1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/bootmem.h> 13 #include <linux/module.h> 14 #include <linux/mm.h> 15 #include <linux/genalloc.h> 16 #include <linux/gfp.h> 17 #include <linux/errno.h> 18 #include <linux/list.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/dma-contiguous.h> 23 #include <linux/highmem.h> 24 #include <linux/memblock.h> 25 #include <linux/slab.h> 26 #include <linux/iommu.h> 27 #include <linux/io.h> 28 #include <linux/vmalloc.h> 29 #include <linux/sizes.h> 30 #include <linux/cma.h> 31 32 #include <asm/memory.h> 33 #include <asm/highmem.h> 34 #include <asm/cacheflush.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mach/arch.h> 37 #include <asm/dma-iommu.h> 38 #include <asm/mach/map.h> 39 #include <asm/system_info.h> 40 #include <asm/dma-contiguous.h> 41 42 #include "dma.h" 43 #include "mm.h" 44 45 struct arm_dma_alloc_args { 46 struct device *dev; 47 size_t size; 48 gfp_t gfp; 49 pgprot_t prot; 50 const void *caller; 51 bool want_vaddr; 52 int coherent_flag; 53 }; 54 55 struct arm_dma_free_args { 56 struct device *dev; 57 size_t size; 58 void *cpu_addr; 59 struct page *page; 60 bool want_vaddr; 61 }; 62 63 #define NORMAL 0 64 #define COHERENT 1 65 66 struct arm_dma_allocator { 67 void *(*alloc)(struct arm_dma_alloc_args *args, 68 struct page **ret_page); 69 void (*free)(struct arm_dma_free_args *args); 70 }; 71 72 struct arm_dma_buffer { 73 struct list_head list; 74 void *virt; 75 struct arm_dma_allocator *allocator; 76 }; 77 78 static LIST_HEAD(arm_dma_bufs); 79 static DEFINE_SPINLOCK(arm_dma_bufs_lock); 80 81 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) 82 { 83 struct arm_dma_buffer *buf, *found = NULL; 84 unsigned long flags; 85 86 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 87 list_for_each_entry(buf, &arm_dma_bufs, list) { 88 if (buf->virt == virt) { 89 list_del(&buf->list); 90 found = buf; 91 break; 92 } 93 } 94 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 95 return found; 96 } 97 98 /* 99 * The DMA API is built upon the notion of "buffer ownership". A buffer 100 * is either exclusively owned by the CPU (and therefore may be accessed 101 * by it) or exclusively owned by the DMA device. These helper functions 102 * represent the transitions between these two ownership states. 103 * 104 * Note, however, that on later ARMs, this notion does not work due to 105 * speculative prefetches. We model our approach on the assumption that 106 * the CPU does do speculative prefetches, which means we clean caches 107 * before transfers and delay cache invalidation until transfer completion. 108 * 109 */ 110 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 111 size_t, enum dma_data_direction); 112 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 113 size_t, enum dma_data_direction); 114 115 /** 116 * arm_dma_map_page - map a portion of a page for streaming DMA 117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 118 * @page: page that buffer resides in 119 * @offset: offset into page for start of buffer 120 * @size: size of buffer to map 121 * @dir: DMA transfer direction 122 * 123 * Ensure that any data held in the cache is appropriately discarded 124 * or written back. 125 * 126 * The device owns this memory once this call has completed. The CPU 127 * can regain ownership by calling dma_unmap_page(). 128 */ 129 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 130 unsigned long offset, size_t size, enum dma_data_direction dir, 131 unsigned long attrs) 132 { 133 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 134 __dma_page_cpu_to_dev(page, offset, size, dir); 135 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 136 } 137 138 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 139 unsigned long offset, size_t size, enum dma_data_direction dir, 140 unsigned long attrs) 141 { 142 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 143 } 144 145 /** 146 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 147 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 148 * @handle: DMA address of buffer 149 * @size: size of buffer (same as passed to dma_map_page) 150 * @dir: DMA transfer direction (same as passed to dma_map_page) 151 * 152 * Unmap a page streaming mode DMA translation. The handle and size 153 * must match what was provided in the previous dma_map_page() call. 154 * All other usages are undefined. 155 * 156 * After this call, reads by the CPU to the buffer are guaranteed to see 157 * whatever the device wrote there. 158 */ 159 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 160 size_t size, enum dma_data_direction dir, unsigned long attrs) 161 { 162 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 163 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 164 handle & ~PAGE_MASK, size, dir); 165 } 166 167 static void arm_dma_sync_single_for_cpu(struct device *dev, 168 dma_addr_t handle, size_t size, enum dma_data_direction dir) 169 { 170 unsigned int offset = handle & (PAGE_SIZE - 1); 171 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 172 __dma_page_dev_to_cpu(page, offset, size, dir); 173 } 174 175 static void arm_dma_sync_single_for_device(struct device *dev, 176 dma_addr_t handle, size_t size, enum dma_data_direction dir) 177 { 178 unsigned int offset = handle & (PAGE_SIZE - 1); 179 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 180 __dma_page_cpu_to_dev(page, offset, size, dir); 181 } 182 183 const struct dma_map_ops arm_dma_ops = { 184 .alloc = arm_dma_alloc, 185 .free = arm_dma_free, 186 .mmap = arm_dma_mmap, 187 .get_sgtable = arm_dma_get_sgtable, 188 .map_page = arm_dma_map_page, 189 .unmap_page = arm_dma_unmap_page, 190 .map_sg = arm_dma_map_sg, 191 .unmap_sg = arm_dma_unmap_sg, 192 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 193 .sync_single_for_device = arm_dma_sync_single_for_device, 194 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 195 .sync_sg_for_device = arm_dma_sync_sg_for_device, 196 }; 197 EXPORT_SYMBOL(arm_dma_ops); 198 199 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 200 dma_addr_t *handle, gfp_t gfp, unsigned long attrs); 201 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 202 dma_addr_t handle, unsigned long attrs); 203 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 204 void *cpu_addr, dma_addr_t dma_addr, size_t size, 205 unsigned long attrs); 206 207 const struct dma_map_ops arm_coherent_dma_ops = { 208 .alloc = arm_coherent_dma_alloc, 209 .free = arm_coherent_dma_free, 210 .mmap = arm_coherent_dma_mmap, 211 .get_sgtable = arm_dma_get_sgtable, 212 .map_page = arm_coherent_dma_map_page, 213 .map_sg = arm_dma_map_sg, 214 }; 215 EXPORT_SYMBOL(arm_coherent_dma_ops); 216 217 static int __dma_supported(struct device *dev, u64 mask, bool warn) 218 { 219 unsigned long max_dma_pfn; 220 221 /* 222 * If the mask allows for more memory than we can address, 223 * and we actually have that much memory, then we must 224 * indicate that DMA to this device is not supported. 225 */ 226 if (sizeof(mask) != sizeof(dma_addr_t) && 227 mask > (dma_addr_t)~0 && 228 dma_to_pfn(dev, ~0) < max_pfn - 1) { 229 if (warn) { 230 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n", 231 mask); 232 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n"); 233 } 234 return 0; 235 } 236 237 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); 238 239 /* 240 * Translate the device's DMA mask to a PFN limit. This 241 * PFN number includes the page which we can DMA to. 242 */ 243 if (dma_to_pfn(dev, mask) < max_dma_pfn) { 244 if (warn) 245 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", 246 mask, 247 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, 248 max_dma_pfn + 1); 249 return 0; 250 } 251 252 return 1; 253 } 254 255 static u64 get_coherent_dma_mask(struct device *dev) 256 { 257 u64 mask = (u64)DMA_BIT_MASK(32); 258 259 if (dev) { 260 mask = dev->coherent_dma_mask; 261 262 /* 263 * Sanity check the DMA mask - it must be non-zero, and 264 * must be able to be satisfied by a DMA allocation. 265 */ 266 if (mask == 0) { 267 dev_warn(dev, "coherent DMA mask is unset\n"); 268 return 0; 269 } 270 271 if (!__dma_supported(dev, mask, true)) 272 return 0; 273 } 274 275 return mask; 276 } 277 278 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) 279 { 280 /* 281 * Ensure that the allocated pages are zeroed, and that any data 282 * lurking in the kernel direct-mapped region is invalidated. 