xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 9cfc5c90)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31 
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41 
42 #include "dma.h"
43 #include "mm.h"
44 
45 /*
46  * The DMA API is built upon the notion of "buffer ownership".  A buffer
47  * is either exclusively owned by the CPU (and therefore may be accessed
48  * by it) or exclusively owned by the DMA device.  These helper functions
49  * represent the transitions between these two ownership states.
50  *
51  * Note, however, that on later ARMs, this notion does not work due to
52  * speculative prefetches.  We model our approach on the assumption that
53  * the CPU does do speculative prefetches, which means we clean caches
54  * before transfers and delay cache invalidation until transfer completion.
55  *
56  */
57 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
58 		size_t, enum dma_data_direction);
59 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
60 		size_t, enum dma_data_direction);
61 
62 /**
63  * arm_dma_map_page - map a portion of a page for streaming DMA
64  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
65  * @page: page that buffer resides in
66  * @offset: offset into page for start of buffer
67  * @size: size of buffer to map
68  * @dir: DMA transfer direction
69  *
70  * Ensure that any data held in the cache is appropriately discarded
71  * or written back.
72  *
73  * The device owns this memory once this call has completed.  The CPU
74  * can regain ownership by calling dma_unmap_page().
75  */
76 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
77 	     unsigned long offset, size_t size, enum dma_data_direction dir,
78 	     struct dma_attrs *attrs)
79 {
80 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
81 		__dma_page_cpu_to_dev(page, offset, size, dir);
82 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
83 }
84 
85 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
86 	     unsigned long offset, size_t size, enum dma_data_direction dir,
87 	     struct dma_attrs *attrs)
88 {
89 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
90 }
91 
92 /**
93  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
94  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
95  * @handle: DMA address of buffer
96  * @size: size of buffer (same as passed to dma_map_page)
97  * @dir: DMA transfer direction (same as passed to dma_map_page)
98  *
99  * Unmap a page streaming mode DMA translation.  The handle and size
100  * must match what was provided in the previous dma_map_page() call.
101  * All other usages are undefined.
102  *
103  * After this call, reads by the CPU to the buffer are guaranteed to see
104  * whatever the device wrote there.
105  */
106 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
107 		size_t size, enum dma_data_direction dir,
108 		struct dma_attrs *attrs)
109 {
110 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
111 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
112 				      handle & ~PAGE_MASK, size, dir);
113 }
114 
115 static void arm_dma_sync_single_for_cpu(struct device *dev,
116 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
117 {
118 	unsigned int offset = handle & (PAGE_SIZE - 1);
119 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
120 	__dma_page_dev_to_cpu(page, offset, size, dir);
121 }
122 
123 static void arm_dma_sync_single_for_device(struct device *dev,
124 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
125 {
126 	unsigned int offset = handle & (PAGE_SIZE - 1);
127 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
128 	__dma_page_cpu_to_dev(page, offset, size, dir);
129 }
130 
131 struct dma_map_ops arm_dma_ops = {
132 	.alloc			= arm_dma_alloc,
133 	.free			= arm_dma_free,
134 	.mmap			= arm_dma_mmap,
135 	.get_sgtable		= arm_dma_get_sgtable,
136 	.map_page		= arm_dma_map_page,
137 	.unmap_page		= arm_dma_unmap_page,
138 	.map_sg			= arm_dma_map_sg,
139 	.unmap_sg		= arm_dma_unmap_sg,
140 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
141 	.sync_single_for_device	= arm_dma_sync_single_for_device,
142 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
143 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
144 	.set_dma_mask		= arm_dma_set_mask,
145 };
146 EXPORT_SYMBOL(arm_dma_ops);
147 
148 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
149 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
150 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
151 				  dma_addr_t handle, struct dma_attrs *attrs);
152 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
153 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
154 		 struct dma_attrs *attrs);
155 
156 struct dma_map_ops arm_coherent_dma_ops = {
157 	.alloc			= arm_coherent_dma_alloc,
158 	.free			= arm_coherent_dma_free,
159 	.mmap			= arm_coherent_dma_mmap,
160 	.get_sgtable		= arm_dma_get_sgtable,
161 	.map_page		= arm_coherent_dma_map_page,
162 	.map_sg			= arm_dma_map_sg,
163 	.set_dma_mask		= arm_dma_set_mask,
164 };
165 EXPORT_SYMBOL(arm_coherent_dma_ops);
166 
167 static int __dma_supported(struct device *dev, u64 mask, bool warn)
168 {
169 	unsigned long max_dma_pfn;
170 
171 	/*
172 	 * If the mask allows for more memory than we can address,
173 	 * and we actually have that much memory, then we must
174 	 * indicate that DMA to this device is not supported.
175 	 */
176 	if (sizeof(mask) != sizeof(dma_addr_t) &&
177 	    mask > (dma_addr_t)~0 &&
178 	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
179 		if (warn) {
180 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
181 				 mask);
182 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
183 		}
184 		return 0;
185 	}
186 
187 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
188 
189 	/*
190 	 * Translate the device's DMA mask to a PFN limit.  This
191 	 * PFN number includes the page which we can DMA to.
192 	 */
193 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
194 		if (warn)
195 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
196 				 mask,
197 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
198 				 max_dma_pfn + 1);
199 		return 0;
200 	}
201 
202 	return 1;
203 }
204 
205 static u64 get_coherent_dma_mask(struct device *dev)
206 {
207 	u64 mask = (u64)DMA_BIT_MASK(32);
208 
209 	if (dev) {
210 		mask = dev->coherent_dma_mask;
211 
212 		/*
213 		 * Sanity check the DMA mask - it must be non-zero, and
214 		 * must be able to be satisfied by a DMA allocation.
215 		 */
216 		if (mask == 0) {
217 			dev_warn(dev, "coherent DMA mask is unset\n");
218 			return 0;
219 		}
220 
221 		if (!__dma_supported(dev, mask, true))
222 			return 0;
223 	}
224 
225 	return mask;
226 }
227 
228 static void __dma_clear_buffer(struct page *page, size_t size)
229 {
230 	/*
231 	 * Ensure that the allocated pages are zeroed, and that any data
232 	 * lurking in the kernel direct-mapped region is invalidated.
233 	 */
234 	if (PageHighMem(page)) {
235 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
236 		phys_addr_t end = base + size;
237 		while (size > 0) {
238 			void *ptr = kmap_atomic(page);
239 			memset(ptr, 0, PAGE_SIZE);
240 			dmac_flush_range(ptr, ptr + PAGE_SIZE);
241 			kunmap_atomic(ptr);
242 			page++;
243 			size -= PAGE_SIZE;
244 		}
245 		outer_flush_range(base, end);
246 	} else {
247 		void *ptr = page_address(page);
248 		memset(ptr, 0, size);
249 		dmac_flush_range(ptr, ptr + size);
250 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
251 	}
252 }
253 
254 /*
255  * Allocate a DMA buffer for 'dev' of size 'size' using the
256  * specified gfp mask.  Note that 'size' must be page aligned.
257  */
258 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
259 {
260 	unsigned long order = get_order(size);
261 	struct page *page, *p, *e;
262 
263 	page = alloc_pages(gfp, order);
264 	if (!page)
265 		return NULL;
266 
267 	/*
268 	 * Now split the huge page and free the excess pages
269 	 */
270 	split_page(page, order);
271 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
272 		__free_page(p);
273 
274 	__dma_clear_buffer(page, size);
275 
276 	return page;
277 }
278 
279 /*
280  * Free a DMA buffer.  'size' must be page aligned.
