xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision a36954f5)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31 
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41 
42 #include "dma.h"
43 #include "mm.h"
44 
45 struct arm_dma_alloc_args {
46 	struct device *dev;
47 	size_t size;
48 	gfp_t gfp;
49 	pgprot_t prot;
50 	const void *caller;
51 	bool want_vaddr;
52 	int coherent_flag;
53 };
54 
55 struct arm_dma_free_args {
56 	struct device *dev;
57 	size_t size;
58 	void *cpu_addr;
59 	struct page *page;
60 	bool want_vaddr;
61 };
62 
63 #define NORMAL	    0
64 #define COHERENT    1
65 
66 struct arm_dma_allocator {
67 	void *(*alloc)(struct arm_dma_alloc_args *args,
68 		       struct page **ret_page);
69 	void (*free)(struct arm_dma_free_args *args);
70 };
71 
72 struct arm_dma_buffer {
73 	struct list_head list;
74 	void *virt;
75 	struct arm_dma_allocator *allocator;
76 };
77 
78 static LIST_HEAD(arm_dma_bufs);
79 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
80 
81 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
82 {
83 	struct arm_dma_buffer *buf, *found = NULL;
84 	unsigned long flags;
85 
86 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
87 	list_for_each_entry(buf, &arm_dma_bufs, list) {
88 		if (buf->virt == virt) {
89 			list_del(&buf->list);
90 			found = buf;
91 			break;
92 		}
93 	}
94 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
95 	return found;
96 }
97 
98 /*
99  * The DMA API is built upon the notion of "buffer ownership".  A buffer
100  * is either exclusively owned by the CPU (and therefore may be accessed
101  * by it) or exclusively owned by the DMA device.  These helper functions
102  * represent the transitions between these two ownership states.
103  *
104  * Note, however, that on later ARMs, this notion does not work due to
105  * speculative prefetches.  We model our approach on the assumption that
106  * the CPU does do speculative prefetches, which means we clean caches
107  * before transfers and delay cache invalidation until transfer completion.
108  *
109  */
110 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
111 		size_t, enum dma_data_direction);
112 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
113 		size_t, enum dma_data_direction);
114 
115 /**
116  * arm_dma_map_page - map a portion of a page for streaming DMA
117  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
118  * @page: page that buffer resides in
119  * @offset: offset into page for start of buffer
120  * @size: size of buffer to map
121  * @dir: DMA transfer direction
122  *
123  * Ensure that any data held in the cache is appropriately discarded
124  * or written back.
125  *
126  * The device owns this memory once this call has completed.  The CPU
127  * can regain ownership by calling dma_unmap_page().
128  */
129 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
130 	     unsigned long offset, size_t size, enum dma_data_direction dir,
131 	     unsigned long attrs)
132 {
133 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
134 		__dma_page_cpu_to_dev(page, offset, size, dir);
135 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
136 }
137 
138 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
139 	     unsigned long offset, size_t size, enum dma_data_direction dir,
140 	     unsigned long attrs)
141 {
142 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
143 }
144 
145 /**
146  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
147  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
148  * @handle: DMA address of buffer
149  * @size: size of buffer (same as passed to dma_map_page)
150  * @dir: DMA transfer direction (same as passed to dma_map_page)
151  *
152  * Unmap a page streaming mode DMA translation.  The handle and size
153  * must match what was provided in the previous dma_map_page() call.
154  * All other usages are undefined.
155  *
156  * After this call, reads by the CPU to the buffer are guaranteed to see
157  * whatever the device wrote there.
158  */
159 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
160 		size_t size, enum dma_data_direction dir, unsigned long attrs)
161 {
162 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
163 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
164 				      handle & ~PAGE_MASK, size, dir);
165 }
166 
167 static void arm_dma_sync_single_for_cpu(struct device *dev,
168 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
169 {
170 	unsigned int offset = handle & (PAGE_SIZE - 1);
171 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
172 	__dma_page_dev_to_cpu(page, offset, size, dir);
173 }
174 
175 static void arm_dma_sync_single_for_device(struct device *dev,
176 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
177 {
178 	unsigned int offset = handle & (PAGE_SIZE - 1);
179 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
180 	__dma_page_cpu_to_dev(page, offset, size, dir);
181 }
182 
183 const struct dma_map_ops arm_dma_ops = {
184 	.alloc			= arm_dma_alloc,
185 	.free			= arm_dma_free,
186 	.mmap			= arm_dma_mmap,
187 	.get_sgtable		= arm_dma_get_sgtable,
188 	.map_page		= arm_dma_map_page,
189 	.unmap_page		= arm_dma_unmap_page,
190 	.map_sg			= arm_dma_map_sg,
191 	.unmap_sg		= arm_dma_unmap_sg,
192 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
193 	.sync_single_for_device	= arm_dma_sync_single_for_device,
194 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
195 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
196 };
197 EXPORT_SYMBOL(arm_dma_ops);
198 
199 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
200 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
201 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
202 				  dma_addr_t handle, unsigned long attrs);
203 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
204 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
205 		 unsigned long attrs);
206 
207 const struct dma_map_ops arm_coherent_dma_ops = {
208 	.alloc			= arm_coherent_dma_alloc,
209 	.free			= arm_coherent_dma_free,
210 	.mmap			= arm_coherent_dma_mmap,
211 	.get_sgtable		= arm_dma_get_sgtable,
212 	.map_page		= arm_coherent_dma_map_page,
213 	.map_sg			= arm_dma_map_sg,
214 };
215 EXPORT_SYMBOL(arm_coherent_dma_ops);
216 
217 static int __dma_supported(struct device *dev, u64 mask, bool warn)
218 {
219 	unsigned long max_dma_pfn;
220 
221 	/*
222 	 * If the mask allows for more memory than we can address,
223 	 * and we actually have that much memory, then we must
224 	 * indicate that DMA to this device is not supported.
225 	 */
226 	if (sizeof(mask) != sizeof(dma_addr_t) &&
227 	    mask > (dma_addr_t)~0 &&
228 	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
229 		if (warn) {
230 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
231 				 mask);
232 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
233 		}
234 		return 0;
235 	}
236 
237 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
238 
239 	/*
240 	 * Translate the device's DMA mask to a PFN limit.  This
241 	 * PFN number includes the page which we can DMA to.
242 	 */
243 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
244 		if (warn)
245 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
246 				 mask,
247 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
248 				 max_dma_pfn + 1);
249 		return 0;
250 	}
251 
252 	return 1;
253 }
254 
255 static u64 get_coherent_dma_mask(struct device *dev)
256 {
257 	u64 mask = (u64)DMA_BIT_MASK(32);
258 
259 	if (dev) {
260 		mask = dev->coherent_dma_mask;
261 
262 		/*
263 		 * Sanity check the DMA mask - it must be non-zero, and
264 		 * must be able to be satisfied by a DMA allocation.
265 		 */
266 		if (mask == 0) {
267 			dev_warn(dev, "coherent DMA mask is unset\n");
268 			return 0;
269 		}
270 
271 		if (!__dma_supported(dev, mask, true))
272 			return 0;
273 	}
274 
275 	return mask;
276 }
277 
278 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
279 {
280 	/*
281 	 * Ensure that the allocated pages are zeroed, and that any data
282 	 * lurking in the kernel direct-mapped region is invalidated.
283 	 */
284 	if (PageHighMem(page)) {
285 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
286 		phys_addr_t end = base + size;
287 		while (size > 0) {
288 			void *ptr = kmap_atomic(page);
289 			memset(ptr, 0, PAGE_SIZE);
290 			if (coherent_flag != COHERENT)
291 				dmac_flush_range(ptr, ptr + PAGE_SIZE);
292 			kunmap_atomic(ptr);
293 			page++;
294 			size -= PAGE_SIZE;
295 		}
296 		if (coherent_flag != COHERENT)
297 			outer_flush_range(base, end);
298 	} else {
299 		void *ptr = page_address(page);
300 		memset(ptr, 0, size);
301 		if (coherent_flag != COHERENT) {
302 			dmac_flush_range(ptr, ptr + size);
303 			outer_flush_range(__pa(ptr), __pa(ptr) + size);
304 		}
305 	}
306 }
307 
308 /*
309  * Allocate a DMA buffer for 'dev' of size 'size' using the
310  * specified gfp mask.  Note that 'size' must be page aligned.