283 */ 284 if (PageHighMem(page)) { 285 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 286 phys_addr_t end = base + size; 287 while (size > 0) { 288 void *ptr = kmap_atomic(page); 289 memset(ptr, 0, PAGE_SIZE); 290 if (coherent_flag != COHERENT) 291 dmac_flush_range(ptr, ptr + PAGE_SIZE); 292 kunmap_atomic(ptr); 293 page++; 294 size -= PAGE_SIZE; 295 } 296 if (coherent_flag != COHERENT) 297 outer_flush_range(base, end); 298 } else { 299 void *ptr = page_address(page); 300 memset(ptr, 0, size); 301 if (coherent_flag != COHERENT) { 302 dmac_flush_range(ptr, ptr + size); 303 outer_flush_range(__pa(ptr), __pa(ptr) + size); 304 } 305 } 306 } 307 308 /* 309 * Allocate a DMA buffer for 'dev' of size 'size' using the 310 * specified gfp mask. Note that 'size' must be page aligned. 311 */ 312 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, 313 gfp_t gfp, int coherent_flag) 314 { 315 unsigned long order = get_order(size); 316 struct page *page, *p, *e; 317 318 page = alloc_pages(gfp, order); 319 if (!page) 320 return NULL; 321 322 /* 323 * Now split the huge page and free the excess pages 324 */ 325 split_page(page, order); 326 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 327 __free_page(p); 328 329 __dma_clear_buffer(page, size, coherent_flag); 330 331 return page; 332 } 333 334 /* 335 * Free a DMA buffer. 'size' must be page aligned. 336 */ 337 static void __dma_free_buffer(struct page *page, size_t size) 338 { 339 struct page *e = page + (size >> PAGE_SHIFT); 340 341 while (page < e) { 342 __free_page(page); 343 page++; 344 } 345 } 346 347 #ifdef CONFIG_MMU 348 349 static void *__alloc_from_contiguous(struct device *dev, size_t size, 350 pgprot_t prot, struct page **ret_page, 351 const void *caller, bool want_vaddr, 352 int coherent_flag, gfp_t gfp); 353 354 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 355 pgprot_t prot, struct page **ret_page, 356 const void *caller, bool want_vaddr); 357 358 static void * 359 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 360 const void *caller) 361 { 362 /* 363 * DMA allocation can be mapped to user space, so lets 364 * set VM_USERMAP flags too. 365 */ 366 return dma_common_contiguous_remap(page, size, 367 VM_ARM_DMA_CONSISTENT | VM_USERMAP, 368 prot, caller); 369 } 370 371 static void __dma_free_remap(void *cpu_addr, size_t size) 372 { 373 dma_common_free_remap(cpu_addr, size, 374 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 375 } 376 377 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 378 static struct gen_pool *atomic_pool; 379 380 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE; 381 382 static int __init early_coherent_pool(char *p) 383 { 384 atomic_pool_size = memparse(p, &p); 385 return 0; 386 } 387 early_param("coherent_pool", early_coherent_pool); 388 389 void __init init_dma_coherent_pool_size(unsigned long size) 390 { 391 /* 392 * Catch any attempt to set the pool size too late. 393 */ 394 BUG_ON(atomic_pool); 395 396 /* 397 * Set architecture specific coherent pool size only if 398 * it has not been changed by kernel command line parameter. 399 */ 400 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE) 401 atomic_pool_size = size; 402 } 403 404 /* 405 * Initialise the coherent pool for atomic allocations. 406 */ 407 static int __init atomic_pool_init(void) 408 { 409 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 410 gfp_t gfp = GFP_KERNEL | GFP_DMA; 411 struct page *page; 412 void *ptr; 413 414 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 415 if (!atomic_pool) 416 goto out; 417 /* 418 * The atomic pool is only used for non-coherent allocations 419 * so we must pass NORMAL for coherent_flag. 420 */ 421 if (dev_get_cma_area(NULL)) 422 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, 423 &page, atomic_pool_init, true, NORMAL, 424 GFP_KERNEL); 425 else 426 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, 427 &page, atomic_pool_init, true); 428 if (ptr) { 429 int ret; 430 431 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, 432 page_to_phys(page), 433 atomic_pool_size, -1); 434 if (ret) 435 goto destroy_genpool; 436 437 gen_pool_set_algo(atomic_pool, 438 gen_pool_first_fit_order_align, 439 (void *)PAGE_SHIFT); 440 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", 441 atomic_pool_size / 1024); 442 return 0; 443 } 444 445 destroy_genpool: 446 gen_pool_destroy(atomic_pool); 447 atomic_pool = NULL; 448 out: 449 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 450 atomic_pool_size / 1024); 451 return -ENOMEM; 452 } 453 /* 454 * CMA is activated by core_initcall, so we must be called after it. 455 */ 456 postcore_initcall(atomic_pool_init); 457 458 struct dma_contig_early_reserve { 459 phys_addr_t base; 460 unsigned long size; 461 }; 462 463 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 464 465 static int dma_mmu_remap_num __initdata; 466 467 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 468 { 469 dma_mmu_remap[dma_mmu_remap_num].base = base; 470 dma_mmu_remap[dma_mmu_remap_num].size = size; 471 dma_mmu_remap_num++; 472 } 473 474 void __init dma_contiguous_remap(void) 475 { 476 int i; 477 for (i = 0; i < dma_mmu_remap_num; i++) { 478 phys_addr_t start = dma_mmu_remap[i].base; 479 phys_addr_t end = start + dma_mmu_remap[i].size; 480 struct map_desc map; 481 unsigned long addr; 482 483 if (end > arm_lowmem_limit) 484 end = arm_lowmem_limit; 485 if (start >= end) 486 continue; 487 488 map.pfn = __phys_to_pfn(start); 489 map.virtual = __phys_to_virt(start); 490 map.length = end - start; 491 map.type = MT_MEMORY_DMA_READY; 492 493 /* 494 * Clear previous low-memory mapping to ensure that the 495 * TLB does not see any conflicting entries, then flush 496 * the TLB of the old entries before creating new mappings. 497 * 498 * This ensures that any speculatively loaded TLB entries 499 * (even though they may be rare) can not cause any problems, 500 * and ensures that this code is architecturally compliant. 501 */ 502 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 503 addr += PMD_SIZE) 504 pmd_clear(pmd_off_k(addr)); 505 506 flush_tlb_kernel_range(__phys_to_virt(start), 507 __phys_to_virt(end)); 508 509 iotable_init(&map, 1); 510 } 511 } 512 513 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 514 void *data) 515 { 516 struct page *page = virt_to_page(addr); 517 pgprot_t prot = *(pgprot_t *)data; 518 519 set_pte_ext(pte, mk_pte(page, prot), 0); 520 return 0; 521 } 522 523 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 524 { 525 unsigned long start = (unsigned long) page_address(page); 526 unsigned end = start + size; 527 528 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 529 flush_tlb_kernel_range(start, end); 530 } 531 532 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 533 pgprot_t prot, struct page **ret_page, 534 const void *caller, bool want_vaddr) 535 { 536 struct page *page; 537 void *ptr = NULL; 538 /* 539 * __alloc_remap_buffer is only called when the device is 540 * non-coherent 541 */ 542 page = __dma_alloc_buffer(dev, size, gfp, NORMAL); 543 if (!page) 544 return NULL; 545 if (!want_vaddr) 546 goto out; 547 548 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 549 if (!ptr) { 550 __dma_free_buffer(page, size); 551 return NULL; 552 } 553 554 out: 555 *ret_page = page; 556 return ptr; 557 } 558 559 static void *__alloc_from_pool(size_t size, struct page **ret_page) 560 { 561 unsigned long val; 562 void *ptr = NULL; 563 564 if (!atomic_pool) { 565 WARN(1, "coherent pool not initialised!\n"); 566 return NULL; 567 } 568 569 val = gen_pool_alloc(atomic_pool, size); 570 if (val) { 571 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 572 573 *ret_page = phys_to_page(phys); 574 ptr = (void *)val; 575 } 576 577 return ptr; 578 } 579 580 static bool __in_atomic_pool(void *start, size_t size) 581 { 582 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 583 } 584 585 static int __free_from_pool(void *start, size_t size) 586 { 587 if (!__in_atomic_pool(start, size)) 588 return 0; 589 590 gen_pool_free(atomic_pool, (unsigned long)start, size); 591 592 return 1; 593 } 594 595 static void *__alloc_from_contiguous(struct device *dev, size_t size, 596 pgprot_t prot, struct page **ret_page, 597 const void *caller, bool want_vaddr, 598 int coherent_flag, gfp_t gfp) 599 { 600 unsigned long order = get_order(size); 601 size_t count = size >> PAGE_SHIFT; 602 struct page *page; 603 void *ptr = NULL; 604 605 page = dma_alloc_from_contiguous(dev, count, order, gfp); 606 if (!page) 607 return NULL; 608 609 __dma_clear_buffer(page, size, coherent_flag); 610 611 if (!want_vaddr) 612 goto out; 613 614 if (PageHighMem(page)) { 615 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 616 if (!ptr) { 617 dma_release_from_contiguous(dev, page, count); 618 return NULL; 619 } 620 } else { 621 __dma_remap(page, size, prot); 622 ptr = page_address(page); 623 } 624 625 out: 626 *ret_page = page; 627 return ptr; 628 } 629 630 static void __free_from_contiguous(struct device *dev, struct page *page, 631 void *cpu_addr, size_t size, bool want_vaddr) 632 { 633 if (want_vaddr) { 634 if (PageHighMem(page)) 635 __dma_free_remap(cpu_addr, size); 636 else 637 __dma_remap(page, size, PAGE_KERNEL); 638 } 639 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 640 } 641 642 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) 643 { 644 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? 