281  */
282 static void __dma_free_buffer(struct page *page, size_t size)
283 {
284 	struct page *e = page + (size >> PAGE_SHIFT);
285 
286 	while (page < e) {
287 		__free_page(page);
288 		page++;
289 	}
290 }
291 
292 #ifdef CONFIG_MMU
293 
294 static void *__alloc_from_contiguous(struct device *dev, size_t size,
295 				     pgprot_t prot, struct page **ret_page,
296 				     const void *caller, bool want_vaddr);
297 
298 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
299 				 pgprot_t prot, struct page **ret_page,
300 				 const void *caller, bool want_vaddr);
301 
302 static void *
303 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
304 	const void *caller)
305 {
306 	/*
307 	 * DMA allocation can be mapped to user space, so lets
308 	 * set VM_USERMAP flags too.
309 	 */
310 	return dma_common_contiguous_remap(page, size,
311 			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
312 			prot, caller);
313 }
314 
315 static void __dma_free_remap(void *cpu_addr, size_t size)
316 {
317 	dma_common_free_remap(cpu_addr, size,
318 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
319 }
320 
321 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
322 static struct gen_pool *atomic_pool;
323 
324 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
325 
326 static int __init early_coherent_pool(char *p)
327 {
328 	atomic_pool_size = memparse(p, &p);
329 	return 0;
330 }
331 early_param("coherent_pool", early_coherent_pool);
332 
333 void __init init_dma_coherent_pool_size(unsigned long size)
334 {
335 	/*
336 	 * Catch any attempt to set the pool size too late.
337 	 */
338 	BUG_ON(atomic_pool);
339 
340 	/*
341 	 * Set architecture specific coherent pool size only if
342 	 * it has not been changed by kernel command line parameter.
343 	 */
344 	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
345 		atomic_pool_size = size;
346 }
347 
348 /*
349  * Initialise the coherent pool for atomic allocations.
350  */
351 static int __init atomic_pool_init(void)
352 {
353 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
354 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
355 	struct page *page;
356 	void *ptr;
357 
358 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
359 	if (!atomic_pool)
360 		goto out;
361 
362 	if (dev_get_cma_area(NULL))
363 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
364 					      &page, atomic_pool_init, true);
365 	else
366 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
367 					   &page, atomic_pool_init, true);
368 	if (ptr) {
369 		int ret;
370 
371 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
372 					page_to_phys(page),
373 					atomic_pool_size, -1);
374 		if (ret)
375 			goto destroy_genpool;
376 
377 		gen_pool_set_algo(atomic_pool,
378 				gen_pool_first_fit_order_align,
379 				(void *)PAGE_SHIFT);
380 		pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
381 		       atomic_pool_size / 1024);
382 		return 0;
383 	}
384 
385 destroy_genpool:
386 	gen_pool_destroy(atomic_pool);
387 	atomic_pool = NULL;
388 out:
389 	pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
390 	       atomic_pool_size / 1024);
391 	return -ENOMEM;
392 }
393 /*
394  * CMA is activated by core_initcall, so we must be called after it.
395  */
396 postcore_initcall(atomic_pool_init);
397 
398 struct dma_contig_early_reserve {
399 	phys_addr_t base;
400 	unsigned long size;
401 };
402 
403 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
404 
405 static int dma_mmu_remap_num __initdata;
406 
407 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
408 {
409 	dma_mmu_remap[dma_mmu_remap_num].base = base;
410 	dma_mmu_remap[dma_mmu_remap_num].size = size;
411 	dma_mmu_remap_num++;
412 }
413 
414 void __init dma_contiguous_remap(void)
415 {
416 	int i;
417 	for (i = 0; i < dma_mmu_remap_num; i++) {
418 		phys_addr_t start = dma_mmu_remap[i].base;
419 		phys_addr_t end = start + dma_mmu_remap[i].size;
420 		struct map_desc map;
421 		unsigned long addr;
422 
423 		if (end > arm_lowmem_limit)
424 			end = arm_lowmem_limit;
425 		if (start >= end)
426 			continue;
427 
428 		map.pfn = __phys_to_pfn(start);
429 		map.virtual = __phys_to_virt(start);
430 		map.length = end - start;
431 		map.type = MT_MEMORY_DMA_READY;
432 
433 		/*
434 		 * Clear previous low-memory mapping to ensure that the
435 		 * TLB does not see any conflicting entries, then flush
436 		 * the TLB of the old entries before creating new mappings.
437 		 *
438 		 * This ensures that any speculatively loaded TLB entries
439 		 * (even though they may be rare) can not cause any problems,
440 		 * and ensures that this code is architecturally compliant.
441 		 */
442 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
443 		     addr += PMD_SIZE)
444 			pmd_clear(pmd_off_k(addr));
445 
446 		flush_tlb_kernel_range(__phys_to_virt(start),
447 				       __phys_to_virt(end));
448 
449 		iotable_init(&map, 1);
450 	}
451 }
452 
453 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
454 			    void *data)
455 {
456 	struct page *page = virt_to_page(addr);
457 	pgprot_t prot = *(pgprot_t *)data;
458 
459 	set_pte_ext(pte, mk_pte(page, prot), 0);
460 	return 0;
461 }
462 
463 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
464 {
465 	unsigned long start = (unsigned long) page_address(page);
466 	unsigned end = start + size;
467 
468 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
469 	flush_tlb_kernel_range(start, end);
470 }
471 
472 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
473 				 pgprot_t prot, struct page **ret_page,
474 				 const void *caller, bool want_vaddr)
475 {
476 	struct page *page;
477 	void *ptr = NULL;
478 	page = __dma_alloc_buffer(dev, size, gfp);
479 	if (!page)
480 		return NULL;
481 	if (!want_vaddr)
482 		goto out;
483 
484 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
485 	if (!ptr) {
486 		__dma_free_buffer(page, size);
487 		return NULL;
488 	}
489 
490  out:
491 	*ret_page = page;
492 	return ptr;
493 }
494 
495 static void *__alloc_from_pool(size_t size, struct page **ret_page)
496 {
497 	unsigned long val;
498 	void *ptr = NULL;
499 
500 	if (!atomic_pool) {
501 		WARN(1, "coherent pool not initialised!\n");
502 		return NULL;
503 	}
504 
505 	val = gen_pool_alloc(atomic_pool, size);
506 	if (val) {
507 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
508 
509 		*ret_page = phys_to_page(phys);
510 		ptr = (void *)val;
511 	}
512 
513 	return ptr;
514 }
515 
516 static bool __in_atomic_pool(void *start, size_t size)
517 {
518 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
519 }
520 
521 static int __free_from_pool(void *start, size_t size)
522 {
523 	if (!__in_atomic_pool(start, size))
524 		return 0;
525 
526 	gen_pool_free(atomic_pool, (unsigned long)start, size);
527 
528 	return 1;
529 }
530 
531 static void *__alloc_from_contiguous(struct device *dev, size_t size,
532 				     pgprot_t prot, struct page **ret_page,
533 				     const void *caller, bool want_vaddr)
534 {
535 	unsigned long order = get_order(size);
536 	size_t count = size >> PAGE_SHIFT;
537 	struct page *page;
538 	void *ptr = NULL;
539 
540 	page = dma_alloc_from_contiguous(dev, count, order);
541 	if (!page)
542 		return NULL;
543 
544 	__dma_clear_buffer(page, size);
545 
546 	if (!want_vaddr)
547 		goto out;
548 
549 	if (PageHighMem(page)) {
550 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
551 		if (!ptr) {
552 			dma_release_from_contiguous(dev, page, count);
553 			return NULL;
554 		}
555 	} else {
556 		__dma_remap(page, size, prot);
557 		ptr = page_address(page);
558 	}
559 
560  out:
561 	*ret_page = page;
562 	return ptr;
563 }
564 
565 static void __free_from_contiguous(struct device *dev, struct page *page,
566 				   void *cpu_addr, size_t size, bool want_vaddr)
567 {
568 	if (want_vaddr) {
569 		if (PageHighMem(page))
570 			__dma_free_remap(cpu_addr, size);
571 		else
572 			__dma_remap(page, size, PAGE_KERNEL);
