1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/module.h> 13 #include <linux/mm.h> 14 #include <linux/genalloc.h> 15 #include <linux/gfp.h> 16 #include <linux/errno.h> 17 #include <linux/list.h> 18 #include <linux/init.h> 19 #include <linux/device.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/dma-contiguous.h> 22 #include <linux/highmem.h> 23 #include <linux/memblock.h> 24 #include <linux/slab.h> 25 #include <linux/iommu.h> 26 #include <linux/io.h> 27 #include <linux/vmalloc.h> 28 #include <linux/sizes.h> 29 #include <linux/cma.h> 30 31 #include <asm/memory.h> 32 #include <asm/highmem.h> 33 #include <asm/cacheflush.h> 34 #include <asm/tlbflush.h> 35 #include <asm/mach/arch.h> 36 #include <asm/dma-iommu.h> 37 #include <asm/mach/map.h> 38 #include <asm/system_info.h> 39 #include <asm/dma-contiguous.h> 40 41 #include "dma.h" 42 #include "mm.h" 43 44 struct arm_dma_alloc_args { 45 struct device *dev; 46 size_t size; 47 gfp_t gfp; 48 pgprot_t prot; 49 const void *caller; 50 bool want_vaddr; 51 int coherent_flag; 52 }; 53 54 struct arm_dma_free_args { 55 struct device *dev; 56 size_t size; 57 void *cpu_addr; 58 struct page *page; 59 bool want_vaddr; 60 }; 61 62 #define NORMAL 0 63 #define COHERENT 1 64 65 struct arm_dma_allocator { 66 void *(*alloc)(struct arm_dma_alloc_args *args, 67 struct page **ret_page); 68 void (*free)(struct arm_dma_free_args *args); 69 }; 70 71 struct arm_dma_buffer { 72 struct list_head list; 73 void *virt; 74 struct arm_dma_allocator *allocator; 75 }; 76 77 static LIST_HEAD(arm_dma_bufs); 78 static DEFINE_SPINLOCK(arm_dma_bufs_lock); 79 80 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) 81 { 82 struct arm_dma_buffer *buf, *found = NULL; 83 unsigned long flags; 84 85 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 86 list_for_each_entry(buf, &arm_dma_bufs, list) { 87 if (buf->virt == virt) { 88 list_del(&buf->list); 89 found = buf; 90 break; 91 } 92 } 93 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 94 return found; 95 } 96 97 /* 98 * The DMA API is built upon the notion of "buffer ownership". A buffer 99 * is either exclusively owned by the CPU (and therefore may be accessed 100 * by it) or exclusively owned by the DMA device. These helper functions 101 * represent the transitions between these two ownership states. 102 * 103 * Note, however, that on later ARMs, this notion does not work due to 104 * speculative prefetches. We model our approach on the assumption that 105 * the CPU does do speculative prefetches, which means we clean caches 106 * before transfers and delay cache invalidation until transfer completion. 107 * 108 */ 109 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 110 size_t, enum dma_data_direction); 111 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 112 size_t, enum dma_data_direction); 113 114 /** 115 * arm_dma_map_page - map a portion of a page for streaming DMA 116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 117 * @page: page that buffer resides in 118 * @offset: offset into page for start of buffer 119 * @size: size of buffer to map 120 * @dir: DMA transfer direction 121 * 122 * Ensure that any data held in the cache is appropriately discarded 123 * or written back. 124 * 125 * The device owns this memory once this call has completed. The CPU 126 * can regain ownership by calling dma_unmap_page(). 127 */ 128 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 129 unsigned long offset, size_t size, enum dma_data_direction dir, 130 unsigned long attrs) 131 { 132 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 133 __dma_page_cpu_to_dev(page, offset, size, dir); 134 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 135 } 136 137 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 138 unsigned long offset, size_t size, enum dma_data_direction dir, 139 unsigned long attrs) 140 { 141 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 142 } 143 144 /** 145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 147 * @handle: DMA address of buffer 148 * @size: size of buffer (same as passed to dma_map_page) 149 * @dir: DMA transfer direction (same as passed to dma_map_page) 150 * 151 * Unmap a page streaming mode DMA translation. The handle and size 152 * must match what was provided in the previous dma_map_page() call. 153 * All other usages are undefined. 154 * 155 * After this call, reads by the CPU to the buffer are guaranteed to see 156 * whatever the device wrote there. 157 */ 158 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 159 size_t size, enum dma_data_direction dir, unsigned long attrs) 160 { 161 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 162 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 163 handle & ~PAGE_MASK, size, dir); 164 } 165 166 static void arm_dma_sync_single_for_cpu(struct device *dev, 167 dma_addr_t handle, size_t size, enum dma_data_direction dir) 168 { 169 unsigned int offset = handle & (PAGE_SIZE - 1); 170 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 171 __dma_page_dev_to_cpu(page, offset, size, dir); 172 } 173 174 static void arm_dma_sync_single_for_device(struct device *dev, 175 dma_addr_t handle, size_t size, enum dma_data_direction dir) 176 { 177 unsigned int offset = handle & (PAGE_SIZE - 1); 178 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 179 __dma_page_cpu_to_dev(page, offset, size, dir); 180 } 181 182 const struct dma_map_ops arm_dma_ops = { 183 .alloc = arm_dma_alloc, 184 .free = arm_dma_free, 185 .mmap = arm_dma_mmap, 186 .get_sgtable = arm_dma_get_sgtable, 187 .map_page = arm_dma_map_page, 188 .unmap_page = arm_dma_unmap_page, 189 .map_sg = arm_dma_map_sg, 190 .unmap_sg = arm_dma_unmap_sg, 191 .map_resource = dma_direct_map_resource, 192 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 193 .sync_single_for_device = arm_dma_sync_single_for_device, 194 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 195 .sync_sg_for_device = arm_dma_sync_sg_for_device, 196 .dma_supported = arm_dma_supported, 197 }; 198 EXPORT_SYMBOL(arm_dma_ops); 199 200 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 201 dma_addr_t *handle, gfp_t gfp, unsigned long attrs); 202 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 203 dma_addr_t handle, unsigned long attrs); 204 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 205 void *cpu_addr, dma_addr_t dma_addr, size_t size, 206 unsigned long attrs); 207 208 const struct dma_map_ops arm_coherent_dma_ops = { 209 .alloc = arm_coherent_dma_alloc, 210 .free = arm_coherent_dma_free, 211 .mmap = arm_coherent_dma_mmap, 212 .get_sgtable = arm_dma_get_sgtable, 213 .map_page = arm_coherent_dma_map_page, 214 .map_sg = arm_dma_map_sg, 215 .map_resource = dma_direct_map_resource, 216 .dma_supported = arm_dma_supported, 217 }; 218 EXPORT_SYMBOL(arm_coherent_dma_ops); 219 220 static int __dma_supported(struct device *dev, u64 mask, bool warn) 221 { 222 unsigned long max_dma_pfn; 223 224 /* 225 * If the mask allows for more memory than we can address, 226 * and we actually have that much memory, then we must 227 * indicate that DMA to this device is not supported. 