg: list of buffers
1720  * @nents: number of buffers to map (returned from dma_map_sg)
1721  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1722  */
1723 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1724 			int nents, enum dma_data_direction dir)
1725 {
1726 	struct scatterlist *s;
1727 	int i;
1728 
1729 	for_each_sg(sg, s, nents, i)
1730 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1731 
1732 }
1733 
1734 /**
1735  * arm_iommu_sync_sg_for_device
1736  * @dev: valid struct device pointer
1737  * @sg: list of buffers
1738  * @nents: number of buffers to map (returned from dma_map_sg)
1739  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1740  */
1741 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1742 			int nents, enum dma_data_direction dir)
1743 {
1744 	struct scatterlist *s;
1745 	int i;
1746 
1747 	for_each_sg(sg, s, nents, i)
1748 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1749 }
1750 
1751 
1752 /**
1753  * arm_coherent_iommu_map_page
1754  * @dev: valid struct device pointer
1755  * @page: page that buffer resides in
1756  * @offset: offset into page for start of buffer
1757  * @size: size of buffer to map
1758  * @dir: DMA transfer direction
1759  *
1760  * Coherent IOMMU aware version of arm_dma_map_page()
1761  */
1762 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1763 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1764 	     struct dma_attrs *attrs)
1765 {
1766 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1767 	dma_addr_t dma_addr;
1768 	int ret, prot, len = PAGE_ALIGN(size + offset);
1769 
1770 	dma_addr = __alloc_iova(mapping, len);
1771 	if (dma_addr == DMA_ERROR_CODE)
1772 		return dma_addr;
1773 
1774 	prot = __dma_direction_to_prot(dir);
1775 
1776 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1777 	if (ret < 0)
1778 		goto fail;
1779 
1780 	return dma_addr + offset;
1781 fail:
1782 	__free_iova(mapping, dma_addr, len);
1783 	return DMA_ERROR_CODE;
1784 }
1785 
1786 /**
1787  * arm_iommu_map_page
1788  * @dev: valid struct device pointer
1789  * @page: page that buffer resides in
1790  * @offset: offset into page for start of buffer
1791  * @size: size of buffer to map
1792  * @dir: DMA transfer direction
1793  *
1794  * IOMMU aware version of arm_dma_map_page()
1795  */
1796 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1797 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1798 	     struct dma_attrs *attrs)
1799 {
1800 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1801 		__dma_page_cpu_to_dev(page, offset, size, dir);
1802 
1803 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1804 }
1805 
1806 /**
1807  * arm_coherent_iommu_unmap_page
1808  * @dev: valid struct device pointer
1809  * @handle: DMA address of buffer
1810  * @size: size of buffer (same as passed to dma_map_page)
1811  * @dir: DMA transfer direction (same as passed to dma_map_page)
1812  *
1813  * Coherent IOMMU aware version of arm_dma_unmap_page()
1814  */
1815 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1816 		size_t size, enum dma_data_direction dir,
1817 		struct dma_attrs *attrs)
1818 {
1819 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1820 	dma_addr_t iova = handle & PAGE_MASK;
1821 	int offset = handle & ~PAGE_MASK;
1822 	int len = PAGE_ALIGN(size + offset);
1823 
1824 	if (!iova)
1825 		return;
1826 
1827 	iommu_unmap(mapping->domain, iova, len);
1828 	__free_iova(mapping, iova, len);
1829 }
1830 
1831 /**
1832  * arm_iommu_unmap_page