573 	}
574 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
575 }
576 
577 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
578 {
579 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
580 			    pgprot_writecombine(prot) :
581 			    pgprot_dmacoherent(prot);
582 	return prot;
583 }
584 
585 #define nommu() 0
586 
587 #else	/* !CONFIG_MMU */
588 
589 #define nommu() 1
590 
591 #define __get_dma_pgprot(attrs, prot)				__pgprot(0)
592 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
593 #define __alloc_from_pool(size, ret_page)			NULL
594 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv)	NULL
595 #define __free_from_pool(cpu_addr, size)			0
596 #define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
597 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
598 
599 #endif	/* CONFIG_MMU */
600 
601 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
602 				   struct page **ret_page)
603 {
604 	struct page *page;
605 	page = __dma_alloc_buffer(dev, size, gfp);
606 	if (!page)
607 		return NULL;
608 
609 	*ret_page = page;
610 	return page_address(page);
611 }
612 
613 
614 
615 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
616 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
617 			 struct dma_attrs *attrs, const void *caller)
618 {
619 	u64 mask = get_coherent_dma_mask(dev);
620 	struct page *page = NULL;
621 	void *addr;
622 	bool want_vaddr;
623 
624 #ifdef CONFIG_DMA_API_DEBUG
625 	u64 limit = (mask + 1) & ~mask;
626 	if (limit && size >= limit) {
627 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
628 			size, mask);
629 		return NULL;
630 	}
631 #endif
632 
633 	if (!mask)
634 		return NULL;
635 
636 	if (mask < 0xffffffffULL)
637 		gfp |= GFP_DMA;
638 
639 	/*
640 	 * Following is a work-around (a.k.a. hack) to prevent pages
641 	 * with __GFP_COMP being passed to split_page() which cannot
642 	 * handle them.  The real problem is that this flag probably
643 	 * should be 0 on ARM as it is not supported on this
644 	 * platform; see CONFIG_HUGETLBFS.
645 	 */
646 	gfp &= ~(__GFP_COMP);
647 
648 	*handle = DMA_ERROR_CODE;
649 	size = PAGE_ALIGN(size);
650 	want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
651 
652 	if (nommu())
653 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
654 	else if (dev_get_cma_area(dev) && (gfp & __GFP_DIRECT_RECLAIM))
655 		addr = __alloc_from_contiguous(dev, size, prot, &page,
656 					       caller, want_vaddr);
657 	else if (is_coherent)
658 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
659 	else if (!gfpflags_allow_blocking(gfp))
660 		addr = __alloc_from_pool(size, &page);
661 	else
662 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page,
663 					    caller, want_vaddr);
664 
665 	if (page)
666 		*handle = pfn_to_dma(dev, page_to_pfn(page));
667 
668 	return want_vaddr ? addr : page;
669 }
670 
671 /*
672  * Allocate DMA-coherent memory space and return both the kernel remapped
673  * virtual and bus address for that space.
674  */
675 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
676 		    gfp_t gfp, struct dma_attrs *attrs)
677 {
678 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
679 
680 	return __dma_alloc(dev, size, handle, gfp, prot, false,
681 			   attrs, __builtin_return_address(0));
682 }
683 
684 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
685 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
686 {
687 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
688 			   attrs, __builtin_return_address(0));
689 }
690 
691 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
692 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
693 		 struct dma_attrs *attrs)
694 {
695 	int ret = -ENXIO;
696 #ifdef CONFIG_MMU
697 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
698 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
699 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
700 	unsigned long off = vma->vm_pgoff;
701 
702 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
703 		return ret;
704 
705 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
706 		ret = remap_pfn_range(vma, vma->vm_start,
707 				      pfn + off,
708 				      vma->vm_end - vma->vm_start,
709 				      vma->vm_page_prot);
710 	}
711 #endif	/* CONFIG_MMU */
712 
713 	return ret;
714 }
715 
716 /*
717  * Create userspace mapping for the DMA-coherent memory.
718  */
719 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
720 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
721 		 struct dma_attrs *attrs)
722 {
723 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
724 }
725 
726 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
727 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
728 		 struct dma_attrs *attrs)
729 {
730 #ifdef CONFIG_MMU
731 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
732 #endif	/* CONFIG_MMU */
733 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
734 }
735 
736 /*
737  * Free a buffer as defined by the above mapping.
738  */
739 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
740 			   dma_addr_t handle, struct dma_attrs *attrs,
741 			   bool is_coherent)
742 {
743 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
744 	bool want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
745 
746 	size = PAGE_ALIGN(size);
747 
748 	if (nommu()) {
749 		__dma_free_buffer(page, size);
750 	} else if (!is_coherent && __free_from_pool(cpu_addr, size)) {
751 		return;
752 	} else if (!dev_get_cma_area(dev)) {
753 		if (want_vaddr && !is_coherent)
754 			__dma_free_remap(cpu_addr, size);
755 		__dma_free_buffer(page, size);
756 	} else {
757 		/*
758 		 * Non-atomic allocations cannot be freed with IRQs disabled
759 		 */
760 		WARN_ON(irqs_disabled());
761 		__free_from_contiguous(dev, page, cpu_addr, size, want_vaddr);
762 	}
763 }
764 
765 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
766 		  dma_addr_t handle, struct dma_attrs *attrs)
767 {
768 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
769 }
770 
771 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
772 				  dma_addr_t handle, struct dma_attrs *attrs)
773 {
774 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
775 }
776 
777 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
778 		 void *cpu_addr, dma_addr_t handle, size_t size,
779 		 struct dma_attrs *attrs)
780 {
781 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
782 	int ret;
783 
784 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
785 	if (unlikely(ret))
786 		return ret;
787 
788 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
789 	return 0;
790 }
791 
792 static void dma_cache_maint_page(struct page *page, unsigned long offset,
793 	size_t size, enum dma_data_direction dir,
794 	void (*op)(const void *, size_t, int))
795 {
796 	unsigned long pfn;
797 	size_t left = size;
798 
799 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
800 	offset %= PAGE_SIZE;
801 
802 	/*
803 	 * A single sg entry may refer to multiple physically contiguous
804 	 * pages.  But we still need to process highmem pages individually.
805 	 * If highmem is not configured then the bulk of this loop gets
806 	 * optimized out.
807 	 */
808 	do {
809 		size_t len = left;
810 		void *vaddr;
811 
812 		page = pfn_to_page(pfn);
813 
814 		if (PageHighMem(page)) {
815 			if (len + offset > PAGE_SIZE)
816 				len = PAGE_SIZE - offset;
817 
818 			if (cache_is_vipt_nonaliasing()) {
819 				vaddr = kmap_atomic(page);
820 				op(vaddr + offset, len, dir);
821 				kunmap_atomic(vaddr);
822 			} else {
823 				vaddr = kmap_high_get(page);
824 				if (vaddr) {
825 					op(vaddr + offset, len, dir);
826 					kunmap_high(page);
827 				}
828 			}
829 		} else {
830 			vaddr = page_address(page) + offset;
831 			op(vaddr, len, dir);
832 		}
833 		offset = 0;
834 		pfn++;
835 		left -= len;
836 	} while (left);
837 }
838 
839 /*
840  * Make an area consistent for devices.