228 */ 229 if (sizeof(mask) != sizeof(dma_addr_t) && 230 mask > (dma_addr_t)~0 && 231 dma_to_pfn(dev, ~0) < max_pfn - 1) { 232 if (warn) { 233 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n", 234 mask); 235 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n"); 236 } 237 return 0; 238 } 239 240 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); 241 242 /* 243 * Translate the device's DMA mask to a PFN limit. This 244 * PFN number includes the page which we can DMA to. 245 */ 246 if (dma_to_pfn(dev, mask) < max_dma_pfn) { 247 if (warn) 248 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", 249 mask, 250 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, 251 max_dma_pfn + 1); 252 return 0; 253 } 254 255 return 1; 256 } 257 258 static u64 get_coherent_dma_mask(struct device *dev) 259 { 260 u64 mask = (u64)DMA_BIT_MASK(32); 261 262 if (dev) { 263 mask = dev->coherent_dma_mask; 264 265 /* 266 * Sanity check the DMA mask - it must be non-zero, and 267 * must be able to be satisfied by a DMA allocation. 268 */ 269 if (mask == 0) { 270 dev_warn(dev, "coherent DMA mask is unset\n"); 271 return 0; 272 } 273 274 if (!__dma_supported(dev, mask, true)) 275 return 0; 276 } 277 278 return mask; 279 } 280 281 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) 282 { 283 /* 284 * Ensure that the allocated pages are zeroed, and that any data 285 * lurking in the kernel direct-mapped region is invalidated. 286 */ 287 if (PageHighMem(page)) { 288 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 289 phys_addr_t end = base + size; 290 while (size > 0) { 291 void *ptr = kmap_atomic(page); 292 memset(ptr, 0, PAGE_SIZE); 293 if (coherent_flag != COHERENT) 294 dmac_flush_range(ptr, ptr + PAGE_SIZE); 295 kunmap_atomic(ptr); 296 page++; 297 size -= PAGE_SIZE; 298 } 299 if (coherent_flag != COHERENT) 300 outer_flush_range(base, end); 301 } else { 302 void *ptr = page_address(page); 303 memset(ptr, 0, size); 304 if (coherent_flag != COHERENT) { 305 dmac_flush_range(ptr, ptr + size); 306 outer_flush_range(__pa(ptr), __pa(ptr) + size); 307 } 308 } 309 } 310 311 /* 312 * Allocate a DMA buffer for 'dev' of size 'size' using the 313 * specified gfp mask. Note that 'size' must be page aligned. 314 */ 315 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, 316 gfp_t gfp, int coherent_flag) 317 { 318 unsigned long order = get_order(size); 319 struct page *page, *p, *e; 320 321 page = alloc_pages(gfp, order); 322 if (!page) 323 return NULL; 324 325 /* 326 * Now split the huge page and free the excess pages 327 */ 328 split_page(page, order); 329 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 330 __free_page(p); 331 332 __dma_clear_buffer(page, size, coherent_flag); 333 334 return page; 335 } 336 337 /* 338 * Free a DMA buffer. 'size' must be page aligned. 339 */ 340 static void __dma_free_buffer(struct page *page, size_t size) 341 { 342 struct page *e = page + (size >> PAGE_SHIFT); 343 344 while (page < e) { 345 __free_page(page); 346 page++; 347 } 348 } 349 350 static void *__alloc_from_contiguous(struct device *dev, size_t size, 351 pgprot_t prot, struct page **ret_page, 352 const void *caller, bool want_vaddr, 353 int coherent_flag, gfp_t gfp); 354 355 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 356 pgprot_t prot, struct page **ret_page, 357 const void *caller, bool want_vaddr); 358 359 static void * 360 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 361 const void *caller) 362 { 363 /* 364 * DMA allocation can be mapped to user space, so lets 365 * set VM_USERMAP flags too. 366 */ 367 return dma_common_contiguous_remap(page, size, 368 VM_ARM_DMA_CONSISTENT | VM_USERMAP, 369 prot, caller); 370 } 371 372 static void __dma_free_remap(void *cpu_addr, size_t size) 373 { 374 dma_common_free_remap(cpu_addr, size, 375 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 376 } 377 378 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 379 static struct gen_pool *atomic_pool __ro_after_init; 380 381 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 382 383 static int __init early_coherent_pool(char *p) 384 { 385 atomic_pool_size = memparse(p, &p); 386 return 0; 387 } 388 early_param("coherent_pool", early_coherent_pool); 389 390 /* 391 * Initialise the coherent pool for atomic allocations. 392 */ 393 static int __init atomic_pool_init(void) 394 { 395 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 396 gfp_t gfp = GFP_KERNEL | GFP_DMA; 397 struct page *page; 398 void *ptr; 399 400 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 401 if (!atomic_pool) 402 goto out; 403 /* 404 * The atomic pool is only used for non-coherent allocations 405 * so we must pass NORMAL for coherent_flag. 406 */ 407 if (dev_get_cma_area(NULL)) 408 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, 409 &page, atomic_pool_init, true, NORMAL, 410 GFP_KERNEL); 411 else 412 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, 413 &page, atomic_pool_init, true); 414 if (ptr) { 415 int ret; 416 417 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, 418 page_to_phys(page), 419 atomic_pool_size, -1); 420 if (ret) 421 goto destroy_genpool; 422 423 gen_pool_set_algo(atomic_pool, 424 gen_pool_first_fit_order_align, 425 NULL); 426 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", 427 atomic_pool_size / 1024); 428 return 0; 429 } 430 431 destroy_genpool: 432 gen_pool_destroy(atomic_pool); 433 atomic_pool = NULL; 434 out: 435 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 436 atomic_pool_size / 1024); 437 return -ENOMEM; 438 } 439 /* 440 * CMA is activated by core_initcall, so we must be called after it. 441 */ 442 postcore_initcall(atomic_pool_init); 443 444 struct dma_contig_early_reserve { 445 phys_addr_t base; 446 unsigned long size; 447 }; 448 449 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 450 451 static int dma_mmu_remap_num __initdata; 452 453 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 454 { 455 dma_mmu_remap[dma_mmu_remap_num].base = base; 456 dma_mmu_remap[dma_mmu_remap_num].size = size; 457 dma_mmu_remap_num++; 458 } 459 460 void __init dma_contiguous_remap(void) 461 { 462 int i; 463 for (i = 0; i < dma_mmu_remap_num; i++) { 464 phys_addr_t start = dma_mmu_remap[i].base; 465 phys_addr_t end = start + dma_mmu_remap[i].size; 466 struct map_desc map; 467 unsigned long addr; 468 469 if (end > arm_lowmem_limit) 470 end = arm_lowmem_limit; 471 if (start >= end) 472 continue; 473 474 map.pfn = __phys_to_pfn(start); 475 map.virtual = __phys_to_virt(start); 476 map.length = end - start; 477 map.type = MT_MEMORY_DMA_READY; 478 479 /* 480 * Clear previous low-memory mapping to ensure that the 481 * TLB does not see any conflicting entries, then flush 482 * the TLB of the old entries before creating new mappings. 483 * 484 * This ensures that any speculatively loaded TLB entries 485 * (even though they may be rare) can not cause any problems, 486 * and ensures that this code is architecturally compliant. 