645 pgprot_writecombine(prot) : 646 pgprot_dmacoherent(prot); 647 return prot; 648 } 649 650 #define nommu() 0 651 652 #else /* !CONFIG_MMU */ 653 654 #define nommu() 1 655 656 #define __get_dma_pgprot(attrs, prot) __pgprot(0) 657 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL 658 #define __alloc_from_pool(size, ret_page) NULL 659 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv, coherent_flag, gfp) NULL 660 #define __free_from_pool(cpu_addr, size) do { } while (0) 661 #define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0) 662 #define __dma_free_remap(cpu_addr, size) do { } while (0) 663 664 #endif /* CONFIG_MMU */ 665 666 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 667 struct page **ret_page) 668 { 669 struct page *page; 670 /* __alloc_simple_buffer is only called when the device is coherent */ 671 page = __dma_alloc_buffer(dev, size, gfp, COHERENT); 672 if (!page) 673 return NULL; 674 675 *ret_page = page; 676 return page_address(page); 677 } 678 679 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, 680 struct page **ret_page) 681 { 682 return __alloc_simple_buffer(args->dev, args->size, args->gfp, 683 ret_page); 684 } 685 686 static void simple_allocator_free(struct arm_dma_free_args *args) 687 { 688 __dma_free_buffer(args->page, args->size); 689 } 690 691 static struct arm_dma_allocator simple_allocator = { 692 .alloc = simple_allocator_alloc, 693 .free = simple_allocator_free, 694 }; 695 696 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, 697 struct page **ret_page) 698 { 699 return __alloc_from_contiguous(args->dev, args->size, args->prot, 700 ret_page, args->caller, 701 args->want_vaddr, args->coherent_flag, 702 args->gfp); 703 } 704 705 static void cma_allocator_free(struct arm_dma_free_args *args) 706 { 707 __free_from_contiguous(args->dev, args->page, args->cpu_addr, 708 args->size, args->want_vaddr); 709 } 710 711 static struct arm_dma_allocator cma_allocator = { 712 .alloc = cma_allocator_alloc, 713 .free = cma_allocator_free, 714 }; 715 716 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, 717 struct page **ret_page) 718 { 719 return __alloc_from_pool(args->size, ret_page); 720 } 721 722 static void pool_allocator_free(struct arm_dma_free_args *args) 723 { 724 __free_from_pool(args->cpu_addr, args->size); 725 } 726 727 static struct arm_dma_allocator pool_allocator = { 728 .alloc = pool_allocator_alloc, 729 .free = pool_allocator_free, 730 }; 731 732 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, 733 struct page **ret_page) 734 { 735 return __alloc_remap_buffer(args->dev, args->size, args->gfp, 736 args->prot, ret_page, args->caller, 737 args->want_vaddr); 738 } 739 740 static void remap_allocator_free(struct arm_dma_free_args *args) 741 { 742 if (args->want_vaddr) 743 __dma_free_remap(args->cpu_addr, args->size); 744 745 __dma_free_buffer(args->page, args->size); 746 } 747 748 static struct arm_dma_allocator remap_allocator = { 749 .alloc = remap_allocator_alloc, 750 .free = remap_allocator_free, 751 }; 752 753 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 754 gfp_t gfp, pgprot_t prot, bool is_coherent, 755 unsigned long attrs, const void *caller) 756 { 757 u64 mask = get_coherent_dma_mask(dev); 758 struct page *page = NULL; 759 void *addr; 760 bool allowblock, cma; 761 struct arm_dma_buffer *buf; 762 struct arm_dma_alloc_args args = { 763 .dev = dev, 764 .size = PAGE_ALIGN(size), 765 .gfp = gfp, 766 .prot = prot, 767 .caller = caller, 768 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 769 .coherent_flag = is_coherent ? COHERENT : NORMAL, 770 }; 771 772 #ifdef CONFIG_DMA_API_DEBUG 773 u64 limit = (mask + 1) & ~mask; 774 if (limit && size >= limit) { 775 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 776 size, mask); 777 return NULL; 778 } 779 #endif 780 781 if (!mask) 782 return NULL; 783 784 buf = kzalloc(sizeof(*buf), 785 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); 786 if (!buf) 787 return NULL; 788 789 if (mask < 0xffffffffULL) 790 gfp |= GFP_DMA; 791 792 /* 793 * Following is a work-around (a.k.a. hack) to prevent pages 794 * with __GFP_COMP being passed to split_page() which cannot 795 * handle them. The real problem is that this flag probably 796 * should be 0 on ARM as it is not supported on this 797 * platform; see CONFIG_HUGETLBFS. 798 */ 799 gfp &= ~(__GFP_COMP); 800 args.gfp = gfp; 801 802 *handle = DMA_ERROR_CODE; 803 allowblock = gfpflags_allow_blocking(gfp); 804 cma = allowblock ? dev_get_cma_area(dev) : false; 805 806 if (cma) 807 buf->allocator = &cma_allocator; 808 else if (nommu() || is_coherent) 809 buf->allocator = &simple_allocator; 810 else if (allowblock) 811 buf->allocator = &remap_allocator; 812 else 813 buf->allocator = &pool_allocator; 814 815 addr = buf->allocator->alloc(&args, &page); 816 817 if (page) { 818 unsigned long flags; 819 820 *handle = pfn_to_dma(dev, page_to_pfn(page)); 821 buf->virt = args.want_vaddr ? addr : page; 822 823 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 824 list_add(&buf->list, &arm_dma_bufs); 825 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 826 } else { 827 kfree(buf); 828 } 829 830 return args.want_vaddr ? addr : page; 831 } 832 833 /* 834 * Allocate DMA-coherent memory space and return both the kernel remapped 835 * virtual and bus address for that space. 836 */ 837 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 838 gfp_t gfp, unsigned long attrs) 839 { 840 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 841 842 return __dma_alloc(dev, size, handle, gfp, prot, false, 843 attrs, __builtin_return_address(0)); 844 } 845 846 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 847 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 848 { 849 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true, 850 attrs, __builtin_return_address(0)); 851 } 852 853 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 854 void *cpu_addr, dma_addr_t dma_addr, size_t size, 855 unsigned long attrs) 856 { 857 int ret = -ENXIO; 858 #ifdef CONFIG_MMU 859 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 860 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 861 unsigned long pfn = dma_to_pfn(dev, dma_addr); 862 unsigned long off = vma->vm_pgoff; 863 864 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 865 return ret; 866 867 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 868 ret = remap_pfn_range(vma, vma->vm_start, 869 pfn + off, 870 vma->vm_end - vma->vm_start, 871 vma->vm_page_prot); 872 } 873 #else 874 ret = vm_iomap_memory(vma, vma->vm_start, 875 (vma->vm_end - vma->vm_start)); 876 #endif /* CONFIG_MMU */ 877 878 return ret; 879 } 880 881 /* 882 * Create userspace mapping for the DMA-coherent memory. 883 */ 884 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 885 void *cpu_addr, dma_addr_t dma_addr, size_t size, 886 unsigned long attrs) 887 { 888 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 889 } 890 891 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 892 void *cpu_addr, dma_addr_t dma_addr, size_t size, 893 unsigned long attrs) 894 { 895 #ifdef CONFIG_MMU 896 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 897 #endif /* CONFIG_MMU */ 898 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 899 } 900 901 /* 902 * Free a buffer as defined by the above mapping. 903 */ 904 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 905 dma_addr_t handle, unsigned long attrs, 906 bool is_coherent) 907 { 908 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 909 struct arm_dma_buffer *buf; 910 struct arm_dma_free_args args = { 911 .dev = dev, 912 .size = PAGE_ALIGN(size), 913 .cpu_addr = cpu_addr, 914 .page = page, 915 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 916 }; 917 918 buf = arm_dma_buffer_find(cpu_addr); 919 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) 920 return; 921 922 buf->allocator->free(&args); 923 kfree(buf); 924 } 925 926 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 927 dma_addr_t handle, unsigned long attrs) 928 { 929 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 930 } 931 932 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 933 dma_addr_t handle, unsigned long attrs) 934 { 935 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 936 } 937 938 /* 939 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems 940 * that the intention is to allow exporting memory allocated via the 941 * coherent DMA APIs through the dma_buf API, which only accepts a 942 * scattertable. This presents a couple of problems: 943 * 1. Not all memory allocated via the coherent DMA APIs is backed by 944 * a struct page 945 * 2. Passing coherent DMA memory into the streaming APIs is not allowed 946 * as we will try to flush the memory through a different alias to that 947 * actually being used (and the flushes are redundant.) 