841  * Note: Drivers should NOT use this function directly, as it will break
842  * platforms with CONFIG_DMABOUNCE.
843  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
844  */
845 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
846 	size_t size, enum dma_data_direction dir)
847 {
848 	phys_addr_t paddr;
849 
850 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
851 
852 	paddr = page_to_phys(page) + off;
853 	if (dir == DMA_FROM_DEVICE) {
854 		outer_inv_range(paddr, paddr + size);
855 	} else {
856 		outer_clean_range(paddr, paddr + size);
857 	}
858 	/* FIXME: non-speculating: flush on bidirectional mappings? */
859 }
860 
861 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
862 	size_t size, enum dma_data_direction dir)
863 {
864 	phys_addr_t paddr = page_to_phys(page) + off;
865 
866 	/* FIXME: non-speculating: not required */
867 	/* in any case, don't bother invalidating if DMA to device */
868 	if (dir != DMA_TO_DEVICE) {
869 		outer_inv_range(paddr, paddr + size);
870 
871 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
872 	}
873 
874 	/*
875 	 * Mark the D-cache clean for these pages to avoid extra flushing.
876 	 */
877 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
878 		unsigned long pfn;
879 		size_t left = size;
880 
881 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
882 		off %= PAGE_SIZE;
883 		if (off) {
884 			pfn++;
885 			left -= PAGE_SIZE - off;
886 		}
887 		while (left >= PAGE_SIZE) {
888 			page = pfn_to_page(pfn++);
889 			set_bit(PG_dcache_clean, &page->flags);
890 			left -= PAGE_SIZE;
891 		}
892 	}
893 }
894 
895 /**
896  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
897  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
898  * @sg: list of buffers
899  * @nents: number of buffers to map
900  * @dir: DMA transfer direction
901  *
902  * Map a set of buffers described by scatterlist in streaming mode for DMA.
903  * This is the scatter-gather version of the dma_map_single interface.
904  * Here the scatter gather list elements are each tagged with the
905  * appropriate dma address and length.  They are obtained via
906  * sg_dma_{address,length}.
907  *
908  * Device ownership issues as mentioned for dma_map_single are the same
909  * here.
910  */
911 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
912 		enum dma_data_direction dir, struct dma_attrs *attrs)
913 {
914 	struct dma_map_ops *ops = get_dma_ops(dev);
915 	struct scatterlist *s;
916 	int i, j;
917 
918 	for_each_sg(sg, s, nents, i) {
919 #ifdef CONFIG_NEED_SG_DMA_LENGTH
920 		s->dma_length = s->length;
921 #endif
922 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
923 						s->length, dir, attrs);
924 		if (dma_mapping_error(dev, s->dma_address))
925 			goto bad_mapping;
926 	}
927 	return nents;
928 
929  bad_mapping:
930 	for_each_sg(sg, s, i, j)
931 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
932 	return 0;
933 }
934 
935 /**
936  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
937  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
938  * @sg: list of buffers
939  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
940  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
941  *
942  * Unmap a set of streaming mode DMA translations.  Again, CPU access
943  * rules concerning calls here are the same as for dma_unmap_single().
944  */
945 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
946 		enum dma_data_direction dir, struct dma_attrs *attrs)
947 {
948 	struct dma_map_ops *ops = get_dma_ops(dev);
949 	struct scatterlist *s;
950 
951 	int i;
952 
953 	for_each_sg(sg, s, nents, i)
954 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
955 }
956 
957 /**
958  * arm_dma_sync_sg_for_cpu
959  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
960  * @sg: list of buffers
961  * @nents: number of buffers to map (returned from dma_map_sg)
962  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
963  */
964 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
965 			int nents, enum dma_data_direction dir)
966 {
967 	struct dma_map_ops *ops = get_dma_ops(dev);
968 	struct scatterlist *s;
969 	int i;
970 
971 	for_each_sg(sg, s, nents, i)
972 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
973 					 dir);
974 }
975 
976 /**
977  * arm_dma_sync_sg_for_device
978  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
979  * @sg: list of buffers
980  * @nents: number of buffers to map (returned from dma_map_sg)
981  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
982  */
983 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
984 			int nents, enum dma_data_direction dir)
985 {
986 	struct dma_map_ops *ops = get_dma_ops(dev);
987 	struct scatterlist *s;
988 	int i;
989 
990 	for_each_sg(sg, s, nents, i)
991 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
992 					    dir);
993 }
994 
995 /*
996  * Return whether the given device DMA address mask can be supported
997  * properly.  For example, if your device can only drive the low 24-bits
998  * during bus mastering, then you would pass 0x00ffffff as the mask
999  * to this function.
1000  */
1001 int dma_supported(struct device *dev, u64 mask)
1002 {
1003 	return __dma_supported(dev, mask, false);
1004 }
1005 EXPORT_SYMBOL(dma_supported);
1006 
1007 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1008 {
1009 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1010 		return -EIO;
1011 
1012 	*dev->dma_mask = dma_mask;
1013 
1014 	return 0;
1015 }
1016 
1017 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1018 
1019 static int __init dma_debug_do_init(void)
1020 {
1021 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1022 	return 0;
1023 }
1024 fs_initcall(dma_debug_do_init);
1025 
1026 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1027 
1028 /* IOMMU */
1029 
1030 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1031 
1032 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1033 				      size_t size)
1034 {
1035 	unsigned int order = get_order(size);
1036 	unsigned int align = 0;
1037 	unsigned int count, start;
1038 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1039 	unsigned long flags;
1040 	dma_addr_t iova;
1041 	int i;
1042 
1043 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1044 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1045 
1046 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1047 	align = (1 << order) - 1;
1048 
1049 	spin_lock_irqsave(&mapping->lock, flags);
1050 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1051 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1052 				mapping->bits, 0, count, align);
1053 
1054 		if (start > mapping->bits)
1055 			continue;
1056 
1057 		bitmap_set(mapping->bitmaps[i], start, count);
1058 		break;
1059 	}
1060 
1061 	/*
1062 	 * No unused range found. Try to extend the existing mapping
1063 	 * and perform a second attempt to reserve an IO virtual
1064 	 * address range of size bytes.
1065 	 */
1066 	if (i == mapping->nr_bitmaps) {
1067 		if (extend_iommu_mapping(mapping)) {
1068 			spin_unlock_irqrestore(&mapping->lock, flags);
1069 			return DMA_ERROR_CODE;
1070 		}
1071 
1072 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1073 				mapping->bits, 0, count, align);
1074 
1075 		if (start > mapping->bits) {
1076 			spin_unlock_irqrestore(&mapping->lock, flags);
1077 			return DMA_ERROR_CODE;
1078 		}
1079 
1080 		bitmap_set(mapping->bitmaps[i], start, count);
1081 	}
1082 	spin_unlock_irqrestore(&mapping->lock, flags);
1083 
1084 	iova = mapping->base + (mapping_size * i);
1085 	iova += start << PAGE_SHIFT;
1086 
1087 	return iova;
1088 }
1089 
1090 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1091 			       dma_addr_t addr, size_t size)
1092 {
1093 	unsigned int start, count;
1094 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1095 	unsigned long flags;
1096 	dma_addr_t bitmap_base;
1097 	u32 bitmap_index;
1098 
1099 	if (!size)
1100 		return;
1101 
1102 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1103 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1104 
1105 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1106 
1107 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1108 
1109 	if (addr + size > bitmap_base + mapping_size) {
1110 		/*
1111 		 * The address range to be freed reaches into the iova
1112 		 * range of the next bitmap. This should not happen as
1113 		 * we don't allow this in __alloc_iova (at the
1114 		 * moment).