487 */ 488 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 489 addr += PMD_SIZE) 490 pmd_clear(pmd_off_k(addr)); 491 492 flush_tlb_kernel_range(__phys_to_virt(start), 493 __phys_to_virt(end)); 494 495 iotable_init(&map, 1); 496 } 497 } 498 499 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 500 void *data) 501 { 502 struct page *page = virt_to_page(addr); 503 pgprot_t prot = *(pgprot_t *)data; 504 505 set_pte_ext(pte, mk_pte(page, prot), 0); 506 return 0; 507 } 508 509 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 510 { 511 unsigned long start = (unsigned long) page_address(page); 512 unsigned end = start + size; 513 514 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 515 flush_tlb_kernel_range(start, end); 516 } 517 518 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 519 pgprot_t prot, struct page **ret_page, 520 const void *caller, bool want_vaddr) 521 { 522 struct page *page; 523 void *ptr = NULL; 524 /* 525 * __alloc_remap_buffer is only called when the device is 526 * non-coherent 527 */ 528 page = __dma_alloc_buffer(dev, size, gfp, NORMAL); 529 if (!page) 530 return NULL; 531 if (!want_vaddr) 532 goto out; 533 534 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 535 if (!ptr) { 536 __dma_free_buffer(page, size); 537 return NULL; 538 } 539 540 out: 541 *ret_page = page; 542 return ptr; 543 } 544 545 static void *__alloc_from_pool(size_t size, struct page **ret_page) 546 { 547 unsigned long val; 548 void *ptr = NULL; 549 550 if (!atomic_pool) { 551 WARN(1, "coherent pool not initialised!\n"); 552 return NULL; 553 } 554 555 val = gen_pool_alloc(atomic_pool, size); 556 if (val) { 557 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 558 559 *ret_page = phys_to_page(phys); 560 ptr = (void *)val; 561 } 562 563 return ptr; 564 } 565 566 static bool __in_atomic_pool(void *start, size_t size) 567 { 568 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 569 } 570 571 static int __free_from_pool(void *start, size_t size) 572 { 573 if (!__in_atomic_pool(start, size)) 574 return 0; 575 576 gen_pool_free(atomic_pool, (unsigned long)start, size); 577 578 return 1; 579 } 580 581 static void *__alloc_from_contiguous(struct device *dev, size_t size, 582 pgprot_t prot, struct page **ret_page, 583 const void *caller, bool want_vaddr, 584 int coherent_flag, gfp_t gfp) 585 { 586 unsigned long order = get_order(size); 587 size_t count = size >> PAGE_SHIFT; 588 struct page *page; 589 void *ptr = NULL; 590 591 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN); 592 if (!page) 593 return NULL; 594 595 __dma_clear_buffer(page, size, coherent_flag); 596 597 if (!want_vaddr) 598 goto out; 599 600 if (PageHighMem(page)) { 601 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 602 if (!ptr) { 603 dma_release_from_contiguous(dev, page, count); 604 return NULL; 605 } 606 } else { 607 __dma_remap(page, size, prot); 608 ptr = page_address(page); 609 } 610 611 out: 612 *ret_page = page; 613 return ptr; 614 } 615 616 static void __free_from_contiguous(struct device *dev, struct page *page, 617 void *cpu_addr, size_t size, bool want_vaddr) 618 { 619 if (want_vaddr) { 620 if (PageHighMem(page)) 621 __dma_free_remap(cpu_addr, size); 622 else 623 __dma_remap(page, size, PAGE_KERNEL); 624 } 625 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 626 } 627 628 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) 629 { 630 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? 631 pgprot_writecombine(prot) : 632 pgprot_dmacoherent(prot); 633 return prot; 634 } 635 636 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 637 struct page **ret_page) 638 { 639 struct page *page; 640 /* __alloc_simple_buffer is only called when the device is coherent */ 641 page = __dma_alloc_buffer(dev, size, gfp, COHERENT); 642 if (!page) 643 return NULL; 644 645 *ret_page = page; 646 return page_address(page); 647 } 648 649 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, 650 struct page **ret_page) 651 { 652 return __alloc_simple_buffer(args->dev, args->size, args->gfp, 653 ret_page); 654 } 655 656 static void simple_allocator_free(struct arm_dma_free_args *args) 657 { 658 __dma_free_buffer(args->page, args->size); 659 } 660 661 static struct arm_dma_allocator simple_allocator = { 662 .alloc = simple_allocator_alloc, 663 .free = simple_allocator_free, 664 }; 665 666 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, 667 struct page **ret_page) 668 { 669 return __alloc_from_contiguous(args->dev, args->size, args->prot, 670 ret_page, args->caller, 671 args->want_vaddr, args->coherent_flag, 672 args->gfp); 673 } 674 675 static void cma_allocator_free(struct arm_dma_free_args *args) 676 { 677 __free_from_contiguous(args->dev, args->page, args->cpu_addr, 678 args->size, args->want_vaddr); 679 } 680 681 static struct arm_dma_allocator cma_allocator = { 682 .alloc = cma_allocator_alloc, 683 .free = cma_allocator_free, 684 }; 685 686 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, 687 struct page **ret_page) 688 { 689 return __alloc_from_pool(args->size, ret_page); 690 } 691 692 static void pool_allocator_free(struct arm_dma_free_args *args) 693 { 694 __free_from_pool(args->cpu_addr, args->size); 695 } 696 697 static struct arm_dma_allocator pool_allocator = { 698 .alloc = pool_allocator_alloc, 699 .free = pool_allocator_free, 700 }; 701 702 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, 703 struct page **ret_page) 704 { 705 return __alloc_remap_buffer(args->dev, args->size, args->gfp, 706 args->prot, ret_page, args->caller, 707 args->want_vaddr); 708 } 709 710 static void remap_allocator_free(struct arm_dma_free_args *args) 711 { 712 if (args->want_vaddr) 713 __dma_free_remap(args->cpu_addr, args->size); 714 715 __dma_free_buffer(args->page, args->size); 716 } 717 718 static struct arm_dma_allocator remap_allocator = { 719 .alloc = remap_allocator_alloc, 720 .free = remap_allocator_free, 721 }; 722 723 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 724 gfp_t gfp, pgprot_t prot, bool is_coherent, 725 unsigned long attrs, const void *caller) 726 { 727 u64 mask = get_coherent_dma_mask(dev); 728 struct page *page = NULL; 729 void *addr; 730 bool allowblock, cma; 731 struct arm_dma_buffer *buf; 732 struct arm_dma_alloc_args args = { 733 .dev = dev, 734 .size = PAGE_ALIGN(size), 735 .gfp = gfp, 736 .prot = prot, 737 .caller = caller, 738 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 739 .coherent_flag = is_coherent ? COHERENT : NORMAL, 740 }; 741 742 #ifdef CONFIG_DMA_API_DEBUG 743 u64 limit = (mask + 1) & ~mask; 744 if (limit && size >= limit) { 745 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 746 size, mask); 747 return NULL; 748 } 749 #endif 750 751 if (!mask) 752 return NULL; 753 754 buf = kzalloc(sizeof(*buf), 755 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); 756 if (!buf) 757 return NULL; 758 759 if (mask < 0xffffffffULL) 760 gfp |= GFP_DMA; 761 762 /* 763 * Following is a work-around (a.k.a. hack) to prevent pages 764 * with __GFP_COMP being passed to split_page() which cannot 765 * handle them. The real problem is that this flag probably 766 * should be 0 on ARM as it is not supported on this 767 * platform; see CONFIG_HUGETLBFS. 768 */ 769 gfp &= ~(__GFP_COMP); 770 args.gfp = gfp; 771 772 *handle = DMA_MAPPING_ERROR; 773 allowblock = gfpflags_allow_blocking(gfp); 774 cma = allowblock ? dev_get_cma_area(dev) : false; 775 776 if (cma) 777 buf->allocator = &cma_allocator; 778 else if (is_coherent) 779 buf->allocator = &simple_allocator; 780 else if (allowblock) 781 buf->allocator = &remap_allocator; 782 else 783 buf->allocator = &pool_allocator; 784 785 addr = buf->allocator->alloc(&args, &page); 786 787 if (page) { 788 unsigned long flags; 789 790 *handle = pfn_to_dma(dev, page_to_pfn(page)); 791 buf->virt = args.want_vaddr ? addr : page; 792 793 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 794 list_add(&buf->list, &arm_dma_bufs); 795 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 796 } else { 797 kfree(buf); 798 } 799 800 return args.want_vaddr ? addr : page; 801 } 802 803 /* 804 * Allocate DMA-coherent memory space and return both the kernel remapped 805 * virtual and bus address for that space. 