948 */ 949 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 950 void *cpu_addr, dma_addr_t handle, size_t size, 951 unsigned long attrs) 952 { 953 unsigned long pfn = dma_to_pfn(dev, handle); 954 struct page *page; 955 int ret; 956 957 /* If the PFN is not valid, we do not have a struct page */ 958 if (!pfn_valid(pfn)) 959 return -ENXIO; 960 961 page = pfn_to_page(pfn); 962 963 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 964 if (unlikely(ret)) 965 return ret; 966 967 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 968 return 0; 969 } 970 971 static void dma_cache_maint_page(struct page *page, unsigned long offset, 972 size_t size, enum dma_data_direction dir, 973 void (*op)(const void *, size_t, int)) 974 { 975 unsigned long pfn; 976 size_t left = size; 977 978 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 979 offset %= PAGE_SIZE; 980 981 /* 982 * A single sg entry may refer to multiple physically contiguous 983 * pages. But we still need to process highmem pages individually. 984 * If highmem is not configured then the bulk of this loop gets 985 * optimized out. 986 */ 987 do { 988 size_t len = left; 989 void *vaddr; 990 991 page = pfn_to_page(pfn); 992 993 if (PageHighMem(page)) { 994 if (len + offset > PAGE_SIZE) 995 len = PAGE_SIZE - offset; 996 997 if (cache_is_vipt_nonaliasing()) { 998 vaddr = kmap_atomic(page); 999 op(vaddr + offset, len, dir); 1000 kunmap_atomic(vaddr); 1001 } else { 1002 vaddr = kmap_high_get(page); 1003 if (vaddr) { 1004 op(vaddr + offset, len, dir); 1005 kunmap_high(page); 1006 } 1007 } 1008 } else { 1009 vaddr = page_address(page) + offset; 1010 op(vaddr, len, dir); 1011 } 1012 offset = 0; 1013 pfn++; 1014 left -= len; 1015 } while (left); 1016 } 1017 1018 /* 1019 * Make an area consistent for devices. 1020 * Note: Drivers should NOT use this function directly, as it will break 1021 * platforms with CONFIG_DMABOUNCE. 1022 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 1023 */ 1024 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 1025 size_t size, enum dma_data_direction dir) 1026 { 1027 phys_addr_t paddr; 1028 1029 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 1030 1031 paddr = page_to_phys(page) + off; 1032 if (dir == DMA_FROM_DEVICE) { 1033 outer_inv_range(paddr, paddr + size); 1034 } else { 1035 outer_clean_range(paddr, paddr + size); 1036 } 1037 /* FIXME: non-speculating: flush on bidirectional mappings? */ 1038 } 1039 1040 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 1041 size_t size, enum dma_data_direction dir) 1042 { 1043 phys_addr_t paddr = page_to_phys(page) + off; 1044 1045 /* FIXME: non-speculating: not required */ 1046 /* in any case, don't bother invalidating if DMA to device */ 1047 if (dir != DMA_TO_DEVICE) { 1048 outer_inv_range(paddr, paddr + size); 1049 1050 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 1051 } 1052 1053 /* 1054 * Mark the D-cache clean for these pages to avoid extra flushing. 1055 */ 1056 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 1057 unsigned long pfn; 1058 size_t left = size; 1059 1060 pfn = page_to_pfn(page) + off / PAGE_SIZE; 1061 off %= PAGE_SIZE; 1062 if (off) { 1063 pfn++; 1064 left -= PAGE_SIZE - off; 1065 } 1066 while (left >= PAGE_SIZE) { 1067 page = pfn_to_page(pfn++); 1068 set_bit(PG_dcache_clean, &page->flags); 1069 left -= PAGE_SIZE; 1070 } 1071 } 1072 } 1073 1074 /** 1075 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 1076 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1077 * @sg: list of buffers 1078 * @nents: number of buffers to map 1079 * @dir: DMA transfer direction 1080 * 1081 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1082 * This is the scatter-gather version of the dma_map_single interface. 1083 * Here the scatter gather list elements are each tagged with the 1084 * appropriate dma address and length. They are obtained via 1085 * sg_dma_{address,length}. 1086 * 1087 * Device ownership issues as mentioned for dma_map_single are the same 1088 * here. 1089 */ 1090 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1091 enum dma_data_direction dir, unsigned long attrs) 1092 { 1093 const struct dma_map_ops *ops = get_dma_ops(dev); 1094 struct scatterlist *s; 1095 int i, j; 1096 1097 for_each_sg(sg, s, nents, i) { 1098 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1099 s->dma_length = s->length; 1100 #endif 1101 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 1102 s->length, dir, attrs); 1103 if (dma_mapping_error(dev, s->dma_address)) 1104 goto bad_mapping; 1105 } 1106 return nents; 1107 1108 bad_mapping: 1109 for_each_sg(sg, s, i, j) 1110 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1111 return 0; 1112 } 1113 1114 /** 1115 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1117 * @sg: list of buffers 1118 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1119 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1120 * 1121 * Unmap a set of streaming mode DMA translations. Again, CPU access 1122 * rules concerning calls here are the same as for dma_unmap_single(). 1123 */ 1124 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1125 enum dma_data_direction dir, unsigned long attrs) 1126 { 1127 const struct dma_map_ops *ops = get_dma_ops(dev); 1128 struct scatterlist *s; 1129 1130 int i; 1131 1132 for_each_sg(sg, s, nents, i) 1133 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1134 } 1135 1136 /** 1137 * arm_dma_sync_sg_for_cpu 1138 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1139 * @sg: list of buffers 1140 * @nents: number of buffers to map (returned from dma_map_sg) 1141 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1142 */ 1143 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1144 int nents, enum dma_data_direction dir) 1145 { 1146 const struct dma_map_ops *ops = get_dma_ops(dev); 1147 struct scatterlist *s; 1148 int i; 1149 1150 for_each_sg(sg, s, nents, i) 1151 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 1152 dir); 1153 } 1154 1155 /** 1156 * arm_dma_sync_sg_for_device 1157 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1158 * @sg: list of buffers 1159 * @nents: number of buffers to map (returned from dma_map_sg) 1160 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1161 */ 1162 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1163 int nents, enum dma_data_direction dir) 1164 { 1165 const struct dma_map_ops *ops = get_dma_ops(dev); 1166 struct scatterlist *s; 1167 int i; 1168 1169 for_each_sg(sg, s, nents, i) 1170 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 1171 dir); 1172 } 1173 1174 /* 1175 * Return whether the given device DMA address mask can be supported 1176 * properly. For example, if your device can only drive the low 24-bits 1177 * during bus mastering, then you would pass 0x00ffffff as the mask 1178 * to this function. 1179 */ 1180 int dma_supported(struct device *dev, u64 mask) 1181 { 1182 return __dma_supported(dev, mask, false); 1183 } 1184 EXPORT_SYMBOL(dma_supported); 1185 1186 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 1187 1188 static int __init dma_debug_do_init(void) 1189 { 1190 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 1191 return 0; 1192 } 1193 core_initcall(dma_debug_do_init); 1194 1195 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1196 1197 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) 1198 { 1199 int prot = 0; 1200 1201 if (attrs & DMA_ATTR_PRIVILEGED) 1202 prot |= IOMMU_PRIV; 1203 1204 switch (dir) { 1205 case DMA_BIDIRECTIONAL: 1206 return prot | IOMMU_READ | IOMMU_WRITE; 1207 case DMA_TO_DEVICE: 1208 return prot | IOMMU_READ; 1209 case DMA_FROM_DEVICE: 1210 return prot | IOMMU_WRITE; 1211 default: 1212 return prot; 1213 } 1214 } 1215 1216 /* IOMMU */ 1217 1218 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 1219 1220 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1221 size_t size) 1222 { 1223 unsigned int order = get_order(size); 1224 unsigned int align = 0; 1225 unsigned int count, start; 1226 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1227 unsigned long flags; 1228 dma_addr_t iova; 1229 int i; 1230 1231 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1232 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1233 1234 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1235 align = (1 << order) - 1; 1236 1237 spin_lock_irqsave(&mapping->lock, flags); 1238 for (i = 0; i < mapping->nr_bitmaps; i++) { 1239 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1240 mapping->bits, 0, count, align); 1241 1242 if (start > mapping->bits) 1243 continue; 1244 1245 bitmap_set(mapping->bitmaps[i], start, count); 1246 break; 1247 } 1248 1249 /* 1250 * No unused range found. Try to extend the existing mapping 1251 * and perform a second attempt to reserve an IO virtual 1252 * address range of size bytes. 