xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision a5e9d38b)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 
21 #include <asm/memory.h>
22 #include <asm/highmem.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/sizes.h>
26 
27 static u64 get_coherent_dma_mask(struct device *dev)
28 {
29 	u64 mask = ISA_DMA_THRESHOLD;
30 
31 	if (dev) {
32 		mask = dev->coherent_dma_mask;
33 
34 		/*
35 		 * Sanity check the DMA mask - it must be non-zero, and
36 		 * must be able to be satisfied by a DMA allocation.
37 		 */
38 		if (mask == 0) {
39 			dev_warn(dev, "coherent DMA mask is unset\n");
40 			return 0;
41 		}
42 
43 		if ((~mask) & ISA_DMA_THRESHOLD) {
44 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
45 				 "than system GFP_DMA mask %#llx\n",
46 				 mask, (unsigned long long)ISA_DMA_THRESHOLD);
47 			return 0;
48 		}
49 	}
50 
51 	return mask;
52 }
53 
54 /*
55  * Allocate a DMA buffer for 'dev' of size 'size' using the
56  * specified gfp mask.  Note that 'size' must be page aligned.
57  */
58 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
59 {
60 	unsigned long order = get_order(size);
61 	struct page *page, *p, *e;
62 	void *ptr;
63 	u64 mask = get_coherent_dma_mask(dev);
64 
65 #ifdef CONFIG_DMA_API_DEBUG
66 	u64 limit = (mask + 1) & ~mask;
67 	if (limit && size >= limit) {
68 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
69 			size, mask);
70 		return NULL;
71 	}
72 #endif
73 
74 	if (!mask)
75 		return NULL;
76 
77 	if (mask < 0xffffffffULL)
78 		gfp |= GFP_DMA;
79 
80 	page = alloc_pages(gfp, order);
81 	if (!page)
82 		return NULL;
83 
84 	/*
85 	 * Now split the huge page and free the excess pages
86 	 */
87 	split_page(page, order);
88 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
89 		__free_page(p);
90 
91 	/*
92 	 * Ensure that the allocated pages are zeroed, and that any data
93 	 * lurking in the kernel direct-mapped region is invalidated.
94 	 */
95 	ptr = page_address(page);
96 	memset(ptr, 0, size);
97 	dmac_flush_range(ptr, ptr + size);
98 	outer_flush_range(__pa(ptr), __pa(ptr) + size);
99 
100 	return page;
101 }
102 
103 /*
104  * Free a DMA buffer.  'size' must be page aligned.
105  */
106 static void __dma_free_buffer(struct page *page, size_t size)
107 {
108 	struct page *e = page + (size >> PAGE_SHIFT);
109 
110 	while (page < e) {
111 		__free_page(page);
112 		page++;
113 	}
114 }
115 
116 #ifdef CONFIG_MMU
117 /* Sanity check size */
118 #if (CONSISTENT_DMA_SIZE % SZ_2M)
119 #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
120 #endif
121 
122 #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
123 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
124 #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
125 
126 /*
127  * These are the page tables (2MB each) covering uncached, DMA consistent allocations
128  */
129 static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
130 
131 #include "vmregion.h"
132 
133 static struct arm_vmregion_head consistent_head = {
134 	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
135 	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
136 	.vm_start	= CONSISTENT_BASE,
137 	.vm_end		= CONSISTENT_END,
138 };
139 
140 #ifdef CONFIG_HUGETLB_PAGE
141 #error ARM Coherent DMA allocator does not (yet) support huge TLB
142 #endif
143 
144 /*
145  * Initialise the consistent memory allocation.
146  */
147 static int __init consistent_init(void)
148 {
149 	int ret = 0;
150 	pgd_t *pgd;
151 	pmd_t *pmd;
152 	pte_t *pte;
153 	int i = 0;
154 	u32 base = CONSISTENT_BASE;
155 
156 	do {
157 		pgd = pgd_offset(&init_mm, base);
158 		pmd = pmd_alloc(&init_mm, pgd, base);
159 		if (!pmd) {
160 			printk(KERN_ERR "%s: no pmd tables\n", __func__);
161 			ret = -ENOMEM;
162 			break;
163 		}
164 		WARN_ON(!pmd_none(*pmd));
165 
166 		pte = pte_alloc_kernel(pmd, base);
167 		if (!pte) {
168 			printk(KERN_ERR "%s: no pte tables\n", __func__);
169 			ret = -ENOMEM;
170 			break;
171 		}
172 
173 		consistent_pte[i++] = pte;
174 		base += (1 << PGDIR_SHIFT);
175 	} while (base < CONSISTENT_END);
176 
177 	return ret;
178 }
179 
180 core_initcall(consistent_init);
181 
182 static void *
183 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
184 {
185 	struct arm_vmregion *c;
186 
187 	if (!consistent_pte[0]) {
188 		printk(KERN_ERR "%s: not initialised\n", __func__);
189 		dump_stack();
190 		return NULL;
191 	}
192 
193 	/*
194 	 * Allocate a virtual address in the consistent mapping region.