806 */ 807 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 808 gfp_t gfp, unsigned long attrs) 809 { 810 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 811 812 return __dma_alloc(dev, size, handle, gfp, prot, false, 813 attrs, __builtin_return_address(0)); 814 } 815 816 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 817 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 818 { 819 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true, 820 attrs, __builtin_return_address(0)); 821 } 822 823 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 824 void *cpu_addr, dma_addr_t dma_addr, size_t size, 825 unsigned long attrs) 826 { 827 int ret = -ENXIO; 828 unsigned long nr_vma_pages = vma_pages(vma); 829 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 830 unsigned long pfn = dma_to_pfn(dev, dma_addr); 831 unsigned long off = vma->vm_pgoff; 832 833 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 834 return ret; 835 836 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 837 ret = remap_pfn_range(vma, vma->vm_start, 838 pfn + off, 839 vma->vm_end - vma->vm_start, 840 vma->vm_page_prot); 841 } 842 843 return ret; 844 } 845 846 /* 847 * Create userspace mapping for the DMA-coherent memory. 848 */ 849 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 850 void *cpu_addr, dma_addr_t dma_addr, size_t size, 851 unsigned long attrs) 852 { 853 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 854 } 855 856 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 857 void *cpu_addr, dma_addr_t dma_addr, size_t size, 858 unsigned long attrs) 859 { 860 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 861 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 862 } 863 864 /* 865 * Free a buffer as defined by the above mapping. 866 */ 867 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 868 dma_addr_t handle, unsigned long attrs, 869 bool is_coherent) 870 { 871 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 872 struct arm_dma_buffer *buf; 873 struct arm_dma_free_args args = { 874 .dev = dev, 875 .size = PAGE_ALIGN(size), 876 .cpu_addr = cpu_addr, 877 .page = page, 878 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 879 }; 880 881 buf = arm_dma_buffer_find(cpu_addr); 882 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) 883 return; 884 885 buf->allocator->free(&args); 886 kfree(buf); 887 } 888 889 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 890 dma_addr_t handle, unsigned long attrs) 891 { 892 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 893 } 894 895 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 896 dma_addr_t handle, unsigned long attrs) 897 { 898 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 899 } 900 901 /* 902 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems 903 * that the intention is to allow exporting memory allocated via the 904 * coherent DMA APIs through the dma_buf API, which only accepts a 905 * scattertable. This presents a couple of problems: 906 * 1. Not all memory allocated via the coherent DMA APIs is backed by 907 * a struct page 908 * 2. Passing coherent DMA memory into the streaming APIs is not allowed 909 * as we will try to flush the memory through a different alias to that 910 * actually being used (and the flushes are redundant.) 911 */ 912 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 913 void *cpu_addr, dma_addr_t handle, size_t size, 914 unsigned long attrs) 915 { 916 unsigned long pfn = dma_to_pfn(dev, handle); 917 struct page *page; 918 int ret; 919 920 /* If the PFN is not valid, we do not have a struct page */ 921 if (!pfn_valid(pfn)) 922 return -ENXIO; 923 924 page = pfn_to_page(pfn); 925 926 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 927 if (unlikely(ret)) 928 return ret; 929 930 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 931 return 0; 932 } 933 934 static void dma_cache_maint_page(struct page *page, unsigned long offset, 935 size_t size, enum dma_data_direction dir, 936 void (*op)(const void *, size_t, int)) 937 { 938 unsigned long pfn; 939 size_t left = size; 940 941 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 942 offset %= PAGE_SIZE; 943 944 /* 945 * A single sg entry may refer to multiple physically contiguous 946 * pages. But we still need to process highmem pages individually. 947 * If highmem is not configured then the bulk of this loop gets 948 * optimized out. 949 */ 950 do { 951 size_t len = left; 952 void *vaddr; 953 954 page = pfn_to_page(pfn); 955 956 if (PageHighMem(page)) { 957 if (len + offset > PAGE_SIZE) 958 len = PAGE_SIZE - offset; 959 960 if (cache_is_vipt_nonaliasing()) { 961 vaddr = kmap_atomic(page); 962 op(vaddr + offset, len, dir); 963 kunmap_atomic(vaddr); 964 } else { 965 vaddr = kmap_high_get(page); 966 if (vaddr) { 967 op(vaddr + offset, len, dir); 968 kunmap_high(page); 969 } 970 } 971 } else { 972 vaddr = page_address(page) + offset; 973 op(vaddr, len, dir); 974 } 975 offset = 0; 976 pfn++; 977 left -= len; 978 } while (left); 979 } 980 981 /* 982 * Make an area consistent for devices. 983 * Note: Drivers should NOT use this function directly, as it will break 984 * platforms with CONFIG_DMABOUNCE. 985 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 986 */ 987 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 988 size_t size, enum dma_data_direction dir) 989 { 990 phys_addr_t paddr; 991 992 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 993 994 paddr = page_to_phys(page) + off; 995 if (dir == DMA_FROM_DEVICE) { 996 outer_inv_range(paddr, paddr + size); 997 } else { 998 outer_clean_range(paddr, paddr + size); 999 } 1000 /* FIXME: non-speculating: flush on bidirectional mappings? */ 1001 } 1002 1003 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 1004 size_t size, enum dma_data_direction dir) 1005 { 1006 phys_addr_t paddr = page_to_phys(page) + off; 1007 1008 /* FIXME: non-speculating: not required */ 1009 /* in any case, don't bother invalidating if DMA to device */ 1010 if (dir != DMA_TO_DEVICE) { 1011 outer_inv_range(paddr, paddr + size); 1012 1013 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 1014 } 1015 1016 /* 1017 * Mark the D-cache clean for these pages to avoid extra flushing. 1018 */ 1019 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 1020 unsigned long pfn; 1021 size_t left = size; 1022 1023 pfn = page_to_pfn(page) + off / PAGE_SIZE; 1024 off %= PAGE_SIZE; 1025 if (off) { 1026 pfn++; 1027 left -= PAGE_SIZE - off; 1028 } 1029 while (left >= PAGE_SIZE) { 1030 page = pfn_to_page(pfn++); 1031 set_bit(PG_dcache_clean, &page->flags); 1032 left -= PAGE_SIZE; 1033 } 1034 } 1035 } 1036 1037 /** 1038 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 1039 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1040 * @sg: list of buffers 1041 * @nents: number of buffers to map 1042 * @dir: DMA transfer direction 1043 * 1044 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1045 * This is the scatter-gather version of the dma_map_single interface. 