1115 		 */
1116 		BUG();
1117 	} else
1118 		count = size >> PAGE_SHIFT;
1119 
1120 	spin_lock_irqsave(&mapping->lock, flags);
1121 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1122 	spin_unlock_irqrestore(&mapping->lock, flags);
1123 }
1124 
1125 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1126 					  gfp_t gfp, struct dma_attrs *attrs)
1127 {
1128 	struct page **pages;
1129 	int count = size >> PAGE_SHIFT;
1130 	int array_size = count * sizeof(struct page *);
1131 	int i = 0;
1132 
1133 	if (array_size <= PAGE_SIZE)
1134 		pages = kzalloc(array_size, GFP_KERNEL);
1135 	else
1136 		pages = vzalloc(array_size);
1137 	if (!pages)
1138 		return NULL;
1139 
1140 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1141 	{
1142 		unsigned long order = get_order(size);
1143 		struct page *page;
1144 
1145 		page = dma_alloc_from_contiguous(dev, count, order);
1146 		if (!page)
1147 			goto error;
1148 
1149 		__dma_clear_buffer(page, size);
1150 
1151 		for (i = 0; i < count; i++)
1152 			pages[i] = page + i;
1153 
1154 		return pages;
1155 	}
1156 
1157 	/*
1158 	 * IOMMU can map any pages, so himem can also be used here
1159 	 */
1160 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1161 
1162 	while (count) {
1163 		int j, order;
1164 
1165 		for (order = __fls(count); order > 0; --order) {
1166 			/*
1167 			 * We do not want OOM killer to be invoked as long
1168 			 * as we can fall back to single pages, so we force
1169 			 * __GFP_NORETRY for orders higher than zero.
1170 			 */
1171 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1172 			if (pages[i])
1173 				break;
1174 		}
1175 
1176 		if (!pages[i]) {
1177 			/*
1178 			 * Fall back to single page allocation.
1179 			 * Might invoke OOM killer as last resort.
1180 			 */
1181 			pages[i] = alloc_pages(gfp, 0);
1182 			if (!pages[i])
1183 				goto error;
1184 		}
1185 
1186 		if (order) {
1187 			split_page(pages[i], order);
1188 			j = 1 << order;
1189 			while (--j)
1190 				pages[i + j] = pages[i] + j;
1191 		}
1192 
1193 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1194 		i += 1 << order;
1195 		count -= 1 << order;
1196 	}
1197 
1198 	return pages;
1199 error:
1200 	while (i--)
1201 		if (pages[i])
1202 			__free_pages(pages[i], 0);
1203 	if (array_size <= PAGE_SIZE)
1204 		kfree(pages);
1205 	else
1206 		vfree(pages);
1207 	return NULL;
1208 }
1209 
1210 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1211 			       size_t size, struct dma_attrs *attrs)
1212 {
1213 	int count = size >> PAGE_SHIFT;
1214 	int array_size = count * sizeof(struct page *);
1215 	int i;
1216 
1217 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1218 		dma_release_from_contiguous(dev, pages[0], count);
1219 	} else {
1220 		for (i = 0; i < count; i++)
1221 			if (pages[i])
1222 				__free_pages(pages[i], 0);
1223 	}
1224 
1225 	if (array_size <= PAGE_SIZE)
1226 		kfree(pages);
1227 	else
1228 		vfree(pages);
1229 	return 0;
1230 }
1231 
1232 /*
1233  * Create a CPU mapping for a specified pages
1234  */
1235 static void *
1236 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1237 		    const void *caller)
1238 {
1239 	return dma_common_pages_remap(pages, size,
1240 			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1241 }
1242 
1243 /*
1244  * Create a mapping in device IO address space for specified pages
1245  */
1246 static dma_addr_t
1247 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1248 {
1249 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1250 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1251 	dma_addr_t dma_addr, iova;
1252 	int i;
1253 
1254 	dma_addr = __alloc_iova(mapping, size);
1255 	if (dma_addr == DMA_ERROR_CODE)
1256 		return dma_addr;
1257 
1258 	iova = dma_addr;
1259 	for (i = 0; i < count; ) {
1260 		int ret;
1261 
1262 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1263 		phys_addr_t phys = page_to_phys(pages[i]);
1264 		unsigned int len, j;
1265 
1266 		for (j = i + 1; j < count; j++, next_pfn++)
1267 			if (page_to_pfn(pages[j]) != next_pfn)
1268 				break;
1269 
1270 		len = (j - i) << PAGE_SHIFT;
1271 		ret = iommu_map(mapping->domain, iova, phys, len,
1272 				IOMMU_READ|IOMMU_WRITE);
1273 		if (ret < 0)
1274 			goto fail;
1275 		iova += len;
1276 		i = j;
1277 	}
1278 	return dma_addr;
1279 fail:
1280 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1281 	__free_iova(mapping, dma_addr, size);
1282 	return DMA_ERROR_CODE;
1283 }
1284 
1285 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1286 {
1287 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1288 
1289 	/*
1290 	 * add optional in-page offset from iova to size and align
1291 	 * result to page size
1292 	 */
1293 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1294 	iova &= PAGE_MASK;
1295 
1296 	iommu_unmap(mapping->domain, iova, size);
1297 	__free_iova(mapping, iova, size);
1298 	return 0;
1299 }
1300 
1301 static struct page **__atomic_get_pages(void *addr)
1302 {
1303 	struct page *page;
1304 	phys_addr_t phys;
1305 
1306 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1307 	page = phys_to_page(phys);
1308 
1309 	return (struct page **)page;
1310 }
1311 
1312 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1313 {
1314 	struct vm_struct *area;
1315 
1316 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1317 		return __atomic_get_pages(cpu_addr);
1318 
1319 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1320 		return cpu_addr;
1321 
1322 	area = find_vm_area(cpu_addr);
1323 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1324 		return area->pages;
1325 	return NULL;
1326 }
1327 
1328 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1329 				  dma_addr_t *handle)
1330 {
1331 	struct page *page;
1332 	void *addr;
1333 
1334 	addr = __alloc_from_pool(size, &page);
1335 	if (!addr)
1336 		return NULL;
1337 
1338 	*handle = __iommu_create_mapping(dev, &page, size);
1339 	if (*handle == DMA_ERROR_CODE)
1340 		goto err_mapping;
1341 
1342 	return addr;
1343 
1344 err_mapping:
1345 	__free_from_pool(addr, size);
1346 	return NULL;
1347 }
1348 
1349 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1350 				dma_addr_t handle, size_t size)
1351 {
1352 	__iommu_remove_mapping(dev, handle, size);
1353 	__free_from_pool(cpu_addr, size);
1354 }
1355 
1356 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1357 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1358 {
1359 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1360 	struct page **pages;
1361 	void *addr = NULL;
1362 
1363 	*handle = DMA_ERROR_CODE;
1364 	size = PAGE_ALIGN(size);
1365 
1366 	if (!gfpflags_allow_blocking(gfp))
1367 		return __iommu_alloc_atomic(dev, size, handle);
1368 
1369 	/*
1370 	 * Following is a work-around (a.k.a. hack) to prevent pages
1371 	 * with __GFP_COMP being passed to split_page() which cannot
1372 	 * handle them.  The real problem is that this flag probably
1373 	 * should be 0 on ARM as it is not supported on this
1374 	 * platform; see CONFIG_HUGETLBFS.