311  */
312 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
313 				       gfp_t gfp, int coherent_flag)
314 {
315 	unsigned long order = get_order(size);
316 	struct page *page, *p, *e;
317 
318 	page = alloc_pages(gfp, order);
319 	if (!page)
320 		return NULL;
321 
322 	/*
323 	 * Now split the huge page and free the excess pages
324 	 */
325 	split_page(page, order);
326 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
327 		__free_page(p);
328 
329 	__dma_clear_buffer(page, size, coherent_flag);
330 
331 	return page;
332 }
333 
334 /*
335  * Free a DMA buffer.  'size' must be page aligned.
336  */
337 static void __dma_free_buffer(struct page *page, size_t size)
338 {
339 	struct page *e = page + (size >> PAGE_SHIFT);
340 
341 	while (page < e) {
342 		__free_page(page);
343 		page++;
344 	}
345 }
346 
347 #ifdef CONFIG_MMU
348 
349 static void *__alloc_from_contiguous(struct device *dev, size_t size,
350 				     pgprot_t prot, struct page **ret_page,
351 				     const void *caller, bool want_vaddr,
352 				     int coherent_flag, gfp_t gfp);
353 
354 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
355 				 pgprot_t prot, struct page **ret_page,
356 				 const void *caller, bool want_vaddr);
357 
358 static void *
359 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
360 	const void *caller)
361 {
362 	/*
363 	 * DMA allocation can be mapped to user space, so lets
364 	 * set VM_USERMAP flags too.
365 	 */
366 	return dma_common_contiguous_remap(page, size,
367 			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
368 			prot, caller);
369 }
370 
371 static void __dma_free_remap(void *cpu_addr, size_t size)
372 {
373 	dma_common_free_remap(cpu_addr, size,
374 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
375 }
376 
377 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
378 static struct gen_pool *atomic_pool;
379 
380 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
381 
382 static int __init early_coherent_pool(char *p)
383 {
384 	atomic_pool_size = memparse(p, &p);
385 	return 0;
386 }
387 early_param("coherent_pool", early_coherent_pool);
388 
389 void __init init_dma_coherent_pool_size(unsigned long size)
390 {
391 	/*
392 	 * Catch any attempt to set the pool size too late.
393 	 */
394 	BUG_ON(atomic_pool);
395 
396 	/*
397 	 * Set architecture specific coherent pool size only if
398 	 * it has not been changed by kernel command line parameter.
399 	 */
400 	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
401 		atomic_pool_size = size;
402 }
403 
404 /*
405  * Initialise the coherent pool for atomic allocations.
406  */
407 static int __init atomic_pool_init(void)
408 {
409 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
410 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
411 	struct page *page;
412 	void *ptr;
413 
414 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
415 	if (!atomic_pool)
416 		goto out;
417 	/*
418 	 * The atomic pool is only used for non-coherent allocations
419 	 * so we must pass NORMAL for coherent_flag.
420 	 */
421 	if (dev_get_cma_area(NULL))
422 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
423 				      &page, atomic_pool_init, true, NORMAL,
424 				      GFP_KERNEL);
425 	else
426 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
427 					   &page, atomic_pool_init, true);
428 	if (ptr) {
429 		int ret;
430 
431 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
432 					page_to_phys(page),
433 					atomic_pool_size, -1);
434 		if (ret)
435 			goto destroy_genpool;
436 
437 		gen_pool_set_algo(atomic_pool,
438 				gen_pool_first_fit_order_align,
439 				(void *)PAGE_SHIFT);
440 		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
441 		       atomic_pool_size / 1024);
442 		return 0;
443 	}
444 
445 destroy_genpool:
446 	gen_pool_destroy(atomic_pool);
447 	atomic_pool = NULL;
448 out:
449 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
450 	       atomic_pool_size / 1024);
451 	return -ENOMEM;
452 }
453 /*
454  * CMA is activated by core_initcall, so we must be called after it.
455  */
456 postcore_initcall(atomic_pool_init);
457 
458 struct dma_contig_early_reserve {
459 	phys_addr_t base;
460 	unsigned long size;
461 };
462 
463 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
464 
465 static int dma_mmu_remap_num __initdata;
466 
467 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
468 {
469 	dma_mmu_remap[dma_mmu_remap_num].base = base;
470 	dma_mmu_remap[dma_mmu_remap_num].size = size;
471 	dma_mmu_remap_num++;
472 }
473 
474 void __init dma_contiguous_remap(void)
475 {
476 	int i;
477 	for (i = 0; i < dma_mmu_remap_num; i++) {
478 		phys_addr_t start = dma_mmu_remap[i].base;
479 		phys_addr_t end = start + dma_mmu_remap[i].size;
480 		struct map_desc map;
481 		unsigned long addr;
482 
483 		if (end > arm_lowmem_limit)
484 			end = arm_lowmem_limit;
485 		if (start >= end)
486 			continue;
487 
488 		map.pfn = __phys_to_pfn(start);
489 		map.virtual = __phys_to_virt(start);
490 		map.length = end - start;
491 		map.type = MT_MEMORY_DMA_READY;
492 
493 		/*
494 		 * Clear previous low-memory mapping to ensure that the
495 		 * TLB does not see any conflicting entries, then flush
496 		 * the TLB of the old entries before creating new mappings.
497 		 *
498 		 * This ensures that any speculatively loaded TLB entries
499 		 * (even though they may be rare) can not cause any problems,
500 		 * and ensures that this code is architecturally compliant.
501 		 */
502 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
503 		     addr += PMD_SIZE)
504 			pmd_clear(pmd_off_k(addr));
505 
506 		flush_tlb_kernel_range(__phys_to_virt(start),
507 				       __phys_to_virt(end));
508 
509 		iotable_init(&map, 1);
510 	}
511 }
512 
513 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
514 			    void *data)
515 {
516 	struct page *page = virt_to_page(addr);
517 	pgprot_t prot = *(pgprot_t *)data;
518 
519 	set_pte_ext(pte, mk_pte(page, prot), 0);
520 	return 0;
521 }
522 
523 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
524 {
525 	unsigned long start = (unsigned long) page_address(page);
526 	unsigned end = start + size;
527 
528 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
529 	flush_tlb_kernel_range(start, end);
530 }
531 
532 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
533 				 pgprot_t prot, struct page **ret_page,
534 				 const void *caller, bool want_vaddr)
535 {
536 	struct page *page;
537 	void *ptr = NULL;
538 	/*
539 	 * __alloc_remap_buffer is only called when the device is
540 	 * non-coherent
541 	 */
542 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
543 	if (!page)
544 		return NULL;
545 	if (!want_vaddr)
546 		goto out;
547 
548 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
549 	if (!ptr) {
550 		__dma_free_buffer(page, size);
551 		return NULL;
552 	}
553 
554  out:
555 	*ret_page = page;
556 	return ptr;
557 }
558 
559 static void *__alloc_from_pool(size_t size, struct page **ret_page)
560 {
561 	unsigned long val;
562 	void *ptr = NULL;
563 
564 	if (!atomic_pool) {
565 		WARN(1, "coherent pool not initialised!\n");
566 		return NULL;
567 	}
568 
569 	val = gen_pool_alloc(atomic_pool, size);
570 	if (val) {
571 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
572 
573 		*ret_page = phys_to_page(phys);
574 		ptr = (void *)val;
575 	}
576 
577 	return ptr;
578 }
579 
580 static bool __in_atomic_pool(void *start, size_t size)
581 {
582 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
583 }
584 
585 static int __free_from_pool(void *start, size_t size)
586 {
587 	if (!__in_atomic_pool(start, size))
588 		return 0;
589 
590 	gen_pool_free(atomic_pool, (unsigned long)start, size);
591 
592 	return 1;
593 }
594 
595 static void *__alloc_from_contiguous(struct device *dev, size_t size,
596 				     pgprot_t prot, struct page **ret_page,
597 				     const void *caller, bool want_vaddr,
598 				     int coherent_flag, gfp_t gfp)
599 {
600 	unsigned long order = get_order(size);
601 	size_t count = size >> PAGE_SHIFT;
602 	struct page *page;
603 	void *ptr = NULL;
604 
605 	page = dma_alloc_from_contiguous(dev, count, order, gfp);
606 	if (!page)
607 		return NULL;
608 
609 	__dma_clear_buffer(page, size, coherent_flag);
610 
611 	if (!want_vaddr)
612 		goto out;
613 
614 	if (PageHighMem(page)) {
615 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
616 		if (!ptr) {
617 			dma_release_from_contiguous(dev, page, count);
618 			return NULL;
619 		}
620 	} else {
621 		__dma_remap(page, size, prot);
622 		ptr = page_address(page);
623 	}
624 
625  out:
626 	*ret_page = page;
627 	return ptr;
628 }
629 
630 static void __free_from_contiguous(struct device *dev, struct page *page,
631 				   void *cpu_addr, size_t size, bool want_vaddr)
632 {
633 	if (want_vaddr) {
634 		if (PageHighMem(page))
635 			__dma_free_remap(cpu_addr, size);
636 		else
637 			__dma_remap(page, size, PAGE_KERNEL);
638 	}
639 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
640 }
641 
642 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
643 {
644 	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
645 			pgprot_writecombine(prot) :