1046 * Here the scatter gather list elements are each tagged with the 1047 * appropriate dma address and length. They are obtained via 1048 * sg_dma_{address,length}. 1049 * 1050 * Device ownership issues as mentioned for dma_map_single are the same 1051 * here. 1052 */ 1053 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1054 enum dma_data_direction dir, unsigned long attrs) 1055 { 1056 const struct dma_map_ops *ops = get_dma_ops(dev); 1057 struct scatterlist *s; 1058 int i, j; 1059 1060 for_each_sg(sg, s, nents, i) { 1061 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1062 s->dma_length = s->length; 1063 #endif 1064 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 1065 s->length, dir, attrs); 1066 if (dma_mapping_error(dev, s->dma_address)) 1067 goto bad_mapping; 1068 } 1069 return nents; 1070 1071 bad_mapping: 1072 for_each_sg(sg, s, i, j) 1073 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1074 return 0; 1075 } 1076 1077 /** 1078 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1079 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1080 * @sg: list of buffers 1081 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1082 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1083 * 1084 * Unmap a set of streaming mode DMA translations. Again, CPU access 1085 * rules concerning calls here are the same as for dma_unmap_single(). 1086 */ 1087 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1088 enum dma_data_direction dir, unsigned long attrs) 1089 { 1090 const struct dma_map_ops *ops = get_dma_ops(dev); 1091 struct scatterlist *s; 1092 1093 int i; 1094 1095 for_each_sg(sg, s, nents, i) 1096 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1097 } 1098 1099 /** 1100 * arm_dma_sync_sg_for_cpu 1101 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1102 * @sg: list of buffers 1103 * @nents: number of buffers to map (returned from dma_map_sg) 1104 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1105 */ 1106 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1107 int nents, enum dma_data_direction dir) 1108 { 1109 const struct dma_map_ops *ops = get_dma_ops(dev); 1110 struct scatterlist *s; 1111 int i; 1112 1113 for_each_sg(sg, s, nents, i) 1114 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 1115 dir); 1116 } 1117 1118 /** 1119 * arm_dma_sync_sg_for_device 1120 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1121 * @sg: list of buffers 1122 * @nents: number of buffers to map (returned from dma_map_sg) 1123 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1124 */ 1125 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1126 int nents, enum dma_data_direction dir) 1127 { 1128 const struct dma_map_ops *ops = get_dma_ops(dev); 1129 struct scatterlist *s; 1130 int i; 1131 1132 for_each_sg(sg, s, nents, i) 1133 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 1134 dir); 1135 } 1136 1137 /* 1138 * Return whether the given device DMA address mask can be supported 1139 * properly. For example, if your device can only drive the low 24-bits 1140 * during bus mastering, then you would pass 0x00ffffff as the mask 1141 * to this function. 1142 */ 1143 int arm_dma_supported(struct device *dev, u64 mask) 1144 { 1145 return __dma_supported(dev, mask, false); 1146 } 1147 1148 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent) 1149 { 1150 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; 1151 } 1152 1153 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1154 1155 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) 1156 { 1157 int prot = 0; 1158 1159 if (attrs & DMA_ATTR_PRIVILEGED) 1160 prot |= IOMMU_PRIV; 1161 1162 switch (dir) { 1163 case DMA_BIDIRECTIONAL: 1164 return prot | IOMMU_READ | IOMMU_WRITE; 1165 case DMA_TO_DEVICE: 1166 return prot | IOMMU_READ; 1167 case DMA_FROM_DEVICE: 1168 return prot | IOMMU_WRITE; 1169 default: 1170 return prot; 1171 } 1172 } 1173 1174 /* IOMMU */ 1175 1176 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 1177 1178 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1179 size_t size) 1180 { 1181 unsigned int order = get_order(size); 1182 unsigned int align = 0; 1183 unsigned int count, start; 1184 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1185 unsigned long flags; 1186 dma_addr_t iova; 1187 int i; 1188 1189 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1190 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1191 1192 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1193 align = (1 << order) - 1; 1194 1195 spin_lock_irqsave(&mapping->lock, flags); 1196 for (i = 0; i < mapping->nr_bitmaps; i++) { 1197 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1198 mapping->bits, 0, count, align); 1199 1200 if (start > mapping->bits) 1201 continue; 1202 1203 bitmap_set(mapping->bitmaps[i], start, count); 1204 break; 1205 } 1206 1207 /* 1208 * No unused range found. Try to extend the existing mapping 1209 * and perform a second attempt to reserve an IO virtual 1210 * address range of size bytes. 1211 */ 1212 if (i == mapping->nr_bitmaps) { 1213 if (extend_iommu_mapping(mapping)) { 1214 spin_unlock_irqrestore(&mapping->lock, flags); 1215 return DMA_MAPPING_ERROR; 1216 } 1217 1218 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1219 mapping->bits, 0, count, align); 1220 1221 if (start > mapping->bits) { 1222 spin_unlock_irqrestore(&mapping->lock, flags); 1223 return DMA_MAPPING_ERROR; 1224 } 1225 1226 bitmap_set(mapping->bitmaps[i], start, count); 1227 } 1228 spin_unlock_irqrestore(&mapping->lock, flags); 1229 1230 iova = mapping->base + (mapping_size * i); 1231 iova += start << PAGE_SHIFT; 1232 1233 return iova; 1234 } 1235 1236 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1237 dma_addr_t addr, size_t size) 1238 { 1239 unsigned int start, count; 1240 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1241 unsigned long flags; 1242 dma_addr_t bitmap_base; 1243 u32 bitmap_index; 1244 1245 if (!size) 1246 return; 1247 1248 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; 1249 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 1250 1251 bitmap_base = mapping->base + mapping_size * bitmap_index; 1252 1253 start = (addr - bitmap_base) >> PAGE_SHIFT; 1254 1255 if (addr + size > bitmap_base + mapping_size) { 1256 /* 1257 * The address range to be freed reaches into the iova 1258 * range of the next bitmap. This should not happen as 1259 * we don't allow this in __alloc_iova (at the 1260 * moment). 