1253 */ 1254 if (i == mapping->nr_bitmaps) { 1255 if (extend_iommu_mapping(mapping)) { 1256 spin_unlock_irqrestore(&mapping->lock, flags); 1257 return DMA_ERROR_CODE; 1258 } 1259 1260 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1261 mapping->bits, 0, count, align); 1262 1263 if (start > mapping->bits) { 1264 spin_unlock_irqrestore(&mapping->lock, flags); 1265 return DMA_ERROR_CODE; 1266 } 1267 1268 bitmap_set(mapping->bitmaps[i], start, count); 1269 } 1270 spin_unlock_irqrestore(&mapping->lock, flags); 1271 1272 iova = mapping->base + (mapping_size * i); 1273 iova += start << PAGE_SHIFT; 1274 1275 return iova; 1276 } 1277 1278 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1279 dma_addr_t addr, size_t size) 1280 { 1281 unsigned int start, count; 1282 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1283 unsigned long flags; 1284 dma_addr_t bitmap_base; 1285 u32 bitmap_index; 1286 1287 if (!size) 1288 return; 1289 1290 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; 1291 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 1292 1293 bitmap_base = mapping->base + mapping_size * bitmap_index; 1294 1295 start = (addr - bitmap_base) >> PAGE_SHIFT; 1296 1297 if (addr + size > bitmap_base + mapping_size) { 1298 /* 1299 * The address range to be freed reaches into the iova 1300 * range of the next bitmap. This should not happen as 1301 * we don't allow this in __alloc_iova (at the 1302 * moment). 1303 */ 1304 BUG(); 1305 } else 1306 count = size >> PAGE_SHIFT; 1307 1308 spin_lock_irqsave(&mapping->lock, flags); 1309 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 1310 spin_unlock_irqrestore(&mapping->lock, flags); 1311 } 1312 1313 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ 1314 static const int iommu_order_array[] = { 9, 8, 4, 0 }; 1315 1316 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1317 gfp_t gfp, unsigned long attrs, 1318 int coherent_flag) 1319 { 1320 struct page **pages; 1321 int count = size >> PAGE_SHIFT; 1322 int array_size = count * sizeof(struct page *); 1323 int i = 0; 1324 int order_idx = 0; 1325 1326 if (array_size <= PAGE_SIZE) 1327 pages = kzalloc(array_size, GFP_KERNEL); 1328 else 1329 pages = vzalloc(array_size); 1330 if (!pages) 1331 return NULL; 1332 1333 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) 1334 { 1335 unsigned long order = get_order(size); 1336 struct page *page; 1337 1338 page = dma_alloc_from_contiguous(dev, count, order, gfp); 1339 if (!page) 1340 goto error; 1341 1342 __dma_clear_buffer(page, size, coherent_flag); 1343 1344 for (i = 0; i < count; i++) 1345 pages[i] = page + i; 1346 1347 return pages; 1348 } 1349 1350 /* Go straight to 4K chunks if caller says it's OK. */ 1351 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 1352 order_idx = ARRAY_SIZE(iommu_order_array) - 1; 1353 1354 /* 1355 * IOMMU can map any pages, so himem can also be used here 1356 */ 1357 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1358 1359 while (count) { 1360 int j, order; 1361 1362 order = iommu_order_array[order_idx]; 1363 1364 /* Drop down when we get small */ 1365 if (__fls(count) < order) { 1366 order_idx++; 1367 continue; 1368 } 1369 1370 if (order) { 1371 /* See if it's easy to allocate a high-order chunk */ 1372 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); 1373 1374 /* Go down a notch at first sign of pressure */ 1375 if (!pages[i]) { 1376 order_idx++; 1377 continue; 1378 } 1379 } else { 1380 pages[i] = alloc_pages(gfp, 0); 1381 if (!pages[i]) 1382 goto error; 1383 } 1384 1385 if (order) { 1386 split_page(pages[i], order); 1387 j = 1 << order; 1388 while (--j) 1389 pages[i + j] = pages[i] + j; 1390 } 1391 1392 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); 1393 i += 1 << order; 1394 count -= 1 << order; 1395 } 1396 1397 return pages; 1398 error: 1399 while (i--) 1400 if (pages[i]) 1401 __free_pages(pages[i], 0); 1402 kvfree(pages); 1403 return NULL; 1404 } 1405 1406 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1407 size_t size, unsigned long attrs) 1408 { 1409 int count = size >> PAGE_SHIFT; 1410 int i; 1411 1412 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 1413 dma_release_from_contiguous(dev, pages[0], count); 1414 } else { 1415 for (i = 0; i < count; i++) 1416 if (pages[i]) 1417 __free_pages(pages[i], 0); 1418 } 1419 1420 kvfree(pages); 1421 return 0; 1422 } 1423 1424 /* 1425 * Create a CPU mapping for a specified pages 1426 */ 1427 static void * 1428 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1429 const void *caller) 1430 { 1431 return dma_common_pages_remap(pages, size, 1432 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller); 1433 } 1434 1435 /* 1436 * Create a mapping in device IO address space for specified pages 1437 */ 1438 static dma_addr_t 1439 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, 1440 unsigned long attrs) 1441 { 1442 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1443 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1444 dma_addr_t dma_addr, iova; 1445 int i; 1446 1447 dma_addr = __alloc_iova(mapping, size); 1448 if (dma_addr == DMA_ERROR_CODE) 1449 return dma_addr; 1450 1451 iova = dma_addr; 1452 for (i = 0; i < count; ) { 1453 int ret; 1454 1455 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1456 phys_addr_t phys = page_to_phys(pages[i]); 1457 unsigned int len, j; 1458 1459 for (j = i + 1; j < count; j++, next_pfn++) 1460 if (page_to_pfn(pages[j]) != next_pfn) 1461 break; 1462 1463 len = (j - i) << PAGE_SHIFT; 1464 ret = iommu_map(mapping->domain, iova, phys, len, 1465 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs)); 1466 if (ret < 0) 1467 goto fail; 1468 iova += len; 1469 i = j; 1470 } 1471 return dma_addr; 1472 fail: 1473 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1474 __free_iova(mapping, dma_addr, size); 1475 return DMA_ERROR_CODE; 1476 } 1477 1478 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1479 { 1480 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1481 1482 /* 1483 * add optional in-page offset from iova to size and align 1484 * result to page size 1485 */ 1486 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1487 iova &= PAGE_MASK; 1488 1489 iommu_unmap(mapping->domain, iova, size); 1490 __free_iova(mapping, iova, size); 1491 return 0; 1492 } 1493 1494 static struct page **__atomic_get_pages(void *addr) 1495 { 1496 struct page *page; 1497 phys_addr_t phys; 1498 1499 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); 1500 page = phys_to_page(phys); 1501 1502 return (struct page **)page; 1503 } 1504 1505 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) 1506 { 1507 struct vm_struct *area; 1508 1509 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1510 return __atomic_get_pages(cpu_addr); 1511 1512 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1513 return cpu_addr; 1514 1515 area = find_vm_area(cpu_addr); 1516 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1517 return area->pages; 1518 return NULL; 1519 } 1520 1521 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, 1522 dma_addr_t *handle, int coherent_flag, 1523 unsigned long attrs) 1524 { 1525 struct page *page; 1526 void *addr; 1527 1528 if (coherent_flag == COHERENT) 1529 addr = __alloc_simple_buffer(dev, size, gfp, &page); 1530 else 1531 addr = __alloc_from_pool(size, &page); 1532 if (!addr) 1533 return NULL; 1534 1535 *handle = __iommu_create_mapping(dev, &page, size, attrs); 1536 if (*handle == DMA_ERROR_CODE) 1537 goto err_mapping; 1538 1539 return addr; 1540 1541 err_mapping: 1542 __free_from_pool(addr, size); 1543 return NULL; 1544 } 1545 1546 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1547 dma_addr_t handle, size_t size, int coherent_flag) 1548 { 1549 __iommu_remove_mapping(dev, handle, size); 1550 if (coherent_flag == COHERENT) 1551 __dma_free_buffer(virt_to_page(cpu_addr), size); 1552 else 1553 __free_from_pool(cpu_addr, size); 1554 } 1555 1556 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size, 1557 dma_addr_t *handle, gfp_t gfp, unsigned long attrs, 1558 int coherent_flag) 1559 { 1560 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1561 struct page **pages; 1562 void *addr = NULL; 1563 1564 *handle = DMA_ERROR_CODE; 1565 size = PAGE_ALIGN(size); 1566 1567 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp)) 1568 return __iommu_alloc_simple(dev, size, gfp, handle, 1569 coherent_flag, attrs); 1570 1571 /* 1572 * Following is a work-around (a.k.a. hack) to prevent pages 1573 * with __GFP_COMP being passed to split_page() which cannot 1574 * handle them. The real problem is that this flag probably 1575 * should be 0 on ARM as it is not supported on this 1576 * platform; see CONFIG_HUGETLBFS. 