1375 	 */
1376 	gfp &= ~(__GFP_COMP);
1377 
1378 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1379 	if (!pages)
1380 		return NULL;
1381 
1382 	*handle = __iommu_create_mapping(dev, pages, size);
1383 	if (*handle == DMA_ERROR_CODE)
1384 		goto err_buffer;
1385 
1386 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1387 		return pages;
1388 
1389 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1390 				   __builtin_return_address(0));
1391 	if (!addr)
1392 		goto err_mapping;
1393 
1394 	return addr;
1395 
1396 err_mapping:
1397 	__iommu_remove_mapping(dev, *handle, size);
1398 err_buffer:
1399 	__iommu_free_buffer(dev, pages, size, attrs);
1400 	return NULL;
1401 }
1402 
1403 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1404 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1405 		    struct dma_attrs *attrs)
1406 {
1407 	unsigned long uaddr = vma->vm_start;
1408 	unsigned long usize = vma->vm_end - vma->vm_start;
1409 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1410 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1411 	unsigned long off = vma->vm_pgoff;
1412 
1413 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1414 
1415 	if (!pages)
1416 		return -ENXIO;
1417 
1418 	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1419 		return -ENXIO;
1420 
1421 	pages += off;
1422 
1423 	do {
1424 		int ret = vm_insert_page(vma, uaddr, *pages++);
1425 		if (ret) {
1426 			pr_err("Remapping memory failed: %d\n", ret);
1427 			return ret;
1428 		}
1429 		uaddr += PAGE_SIZE;
1430 		usize -= PAGE_SIZE;
1431 	} while (usize > 0);
1432 
1433 	return 0;
1434 }
1435 
1436 /*
1437  * free a page as defined by the above mapping.
1438  * Must not be called with IRQs disabled.
1439  */
1440 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1441 			  dma_addr_t handle, struct dma_attrs *attrs)
1442 {
1443 	struct page **pages;
1444 	size = PAGE_ALIGN(size);
1445 
1446 	if (__in_atomic_pool(cpu_addr, size)) {
1447 		__iommu_free_atomic(dev, cpu_addr, handle, size);
1448 		return;
1449 	}
1450 
1451 	pages = __iommu_get_pages(cpu_addr, attrs);
1452 	if (!pages) {
1453 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1454 		return;
1455 	}
1456 
1457 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1458 		dma_common_free_remap(cpu_addr, size,
1459 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1460 	}
1461 
1462 	__iommu_remove_mapping(dev, handle, size);
1463 	__iommu_free_buffer(dev, pages, size, attrs);
1464 }
1465 
1466 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1467 				 void *cpu_addr, dma_addr_t dma_addr,
1468 				 size_t size, struct dma_attrs *attrs)
1469 {
1470 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1471 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1472 
1473 	if (!pages)
1474 		return -ENXIO;
1475 
1476 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1477 					 GFP_KERNEL);
1478 }
1479 
1480 static int __dma_direction_to_prot(enum dma_data_direction dir)
1481 {
1482 	int prot;
1483 
1484 	switch (dir) {
1485 	case DMA_BIDIRECTIONAL:
1486 		prot = IOMMU_READ | IOMMU_WRITE;
1487 		break;
1488 	case DMA_TO_DEVICE:
1489 		prot = IOMMU_READ;
1490 		break;
1491 	case DMA_FROM_DEVICE:
1492 		prot = IOMMU_WRITE;
1493 		break;
1494 	default:
1495 		prot = 0;
1496 	}
1497 
1498 	return prot;
1499 }
1500 
1501 /*
1502  * Map a part of the scatter-gather list into contiguous io address space
1503  */
1504 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1505 			  size_t size, dma_addr_t *handle,
1506 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1507 			  bool is_coherent)
1508 {
1509 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1510 	dma_addr_t iova, iova_base;
1511 	int ret = 0;
1512 	unsigned int count;
1513 	struct scatterlist *s;
1514 	int prot;
1515 
1516 	size = PAGE_ALIGN(size);
1517 	*handle = DMA_ERROR_CODE;
1518 
1519 	iova_base = iova = __alloc_iova(mapping, size);
1520 	if (iova == DMA_ERROR_CODE)
1521 		return -ENOMEM;
1522 
1523 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1524 		phys_addr_t phys = sg_phys(s) & PAGE_MASK;
1525 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1526 
1527 		if (!is_coherent &&
1528 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1529 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1530 
1531 		prot = __dma_direction_to_prot(dir);
1532 
1533 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1534 		if (ret < 0)
1535 			goto fail;
1536 		count += len >> PAGE_SHIFT;
1537 		iova += len;
1538 	}
1539 	*handle = iova_base;
1540 
1541 	return 0;
1542 fail:
1543 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1544 	__free_iova(mapping, iova_base, size);
1545 	return ret;
1546 }
1547 
1548 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1549 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1550 		     bool is_coherent)
1551 {
1552 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1553 	int i, count = 0;
1554 	unsigned int offset = s->offset;
1555 	unsigned int size = s->offset + s->length;
1556 	unsigned int max = dma_get_max_seg_size(dev);
1557 
1558 	for (i = 1; i < nents; i++) {
1559 		s = sg_next(s);
1560 
1561 		s->dma_address = DMA_ERROR_CODE;
1562 		s->dma_length = 0;
1563 
1564 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1565 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1566 			    dir, attrs, is_coherent) < 0)
1567 				goto bad_mapping;
1568 
1569 			dma->dma_address += offset;
1570 			dma->dma_length = size - offset;
1571 
1572 			size = offset = s->offset;
1573 			start = s;
1574 			dma = sg_next(dma);
1575 			count += 1;
1576 		}
1577 		size += s->length;
1578 	}
1579 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1580 		is_coherent) < 0)
1581 		goto bad_mapping;
1582 
1583 	dma->dma_address += offset;
1584 	dma->dma_length = size - offset;
1585 
1586 	return count+1;
1587 
1588 bad_mapping:
1589 	for_each_sg(sg, s, count, i)
1590 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1591 	return 0;
1592 }
1593 
1594 /**
1595  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1596  * @dev: valid struct device pointer
1597  * @sg: list of buffers
1598  * @nents: number of buffers to map
1599  * @dir: DMA transfer direction
1600  *
1601  * Map a set of i/o coherent buffers described by scatterlist in streaming
1602  * mode for DMA. The scatter gather list elements are merged together (if
1603  * possible) and tagged with the appropriate dma address and length. They are
1604  * obtained via sg_dma_{address,length}.
1605  */
1606 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1607 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1608 {
1609 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1610 }
1611 
1612 /**
1613  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1614  * @dev: valid struct device pointer
1615  * @sg: list of buffers
1616  * @nents: number of buffers to map
1617  * @dir: DMA transfer direction
1618  *
1619  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1620  * The scatter gather list elements are merged together (if possible) and
1621  * tagged with the appropriate dma address and length. They are obtained via
1622  * sg_dma_{address,length}.