1833  * @dev: valid struct device pointer
1834  * @handle: DMA address of buffer
1835  * @size: size of buffer (same as passed to dma_map_page)
1836  * @dir: DMA transfer direction (same as passed to dma_map_page)
1837  *
1838  * IOMMU aware version of arm_dma_unmap_page()
1839  */
1840 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1841 		size_t size, enum dma_data_direction dir,
1842 		struct dma_attrs *attrs)
1843 {
1844 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1845 	dma_addr_t iova = handle & PAGE_MASK;
1846 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1847 	int offset = handle & ~PAGE_MASK;
1848 	int len = PAGE_ALIGN(size + offset);
1849 
1850 	if (!iova)
1851 		return;
1852 
1853 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1854 		__dma_page_dev_to_cpu(page, offset, size, dir);
1855 
1856 	iommu_unmap(mapping->domain, iova, len);
1857 	__free_iova(mapping, iova, len);
1858 }
1859 
1860 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1861 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1862 {
1863 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1864 	dma_addr_t iova = handle & PAGE_MASK;
1865 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1866 	unsigned int offset = handle & ~PAGE_MASK;
1867 
1868 	if (!iova)
1869 		return;
1870 
1871 	__dma_page_dev_to_cpu(page, offset, size, dir);
1872 }
1873 
1874 static void arm_iommu_sync_single_for_device(struct device *dev,
1875 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1876 {
1877 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1878 	dma_addr_t iova = handle & PAGE_MASK;
1879 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1880 	unsigned int offset = handle & ~PAGE_MASK;
1881 
1882 	if (!iova)
1883 		return;
1884 
1885 	__dma_page_cpu_to_dev(page, offset, size, dir);
1886 }
1887 
1888 struct dma_map_ops iommu_ops = {
1889 	.alloc		= arm_iommu_alloc_attrs,
1890 	.free		= arm_iommu_free_attrs,
1891 	.mmap		= arm_iommu_mmap_attrs,
1892 	.get_sgtable	= arm_iommu_get_sgtable,
1893 
1894 	.map_page		= arm_iommu_map_page,
1895 	.unmap_page		= arm_iommu_unmap_page,
1896 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1897 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1898 
1899 	.map_sg			= arm_iommu_map_sg,
1900 	.unmap_sg		= arm_iommu_unmap_sg,
1901 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1902 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1903 
1904 	.set_dma_mask		= arm_dma_set_mask,
1905 };
1906 
1907 struct dma_map_ops iommu_coherent_ops = {
1908 	.alloc		= arm_iommu_alloc_attrs,
1909 	.free		= arm_iommu_free_attrs,
1910 	.mmap		= arm_iommu_mmap_attrs,
1911 	.get_sgtable	= arm_iommu_get_sgtable,
1912 
1913 	.map_page	= arm_coherent_iommu_map_page,
1914 	.unmap_page	= arm_coherent_iommu_unmap_page,
1915 
1916 	.map_sg		= arm_coherent_iommu_map_sg,
1917 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1918 
1919 	.set_dma_mask	= arm_dma_set_mask,
1920 };
1921 
1922 /**
1923  * arm_iommu_create_mapping
1924  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1925  * @base: start address of the valid IO address space
1926  * @size: maximum size of the valid IO address space
1927  *
1928  * Creates a mapping structure which holds information about used/unused
1929  * IO address ranges, which is required to perform memory allocation and
1930  * mapping with IOMMU aware functions.
1931  *
1932  * The client device need to be attached to the mapping with
1933  * arm_iommu_attach_device function.