1577 */ 1578 gfp &= ~(__GFP_COMP); 1579 1580 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); 1581 if (!pages) 1582 return NULL; 1583 1584 *handle = __iommu_create_mapping(dev, pages, size, attrs); 1585 if (*handle == DMA_ERROR_CODE) 1586 goto err_buffer; 1587 1588 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1589 return pages; 1590 1591 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1592 __builtin_return_address(0)); 1593 if (!addr) 1594 goto err_mapping; 1595 1596 return addr; 1597 1598 err_mapping: 1599 __iommu_remove_mapping(dev, *handle, size); 1600 err_buffer: 1601 __iommu_free_buffer(dev, pages, size, attrs); 1602 return NULL; 1603 } 1604 1605 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1606 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1607 { 1608 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL); 1609 } 1610 1611 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size, 1612 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1613 { 1614 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT); 1615 } 1616 1617 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1618 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1619 unsigned long attrs) 1620 { 1621 unsigned long uaddr = vma->vm_start; 1622 unsigned long usize = vma->vm_end - vma->vm_start; 1623 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1624 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1625 unsigned long off = vma->vm_pgoff; 1626 1627 if (!pages) 1628 return -ENXIO; 1629 1630 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off) 1631 return -ENXIO; 1632 1633 pages += off; 1634 1635 do { 1636 int ret = vm_insert_page(vma, uaddr, *pages++); 1637 if (ret) { 1638 pr_err("Remapping memory failed: %d\n", ret); 1639 return ret; 1640 } 1641 uaddr += PAGE_SIZE; 1642 usize -= PAGE_SIZE; 1643 } while (usize > 0); 1644 1645 return 0; 1646 } 1647 static int arm_iommu_mmap_attrs(struct device *dev, 1648 struct vm_area_struct *vma, void *cpu_addr, 1649 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1650 { 1651 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1652 1653 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1654 } 1655 1656 static int arm_coherent_iommu_mmap_attrs(struct device *dev, 1657 struct vm_area_struct *vma, void *cpu_addr, 1658 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1659 { 1660 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1661 } 1662 1663 /* 1664 * free a page as defined by the above mapping. 1665 * Must not be called with IRQs disabled. 1666 */ 1667 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1668 dma_addr_t handle, unsigned long attrs, int coherent_flag) 1669 { 1670 struct page **pages; 1671 size = PAGE_ALIGN(size); 1672 1673 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { 1674 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); 1675 return; 1676 } 1677 1678 pages = __iommu_get_pages(cpu_addr, attrs); 1679 if (!pages) { 1680 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1681 return; 1682 } 1683 1684 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) { 1685 dma_common_free_remap(cpu_addr, size, 1686 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 1687 } 1688 1689 __iommu_remove_mapping(dev, handle, size); 1690 __iommu_free_buffer(dev, pages, size, attrs); 1691 } 1692 1693 void arm_iommu_free_attrs(struct device *dev, size_t size, 1694 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1695 { 1696 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL); 1697 } 1698 1699 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size, 1700 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1701 { 1702 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT); 1703 } 1704 1705 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1706 void *cpu_addr, dma_addr_t dma_addr, 1707 size_t size, unsigned long attrs) 1708 { 1709 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1710 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1711 1712 if (!pages) 1713 return -ENXIO; 1714 1715 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1716 GFP_KERNEL); 1717 } 1718 1719 /* 1720 * Map a part of the scatter-gather list into contiguous io address space 1721 */ 1722 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1723 size_t size, dma_addr_t *handle, 1724 enum dma_data_direction dir, unsigned long attrs, 1725 bool is_coherent) 1726 { 1727 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1728 dma_addr_t iova, iova_base; 1729 int ret = 0; 1730 unsigned int count; 1731 struct scatterlist *s; 1732 int prot; 1733 1734 size = PAGE_ALIGN(size); 1735 *handle = DMA_ERROR_CODE; 1736 1737 iova_base = iova = __alloc_iova(mapping, size); 1738 if (iova == DMA_ERROR_CODE) 1739 return -ENOMEM; 1740 1741 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1742 phys_addr_t phys = page_to_phys(sg_page(s)); 1743 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1744 1745 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1746 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1747 1748 prot = __dma_info_to_prot(dir, attrs); 1749 1750 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1751 if (ret < 0) 1752 goto fail; 1753 count += len >> PAGE_SHIFT; 1754 iova += len; 1755 } 1756 *handle = iova_base; 1757 1758 return 0; 1759 fail: 1760 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1761 __free_iova(mapping, iova_base, size); 1762 return ret; 1763 } 1764 1765 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1766 enum dma_data_direction dir, unsigned long attrs, 1767 bool is_coherent) 1768 { 1769 struct scatterlist *s = sg, *dma = sg, *start = sg; 1770 int i, count = 0; 1771 unsigned int offset = s->offset; 1772 unsigned int size = s->offset + s->length; 1773 unsigned int max = dma_get_max_seg_size(dev); 1774 1775 for (i = 1; i < nents; i++) { 1776 s = sg_next(s); 1777 1778 s->dma_address = DMA_ERROR_CODE; 1779 s->dma_length = 0; 1780 1781 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1782 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1783 dir, attrs, is_coherent) < 0) 1784 goto bad_mapping; 1785 1786 dma->dma_address += offset; 1787 dma->dma_length = size - offset; 1788 1789 size = offset = s->offset; 1790 start = s; 1791 dma = sg_next(dma); 1792 count += 1; 1793 } 1794 size += s->length; 1795 } 1796 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1797 is_coherent) < 0) 1798 goto bad_mapping; 1799 1800 dma->dma_address += offset; 1801 dma->dma_length = size - offset; 1802 1803 return count+1; 1804 1805 bad_mapping: 1806 for_each_sg(sg, s, count, i) 1807 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1808 return 0; 1809 } 1810 1811 /** 1812 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1813 * @dev: valid struct device pointer 1814 * @sg: list of buffers 1815 * @nents: number of buffers to map 1816 * @dir: DMA transfer direction 1817 * 1818 * Map a set of i/o coherent buffers described by scatterlist in streaming 1819 * mode for DMA. The scatter gather list elements are merged together (if 1820 * possible) and tagged with the appropriate dma address and length. They are 1821 * obtained via sg_dma_{address,length}. 1822 */ 1823 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1824 int nents, enum dma_data_direction dir, unsigned long attrs) 1825 { 1826 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1827 } 1828 1829 /** 1830 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1831 * @dev: valid struct device pointer 1832 * @sg: list of buffers 1833 * @nents: number of buffers to map 1834 * @dir: DMA transfer direction 1835 * 1836 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1837 * The scatter gather list elements are merged together (if possible) and 1838 * tagged with the appropriate dma address and length. They are obtained via 1839 * sg_dma_{address,length}. 