1261 */ 1262 BUG(); 1263 } else 1264 count = size >> PAGE_SHIFT; 1265 1266 spin_lock_irqsave(&mapping->lock, flags); 1267 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 1268 spin_unlock_irqrestore(&mapping->lock, flags); 1269 } 1270 1271 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ 1272 static const int iommu_order_array[] = { 9, 8, 4, 0 }; 1273 1274 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1275 gfp_t gfp, unsigned long attrs, 1276 int coherent_flag) 1277 { 1278 struct page **pages; 1279 int count = size >> PAGE_SHIFT; 1280 int array_size = count * sizeof(struct page *); 1281 int i = 0; 1282 int order_idx = 0; 1283 1284 if (array_size <= PAGE_SIZE) 1285 pages = kzalloc(array_size, GFP_KERNEL); 1286 else 1287 pages = vzalloc(array_size); 1288 if (!pages) 1289 return NULL; 1290 1291 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) 1292 { 1293 unsigned long order = get_order(size); 1294 struct page *page; 1295 1296 page = dma_alloc_from_contiguous(dev, count, order, 1297 gfp & __GFP_NOWARN); 1298 if (!page) 1299 goto error; 1300 1301 __dma_clear_buffer(page, size, coherent_flag); 1302 1303 for (i = 0; i < count; i++) 1304 pages[i] = page + i; 1305 1306 return pages; 1307 } 1308 1309 /* Go straight to 4K chunks if caller says it's OK. */ 1310 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 1311 order_idx = ARRAY_SIZE(iommu_order_array) - 1; 1312 1313 /* 1314 * IOMMU can map any pages, so himem can also be used here 1315 */ 1316 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1317 1318 while (count) { 1319 int j, order; 1320 1321 order = iommu_order_array[order_idx]; 1322 1323 /* Drop down when we get small */ 1324 if (__fls(count) < order) { 1325 order_idx++; 1326 continue; 1327 } 1328 1329 if (order) { 1330 /* See if it's easy to allocate a high-order chunk */ 1331 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); 1332 1333 /* Go down a notch at first sign of pressure */ 1334 if (!pages[i]) { 1335 order_idx++; 1336 continue; 1337 } 1338 } else { 1339 pages[i] = alloc_pages(gfp, 0); 1340 if (!pages[i]) 1341 goto error; 1342 } 1343 1344 if (order) { 1345 split_page(pages[i], order); 1346 j = 1 << order; 1347 while (--j) 1348 pages[i + j] = pages[i] + j; 1349 } 1350 1351 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); 1352 i += 1 << order; 1353 count -= 1 << order; 1354 } 1355 1356 return pages; 1357 error: 1358 while (i--) 1359 if (pages[i]) 1360 __free_pages(pages[i], 0); 1361 kvfree(pages); 1362 return NULL; 1363 } 1364 1365 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1366 size_t size, unsigned long attrs) 1367 { 1368 int count = size >> PAGE_SHIFT; 1369 int i; 1370 1371 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 1372 dma_release_from_contiguous(dev, pages[0], count); 1373 } else { 1374 for (i = 0; i < count; i++) 1375 if (pages[i]) 1376 __free_pages(pages[i], 0); 1377 } 1378 1379 kvfree(pages); 1380 return 0; 1381 } 1382 1383 /* 1384 * Create a CPU mapping for a specified pages 1385 */ 1386 static void * 1387 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1388 const void *caller) 1389 { 1390 return dma_common_pages_remap(pages, size, 1391 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller); 1392 } 1393 1394 /* 1395 * Create a mapping in device IO address space for specified pages 1396 */ 1397 static dma_addr_t 1398 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, 1399 unsigned long attrs) 1400 { 1401 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1402 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1403 dma_addr_t dma_addr, iova; 1404 int i; 1405 1406 dma_addr = __alloc_iova(mapping, size); 1407 if (dma_addr == DMA_MAPPING_ERROR) 1408 return dma_addr; 1409 1410 iova = dma_addr; 1411 for (i = 0; i < count; ) { 1412 int ret; 1413 1414 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1415 phys_addr_t phys = page_to_phys(pages[i]); 1416 unsigned int len, j; 1417 1418 for (j = i + 1; j < count; j++, next_pfn++) 1419 if (page_to_pfn(pages[j]) != next_pfn) 1420 break; 1421 1422 len = (j - i) << PAGE_SHIFT; 1423 ret = iommu_map(mapping->domain, iova, phys, len, 1424 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs)); 1425 if (ret < 0) 1426 goto fail; 1427 iova += len; 1428 i = j; 1429 } 1430 return dma_addr; 1431 fail: 1432 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1433 __free_iova(mapping, dma_addr, size); 1434 return DMA_MAPPING_ERROR; 1435 } 1436 1437 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1438 { 1439 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1440 1441 /* 1442 * add optional in-page offset from iova to size and align 1443 * result to page size 1444 */ 1445 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1446 iova &= PAGE_MASK; 1447 1448 iommu_unmap(mapping->domain, iova, size); 1449 __free_iova(mapping, iova, size); 1450 return 0; 1451 } 1452 1453 static struct page **__atomic_get_pages(void *addr) 1454 { 1455 struct page *page; 1456 phys_addr_t phys; 1457 1458 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); 1459 page = phys_to_page(phys); 1460 1461 return (struct page **)page; 1462 } 1463 1464 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) 1465 { 1466 struct vm_struct *area; 1467 1468 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1469 return __atomic_get_pages(cpu_addr); 1470 1471 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1472 return cpu_addr; 1473 1474 area = find_vm_area(cpu_addr); 1475 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1476 return area->pages; 1477 return NULL; 1478 } 1479 1480 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, 1481 dma_addr_t *handle, int coherent_flag, 1482 unsigned long attrs) 1483 { 1484 struct page *page; 1485 void *addr; 1486 1487 if (coherent_flag == COHERENT) 1488 addr = __alloc_simple_buffer(dev, size, gfp, &page); 1489 else 1490 addr = __alloc_from_pool(size, &page); 1491 if (!addr) 1492 return NULL; 1493 1494 *handle = __iommu_create_mapping(dev, &page, size, attrs); 1495 if (*handle == DMA_MAPPING_ERROR) 1496 goto err_mapping; 1497 1498 return addr; 1499 1500 err_mapping: 1501 __free_from_pool(addr, size); 1502 return NULL; 1503 } 1504 1505 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1506 dma_addr_t handle, size_t size, int coherent_flag) 1507 { 1508 __iommu_remove_mapping(dev, handle, size); 1509 if (coherent_flag == COHERENT) 1510 __dma_free_buffer(virt_to_page(cpu_addr), size); 1511 else 1512 __free_from_pool(cpu_addr, size); 1513 } 1514 1515 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size, 1516 dma_addr_t *handle, gfp_t gfp, unsigned long attrs, 1517 int coherent_flag) 1518 { 1519 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1520 struct page **pages; 1521 void *addr = NULL; 1522 1523 *handle = DMA_MAPPING_ERROR; 1524 size = PAGE_ALIGN(size); 1525 1526 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp)) 1527 return __iommu_alloc_simple(dev, size, gfp, handle, 1528 coherent_flag, attrs); 1529 1530 /* 1531 * Following is a work-around (a.k.a. hack) to prevent pages 1532 * with __GFP_COMP being passed to split_page() which cannot 1533 * handle them. The real problem is that this flag probably 1534 * should be 0 on ARM as it is not supported on this 1535 * platform; see CONFIG_HUGETLBFS. 