1934  */
1935 struct dma_iommu_mapping *
1936 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1937 {
1938 	unsigned int bits = size >> PAGE_SHIFT;
1939 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1940 	struct dma_iommu_mapping *mapping;
1941 	int extensions = 1;
1942 	int err = -ENOMEM;
1943 
1944 	if (!bitmap_size)
1945 		return ERR_PTR(-EINVAL);
1946 
1947 	if (bitmap_size > PAGE_SIZE) {
1948 		extensions = bitmap_size / PAGE_SIZE;
1949 		bitmap_size = PAGE_SIZE;
1950 	}
1951 
1952 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1953 	if (!mapping)
1954 		goto err;
1955 
1956 	mapping->bitmap_size = bitmap_size;
1957 	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1958 				GFP_KERNEL);
1959 	if (!mapping->bitmaps)
1960 		goto err2;
1961 
1962 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1963 	if (!mapping->bitmaps[0])
1964 		goto err3;
1965 
1966 	mapping->nr_bitmaps = 1;
1967 	mapping->extensions = extensions;
1968 	mapping->base = base;
1969 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1970 
1971 	spin_lock_init(&mapping->lock);
1972 
1973 	mapping->domain = iommu_domain_alloc(bus);
1974 	if (!mapping->domain)
1975 		goto err4;
1976 
1977 	kref_init(&mapping->kref);
1978 	return mapping;
1979 err4:
1980 	kfree(mapping->bitmaps[0]);
1981 err3:
1982 	kfree(mapping->bitmaps);
1983 err2:
1984 	kfree(mapping);
1985 err:
1986 	return ERR_PTR(err);
1987 }
1988 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1989 
1990 static void release_iommu_mapping(struct kref *kref)
1991 {
1992 	int i;
1993 	struct dma_iommu_mapping *mapping =
1994 		container_of(kref, struct dma_iommu_mapping, kref);
1995 
1996 	iommu_domain_free(mapping->domain);
1997 	for (i = 0; i < mapping->nr_bitmaps; i++)
1998 		kfree(mapping->bitmaps[i]);
1999 	kfree(mapping->bitmaps);
2000 	kfree(mapping);
2001 }
2002 
2003 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2004 {
2005 	int next_bitmap;
2006 
2007 	if (mapping->nr_bitmaps > mapping->extensions)
2008 		return -EINVAL;
2009 
2010 	next_bitmap = mapping->nr_bitmaps;
2011 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2012 						GFP_ATOMIC);
2013 	if (!mapping->bitmaps[next_bitmap])
2014 		return -ENOMEM;
2015 
2016 	mapping->nr_bitmaps++;
2017 
2018 	return 0;
2019 }
2020 
2021 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2022 {
2023 	if (mapping)
2024 		kref_put(&mapping->kref, release_iommu_mapping);
2025 }
2026 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2027 
2028 /**
2029  * arm_iommu_attach_device
2030  * @dev: valid struct device pointer
2031  * @mapping: io address space mapping structure (returned from
2032  *	arm_iommu_create_mapping)
2033  *
2034  * Attaches specified io address space mapping to the provided device,
2035  * this replaces the dma operations (dma_map_ops pointer) with the
2036  * IOMMU aware version. More than one client might be attached to
2037  * the same io address space mapping.
2038  */
2039 int arm_iommu_attach_device(struct device *dev,
2040 			    struct dma_iommu_mapping *mapping)
2041 {
2042 	int err;
2043 
2044 	err = iommu_attach_device(mapping->domain, dev);
2045 	if (err)
2046 		return err;
2047 
2048 	kref_get(&mapping->kref);
2049 	dev->archdata.mapping = mapping;
2050 	set_dma_ops(dev, &iommu_ops);
2051 
2052 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2053 	return 0;
2054 }
2055 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2056 
2057 /**
2058  * arm_iommu_detach_device
2059  * @dev: valid struct device pointer
2060  *
2061  * Detaches the provided device from a previously attached map.
2062  * This voids the dma operations (dma_map_ops pointer)
2063  */
2064 void arm_iommu_detach_device(struct device *dev)
2065 {
2066 	struct dma_iommu_mapping *mapping;
2067 
2068 	mapping = to_dma_iommu_mapping(dev);
2069 	if (!mapping) {
2070 		dev_warn(dev, "Not attached\n");
2071 		return;
2072 	}
2073 
2074 	iommu_detach_device(mapping->domain, dev);
2075 	kref_put(&mapping->kref, release_iommu_mapping);
2076 	dev->archdata.mapping = NULL;
2077 	set_dma_ops(dev, NULL);
2078 
2079 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2080 }
2081 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2082 
2083 #endif
2084