646 			pgprot_dmacoherent(prot);
647 	return prot;
648 }
649 
650 #define nommu() 0
651 
652 #else	/* !CONFIG_MMU */
653 
654 #define nommu() 1
655 
656 #define __get_dma_pgprot(attrs, prot)				__pgprot(0)
657 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
658 #define __alloc_from_pool(size, ret_page)			NULL
659 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv, coherent_flag, gfp)	NULL
660 #define __free_from_pool(cpu_addr, size)			do { } while (0)
661 #define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
662 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
663 
664 #endif	/* CONFIG_MMU */
665 
666 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
667 				   struct page **ret_page)
668 {
669 	struct page *page;
670 	/* __alloc_simple_buffer is only called when the device is coherent */
671 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
672 	if (!page)
673 		return NULL;
674 
675 	*ret_page = page;
676 	return page_address(page);
677 }
678 
679 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
680 				    struct page **ret_page)
681 {
682 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
683 				     ret_page);
684 }
685 
686 static void simple_allocator_free(struct arm_dma_free_args *args)
687 {
688 	__dma_free_buffer(args->page, args->size);
689 }
690 
691 static struct arm_dma_allocator simple_allocator = {
692 	.alloc = simple_allocator_alloc,
693 	.free = simple_allocator_free,
694 };
695 
696 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
697 				 struct page **ret_page)
698 {
699 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
700 				       ret_page, args->caller,
701 				       args->want_vaddr, args->coherent_flag,
702 				       args->gfp);
703 }
704 
705 static void cma_allocator_free(struct arm_dma_free_args *args)
706 {
707 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
708 			       args->size, args->want_vaddr);
709 }
710 
711 static struct arm_dma_allocator cma_allocator = {
712 	.alloc = cma_allocator_alloc,
713 	.free = cma_allocator_free,
714 };
715 
716 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
717 				  struct page **ret_page)
718 {
719 	return __alloc_from_pool(args->size, ret_page);
720 }
721 
722 static void pool_allocator_free(struct arm_dma_free_args *args)
723 {
724 	__free_from_pool(args->cpu_addr, args->size);
725 }
726 
727 static struct arm_dma_allocator pool_allocator = {
728 	.alloc = pool_allocator_alloc,
729 	.free = pool_allocator_free,
730 };
731 
732 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
733 				   struct page **ret_page)
734 {
735 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
736 				    args->prot, ret_page, args->caller,
737 				    args->want_vaddr);
738 }
739 
740 static void remap_allocator_free(struct arm_dma_free_args *args)
741 {
742 	if (args->want_vaddr)
743 		__dma_free_remap(args->cpu_addr, args->size);
744 
745 	__dma_free_buffer(args->page, args->size);
746 }
747 
748 static struct arm_dma_allocator remap_allocator = {
749 	.alloc = remap_allocator_alloc,
750 	.free = remap_allocator_free,
751 };
752 
753 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
754 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
755 			 unsigned long attrs, const void *caller)
756 {
757 	u64 mask = get_coherent_dma_mask(dev);
758 	struct page *page = NULL;
759 	void *addr;
760 	bool allowblock, cma;
761 	struct arm_dma_buffer *buf;
762 	struct arm_dma_alloc_args args = {
763 		.dev = dev,
764 		.size = PAGE_ALIGN(size),
765 		.gfp = gfp,
766 		.prot = prot,
767 		.caller = caller,
768 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
769 		.coherent_flag = is_coherent ? COHERENT : NORMAL,
770 	};
771 
772 #ifdef CONFIG_DMA_API_DEBUG
773 	u64 limit = (mask + 1) & ~mask;
774 	if (limit && size >= limit) {
775 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
776 			size, mask);
777 		return NULL;
778 	}
779 #endif
780 
781 	if (!mask)
782 		return NULL;
783 
784 	buf = kzalloc(sizeof(*buf),
785 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
786 	if (!buf)
787 		return NULL;
788 
789 	if (mask < 0xffffffffULL)
790 		gfp |= GFP_DMA;
791 
792 	/*
793 	 * Following is a work-around (a.k.a. hack) to prevent pages
794 	 * with __GFP_COMP being passed to split_page() which cannot
795 	 * handle them.  The real problem is that this flag probably
796 	 * should be 0 on ARM as it is not supported on this
797 	 * platform; see CONFIG_HUGETLBFS.
798 	 */
799 	gfp &= ~(__GFP_COMP);
800 	args.gfp = gfp;
801 
802 	*handle = DMA_ERROR_CODE;
803 	allowblock = gfpflags_allow_blocking(gfp);
804 	cma = allowblock ? dev_get_cma_area(dev) : false;
805 
806 	if (cma)
807 		buf->allocator = &cma_allocator;
808 	else if (nommu() || is_coherent)
809 		buf->allocator = &simple_allocator;
810 	else if (allowblock)
811 		buf->allocator = &remap_allocator;
812 	else
813 		buf->allocator = &pool_allocator;
814 
815 	addr = buf->allocator->alloc(&args, &page);
816 
817 	if (page) {
818 		unsigned long flags;
819 
820 		*handle = pfn_to_dma(dev, page_to_pfn(page));
821 		buf->virt = args.want_vaddr ? addr : page;
822 
823 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
824 		list_add(&buf->list, &arm_dma_bufs);
825 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
826 	} else {
827 		kfree(buf);
828 	}
829 
830 	return args.want_vaddr ? addr : page;
831 }
832 
833 /*
834  * Allocate DMA-coherent memory space and return both the kernel remapped
835  * virtual and bus address for that space.
836  */
837 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
838 		    gfp_t gfp, unsigned long attrs)
839 {
840 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
841 
842 	return __dma_alloc(dev, size, handle, gfp, prot, false,
843 			   attrs, __builtin_return_address(0));
844 }
845 
846 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
847 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
848 {
849 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
850 			   attrs, __builtin_return_address(0));
851 }
852 
853 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
854 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
855 		 unsigned long attrs)
856 {
857 	int ret = -ENXIO;
858 #ifdef CONFIG_MMU
859 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
860 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
861 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
862 	unsigned long off = vma->vm_pgoff;
863 
864 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
865 		return ret;
866 
867 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
868 		ret = remap_pfn_range(vma, vma->vm_start,
869 				      pfn + off,
870 				      vma->vm_end - vma->vm_start,
871 				      vma->vm_page_prot);
872 	}
873 #else
874 	ret = vm_iomap_memory(vma, vma->vm_start,
875 			      (vma->vm_end - vma->vm_start));
876 #endif	/* CONFIG_MMU */
877 
878 	return ret;
879 }
880 
881 /*
882  * Create userspace mapping for the DMA-coherent memory.
883  */
884 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
885 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
886 		 unsigned long attrs)
887 {
888 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
889 }
890 
891 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
892 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
893 		 unsigned long attrs)
894 {
895 #ifdef CONFIG_MMU
896 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
897 #endif	/* CONFIG_MMU */
898 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
899 }
900 
901 /*
902  * Free a buffer as defined by the above mapping.
903  */
904 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
905 			   dma_addr_t handle, unsigned long attrs,
906 			   bool is_coherent)
907 {
908 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
909 	struct arm_dma_buffer *buf;
910 	struct arm_dma_free_args args = {
911 		.dev = dev,
912 		.size = PAGE_ALIGN(size),
913 		.cpu_addr = cpu_addr,
914 		.page = page,
915 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
916 	};
917 
918 	buf = arm_dma_buffer_find(cpu_addr);
919 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
920 		return;
921 
922 	buf->allocator->free(&args);
923 	kfree(buf);
924 }
925 
926 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
927 		  dma_addr_t handle, unsigned long attrs)
928 {
929 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
930 }
931 
932 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
933 				  dma_addr_t handle, unsigned long attrs)
934 {
935 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
936 }
937 
938 /*
939  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
940  * that the intention is to allow exporting memory allocated via the
941  * coherent DMA APIs through the dma_buf API, which only accepts a
942  * scattertable.  This presents a couple of problems:
943  * 1. Not all memory allocated via the coherent DMA APIs is backed by
944  *    a struct page
945  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
946  *    as we will try to flush the memory through a different alias to that
947  *    actually being used (and the flushes are redundant.)