1840 */ 1841 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1842 int nents, enum dma_data_direction dir, unsigned long attrs) 1843 { 1844 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1845 } 1846 1847 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1848 int nents, enum dma_data_direction dir, 1849 unsigned long attrs, bool is_coherent) 1850 { 1851 struct scatterlist *s; 1852 int i; 1853 1854 for_each_sg(sg, s, nents, i) { 1855 if (sg_dma_len(s)) 1856 __iommu_remove_mapping(dev, sg_dma_address(s), 1857 sg_dma_len(s)); 1858 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1859 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1860 s->length, dir); 1861 } 1862 } 1863 1864 /** 1865 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1866 * @dev: valid struct device pointer 1867 * @sg: list of buffers 1868 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1869 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1870 * 1871 * Unmap a set of streaming mode DMA translations. Again, CPU access 1872 * rules concerning calls here are the same as for dma_unmap_single(). 1873 */ 1874 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1875 int nents, enum dma_data_direction dir, 1876 unsigned long attrs) 1877 { 1878 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1879 } 1880 1881 /** 1882 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1883 * @dev: valid struct device pointer 1884 * @sg: list of buffers 1885 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1886 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1887 * 1888 * Unmap a set of streaming mode DMA translations. Again, CPU access 1889 * rules concerning calls here are the same as for dma_unmap_single(). 1890 */ 1891 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1892 enum dma_data_direction dir, 1893 unsigned long attrs) 1894 { 1895 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1896 } 1897 1898 /** 1899 * arm_iommu_sync_sg_for_cpu 1900 * @dev: valid struct device pointer 1901 * @sg: list of buffers 1902 * @nents: number of buffers to map (returned from dma_map_sg) 1903 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1904 */ 1905 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1906 int nents, enum dma_data_direction dir) 1907 { 1908 struct scatterlist *s; 1909 int i; 1910 1911 for_each_sg(sg, s, nents, i) 1912 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1913 1914 } 1915 1916 /** 1917 * arm_iommu_sync_sg_for_device 1918 * @dev: valid struct device pointer 1919 * @sg: list of buffers 1920 * @nents: number of buffers to map (returned from dma_map_sg) 1921 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1922 */ 1923 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1924 int nents, enum dma_data_direction dir) 1925 { 1926 struct scatterlist *s; 1927 int i; 1928 1929 for_each_sg(sg, s, nents, i) 1930 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1931 } 1932 1933 1934 /** 1935 * arm_coherent_iommu_map_page 1936 * @dev: valid struct device pointer 1937 * @page: page that buffer resides in 1938 * @offset: offset into page for start of buffer 1939 * @size: size of buffer to map 1940 * @dir: DMA transfer direction 1941 * 1942 * Coherent IOMMU aware version of arm_dma_map_page() 1943 */ 1944 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1945 unsigned long offset, size_t size, enum dma_data_direction dir, 1946 unsigned long attrs) 1947 { 1948 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1949 dma_addr_t dma_addr; 1950 int ret, prot, len = PAGE_ALIGN(size + offset); 1951 1952 dma_addr = __alloc_iova(mapping, len); 1953 if (dma_addr == DMA_ERROR_CODE) 1954 return dma_addr; 1955 1956 prot = __dma_info_to_prot(dir, attrs); 1957 1958 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1959 if (ret < 0) 1960 goto fail; 1961 1962 return dma_addr + offset; 1963 fail: 1964 __free_iova(mapping, dma_addr, len); 1965 return DMA_ERROR_CODE; 1966 } 1967 1968 /** 1969 * arm_iommu_map_page 1970 * @dev: valid struct device pointer 1971 * @page: page that buffer resides in 1972 * @offset: offset into page for start of buffer 1973 * @size: size of buffer to map 1974 * @dir: DMA transfer direction 1975 * 1976 * IOMMU aware version of arm_dma_map_page() 1977 */ 1978 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1979 unsigned long offset, size_t size, enum dma_data_direction dir, 1980 unsigned long attrs) 1981 { 1982 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1983 __dma_page_cpu_to_dev(page, offset, size, dir); 1984 1985 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1986 } 1987 1988 /** 1989 * arm_coherent_iommu_unmap_page 1990 * @dev: valid struct device pointer 1991 * @handle: DMA address of buffer 1992 * @size: size of buffer (same as passed to dma_map_page) 1993 * @dir: DMA transfer direction (same as passed to dma_map_page) 1994 * 1995 * Coherent IOMMU aware version of arm_dma_unmap_page() 1996 */ 1997 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1998 size_t size, enum dma_data_direction dir, unsigned long attrs) 1999 { 2000 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2001 dma_addr_t iova = handle & PAGE_MASK; 2002 int offset = handle & ~PAGE_MASK; 2003 int len = PAGE_ALIGN(size + offset); 2004 2005 if (!iova) 2006 return; 2007 2008 iommu_unmap(mapping->domain, iova, len); 2009 __free_iova(mapping, iova, len); 2010 } 2011 2012 /** 2013 * arm_iommu_unmap_page 2014 * @dev: valid struct device pointer 2015 * @handle: DMA address of buffer 2016 * @size: size of buffer (same as passed to dma_map_page) 2017 * @dir: DMA transfer direction (same as passed to dma_map_page) 2018 * 2019 * IOMMU aware version of arm_dma_unmap_page() 2020 */ 2021 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 2022 size_t size, enum dma_data_direction dir, unsigned long attrs) 2023 { 2024 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2025 dma_addr_t iova = handle & PAGE_MASK; 2026 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2027 int offset = handle & ~PAGE_MASK; 2028 int len = PAGE_ALIGN(size + offset); 2029 2030 if (!iova) 2031 return; 2032 2033 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 2034 __dma_page_dev_to_cpu(page, offset, size, dir); 2035 2036 iommu_unmap(mapping->domain, iova, len); 2037 __free_iova(mapping, iova, len); 2038 } 2039 2040 /** 2041 * arm_iommu_map_resource - map a device resource for DMA 2042 * @dev: valid struct device pointer 2043 * @phys_addr: physical address of resource 2044 * @size: size of resource to map 2045 * @dir: DMA transfer direction 2046 */ 2047 static dma_addr_t arm_iommu_map_resource(struct device *dev, 2048 phys_addr_t phys_addr, size_t size, 2049 enum dma_data_direction dir, unsigned long attrs) 2050 { 2051 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2052 dma_addr_t dma_addr; 2053 int ret, prot; 2054 phys_addr_t addr = phys_addr & PAGE_MASK; 2055 unsigned int offset = phys_addr & ~PAGE_MASK; 2056 size_t len = PAGE_ALIGN(size + offset); 2057 2058 dma_addr = __alloc_iova(mapping, len); 2059 if (dma_addr == DMA_ERROR_CODE) 2060 return dma_addr; 2061 2062 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; 2063 2064 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot); 2065 if (ret < 0) 2066 goto fail; 2067 2068 return dma_addr + offset; 2069 fail: 2070 __free_iova(mapping, dma_addr, len); 2071 return DMA_ERROR_CODE; 2072 } 2073 2074 /** 2075 * arm_iommu_unmap_resource - unmap a device DMA resource 2076 * @dev: valid struct device pointer 2077 * @dma_handle: DMA address to resource 2078 * @size: size of resource to map 2079 * @dir: DMA transfer direction 2080 */ 2081 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, 2082 size_t size, enum dma_data_direction dir, 2083 unsigned long attrs) 2084 { 2085 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2086 dma_addr_t iova = dma_handle & PAGE_MASK; 2087 unsigned int offset = dma_handle & ~PAGE_MASK; 2088 size_t len = PAGE_ALIGN(size + offset); 2089 2090 if (!iova) 2091 return; 2092 2093 iommu_unmap(mapping->domain, iova, len); 2094 __free_iova(mapping, iova, len); 2095 } 2096 2097 static void arm_iommu_sync_single_for_cpu(struct device *dev, 2098 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2099 { 2100 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2101 dma_addr_t iova = handle & PAGE_MASK; 2102 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2103 unsigned int offset = handle & ~PAGE_MASK; 2104 2105 if (!iova) 2106 return; 2107 2108 __dma_page_dev_to_cpu(page, offset, size, dir); 2109 } 2110 2111 static void arm_iommu_sync_single_for_device(struct device *dev, 2112 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2113 { 2114 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2115 dma_addr_t iova = handle & PAGE_MASK; 2116 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2117 unsigned int offset = handle & ~PAGE_MASK; 2118 2119 if (!iova) 2120 return; 2121 2122 __dma_page_cpu_to_dev(page, offset, size, dir); 2123 } 2124 2125 const struct dma_map_ops iommu_ops = { 2126 .alloc = arm_iommu_alloc_attrs, 2127 .free = arm_iommu_free_attrs, 2128 .mmap = arm_iommu_mmap_attrs, 