1536 */ 1537 gfp &= ~(__GFP_COMP); 1538 1539 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); 1540 if (!pages) 1541 return NULL; 1542 1543 *handle = __iommu_create_mapping(dev, pages, size, attrs); 1544 if (*handle == DMA_MAPPING_ERROR) 1545 goto err_buffer; 1546 1547 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1548 return pages; 1549 1550 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1551 __builtin_return_address(0)); 1552 if (!addr) 1553 goto err_mapping; 1554 1555 return addr; 1556 1557 err_mapping: 1558 __iommu_remove_mapping(dev, *handle, size); 1559 err_buffer: 1560 __iommu_free_buffer(dev, pages, size, attrs); 1561 return NULL; 1562 } 1563 1564 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1565 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1566 { 1567 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL); 1568 } 1569 1570 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size, 1571 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1572 { 1573 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT); 1574 } 1575 1576 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1577 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1578 unsigned long attrs) 1579 { 1580 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1581 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1582 int err; 1583 1584 if (!pages) 1585 return -ENXIO; 1586 1587 if (vma->vm_pgoff >= nr_pages) 1588 return -ENXIO; 1589 1590 err = vm_map_pages(vma, pages, nr_pages); 1591 if (err) 1592 pr_err("Remapping memory failed: %d\n", err); 1593 1594 return err; 1595 } 1596 static int arm_iommu_mmap_attrs(struct device *dev, 1597 struct vm_area_struct *vma, void *cpu_addr, 1598 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1599 { 1600 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1601 1602 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1603 } 1604 1605 static int arm_coherent_iommu_mmap_attrs(struct device *dev, 1606 struct vm_area_struct *vma, void *cpu_addr, 1607 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1608 { 1609 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1610 } 1611 1612 /* 1613 * free a page as defined by the above mapping. 1614 * Must not be called with IRQs disabled. 1615 */ 1616 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1617 dma_addr_t handle, unsigned long attrs, int coherent_flag) 1618 { 1619 struct page **pages; 1620 size = PAGE_ALIGN(size); 1621 1622 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { 1623 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); 1624 return; 1625 } 1626 1627 pages = __iommu_get_pages(cpu_addr, attrs); 1628 if (!pages) { 1629 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1630 return; 1631 } 1632 1633 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) { 1634 dma_common_free_remap(cpu_addr, size, 1635 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 1636 } 1637 1638 __iommu_remove_mapping(dev, handle, size); 1639 __iommu_free_buffer(dev, pages, size, attrs); 1640 } 1641 1642 void arm_iommu_free_attrs(struct device *dev, size_t size, 1643 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1644 { 1645 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL); 1646 } 1647 1648 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size, 1649 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1650 { 1651 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT); 1652 } 1653 1654 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1655 void *cpu_addr, dma_addr_t dma_addr, 1656 size_t size, unsigned long attrs) 1657 { 1658 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1659 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1660 1661 if (!pages) 1662 return -ENXIO; 1663 1664 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1665 GFP_KERNEL); 1666 } 1667 1668 /* 1669 * Map a part of the scatter-gather list into contiguous io address space 1670 */ 1671 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1672 size_t size, dma_addr_t *handle, 1673 enum dma_data_direction dir, unsigned long attrs, 1674 bool is_coherent) 1675 { 1676 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1677 dma_addr_t iova, iova_base; 1678 int ret = 0; 1679 unsigned int count; 1680 struct scatterlist *s; 1681 int prot; 1682 1683 size = PAGE_ALIGN(size); 1684 *handle = DMA_MAPPING_ERROR; 1685 1686 iova_base = iova = __alloc_iova(mapping, size); 1687 if (iova == DMA_MAPPING_ERROR) 1688 return -ENOMEM; 1689 1690 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1691 phys_addr_t phys = page_to_phys(sg_page(s)); 1692 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1693 1694 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1695 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1696 1697 prot = __dma_info_to_prot(dir, attrs); 1698 1699 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1700 if (ret < 0) 1701 goto fail; 1702 count += len >> PAGE_SHIFT; 1703 iova += len; 1704 } 1705 *handle = iova_base; 1706 1707 return 0; 1708 fail: 1709 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1710 __free_iova(mapping, iova_base, size); 1711 return ret; 1712 } 1713 1714 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1715 enum dma_data_direction dir, unsigned long attrs, 1716 bool is_coherent) 1717 { 1718 struct scatterlist *s = sg, *dma = sg, *start = sg; 1719 int i, count = 0; 1720 unsigned int offset = s->offset; 1721 unsigned int size = s->offset + s->length; 1722 unsigned int max = dma_get_max_seg_size(dev); 1723 1724 for (i = 1; i < nents; i++) { 1725 s = sg_next(s); 1726 1727 s->dma_address = DMA_MAPPING_ERROR; 1728 s->dma_length = 0; 1729 1730 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1731 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1732 dir, attrs, is_coherent) < 0) 1733 goto bad_mapping; 1734 1735 dma->dma_address += offset; 1736 dma->dma_length = size - offset; 1737 1738 size = offset = s->offset; 1739 start = s; 1740 dma = sg_next(dma); 1741 count += 1; 1742 } 1743 size += s->length; 1744 } 1745 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1746 is_coherent) < 0) 1747 goto bad_mapping; 1748 1749 dma->dma_address += offset; 1750 dma->dma_length = size - offset; 1751 1752 return count+1; 1753 1754 bad_mapping: 1755 for_each_sg(sg, s, count, i) 1756 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1757 return 0; 1758 } 1759 1760 /** 1761 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1762 * @dev: valid struct device pointer 1763 * @sg: list of buffers 1764 * @nents: number of buffers to map 1765 * @dir: DMA transfer direction 1766 * 1767 * Map a set of i/o coherent buffers described by scatterlist in streaming 1768 * mode for DMA. The scatter gather list elements are merged together (if 1769 * possible) and tagged with the appropriate dma address and length. They are 1770 * obtained via sg_dma_{address,length}. 1771 */ 1772 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1773 int nents, enum dma_data_direction dir, unsigned long attrs) 1774 { 1775 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1776 } 1777 1778 /** 1779 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1780 * @dev: valid struct device pointer 1781 * @sg: list of buffers 1782 * @nents: number of buffers to map 1783 * @dir: DMA transfer direction 1784 * 1785 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1786 * The scatter gather list elements are merged together (if possible) and 1787 * tagged with the appropriate dma address and length. They are obtained via 1788 * sg_dma_{address,length}. 