948  */
949 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
950 		 void *cpu_addr, dma_addr_t handle, size_t size,
951 		 unsigned long attrs)
952 {
953 	unsigned long pfn = dma_to_pfn(dev, handle);
954 	struct page *page;
955 	int ret;
956 
957 	/* If the PFN is not valid, we do not have a struct page */
958 	if (!pfn_valid(pfn))
959 		return -ENXIO;
960 
961 	page = pfn_to_page(pfn);
962 
963 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
964 	if (unlikely(ret))
965 		return ret;
966 
967 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
968 	return 0;
969 }
970 
971 static void dma_cache_maint_page(struct page *page, unsigned long offset,
972 	size_t size, enum dma_data_direction dir,
973 	void (*op)(const void *, size_t, int))
974 {
975 	unsigned long pfn;
976 	size_t left = size;
977 
978 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
979 	offset %= PAGE_SIZE;
980 
981 	/*
982 	 * A single sg entry may refer to multiple physically contiguous
983 	 * pages.  But we still need to process highmem pages individually.
984 	 * If highmem is not configured then the bulk of this loop gets
985 	 * optimized out.
986 	 */
987 	do {
988 		size_t len = left;
989 		void *vaddr;
990 
991 		page = pfn_to_page(pfn);
992 
993 		if (PageHighMem(page)) {
994 			if (len + offset > PAGE_SIZE)
995 				len = PAGE_SIZE - offset;
996 
997 			if (cache_is_vipt_nonaliasing()) {
998 				vaddr = kmap_atomic(page);
999 				op(vaddr + offset, len, dir);
1000 				kunmap_atomic(vaddr);
1001 			} else {
1002 				vaddr = kmap_high_get(page);
1003 				if (vaddr) {
1004 					op(vaddr + offset, len, dir);
1005 					kunmap_high(page);
1006 				}
1007 			}
1008 		} else {
1009 			vaddr = page_address(page) + offset;
1010 			op(vaddr, len, dir);
1011 		}
1012 		offset = 0;
1013 		pfn++;
1014 		left -= len;
1015 	} while (left);
1016 }
1017 
1018 /*
1019  * Make an area consistent for devices.
1020  * Note: Drivers should NOT use this function directly, as it will break
1021  * platforms with CONFIG_DMABOUNCE.
1022  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1023  */
1024 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
1025 	size_t size, enum dma_data_direction dir)
1026 {
1027 	phys_addr_t paddr;
1028 
1029 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
1030 
1031 	paddr = page_to_phys(page) + off;
1032 	if (dir == DMA_FROM_DEVICE) {
1033 		outer_inv_range(paddr, paddr + size);
1034 	} else {
1035 		outer_clean_range(paddr, paddr + size);
1036 	}
1037 	/* FIXME: non-speculating: flush on bidirectional mappings? */
1038 }
1039 
1040 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1041 	size_t size, enum dma_data_direction dir)
1042 {
1043 	phys_addr_t paddr = page_to_phys(page) + off;
1044 
1045 	/* FIXME: non-speculating: not required */
1046 	/* in any case, don't bother invalidating if DMA to device */
1047 	if (dir != DMA_TO_DEVICE) {
1048 		outer_inv_range(paddr, paddr + size);
1049 
1050 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1051 	}
1052 
1053 	/*
1054 	 * Mark the D-cache clean for these pages to avoid extra flushing.
1055 	 */
1056 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1057 		unsigned long pfn;
1058 		size_t left = size;
1059 
1060 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
1061 		off %= PAGE_SIZE;
1062 		if (off) {
1063 			pfn++;
1064 			left -= PAGE_SIZE - off;
1065 		}
1066 		while (left >= PAGE_SIZE) {
1067 			page = pfn_to_page(pfn++);
1068 			set_bit(PG_dcache_clean, &page->flags);
1069 			left -= PAGE_SIZE;
1070 		}
1071 	}
1072 }
1073 
1074 /**
1075  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1076  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1077  * @sg: list of buffers
1078  * @nents: number of buffers to map
1079  * @dir: DMA transfer direction
1080  *
1081  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1082  * This is the scatter-gather version of the dma_map_single interface.
1083  * Here the scatter gather list elements are each tagged with the
1084  * appropriate dma address and length.  They are obtained via
1085  * sg_dma_{address,length}.
1086  *
1087  * Device ownership issues as mentioned for dma_map_single are the same
1088  * here.
1089  */
1090 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1091 		enum dma_data_direction dir, unsigned long attrs)
1092 {
1093 	const struct dma_map_ops *ops = get_dma_ops(dev);
1094 	struct scatterlist *s;
1095 	int i, j;
1096 
1097 	for_each_sg(sg, s, nents, i) {
1098 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1099 		s->dma_length = s->length;
1100 #endif
1101 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1102 						s->length, dir, attrs);
1103 		if (dma_mapping_error(dev, s->dma_address))
1104 			goto bad_mapping;
1105 	}
1106 	return nents;
1107 
1108  bad_mapping:
1109 	for_each_sg(sg, s, i, j)
1110 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1111 	return 0;
1112 }
1113 
1114 /**
1115  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1116  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1117  * @sg: list of buffers
1118  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1119  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1120  *
1121  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1122  * rules concerning calls here are the same as for dma_unmap_single().
1123  */
1124 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1125 		enum dma_data_direction dir, unsigned long attrs)
1126 {
1127 	const struct dma_map_ops *ops = get_dma_ops(dev);
1128 	struct scatterlist *s;
1129 
1130 	int i;
1131 
1132 	for_each_sg(sg, s, nents, i)
1133 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1134 }
1135 
1136 /**
1137  * arm_dma_sync_sg_for_cpu
1138  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1139  * @sg: list of buffers
1140  * @nents: number of buffers to map (returned from dma_map_sg)
1141  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1142  */
1143 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1144 			int nents, enum dma_data_direction dir)
1145 {
1146 	const struct dma_map_ops *ops = get_dma_ops(dev);
1147 	struct scatterlist *s;
1148 	int i;
1149 
1150 	for_each_sg(sg, s, nents, i)
1151 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1152 					 dir);
1153 }
1154 
1155 /**
1156  * arm_dma_sync_sg_for_device
1157  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1158  * @sg: list of buffers
1159  * @nents: number of buffers to map (returned from dma_map_sg)
1160  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1161  */
1162 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1163 			int nents, enum dma_data_direction dir)
1164 {
1165 	const struct dma_map_ops *ops = get_dma_ops(dev);
1166 	struct scatterlist *s;
1167 	int i;
1168 
1169 	for_each_sg(sg, s, nents, i)
1170 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1171 					    dir);
1172 }
1173 
1174 /*
1175  * Return whether the given device DMA address mask can be supported
1176  * properly.  For example, if your device can only drive the low 24-bits
1177  * during bus mastering, then you would pass 0x00ffffff as the mask
1178  * to this function.
1179  */
1180 int dma_supported(struct device *dev, u64 mask)
1181 {
1182 	return __dma_supported(dev, mask, false);
1183 }
1184 EXPORT_SYMBOL(dma_supported);
1185 
1186 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1187 
1188 static int __init dma_debug_do_init(void)
1189 {
1190 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1191 	return 0;
1192 }
1193 core_initcall(dma_debug_do_init);
1194 
1195 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1196 
1197 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1198 {
1199 	int prot = 0;
1200 
1201 	if (attrs & DMA_ATTR_PRIVILEGED)
1202 		prot |= IOMMU_PRIV;
1203 
1204 	switch (dir) {
1205 	case DMA_BIDIRECTIONAL:
1206 		return prot | IOMMU_READ | IOMMU_WRITE;
1207 	case DMA_TO_DEVICE:
1208 		return prot | IOMMU_READ;
1209 	case DMA_FROM_DEVICE:
1210 		return prot | IOMMU_WRITE;
1211 	default:
1212 		return prot;
1213 	}
1214 }
1215 
1216 /* IOMMU */
1217 
1218 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1219 
1220 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1221 				      size_t size)
1222 {
1223 	unsigned int order = get_order(size);
1224 	unsigned int align = 0;
1225 	unsigned int count, start;
1226 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1227 	unsigned long flags;
1228 	dma_addr_t iova;
1229 	int i;
1230 
1231 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1232 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1233 
1234 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1235 	align = (1 << order) - 1;
1236 
1237 	spin_lock_irqsave(&mapping->lock, flags);
1238 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1239 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1240 				mapping->bits, 0, count, align);
1241 
1242 		if (start > mapping->bits)
1243 			continue;
1244 
1245 		bitmap_set(mapping->bitmaps[i], start, count);
1246 		break;
1247 	}
1248 
1249 	/*
1250 	 * No unused range found. Try to extend the existing mapping
1251 	 * and perform a second attempt to reserve an IO virtual
1252 	 * address range of size bytes.