1623  */
1624 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1625 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1626 {
1627 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1628 }
1629 
1630 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1631 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1632 		bool is_coherent)
1633 {
1634 	struct scatterlist *s;
1635 	int i;
1636 
1637 	for_each_sg(sg, s, nents, i) {
1638 		if (sg_dma_len(s))
1639 			__iommu_remove_mapping(dev, sg_dma_address(s),
1640 					       sg_dma_len(s));
1641 		if (!is_coherent &&
1642 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1643 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1644 					      s->length, dir);
1645 	}
1646 }
1647 
1648 /**
1649  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1650  * @dev: valid struct device pointer
1651  * @sg: list of buffers
1652  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1653  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1654  *
1655  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1656  * rules concerning calls here are the same as for dma_unmap_single().
1657  */
1658 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1659 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1660 {
1661 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1662 }
1663 
1664 /**
1665  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1666  * @dev: valid struct device pointer
1667  * @sg: list of buffers
1668  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1669  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1670  *
1671  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1672  * rules concerning calls here are the same as for dma_unmap_single().
1673  */
1674 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1675 			enum dma_data_direction dir, struct dma_attrs *attrs)
1676 {
1677 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1678 }
1679 
1680 /**
1681  * arm_iommu_sync_sg_for_cpu
1682  * @dev: valid struct device pointer
1683  * @sg: list of buffers
1684  * @nents: number of buffers to map (returned from dma_map_sg)
1685  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1686  */
1687 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1688 			int nents, enum dma_data_direction dir)
1689 {
1690 	struct scatterlist *s;
1691 	int i;
1692 
1693 	for_each_sg(sg, s, nents, i)
1694 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1695 
1696 }
1697 
1698 /**
1699  * arm_iommu_sync_sg_for_device
1700  * @dev: valid struct device pointer
1701  * @sg: list of buffers
1702  * @nents: number of buffers to map (returned from dma_map_sg)
1703  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1704  */
1705 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1706 			int nents, enum dma_data_direction dir)
1707 {
1708 	struct scatterlist *s;
1709 	int i;
1710 
1711 	for_each_sg(sg, s, nents, i)
1712 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1713 }
1714 
1715 
1716 /**
1717  * arm_coherent_iommu_map_page
1718  * @dev: valid struct device pointer
1719  * @page: page that buffer resides in
1720  * @offset: offset into page for start of buffer
1721  * @size: size of buffer to map
1722  * @dir: DMA transfer direction
1723  *
1724  * Coherent IOMMU aware version of arm_dma_map_page()
1725  */
1726 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1727 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1728 	     struct dma_attrs *attrs)
1729 {
1730 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1731 	dma_addr_t dma_addr;
1732 	int ret, prot, len = PAGE_ALIGN(size + offset);
1733 
1734 	dma_addr = __alloc_iova(mapping, len);
1735 	if (dma_addr == DMA_ERROR_CODE)
1736 		return dma_addr;
1737 
1738 	prot = __dma_direction_to_prot(dir);
1739 
1740 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1741 	if (ret < 0)
1742 		goto fail;
1743 
1744 	return dma_addr + offset;
1745 fail:
1746 	__free_iova(mapping, dma_addr, len);
1747 	return DMA_ERROR_CODE;
1748 }
1749 
1750 /**
1751  * arm_iommu_map_page
1752  * @dev: valid struct device pointer
1753  * @page: page that buffer resides in
1754  * @offset: offset into page for start of buffer
1755  * @size: size of buffer to map
1756  * @dir: DMA transfer direction
1757  *
1758  * IOMMU aware version of arm_dma_map_page()
1759  */
1760 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1761 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1762 	     struct dma_attrs *attrs)
1763 {
1764 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1765 		__dma_page_cpu_to_dev(page, offset, size, dir);
1766 
1767 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1768 }
1769 
1770 /**
1771  * arm_coherent_iommu_unmap_page
1772  * @dev: valid struct device pointer
1773  * @handle: DMA address of buffer
1774  * @size: size of buffer (same as passed to dma_map_page)
1775  * @dir: DMA transfer direction (same as passed to dma_map_page)
1776  *
1777  * Coherent IOMMU aware version of arm_dma_unmap_page()
1778  */
1779 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1780 		size_t size, enum dma_data_direction dir,
1781 		struct dma_attrs *attrs)
1782 {
1783 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1784 	dma_addr_t iova = handle & PAGE_MASK;
1785 	int offset = handle & ~PAGE_MASK;
1786 	int len = PAGE_ALIGN(size + offset);
1787 
1788 	if (!iova)
1789 		return;
1790 
1791 	iommu_unmap(mapping->domain, iova, len);
1792 	__free_iova(mapping, iova, len);
1793 }
1794 
1795 /**
1796  * arm_iommu_unmap_page
1797  * @dev: valid struct device pointer
1798  * @handle: DMA address of buffer
1799  * @size: size of buffer (same as passed to dma_map_page)
1800  * @dir: DMA transfer direction (same as passed to dma_map_page)
1801  *
1802  * IOMMU aware version of arm_dma_unmap_page()
1803  */
1804 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1805 		size_t size, enum dma_data_direction dir,
1806 		struct dma_attrs *attrs)
1807 {
1808 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1809 	dma_addr_t iova = handle & PAGE_MASK;
1810 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1811 	int offset = handle & ~PAGE_MASK;
1812 	int len = PAGE_ALIGN(size + offset);
1813 
1814 	if (!iova)
1815 		return;
1816 
1817 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1818 		__dma_page_dev_to_cpu(page, offset, size, dir);
1819 
1820 	iommu_unmap(mapping->domain, iova, len);
1821 	__free_iova(mapping, iova, len);
1822 }
1823 
1824 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1825 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1826 {
1827 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1828 	dma_addr_t iova = handle & PAGE_MASK;
1829 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1830 	unsigned int offset = handle & ~PAGE_MASK;
1831 
1832 	if (!iova)
1833 		return;
1834 
1835 	__dma_page_dev_to_cpu(page, offset, size, dir);
1836 }
1837 
1838 static void arm_iommu_sync_single_for_device(struct device *dev,
1839 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1840 {
1841 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1842 	dma_addr_t iova = handle & PAGE_MASK;
1843 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1844 	unsigned int offset = handle & ~PAGE_MASK;
1845 
1846 	if (!iova)
1847 		return;
1848 
1849 	__dma_page_cpu_to_dev(page, offset, size, dir);
1850 }
1851 
1852 struct dma_map_ops iommu_ops = {
1853 	.alloc		= arm_iommu_alloc_attrs,
1854 	.free		= arm_iommu_free_attrs,
1855 	.mmap		= arm_iommu_mmap_attrs,
1856 	.get_sgtable	= arm_iommu_get_sgtable,
1857 
1858 	.map_page		= arm_iommu_map_page,
1859 	.unmap_page		= arm_iommu_unmap_page,
1860 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1861 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1862 
1863 	.map_sg			= arm_iommu_map_sg,
1864 	.unmap_sg		= arm_iommu_unmap_sg,
1865 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1866 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1867 
1868 	.set_dma_mask		= arm_dma_set_mask,
1869 };
1870 
1871 struct dma_map_ops iommu_coherent_ops = {
1872 	.alloc		= arm_iommu_alloc_attrs,
1873 	.free		= arm_iommu_free_attrs,
1874 	.mmap		= arm_iommu_mmap_attrs,
1875 	.get_sgtable	= arm_iommu_get_sgtable,
1876 
1877 	.map_page	= arm_coherent_iommu_map_page,
1878 	.unmap_page	= arm_coherent_iommu_unmap_page,
1879 
1880 	.map_sg		= arm_coherent_iommu_map_sg,
1881 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1882 
1883 	.set_dma_mask	= arm_dma_set_mask,
1884 };
1885 
1886 /**
1887  * arm_iommu_create_mapping
1888  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1889  * @base: start address of the valid IO address space
1890  * @size: maximum size of the valid IO address space
1891  *
1892  * Creates a mapping structure which holds information about used/unused
1893  * IO address ranges, which is required to perform memory allocation and
1894  * mapping with IOMMU aware functions.