2129 .get_sgtable = arm_iommu_get_sgtable, 2130 2131 .map_page = arm_iommu_map_page, 2132 .unmap_page = arm_iommu_unmap_page, 2133 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 2134 .sync_single_for_device = arm_iommu_sync_single_for_device, 2135 2136 .map_sg = arm_iommu_map_sg, 2137 .unmap_sg = arm_iommu_unmap_sg, 2138 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 2139 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 2140 2141 .map_resource = arm_iommu_map_resource, 2142 .unmap_resource = arm_iommu_unmap_resource, 2143 }; 2144 2145 const struct dma_map_ops iommu_coherent_ops = { 2146 .alloc = arm_coherent_iommu_alloc_attrs, 2147 .free = arm_coherent_iommu_free_attrs, 2148 .mmap = arm_coherent_iommu_mmap_attrs, 2149 .get_sgtable = arm_iommu_get_sgtable, 2150 2151 .map_page = arm_coherent_iommu_map_page, 2152 .unmap_page = arm_coherent_iommu_unmap_page, 2153 2154 .map_sg = arm_coherent_iommu_map_sg, 2155 .unmap_sg = arm_coherent_iommu_unmap_sg, 2156 2157 .map_resource = arm_iommu_map_resource, 2158 .unmap_resource = arm_iommu_unmap_resource, 2159 }; 2160 2161 /** 2162 * arm_iommu_create_mapping 2163 * @bus: pointer to the bus holding the client device (for IOMMU calls) 2164 * @base: start address of the valid IO address space 2165 * @size: maximum size of the valid IO address space 2166 * 2167 * Creates a mapping structure which holds information about used/unused 2168 * IO address ranges, which is required to perform memory allocation and 2169 * mapping with IOMMU aware functions. 2170 * 2171 * The client device need to be attached to the mapping with 2172 * arm_iommu_attach_device function. 2173 */ 2174 struct dma_iommu_mapping * 2175 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) 2176 { 2177 unsigned int bits = size >> PAGE_SHIFT; 2178 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 2179 struct dma_iommu_mapping *mapping; 2180 int extensions = 1; 2181 int err = -ENOMEM; 2182 2183 /* currently only 32-bit DMA address space is supported */ 2184 if (size > DMA_BIT_MASK(32) + 1) 2185 return ERR_PTR(-ERANGE); 2186 2187 if (!bitmap_size) 2188 return ERR_PTR(-EINVAL); 2189 2190 if (bitmap_size > PAGE_SIZE) { 2191 extensions = bitmap_size / PAGE_SIZE; 2192 bitmap_size = PAGE_SIZE; 2193 } 2194 2195 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 2196 if (!mapping) 2197 goto err; 2198 2199 mapping->bitmap_size = bitmap_size; 2200 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *), 2201 GFP_KERNEL); 2202 if (!mapping->bitmaps) 2203 goto err2; 2204 2205 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 2206 if (!mapping->bitmaps[0]) 2207 goto err3; 2208 2209 mapping->nr_bitmaps = 1; 2210 mapping->extensions = extensions; 2211 mapping->base = base; 2212 mapping->bits = BITS_PER_BYTE * bitmap_size; 2213 2214 spin_lock_init(&mapping->lock); 2215 2216 mapping->domain = iommu_domain_alloc(bus); 2217 if (!mapping->domain) 2218 goto err4; 2219 2220 kref_init(&mapping->kref); 2221 return mapping; 2222 err4: 2223 kfree(mapping->bitmaps[0]); 2224 err3: 2225 kfree(mapping->bitmaps); 2226 err2: 2227 kfree(mapping); 2228 err: 2229 return ERR_PTR(err); 2230 } 2231 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 2232 2233 static void release_iommu_mapping(struct kref *kref) 2234 { 2235 int i; 2236 struct dma_iommu_mapping *mapping = 2237 container_of(kref, struct dma_iommu_mapping, kref); 2238 2239 iommu_domain_free(mapping->domain); 2240 for (i = 0; i < mapping->nr_bitmaps; i++) 2241 kfree(mapping->bitmaps[i]); 2242 kfree(mapping->bitmaps); 2243 kfree(mapping); 2244 } 2245 2246 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 2247 { 2248 int next_bitmap; 2249 2250 if (mapping->nr_bitmaps >= mapping->extensions) 2251 return -EINVAL; 2252 2253 next_bitmap = mapping->nr_bitmaps; 2254 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 2255 GFP_ATOMIC); 2256 if (!mapping->bitmaps[next_bitmap]) 2257 return -ENOMEM; 2258 2259 mapping->nr_bitmaps++; 2260 2261 return 0; 2262 } 2263 2264 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 2265 { 2266 if (mapping) 2267 kref_put(&mapping->kref, release_iommu_mapping); 2268 } 2269 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 2270 2271 static int __arm_iommu_attach_device(struct device *dev, 2272 struct dma_iommu_mapping *mapping) 2273 { 2274 int err; 2275 2276 err = iommu_attach_device(mapping->domain, dev); 2277 if (err) 2278 return err; 2279 2280 kref_get(&mapping->kref); 2281 to_dma_iommu_mapping(dev) = mapping; 2282 2283 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 2284 return 0; 2285 } 2286 2287 /** 2288 * arm_iommu_attach_device 2289 * @dev: valid struct device pointer 2290 * @mapping: io address space mapping structure (returned from 2291 * arm_iommu_create_mapping) 2292 * 2293 * Attaches specified io address space mapping to the provided device. 2294 * This replaces the dma operations (dma_map_ops pointer) with the 2295 * IOMMU aware version. 2296 * 2297 * More than one client might be attached to the same io address space 2298 * mapping. 2299 */ 2300 int arm_iommu_attach_device(struct device *dev, 2301 struct dma_iommu_mapping *mapping) 2302 { 2303 int err; 2304 2305 err = __arm_iommu_attach_device(dev, mapping); 2306 if (err) 2307 return err; 2308 2309 set_dma_ops(dev, &iommu_ops); 2310 return 0; 2311 } 2312 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 2313 2314 static void __arm_iommu_detach_device(struct device *dev) 2315 { 2316 struct dma_iommu_mapping *mapping; 2317 2318 mapping = to_dma_iommu_mapping(dev); 2319 if (!mapping) { 2320 dev_warn(dev, "Not attached\n"); 2321 return; 2322 } 2323 2324 iommu_detach_device(mapping->domain, dev); 2325 kref_put(&mapping->kref, release_iommu_mapping); 2326 to_dma_iommu_mapping(dev) = NULL; 2327 2328 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 2329 } 2330 2331 /** 2332 * arm_iommu_detach_device 2333 * @dev: valid struct device pointer 2334 * 2335 * Detaches the provided device from a previously attached map. 2336 * This voids the dma operations (dma_map_ops pointer) 2337 */ 2338 void arm_iommu_detach_device(struct device *dev) 2339 { 2340 __arm_iommu_detach_device(dev); 2341 set_dma_ops(dev, NULL); 2342 } 2343 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 2344 2345 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) 2346 { 2347 return coherent ? &iommu_coherent_ops : &iommu_ops; 2348 } 2349 2350 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2351 const struct iommu_ops *iommu) 2352 { 2353 struct dma_iommu_mapping *mapping; 2354 2355 if (!iommu) 2356 return false; 2357 2358 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); 2359 if (IS_ERR(mapping)) { 2360 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", 2361 size, dev_name(dev)); 2362 return false; 2363 } 2364 2365 if (__arm_iommu_attach_device(dev, mapping)) { 2366 pr_warn("Failed to attached device %s to IOMMU_mapping\n", 2367 dev_name(dev)); 2368 arm_iommu_release_mapping(mapping); 2369 return false; 2370 } 2371 2372 return true; 2373 } 2374 2375 static void arm_teardown_iommu_dma_ops(struct device *dev) 2376 { 2377 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2378 2379 if (!mapping) 2380 return; 2381 2382 __arm_iommu_detach_device(dev); 2383 arm_iommu_release_mapping(mapping); 2384 } 2385 2386 #else 2387 2388 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2389 const struct iommu_ops *iommu) 2390 { 2391 return false; 2392 } 2393 2394 static void arm_teardown_iommu_dma_ops(struct device *dev) { } 2395 2396 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops 2397 2398 #endif /* CONFIG_ARM_DMA_USE_IOMMU */ 2399 2400 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent) 2401 { 2402 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; 2403 } 2404 2405 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 2406 const struct iommu_ops *iommu, bool coherent) 2407 { 2408 const struct dma_map_ops *dma_ops; 2409 2410 dev->archdata.dma_coherent = coherent; 2411 2412 /* 2413 * Don't override the dma_ops if they have already been set. Ideally 2414 * this should be the only location where dma_ops are set, remove this 2415 * check when all other callers of set_dma_ops will have disappeared. 2416 */ 2417 if (dev->dma_ops) 2418 return; 2419 2420 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) 2421 dma_ops = arm_get_iommu_dma_map_ops(coherent); 2422 else 2423 dma_ops = arm_get_dma_map_ops(coherent); 2424 2425 set_dma_ops(dev, dma_ops); 2426 2427 #ifdef CONFIG_XEN 2428 if (xen_initial_domain()) { 2429 dev->archdata.dev_dma_ops = dev->dma_ops; 2430 dev->dma_ops = xen_dma_ops; 2431 } 2432 #endif 2433 } 2434 2435 void arch_teardown_dma_ops(struct device *dev) 2436 { 2437 arm_teardown_iommu_dma_ops(dev); 2438 } 2439