1253 	 */
1254 	if (i == mapping->nr_bitmaps) {
1255 		if (extend_iommu_mapping(mapping)) {
1256 			spin_unlock_irqrestore(&mapping->lock, flags);
1257 			return DMA_ERROR_CODE;
1258 		}
1259 
1260 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1261 				mapping->bits, 0, count, align);
1262 
1263 		if (start > mapping->bits) {
1264 			spin_unlock_irqrestore(&mapping->lock, flags);
1265 			return DMA_ERROR_CODE;
1266 		}
1267 
1268 		bitmap_set(mapping->bitmaps[i], start, count);
1269 	}
1270 	spin_unlock_irqrestore(&mapping->lock, flags);
1271 
1272 	iova = mapping->base + (mapping_size * i);
1273 	iova += start << PAGE_SHIFT;
1274 
1275 	return iova;
1276 }
1277 
1278 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1279 			       dma_addr_t addr, size_t size)
1280 {
1281 	unsigned int start, count;
1282 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1283 	unsigned long flags;
1284 	dma_addr_t bitmap_base;
1285 	u32 bitmap_index;
1286 
1287 	if (!size)
1288 		return;
1289 
1290 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1291 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1292 
1293 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1294 
1295 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1296 
1297 	if (addr + size > bitmap_base + mapping_size) {
1298 		/*
1299 		 * The address range to be freed reaches into the iova
1300 		 * range of the next bitmap. This should not happen as
1301 		 * we don't allow this in __alloc_iova (at the
1302 		 * moment).
1303 		 */
1304 		BUG();
1305 	} else
1306 		count = size >> PAGE_SHIFT;
1307 
1308 	spin_lock_irqsave(&mapping->lock, flags);
1309 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1310 	spin_unlock_irqrestore(&mapping->lock, flags);
1311 }
1312 
1313 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1314 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1315 
1316 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1317 					  gfp_t gfp, unsigned long attrs,
1318 					  int coherent_flag)
1319 {
1320 	struct page **pages;
1321 	int count = size >> PAGE_SHIFT;
1322 	int array_size = count * sizeof(struct page *);
1323 	int i = 0;
1324 	int order_idx = 0;
1325 
1326 	if (array_size <= PAGE_SIZE)
1327 		pages = kzalloc(array_size, GFP_KERNEL);
1328 	else
1329 		pages = vzalloc(array_size);
1330 	if (!pages)
1331 		return NULL;
1332 
1333 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1334 	{
1335 		unsigned long order = get_order(size);
1336 		struct page *page;
1337 
1338 		page = dma_alloc_from_contiguous(dev, count, order, gfp);
1339 		if (!page)
1340 			goto error;
1341 
1342 		__dma_clear_buffer(page, size, coherent_flag);
1343 
1344 		for (i = 0; i < count; i++)
1345 			pages[i] = page + i;
1346 
1347 		return pages;
1348 	}
1349 
1350 	/* Go straight to 4K chunks if caller says it's OK. */
1351 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1352 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1353 
1354 	/*
1355 	 * IOMMU can map any pages, so himem can also be used here
1356 	 */
1357 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1358 
1359 	while (count) {
1360 		int j, order;
1361 
1362 		order = iommu_order_array[order_idx];
1363 
1364 		/* Drop down when we get small */
1365 		if (__fls(count) < order) {
1366 			order_idx++;
1367 			continue;
1368 		}
1369 
1370 		if (order) {
1371 			/* See if it's easy to allocate a high-order chunk */
1372 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1373 
1374 			/* Go down a notch at first sign of pressure */
1375 			if (!pages[i]) {
1376 				order_idx++;
1377 				continue;
1378 			}
1379 		} else {
1380 			pages[i] = alloc_pages(gfp, 0);
1381 			if (!pages[i])
1382 				goto error;
1383 		}
1384 
1385 		if (order) {
1386 			split_page(pages[i], order);
1387 			j = 1 << order;
1388 			while (--j)
1389 				pages[i + j] = pages[i] + j;
1390 		}
1391 
1392 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1393 		i += 1 << order;
1394 		count -= 1 << order;
1395 	}
1396 
1397 	return pages;
1398 error:
1399 	while (i--)
1400 		if (pages[i])
1401 			__free_pages(pages[i], 0);
1402 	kvfree(pages);
1403 	return NULL;
1404 }
1405 
1406 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1407 			       size_t size, unsigned long attrs)
1408 {
1409 	int count = size >> PAGE_SHIFT;
1410 	int i;
1411 
1412 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1413 		dma_release_from_contiguous(dev, pages[0], count);
1414 	} else {
1415 		for (i = 0; i < count; i++)
1416 			if (pages[i])
1417 				__free_pages(pages[i], 0);
1418 	}
1419 
1420 	kvfree(pages);
1421 	return 0;
1422 }
1423 
1424 /*
1425  * Create a CPU mapping for a specified pages
1426  */
1427 static void *
1428 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1429 		    const void *caller)
1430 {
1431 	return dma_common_pages_remap(pages, size,
1432 			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1433 }
1434 
1435 /*
1436  * Create a mapping in device IO address space for specified pages
1437  */
1438 static dma_addr_t
1439 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1440 		       unsigned long attrs)
1441 {
1442 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1443 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1444 	dma_addr_t dma_addr, iova;
1445 	int i;
1446 
1447 	dma_addr = __alloc_iova(mapping, size);
1448 	if (dma_addr == DMA_ERROR_CODE)
1449 		return dma_addr;
1450 
1451 	iova = dma_addr;
1452 	for (i = 0; i < count; ) {
1453 		int ret;
1454 
1455 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1456 		phys_addr_t phys = page_to_phys(pages[i]);
1457 		unsigned int len, j;
1458 
1459 		for (j = i + 1; j < count; j++, next_pfn++)
1460 			if (page_to_pfn(pages[j]) != next_pfn)
1461 				break;
1462 
1463 		len = (j - i) << PAGE_SHIFT;
1464 		ret = iommu_map(mapping->domain, iova, phys, len,
1465 				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1466 		if (ret < 0)
1467 			goto fail;
1468 		iova += len;
1469 		i = j;
1470 	}
1471 	return dma_addr;
1472 fail:
1473 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1474 	__free_iova(mapping, dma_addr, size);
1475 	return DMA_ERROR_CODE;
1476 }
1477 
1478 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1479 {
1480 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1481 
1482 	/*
1483 	 * add optional in-page offset from iova to size and align
1484 	 * result to page size
1485 	 */
1486 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1487 	iova &= PAGE_MASK;
1488 
1489 	iommu_unmap(mapping->domain, iova, size);
1490 	__free_iova(mapping, iova, size);
1491 	return 0;
1492 }
1493 
1494 static struct page **__atomic_get_pages(void *addr)
1495 {
1496 	struct page *page;
1497 	phys_addr_t phys;
1498 
1499 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1500 	page = phys_to_page(phys);
1501 
1502 	return (struct page **)page;
1503 }
1504 
1505 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1506 {
1507 	struct vm_struct *area;
1508 
1509 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1510 		return __atomic_get_pages(cpu_addr);
1511 
1512 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1513 		return cpu_addr;
1514 
1515 	area = find_vm_area(cpu_addr);
1516 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1517 		return area->pages;
1518 	return NULL;
1519 }
1520 
1521 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1522 				  dma_addr_t *handle, int coherent_flag,
1523 				  unsigned long attrs)
1524 {
1525 	struct page *page;
1526 	void *addr;
1527 
1528 	if (coherent_flag  == COHERENT)
1529 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1530 	else
1531 		addr = __alloc_from_pool(size, &page);
1532 	if (!addr)
1533 		return NULL;
1534 
1535 	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1536 	if (*handle == DMA_ERROR_CODE)
1537 		goto err_mapping;
1538 
1539 	return addr;
1540 
1541 err_mapping:
1542 	__free_from_pool(addr, size);
1543 	return NULL;
1544 }
1545 
1546 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1547 			dma_addr_t handle, size_t size, int coherent_flag)
1548 {
1549 	__iommu_remove_mapping(dev, handle, size);
1550 	if (coherent_flag == COHERENT)
1551 		__dma_free_buffer(virt_to_page(cpu_addr), size);
1552 	else
1553 		__free_from_pool(cpu_addr, size);
1554 }
1555 
1556 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1557 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1558 	    int coherent_flag)
1559 {
1560 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1561 	struct page **pages;
1562 	void *addr = NULL;
1563 
1564 	*handle = DMA_ERROR_CODE;
1565 	size = PAGE_ALIGN(size);
1566 
1567 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1568 		return __iommu_alloc_simple(dev, size, gfp, handle,
1569 					    coherent_flag, attrs);
1570 
1571 	/*
1572 	 * Following is a work-around (a.k.a. hack) to prevent pages
1573 	 * with __GFP_COMP being passed to split_page() which cannot
1574 	 * handle them.  The real problem is that this flag probably
1575 	 * should be 0 on ARM as it is not supported on this
1576 	 * platform; see CONFIG_HUGETLBFS.