1895  *
1896  * The client device need to be attached to the mapping with
1897  * arm_iommu_attach_device function.
1898  */
1899 struct dma_iommu_mapping *
1900 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
1901 {
1902 	unsigned int bits = size >> PAGE_SHIFT;
1903 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1904 	struct dma_iommu_mapping *mapping;
1905 	int extensions = 1;
1906 	int err = -ENOMEM;
1907 
1908 	/* currently only 32-bit DMA address space is supported */
1909 	if (size > DMA_BIT_MASK(32) + 1)
1910 		return ERR_PTR(-ERANGE);
1911 
1912 	if (!bitmap_size)
1913 		return ERR_PTR(-EINVAL);
1914 
1915 	if (bitmap_size > PAGE_SIZE) {
1916 		extensions = bitmap_size / PAGE_SIZE;
1917 		bitmap_size = PAGE_SIZE;
1918 	}
1919 
1920 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1921 	if (!mapping)
1922 		goto err;
1923 
1924 	mapping->bitmap_size = bitmap_size;
1925 	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1926 				GFP_KERNEL);
1927 	if (!mapping->bitmaps)
1928 		goto err2;
1929 
1930 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1931 	if (!mapping->bitmaps[0])
1932 		goto err3;
1933 
1934 	mapping->nr_bitmaps = 1;
1935 	mapping->extensions = extensions;
1936 	mapping->base = base;
1937 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1938 
1939 	spin_lock_init(&mapping->lock);
1940 
1941 	mapping->domain = iommu_domain_alloc(bus);
1942 	if (!mapping->domain)
1943 		goto err4;
1944 
1945 	kref_init(&mapping->kref);
1946 	return mapping;
1947 err4:
1948 	kfree(mapping->bitmaps[0]);
1949 err3:
1950 	kfree(mapping->bitmaps);
1951 err2:
1952 	kfree(mapping);
1953 err:
1954 	return ERR_PTR(err);
1955 }
1956 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1957 
1958 static void release_iommu_mapping(struct kref *kref)
1959 {
1960 	int i;
1961 	struct dma_iommu_mapping *mapping =
1962 		container_of(kref, struct dma_iommu_mapping, kref);
1963 
1964 	iommu_domain_free(mapping->domain);
1965 	for (i = 0; i < mapping->nr_bitmaps; i++)
1966 		kfree(mapping->bitmaps[i]);
1967 	kfree(mapping->bitmaps);
1968 	kfree(mapping);
1969 }
1970 
1971 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1972 {
1973 	int next_bitmap;
1974 
1975 	if (mapping->nr_bitmaps >= mapping->extensions)
1976 		return -EINVAL;
1977 
1978 	next_bitmap = mapping->nr_bitmaps;
1979 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1980 						GFP_ATOMIC);
1981 	if (!mapping->bitmaps[next_bitmap])
1982 		return -ENOMEM;
1983 
1984 	mapping->nr_bitmaps++;
1985 
1986 	return 0;
1987 }
1988 
1989 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1990 {
1991 	if (mapping)
1992 		kref_put(&mapping->kref, release_iommu_mapping);
1993 }
1994 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1995 
1996 static int __arm_iommu_attach_device(struct device *dev,
1997 				     struct dma_iommu_mapping *mapping)
1998 {
1999 	int err;
2000 
2001 	err = iommu_attach_device(mapping->domain, dev);
2002 	if (err)
2003 		return err;
2004 
2005 	kref_get(&mapping->kref);
2006 	to_dma_iommu_mapping(dev) = mapping;
2007 
2008 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2009 	return 0;
2010 }
2011 
2012 /**
2013  * arm_iommu_attach_device
2014  * @dev: valid struct device pointer
2015  * @mapping: io address space mapping structure (returned from
2016  *	arm_iommu_create_mapping)
2017  *
2018  * Attaches specified io address space mapping to the provided device.
2019  * This replaces the dma operations (dma_map_ops pointer) with the
2020  * IOMMU aware version.
2021  *
2022  * More than one client might be attached to the same io address space
2023  * mapping.
2024  */
2025 int arm_iommu_attach_device(struct device *dev,
2026 			    struct dma_iommu_mapping *mapping)
2027 {
2028 	int err;
2029 
2030 	err = __arm_iommu_attach_device(dev, mapping);
2031 	if (err)
2032 		return err;
2033 
2034 	set_dma_ops(dev, &iommu_ops);
2035 	return 0;
2036 }
2037 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2038 
2039 static void __arm_iommu_detach_device(struct device *dev)
2040 {
2041 	struct dma_iommu_mapping *mapping;
2042 
2043 	mapping = to_dma_iommu_mapping(dev);
2044 	if (!mapping) {
2045 		dev_warn(dev, "Not attached\n");
2046 		return;
2047 	}
2048 
2049 	iommu_detach_device(mapping->domain, dev);
2050 	kref_put(&mapping->kref, release_iommu_mapping);
2051 	to_dma_iommu_mapping(dev) = NULL;
2052 
2053 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2054 }
2055 
2056 /**
2057  * arm_iommu_detach_device
2058  * @dev: valid struct device pointer
2059  *
2060  * Detaches the provided device from a previously attached map.
2061  * This voids the dma operations (dma_map_ops pointer)
2062  */
2063 void arm_iommu_detach_device(struct device *dev)
2064 {
2065 	__arm_iommu_detach_device(dev);
2066 	set_dma_ops(dev, NULL);
2067 }
2068 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2069 
2070 static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2071 {
2072 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2073 }
2074 
2075 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2076 				    struct iommu_ops *iommu)
2077 {
2078 	struct dma_iommu_mapping *mapping;
2079 
2080 	if (!iommu)
2081 		return false;
2082 
2083 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2084 	if (IS_ERR(mapping)) {
2085 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2086 				size, dev_name(dev));
2087 		return false;
2088 	}
2089 
2090 	if (__arm_iommu_attach_device(dev, mapping)) {
2091 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2092 				dev_name(dev));
2093 		arm_iommu_release_mapping(mapping);
2094 		return false;
2095 	}
2096 
2097 	return true;
2098 }
2099 
2100 static void arm_teardown_iommu_dma_ops(struct device *dev)
2101 {
2102 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2103 
2104 	if (!mapping)
2105 		return;
2106 
2107 	__arm_iommu_detach_device(dev);
2108 	arm_iommu_release_mapping(mapping);
2109 }
2110 
2111 #else
2112 
2113 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2114 				    struct iommu_ops *iommu)
2115 {
2116 	return false;
2117 }
2118 
2119 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2120 
2121 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2122 
2123 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2124 
2125 static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2126 {
2127 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2128 }
2129 
2130 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2131 			struct iommu_ops *iommu, bool coherent)
2132 {
2133 	struct dma_map_ops *dma_ops;
2134 
2135 	dev->archdata.dma_coherent = coherent;
2136 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2137 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2138 	else
2139 		dma_ops = arm_get_dma_map_ops(coherent);
2140 
2141 	set_dma_ops(dev, dma_ops);
2142 }
2143 
2144 void arch_teardown_dma_ops(struct device *dev)
2145 {
2146 	arm_teardown_iommu_dma_ops(dev);
2147 }
2148