195 	 */
196 	c = arm_vmregion_alloc(&consistent_head, size,
197 			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
198 	if (c) {
199 		pte_t *pte;
200 		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
201 		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
202 
203 		pte = consistent_pte[idx] + off;
204 		c->vm_pages = page;
205 
206 		do {
207 			BUG_ON(!pte_none(*pte));
208 
209 			set_pte_ext(pte, mk_pte(page, prot), 0);
210 			page++;
211 			pte++;
212 			off++;
213 			if (off >= PTRS_PER_PTE) {
214 				off = 0;
215 				pte = consistent_pte[++idx];
216 			}
217 		} while (size -= PAGE_SIZE);
218 
219 		return (void *)c->vm_start;
220 	}
221 	return NULL;
222 }
223 
224 static void __dma_free_remap(void *cpu_addr, size_t size)
225 {
226 	struct arm_vmregion *c;
227 	unsigned long addr;
228 	pte_t *ptep;
229 	int idx;
230 	u32 off;
231 
232 	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
233 	if (!c) {
234 		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
235 		       __func__, cpu_addr);
236 		dump_stack();
237 		return;
238 	}
239 
240 	if ((c->vm_end - c->vm_start) != size) {
241 		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
242 		       __func__, c->vm_end - c->vm_start, size);
243 		dump_stack();
244 		size = c->vm_end - c->vm_start;
245 	}
246 
247 	idx = CONSISTENT_PTE_INDEX(c->vm_start);
248 	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
249 	ptep = consistent_pte[idx] + off;
250 	addr = c->vm_start;
251 	do {
252 		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
253 
254 		ptep++;
255 		addr += PAGE_SIZE;
256 		off++;
257 		if (off >= PTRS_PER_PTE) {
258 			off = 0;
259 			ptep = consistent_pte[++idx];
260 		}
261 
262 		if (pte_none(pte) || !pte_present(pte))
263 			printk(KERN_CRIT "%s: bad page in kernel page table\n",
264 			       __func__);
265 	} while (size -= PAGE_SIZE);
266 
267 	flush_tlb_kernel_range(c->vm_start, c->vm_end);
268 
269 	arm_vmregion_free(&consistent_head, c);
270 }
271 
272 #else	/* !CONFIG_MMU */
273 
274 #define __dma_alloc_remap(page, size, gfp, prot)	page_address(page)
275 #define __dma_free_remap(addr, size)			do { } while (0)
276 
277 #endif	/* CONFIG_MMU */
278 
279 static void *
280 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
281 	    pgprot_t prot)
282 {
283 	struct page *page;
284 	void *addr;
285 
286 	*handle = ~0;
287 	size = PAGE_ALIGN(size);
288 
289 	page = __dma_alloc_buffer(dev, size, gfp);
290 	if (!page)
291 		return NULL;
292 
293 	if (!arch_is_coherent())
294 		addr = __dma_alloc_remap(page, size, gfp, prot);
295 	else
296 		addr = page_address(page);
297 
298 	if (addr)
299 		*handle = page_to_dma(dev, page);
300 
301 	return addr;
302 }
303 
304 /*
305  * Allocate DMA-coherent memory space and return both the kernel remapped
306  * virtual and bus address for that space.
307  */
308 void *
309 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
310 {
311 	void *memory;
312 
313 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
314 		return memory;
315 
316 	return __dma_alloc(dev, size, handle, gfp,
317 			   pgprot_dmacoherent(pgprot_kernel));
318 }
319 EXPORT_SYMBOL(dma_alloc_coherent);
320 
321 /*
322  * Allocate a writecombining region, in much the same way as
323  * dma_alloc_coherent above.