1577 	 */
1578 	gfp &= ~(__GFP_COMP);
1579 
1580 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1581 	if (!pages)
1582 		return NULL;
1583 
1584 	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1585 	if (*handle == DMA_ERROR_CODE)
1586 		goto err_buffer;
1587 
1588 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1589 		return pages;
1590 
1591 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1592 				   __builtin_return_address(0));
1593 	if (!addr)
1594 		goto err_mapping;
1595 
1596 	return addr;
1597 
1598 err_mapping:
1599 	__iommu_remove_mapping(dev, *handle, size);
1600 err_buffer:
1601 	__iommu_free_buffer(dev, pages, size, attrs);
1602 	return NULL;
1603 }
1604 
1605 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1606 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1607 {
1608 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1609 }
1610 
1611 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1612 		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1613 {
1614 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1615 }
1616 
1617 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1618 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1619 		    unsigned long attrs)
1620 {
1621 	unsigned long uaddr = vma->vm_start;
1622 	unsigned long usize = vma->vm_end - vma->vm_start;
1623 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1624 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1625 	unsigned long off = vma->vm_pgoff;
1626 
1627 	if (!pages)
1628 		return -ENXIO;
1629 
1630 	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1631 		return -ENXIO;
1632 
1633 	pages += off;
1634 
1635 	do {
1636 		int ret = vm_insert_page(vma, uaddr, *pages++);
1637 		if (ret) {
1638 			pr_err("Remapping memory failed: %d\n", ret);
1639 			return ret;
1640 		}
1641 		uaddr += PAGE_SIZE;
1642 		usize -= PAGE_SIZE;
1643 	} while (usize > 0);
1644 
1645 	return 0;
1646 }
1647 static int arm_iommu_mmap_attrs(struct device *dev,
1648 		struct vm_area_struct *vma, void *cpu_addr,
1649 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1650 {
1651 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1652 
1653 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1654 }
1655 
1656 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1657 		struct vm_area_struct *vma, void *cpu_addr,
1658 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1659 {
1660 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1661 }
1662 
1663 /*
1664  * free a page as defined by the above mapping.
1665  * Must not be called with IRQs disabled.
1666  */
1667 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1668 	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1669 {
1670 	struct page **pages;
1671 	size = PAGE_ALIGN(size);
1672 
1673 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1674 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1675 		return;
1676 	}
1677 
1678 	pages = __iommu_get_pages(cpu_addr, attrs);
1679 	if (!pages) {
1680 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1681 		return;
1682 	}
1683 
1684 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1685 		dma_common_free_remap(cpu_addr, size,
1686 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1687 	}
1688 
1689 	__iommu_remove_mapping(dev, handle, size);
1690 	__iommu_free_buffer(dev, pages, size, attrs);
1691 }
1692 
1693 void arm_iommu_free_attrs(struct device *dev, size_t size,
1694 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1695 {
1696 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1697 }
1698 
1699 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1700 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1701 {
1702 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1703 }
1704 
1705 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1706 				 void *cpu_addr, dma_addr_t dma_addr,
1707 				 size_t size, unsigned long attrs)
1708 {
1709 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1710 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1711 
1712 	if (!pages)
1713 		return -ENXIO;
1714 
1715 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1716 					 GFP_KERNEL);
1717 }
1718 
1719 /*
1720  * Map a part of the scatter-gather list into contiguous io address space
1721  */
1722 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1723 			  size_t size, dma_addr_t *handle,
1724 			  enum dma_data_direction dir, unsigned long attrs,
1725 			  bool is_coherent)
1726 {
1727 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1728 	dma_addr_t iova, iova_base;
1729 	int ret = 0;
1730 	unsigned int count;
1731 	struct scatterlist *s;
1732 	int prot;
1733 
1734 	size = PAGE_ALIGN(size);
1735 	*handle = DMA_ERROR_CODE;
1736 
1737 	iova_base = iova = __alloc_iova(mapping, size);
1738 	if (iova == DMA_ERROR_CODE)
1739 		return -ENOMEM;
1740 
1741 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1742 		phys_addr_t phys = page_to_phys(sg_page(s));
1743 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1744 
1745 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1746 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1747 
1748 		prot = __dma_info_to_prot(dir, attrs);
1749 
1750 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1751 		if (ret < 0)
1752 			goto fail;
1753 		count += len >> PAGE_SHIFT;
1754 		iova += len;
1755 	}
1756 	*handle = iova_base;
1757 
1758 	return 0;
1759 fail:
1760 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1761 	__free_iova(mapping, iova_base, size);
1762 	return ret;
1763 }
1764 
1765 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1766 		     enum dma_data_direction dir, unsigned long attrs,
1767 		     bool is_coherent)
1768 {
1769 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1770 	int i, count = 0;
1771 	unsigned int offset = s->offset;
1772 	unsigned int size = s->offset + s->length;
1773 	unsigned int max = dma_get_max_seg_size(dev);
1774 
1775 	for (i = 1; i < nents; i++) {
1776 		s = sg_next(s);
1777 
1778 		s->dma_address = DMA_ERROR_CODE;
1779 		s->dma_length = 0;
1780 
1781 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1782 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1783 			    dir, attrs, is_coherent) < 0)
1784 				goto bad_mapping;
1785 
1786 			dma->dma_address += offset;
1787 			dma->dma_length = size - offset;
1788 
1789 			size = offset = s->offset;
1790 			start = s;
1791 			dma = sg_next(dma);
1792 			count += 1;
1793 		}
1794 		size += s->length;
1795 	}
1796 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1797 		is_coherent) < 0)
1798 		goto bad_mapping;
1799 
1800 	dma->dma_address += offset;
1801 	dma->dma_length = size - offset;
1802 
1803 	return count+1;
1804 
1805 bad_mapping:
1806 	for_each_sg(sg, s, count, i)
1807 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1808 	return 0;
1809 }
1810 
1811 /**
1812  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1813  * @dev: valid struct device pointer
1814  * @sg: list of buffers
1815  * @nents: number of buffers to map
1816  * @dir: DMA transfer direction
1817  *
1818  * Map a set of i/o coherent buffers described by scatterlist in streaming
1819  * mode for DMA. The scatter gather list elements are merged together (if
1820  * possible) and tagged with the appropriate dma address and length. They are
1821  * obtained via sg_dma_{address,length}.
1822  */
1823 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1824 		int nents, enum dma_data_direction dir, unsigned long attrs)
1825 {
1826 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1827 }
1828 
1829 /**
1830  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1831  * @dev: valid struct device pointer
1832  * @sg: list of buffers
1833  * @nents: number of buffers to map
1834  * @dir: DMA transfer direction
1835  *
1836  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1837  * The scatter gather list elements are merged together (if possible) and
1838  * tagged with the appropriate dma address and length. They are obtained via
1839  * sg_dma_{address,length}.
1840  */
1841 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1842 		int nents, enum dma_data_direction dir, unsigned long attrs)
1843 {
1844 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1845 }
1846 
1847 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1848 		int nents, enum dma_data_direction dir,
1849 		unsigned long attrs, bool is_coherent)
1850 {
1851 	struct scatterlist *s;
1852 	int i;
1853 
1854 	for_each_sg(sg, s, nents, i) {
1855 		if (sg_dma_len(s))
1856 			__iommu_remove_mapping(dev, sg_dma_address(s),
1857 					       sg_dma_len(s));
1858 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1859 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1860 					      s->length, dir);
1861 	}
1862 }
1863 
1864 /**
1865  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1866  * @dev: valid struct device pointer
1867  * @sg: list of buffers
1868  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1869  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1870  *
1871  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1872  * rules concerning calls here are the same as for dma_unmap_single().
1873  */
1874 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1875 		int nents, enum dma_data_direction dir,
1876 		unsigned long attrs)
1877 {
1878 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1879 }
1880 
1881 /**
1882  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1883  * @dev: valid struct device pointer
1884  * @sg: list of buffers
1885  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1886  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1887  *
1888  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1889  * rules concerning calls here are the same as for dma_unmap_single().
1890  */
1891 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1892 			enum dma_data_direction dir,
1893 			unsigned long attrs)
1894 {
1895 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1896 }
1897 
1898 /**
1899  * arm_iommu_sync_sg_for_cpu
1900  * @dev: valid struct device pointer
1901  * @sg: list of buffers
1902  * @nents: number of buffers to map (returned from dma_map_sg)
1903  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1904  */
1905 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1906 			int nents, enum dma_data_direction dir)
1907 {
1908 	struct scatterlist *s;
1909 	int i;
1910 
1911 	for_each_sg(sg, s, nents, i)
1912 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1913 
1914 }
1915 
1916 /**
1917  * arm_iommu_sync_sg_for_device
1918  * @dev: valid struct device pointer
1919  * @sg: list of buffers
1920  * @nents: number of buffers to map (returned from dma_map_sg)
1921  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1922  */
1923 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1924 			int nents, enum dma_data_direction dir)
1925 {
1926 	struct scatterlist *s;
1927 	int i;
1928 
1929 	for_each_sg(sg, s, nents, i)
1930 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1931 }
1932 
1933 
1934 /**
1935  * arm_coherent_iommu_map_page
1936  * @dev: valid struct device pointer
1937  * @page: page that buffer resides in
1938  * @offset: offset into page for start of buffer
1939  * @size: size of buffer to map
1940  * @dir: DMA transfer direction
1941  *
1942  * Coherent IOMMU aware version of arm_dma_map_page()
1943  */
1944 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1945 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1946 	     unsigned long attrs)
1947 {
1948 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1949 	dma_addr_t dma_addr;
1950 	int ret, prot, len = PAGE_ALIGN(size + offset);
1951 
1952 	dma_addr = __alloc_iova(mapping, len);
1953 	if (dma_addr == DMA_ERROR_CODE)
1954 		return dma_addr;
1955 
1956 	prot = __dma_info_to_prot(dir, attrs);
1957 
1958 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1959 	if (ret < 0)
1960 		goto fail;
1961 
1962 	return dma_addr + offset;
1963 fail:
1964 	__free_iova(mapping, dma_addr, len);
1965 	return DMA_ERROR_CODE;
1966 }
1967 
1968 /**
1969  * arm_iommu_map_page
1970  * @dev: valid struct device pointer
1971  * @page: page that buffer resides in
1972  * @offset: offset into page for start of buffer
1973  * @size: size of buffer to map
1974  * @dir: DMA transfer direction
1975  *
1976  * IOMMU aware version of arm_dma_map_page()
1977  */
1978 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1979 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1980 	     unsigned long attrs)
1981 {
1982 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1983 		__dma_page_cpu_to_dev(page, offset, size, dir);
1984 
1985 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1986 }
1987 
1988 /**
1989  * arm_coherent_iommu_unmap_page
1990  * @dev: valid struct device pointer
1991  * @handle: DMA address of buffer
1992  * @size: size of buffer (same as passed to dma_map_page)
1993  * @dir: DMA transfer direction (same as passed to dma_map_page)
1994  *
1995  * Coherent IOMMU aware version of arm_dma_unmap_page()
1996  */
1997 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1998 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1999 {
2000 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2001 	dma_addr_t iova = handle & PAGE_MASK;
2002 	int offset = handle & ~PAGE_MASK;
2003 	int len = PAGE_ALIGN(size + offset);
2004 
2005 	if (!iova)
2006 		return;
2007 
2008 	iommu_unmap(mapping->domain, iova, len);
2009 	__free_iova(mapping, iova, len);
2010 }
2011 
2012 /**
2013  * arm_iommu_unmap_page
2014  * @dev: valid struct device pointer
2015  * @handle: DMA address of buffer
2016  * @size: size of buffer (same as passed to dma_map_page)
2017  * @dir: DMA transfer direction (same as passed to dma_map_page)
2018  *
2019  * IOMMU aware version of arm_dma_unmap_page()
2020  */
2021 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
2022 		size_t size, enum dma_data_direction dir, unsigned long attrs)
2023 {
2024 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2025 	dma_addr_t iova = handle & PAGE_MASK;
2026 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2027 	int offset = handle & ~PAGE_MASK;
2028 	int len = PAGE_ALIGN(size + offset);
2029 
2030 	if (!iova)
2031 		return;
2032 
2033 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
2034 		__dma_page_dev_to_cpu(page, offset, size, dir);
2035 
2036 	iommu_unmap(mapping->domain, iova, len);
2037 	__free_iova(mapping, iova, len);
2038 }
2039 
2040 /**
2041  * arm_iommu_map_resource - map a device resource for DMA
2042  * @dev: valid struct device pointer
2043  * @phys_addr: physical address of resource
2044  * @size: size of resource to map
2045  * @dir: DMA transfer direction
2046  */
2047 static dma_addr_t arm_iommu_map_resource(struct device *dev,
2048 		phys_addr_t phys_addr, size_t size,
2049 		enum dma_data_direction dir, unsigned long attrs)
2050 {
2051 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2052 	dma_addr_t dma_addr;
2053 	int ret, prot;
2054 	phys_addr_t addr = phys_addr & PAGE_MASK;
2055 	unsigned int offset = phys_addr & ~PAGE_MASK;
2056 	size_t len = PAGE_ALIGN(size + offset);
2057 
2058 	dma_addr = __alloc_iova(mapping, len);
2059 	if (dma_addr == DMA_ERROR_CODE)
2060 		return dma_addr;
2061 
2062 	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
2063 
2064 	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2065 	if (ret < 0)
2066 		goto fail;
2067 
2068 	return dma_addr + offset;
2069 fail:
2070 	__free_iova(mapping, dma_addr, len);
2071 	return DMA_ERROR_CODE;
2072 }
2073 
2074 /**
2075  * arm_iommu_unmap_resource - unmap a device DMA resource
2076  * @dev: valid struct device pointer
2077  * @dma_handle: DMA address to resource
2078  * @size: size of resource to map
2079  * @dir: DMA transfer direction
2080  */
2081 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2082 		size_t size, enum dma_data_direction dir,
2083 		unsigned long attrs)
2084 {
2085 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2086 	dma_addr_t iova = dma_handle & PAGE_MASK;
2087 	unsigned int offset = dma_handle & ~PAGE_MASK;
2088 	size_t len = PAGE_ALIGN(size + offset);
2089 
2090 	if (!iova)
2091 		return;
2092 
2093 	iommu_unmap(mapping->domain, iova, len);
2094 	__free_iova(mapping, iova, len);
2095 }
2096 
2097 static void arm_iommu_sync_single_for_cpu(struct device *dev,
2098 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2099 {
2100 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2101 	dma_addr_t iova = handle & PAGE_MASK;
2102 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2103 	unsigned int offset = handle & ~PAGE_MASK;
2104 
2105 	if (!iova)
2106 		return;
2107 
2108 	__dma_page_dev_to_cpu(page, offset, size, dir);
2109 }
2110 
2111 static void arm_iommu_sync_single_for_device(struct device *dev,
2112 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2113 {
2114 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2115 	dma_addr_t iova = handle & PAGE_MASK;
2116 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2117 	unsigned int offset = handle & ~PAGE_MASK;
2118 
2119 	if (!iova)
2120 		return;
2121 
2122 	__dma_page_cpu_to_dev(page, offset, size, dir);
2123 }
2124 
2125 const struct dma_map_ops iommu_ops = {
2126 	.alloc		= arm_iommu_alloc_attrs,
2127 	.free		= arm_iommu_free_attrs,
2128 	.mmap		= arm_iommu_mmap_attrs,
2129 	.get_sgtable	= arm_iommu_get_sgtable,
2130 
2131 	.map_page		= arm_iommu_map_page,
2132 	.unmap_page		= arm_iommu_unmap_page,
2133 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2134 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2135 
2136 	.map_sg			= arm_iommu_map_sg,
2137 	.unmap_sg		= arm_iommu_unmap_sg,
2138 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2139 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2140 
2141 	.map_resource		= arm_iommu_map_resource,
2142 	.unmap_resource		= arm_iommu_unmap_resource,
2143 };
2144 
2145 const struct dma_map_ops iommu_coherent_ops = {
2146 	.alloc		= arm_coherent_iommu_alloc_attrs,
2147 	.free		= arm_coherent_iommu_free_attrs,
2148 	.mmap		= arm_coherent_iommu_mmap_attrs,
2149 	.get_sgtable	= arm_iommu_get_sgtable,
2150 
2151 	.map_page	= arm_coherent_iommu_map_page,
2152 	.unmap_page	= arm_coherent_iommu_unmap_page,
2153 
2154 	.map_sg		= arm_coherent_iommu_map_sg,
2155 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2156 
2157 	.map_resource	= arm_iommu_map_resource,
2158 	.unmap_resource	= arm_iommu_unmap_resource,
2159 };
2160 
2161 /**
2162  * arm_iommu_create_mapping
2163  * @bus: pointer to the bus holding the client device (for IOMMU calls)
2164  * @base: start address of the valid IO address space
2165  * @size: maximum size of the valid IO address space
2166  *
2167  * Creates a mapping structure which holds information about used/unused
2168  * IO address ranges, which is required to perform memory allocation and
2169  * mapping with IOMMU aware functions.