324  */
325 void *
326 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
327 {
328 	return __dma_alloc(dev, size, handle, gfp,
329 			   pgprot_writecombine(pgprot_kernel));
330 }
331 EXPORT_SYMBOL(dma_alloc_writecombine);
332 
333 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
334 		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
335 {
336 	int ret = -ENXIO;
337 #ifdef CONFIG_MMU
338 	unsigned long user_size, kern_size;
339 	struct arm_vmregion *c;
340 
341 	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
342 
343 	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
344 	if (c) {
345 		unsigned long off = vma->vm_pgoff;
346 
347 		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
348 
349 		if (off < kern_size &&
350 		    user_size <= (kern_size - off)) {
351 			ret = remap_pfn_range(vma, vma->vm_start,
352 					      page_to_pfn(c->vm_pages) + off,
353 					      user_size << PAGE_SHIFT,
354 					      vma->vm_page_prot);
355 		}
356 	}
357 #endif	/* CONFIG_MMU */
358 
359 	return ret;
360 }
361 
362 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
363 		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
364 {
365 	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
366 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
367 }
368 EXPORT_SYMBOL(dma_mmap_coherent);
369 
370 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
371 			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
372 {
373 	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
374 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
375 }
376 EXPORT_SYMBOL(dma_mmap_writecombine);
377 
378 /*
379  * free a page as defined by the above mapping.
380  * Must not be called with IRQs disabled.
381  */
382 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
383 {
384 	WARN_ON(irqs_disabled());
385 
386 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
387 		return;
388 
389 	size = PAGE_ALIGN(size);
390 
391 	if (!arch_is_coherent())
392 		__dma_free_remap(cpu_addr, size);
393 
394 	__dma_free_buffer(dma_to_page(dev, handle), size);
395 }
396 EXPORT_SYMBOL(dma_free_coherent);
397 
398 /*
399  * Make an area consistent for devices.
400  * Note: Drivers should NOT use this function directly, as it will break
401  * platforms with CONFIG_DMABOUNCE.
402  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
403  */
404 void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
405 	enum dma_data_direction dir)
406 {
407 	unsigned long paddr;
408 
409 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
410 
411 	dmac_map_area(kaddr, size, dir);
412 
413 	paddr = __pa(kaddr);
414 	if (dir == DMA_FROM_DEVICE) {
415 		outer_inv_range(paddr, paddr + size);
416 	} else {
417 		outer_clean_range(paddr, paddr + size);
418 	}
419 	/* FIXME: non-speculating: flush on bidirectional mappings? */
420 }
421 EXPORT_SYMBOL(___dma_single_cpu_to_dev);
422 
423 void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
424 	enum dma_data_direction dir)
425 {
426 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
427 
428 	/* FIXME: non-speculating: not required */
429 	/* don't bother invalidating if DMA to device */
430 	if (dir != DMA_TO_DEVICE) {
431 		unsigned long paddr = __pa(kaddr);
432 		outer_inv_range(paddr, paddr + size);
433 	}
434 
435 	dmac_unmap_area(kaddr, size, dir);
436 }
437 EXPORT_SYMBOL(___dma_single_dev_to_cpu);
438 
439 static void dma_cache_maint_page(struct page *page, unsigned long offset,
440 	size_t size, enum dma_data_direction dir,
441 	void (*op)(const void *, size_t, int))
442 {
443 	/*
444 	 * A single sg entry may refer to multiple physically contiguous
445 	 * pages.  But we still need to process highmem pages individually.
446 	 * If highmem is not configured then the bulk of this loop gets
447 	 * optimized out.