2170  *
2171  * The client device need to be attached to the mapping with
2172  * arm_iommu_attach_device function.
2173  */
2174 struct dma_iommu_mapping *
2175 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2176 {
2177 	unsigned int bits = size >> PAGE_SHIFT;
2178 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2179 	struct dma_iommu_mapping *mapping;
2180 	int extensions = 1;
2181 	int err = -ENOMEM;
2182 
2183 	/* currently only 32-bit DMA address space is supported */
2184 	if (size > DMA_BIT_MASK(32) + 1)
2185 		return ERR_PTR(-ERANGE);
2186 
2187 	if (!bitmap_size)
2188 		return ERR_PTR(-EINVAL);
2189 
2190 	if (bitmap_size > PAGE_SIZE) {
2191 		extensions = bitmap_size / PAGE_SIZE;
2192 		bitmap_size = PAGE_SIZE;
2193 	}
2194 
2195 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2196 	if (!mapping)
2197 		goto err;
2198 
2199 	mapping->bitmap_size = bitmap_size;
2200 	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2201 				GFP_KERNEL);
2202 	if (!mapping->bitmaps)
2203 		goto err2;
2204 
2205 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2206 	if (!mapping->bitmaps[0])
2207 		goto err3;
2208 
2209 	mapping->nr_bitmaps = 1;
2210 	mapping->extensions = extensions;
2211 	mapping->base = base;
2212 	mapping->bits = BITS_PER_BYTE * bitmap_size;
2213 
2214 	spin_lock_init(&mapping->lock);
2215 
2216 	mapping->domain = iommu_domain_alloc(bus);
2217 	if (!mapping->domain)
2218 		goto err4;
2219 
2220 	kref_init(&mapping->kref);
2221 	return mapping;
2222 err4:
2223 	kfree(mapping->bitmaps[0]);
2224 err3:
2225 	kfree(mapping->bitmaps);
2226 err2:
2227 	kfree(mapping);
2228 err:
2229 	return ERR_PTR(err);
2230 }
2231 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2232 
2233 static void release_iommu_mapping(struct kref *kref)
2234 {
2235 	int i;
2236 	struct dma_iommu_mapping *mapping =
2237 		container_of(kref, struct dma_iommu_mapping, kref);
2238 
2239 	iommu_domain_free(mapping->domain);
2240 	for (i = 0; i < mapping->nr_bitmaps; i++)
2241 		kfree(mapping->bitmaps[i]);
2242 	kfree(mapping->bitmaps);
2243 	kfree(mapping);
2244 }
2245 
2246 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2247 {
2248 	int next_bitmap;
2249 
2250 	if (mapping->nr_bitmaps >= mapping->extensions)
2251 		return -EINVAL;
2252 
2253 	next_bitmap = mapping->nr_bitmaps;
2254 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2255 						GFP_ATOMIC);
2256 	if (!mapping->bitmaps[next_bitmap])
2257 		return -ENOMEM;
2258 
2259 	mapping->nr_bitmaps++;
2260 
2261 	return 0;
2262 }
2263 
2264 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2265 {
2266 	if (mapping)
2267 		kref_put(&mapping->kref, release_iommu_mapping);
2268 }
2269 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2270 
2271 static int __arm_iommu_attach_device(struct device *dev,
2272 				     struct dma_iommu_mapping *mapping)
2273 {
2274 	int err;
2275 
2276 	err = iommu_attach_device(mapping->domain, dev);
2277 	if (err)
2278 		return err;
2279 
2280 	kref_get(&mapping->kref);
2281 	to_dma_iommu_mapping(dev) = mapping;
2282 
2283 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2284 	return 0;
2285 }
2286 
2287 /**
2288  * arm_iommu_attach_device
2289  * @dev: valid struct device pointer
2290  * @mapping: io address space mapping structure (returned from
2291  *	arm_iommu_create_mapping)
2292  *
2293  * Attaches specified io address space mapping to the provided device.
2294  * This replaces the dma operations (dma_map_ops pointer) with the
2295  * IOMMU aware version.
2296  *
2297  * More than one client might be attached to the same io address space
2298  * mapping.
2299  */
2300 int arm_iommu_attach_device(struct device *dev,
2301 			    struct dma_iommu_mapping *mapping)
2302 {
2303 	int err;
2304 
2305 	err = __arm_iommu_attach_device(dev, mapping);
2306 	if (err)
2307 		return err;
2308 
2309 	set_dma_ops(dev, &iommu_ops);
2310 	return 0;
2311 }
2312 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2313 
2314 static void __arm_iommu_detach_device(struct device *dev)
2315 {
2316 	struct dma_iommu_mapping *mapping;
2317 
2318 	mapping = to_dma_iommu_mapping(dev);
2319 	if (!mapping) {
2320 		dev_warn(dev, "Not attached\n");
2321 		return;
2322 	}
2323 
2324 	iommu_detach_device(mapping->domain, dev);
2325 	kref_put(&mapping->kref, release_iommu_mapping);
2326 	to_dma_iommu_mapping(dev) = NULL;
2327 
2328 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2329 }
2330 
2331 /**
2332  * arm_iommu_detach_device
2333  * @dev: valid struct device pointer
2334  *
2335  * Detaches the provided device from a previously attached map.
2336  * This voids the dma operations (dma_map_ops pointer)
2337  */
2338 void arm_iommu_detach_device(struct device *dev)
2339 {
2340 	__arm_iommu_detach_device(dev);
2341 	set_dma_ops(dev, NULL);
2342 }
2343 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2344 
2345 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2346 {
2347 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2348 }
2349 
2350 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2351 				    const struct iommu_ops *iommu)
2352 {
2353 	struct dma_iommu_mapping *mapping;
2354 
2355 	if (!iommu)
2356 		return false;
2357 
2358 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2359 	if (IS_ERR(mapping)) {
2360 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2361 				size, dev_name(dev));
2362 		return false;
2363 	}
2364 
2365 	if (__arm_iommu_attach_device(dev, mapping)) {
2366 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2367 				dev_name(dev));
2368 		arm_iommu_release_mapping(mapping);
2369 		return false;
2370 	}
2371 
2372 	return true;
2373 }
2374 
2375 static void arm_teardown_iommu_dma_ops(struct device *dev)
2376 {
2377 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2378 
2379 	if (!mapping)
2380 		return;
2381 
2382 	__arm_iommu_detach_device(dev);
2383 	arm_iommu_release_mapping(mapping);
2384 }
2385 
2386 #else
2387 
2388 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2389 				    const struct iommu_ops *iommu)
2390 {
2391 	return false;
2392 }
2393 
2394 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2395 
2396 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2397 
2398 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2399 
2400 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2401 {
2402 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2403 }
2404 
2405 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2406 			const struct iommu_ops *iommu, bool coherent)
2407 {
2408 	const struct dma_map_ops *dma_ops;
2409 
2410 	dev->archdata.dma_coherent = coherent;
2411 
2412 	/*
2413 	 * Don't override the dma_ops if they have already been set. Ideally
2414 	 * this should be the only location where dma_ops are set, remove this
2415 	 * check when all other callers of set_dma_ops will have disappeared.
2416 	 */
2417 	if (dev->dma_ops)
2418 		return;
2419 
2420 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2421 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2422 	else
2423 		dma_ops = arm_get_dma_map_ops(coherent);
2424 
2425 	set_dma_ops(dev, dma_ops);
2426 
2427 #ifdef CONFIG_XEN
2428 	if (xen_initial_domain()) {
2429 		dev->archdata.dev_dma_ops = dev->dma_ops;
2430 		dev->dma_ops = xen_dma_ops;
2431 	}
2432 #endif
2433 }
2434 
2435 void arch_teardown_dma_ops(struct device *dev)
2436 {
2437 	arm_teardown_iommu_dma_ops(dev);
2438 }
2439