448 	 */
449 	size_t left = size;
450 	do {
451 		size_t len = left;
452 		void *vaddr;
453 
454 		if (PageHighMem(page)) {
455 			if (len + offset > PAGE_SIZE) {
456 				if (offset >= PAGE_SIZE) {
457 					page += offset / PAGE_SIZE;
458 					offset %= PAGE_SIZE;
459 				}
460 				len = PAGE_SIZE - offset;
461 			}
462 			vaddr = kmap_high_get(page);
463 			if (vaddr) {
464 				vaddr += offset;
465 				op(vaddr, len, dir);
466 				kunmap_high(page);
467 			} else if (cache_is_vipt()) {
468 				pte_t saved_pte;
469 				vaddr = kmap_high_l1_vipt(page, &saved_pte);
470 				op(vaddr + offset, len, dir);
471 				kunmap_high_l1_vipt(page, saved_pte);
472 			}
473 		} else {
474 			vaddr = page_address(page) + offset;
475 			op(vaddr, len, dir);
476 		}
477 		offset = 0;
478 		page++;
479 		left -= len;
480 	} while (left);
481 }
482 
483 void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
484 	size_t size, enum dma_data_direction dir)
485 {
486 	unsigned long paddr;
487 
488 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
489 
490 	paddr = page_to_phys(page) + off;
491 	if (dir == DMA_FROM_DEVICE) {
492 		outer_inv_range(paddr, paddr + size);
493 	} else {
494 		outer_clean_range(paddr, paddr + size);
495 	}
496 	/* FIXME: non-speculating: flush on bidirectional mappings? */
497 }
498 EXPORT_SYMBOL(___dma_page_cpu_to_dev);
499 
500 void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
501 	size_t size, enum dma_data_direction dir)
502 {
503 	unsigned long paddr = page_to_phys(page) + off;
504 
505 	/* FIXME: non-speculating: not required */
506 	/* don't bother invalidating if DMA to device */
507 	if (dir != DMA_TO_DEVICE)
508 		outer_inv_range(paddr, paddr + size);
509 
510 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
511 }
512 EXPORT_SYMBOL(___dma_page_dev_to_cpu);
513 
514 /**
515  * dma_map_sg - map a set of SG buffers for streaming mode DMA
516  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
517  * @sg: list of buffers
518  * @nents: number of buffers to map
519  * @dir: DMA transfer direction
520  *
521  * Map a set of buffers described by scatterlist in streaming mode for DMA.
522  * This is the scatter-gather version of the dma_map_single interface.
523  * Here the scatter gather list elements are each tagged with the
524  * appropriate dma address and length.  They are obtained via
525  * sg_dma_{address,length}.
526  *
527  * Device ownership issues as mentioned for dma_map_single are the same
528  * here.
529  */
530 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
531 		enum dma_data_direction dir)
532 {
533 	struct scatterlist *s;
534 	int i, j;
535 
536 	for_each_sg(sg, s, nents, i) {
537 		s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
538 						s->length, dir);
539 		if (dma_mapping_error(dev, s->dma_address))
540 			goto bad_mapping;
541 	}
542 	return nents;
543 
544  bad_mapping:
545 	for_each_sg(sg, s, i, j)
546 		dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
547 	return 0;
548 }
549 EXPORT_SYMBOL(dma_map_sg);
550 
551 /**
552  * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
553  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
554  * @sg: list of buffers
555  * @nents: number of buffers to unmap (returned from dma_map_sg)
556  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
557  *
558  * Unmap a set of streaming mode DMA translations.  Again, CPU access
559  * rules concerning calls here are the same as for dma_unmap_single().
560  */
561 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
562 		enum dma_data_direction dir)
563 {
564 	struct scatterlist *s;
565 	int i;
566 
567 	for_each_sg(sg, s, nents, i)
568 		dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
569 }
570 EXPORT_SYMBOL(dma_unmap_sg);
571 
572 /**
573  * dma_sync_sg_for_cpu
574  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
575  * @sg: list of buffers
576  * @nents: number of buffers to map (returned from dma_map_sg)
577  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
578  */
579 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
580 			int nents, enum dma_data_direction dir)
581 {
582 	struct scatterlist *s;
583 	int i;
584 
585 	for_each_sg(sg, s, nents, i) {
586 		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
587 					    sg_dma_len(s), dir))
588 			continue;
589 
590 		__dma_page_dev_to_cpu(sg_page(s), s->offset,
591 				      s->length, dir);
592 	}
593 }
594 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
595 
596 /**
597  * dma_sync_sg_for_device
598  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
599  * @sg: list of buffers
600  * @nents: number of buffers to map (returned from dma_map_sg)
601  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
602  */
603 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
604 			int nents, enum dma_data_direction dir)
605 {
606 	struct scatterlist *s;
607 	int i;
608 
609 	for_each_sg(sg, s, nents, i) {
610 		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
611 					sg_dma_len(s), dir))
612 			continue;
613 
614 		__dma_page_cpu_to_dev(sg_page(s), s->offset,
615 				      s->length, dir);
616 	}
617 }
618 EXPORT_SYMBOL(dma_sync_sg_for_device);
619