1789 */ 1790 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1791 int nents, enum dma_data_direction dir, unsigned long attrs) 1792 { 1793 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1794 } 1795 1796 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1797 int nents, enum dma_data_direction dir, 1798 unsigned long attrs, bool is_coherent) 1799 { 1800 struct scatterlist *s; 1801 int i; 1802 1803 for_each_sg(sg, s, nents, i) { 1804 if (sg_dma_len(s)) 1805 __iommu_remove_mapping(dev, sg_dma_address(s), 1806 sg_dma_len(s)); 1807 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1808 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1809 s->length, dir); 1810 } 1811 } 1812 1813 /** 1814 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1815 * @dev: valid struct device pointer 1816 * @sg: list of buffers 1817 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1818 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1819 * 1820 * Unmap a set of streaming mode DMA translations. Again, CPU access 1821 * rules concerning calls here are the same as for dma_unmap_single(). 1822 */ 1823 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1824 int nents, enum dma_data_direction dir, 1825 unsigned long attrs) 1826 { 1827 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1828 } 1829 1830 /** 1831 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1832 * @dev: valid struct device pointer 1833 * @sg: list of buffers 1834 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1835 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1836 * 1837 * Unmap a set of streaming mode DMA translations. Again, CPU access 1838 * rules concerning calls here are the same as for dma_unmap_single(). 1839 */ 1840 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1841 enum dma_data_direction dir, 1842 unsigned long attrs) 1843 { 1844 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1845 } 1846 1847 /** 1848 * arm_iommu_sync_sg_for_cpu 1849 * @dev: valid struct device pointer 1850 * @sg: list of buffers 1851 * @nents: number of buffers to map (returned from dma_map_sg) 1852 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1853 */ 1854 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1855 int nents, enum dma_data_direction dir) 1856 { 1857 struct scatterlist *s; 1858 int i; 1859 1860 for_each_sg(sg, s, nents, i) 1861 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1862 1863 } 1864 1865 /** 1866 * arm_iommu_sync_sg_for_device 1867 * @dev: valid struct device pointer 1868 * @sg: list of buffers 1869 * @nents: number of buffers to map (returned from dma_map_sg) 1870 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1871 */ 1872 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1873 int nents, enum dma_data_direction dir) 1874 { 1875 struct scatterlist *s; 1876 int i; 1877 1878 for_each_sg(sg, s, nents, i) 1879 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1880 } 1881 1882 1883 /** 1884 * arm_coherent_iommu_map_page 1885 * @dev: valid struct device pointer 1886 * @page: page that buffer resides in 1887 * @offset: offset into page for start of buffer 1888 * @size: size of buffer to map 1889 * @dir: DMA transfer direction 1890 * 1891 * Coherent IOMMU aware version of arm_dma_map_page() 1892 */ 1893 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1894 unsigned long offset, size_t size, enum dma_data_direction dir, 1895 unsigned long attrs) 1896 { 1897 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1898 dma_addr_t dma_addr; 1899 int ret, prot, len = PAGE_ALIGN(size + offset); 1900 1901 dma_addr = __alloc_iova(mapping, len); 1902 if (dma_addr == DMA_MAPPING_ERROR) 1903 return dma_addr; 1904 1905 prot = __dma_info_to_prot(dir, attrs); 1906 1907 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1908 if (ret < 0) 1909 goto fail; 1910 1911 return dma_addr + offset; 1912 fail: 1913 __free_iova(mapping, dma_addr, len); 1914 return DMA_MAPPING_ERROR; 1915 } 1916 1917 /** 1918 * arm_iommu_map_page 1919 * @dev: valid struct device pointer 1920 * @page: page that buffer resides in 1921 * @offset: offset into page for start of buffer 1922 * @size: size of buffer to map 1923 * @dir: DMA transfer direction 1924 * 1925 * IOMMU aware version of arm_dma_map_page() 1926 */ 1927 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1928 unsigned long offset, size_t size, enum dma_data_direction dir, 1929 unsigned long attrs) 1930 { 1931 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1932 __dma_page_cpu_to_dev(page, offset, size, dir); 1933 1934 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1935 } 1936 1937 /** 1938 * arm_coherent_iommu_unmap_page 1939 * @dev: valid struct device pointer 1940 * @handle: DMA address of buffer 1941 * @size: size of buffer (same as passed to dma_map_page) 1942 * @dir: DMA transfer direction (same as passed to dma_map_page) 1943 * 1944 * Coherent IOMMU aware version of arm_dma_unmap_page() 1945 */ 1946 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1947 size_t size, enum dma_data_direction dir, unsigned long attrs) 1948 { 1949 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1950 dma_addr_t iova = handle & PAGE_MASK; 1951 int offset = handle & ~PAGE_MASK; 1952 int len = PAGE_ALIGN(size + offset); 1953 1954 if (!iova) 1955 return; 1956 1957 iommu_unmap(mapping->domain, iova, len); 1958 __free_iova(mapping, iova, len); 1959 } 1960 1961 /** 1962 * arm_iommu_unmap_page 1963 * @dev: valid struct device pointer 1964 * @handle: DMA address of buffer 1965 * @size: size of buffer (same as passed to dma_map_page) 1966 * @dir: DMA transfer direction (same as passed to dma_map_page) 1967 * 1968 * IOMMU aware version of arm_dma_unmap_page() 1969 */ 1970 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1971 size_t size, enum dma_data_direction dir, unsigned long attrs) 1972 { 1973 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1974 dma_addr_t iova = handle & PAGE_MASK; 1975 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1976 int offset = handle & ~PAGE_MASK; 1977 int len = PAGE_ALIGN(size + offset); 1978 1979 if (!iova) 1980 return; 1981 1982 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1983 __dma_page_dev_to_cpu(page, offset, size, dir); 1984 1985 iommu_unmap(mapping->domain, iova, len); 1986 __free_iova(mapping, iova, len); 1987 } 1988 1989 /** 1990 * arm_iommu_map_resource - map a device resource for DMA 1991 * @dev: valid struct device pointer 1992 * @phys_addr: physical address of resource 1993 * @size: size of resource to map 1994 * @dir: DMA transfer direction 1995 */ 1996 static dma_addr_t arm_iommu_map_resource(struct device *dev, 1997 phys_addr_t phys_addr, size_t size, 1998 enum dma_data_direction dir, unsigned long attrs) 1999 { 2000 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2001 dma_addr_t dma_addr; 2002 int ret, prot; 2003 phys_addr_t addr = phys_addr & PAGE_MASK; 2004 unsigned int offset = phys_addr & ~PAGE_MASK; 2005 size_t len = PAGE_ALIGN(size + offset); 2006 2007 dma_addr = __alloc_iova(mapping, len); 2008 if (dma_addr == DMA_MAPPING_ERROR) 2009 return dma_addr; 2010 2011 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; 2012 2013 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot); 2014 if (ret < 0) 2015 goto fail; 2016 2017 return dma_addr + offset; 2018 fail: 2019 __free_iova(mapping, dma_addr, len); 2020 return DMA_MAPPING_ERROR; 2021 } 2022 2023 /** 2024 * arm_iommu_unmap_resource - unmap a device DMA resource 2025 * @dev: valid struct device pointer 2026 * @dma_handle: DMA address to resource 2027 * @size: size of resource to map 2028 * @dir: DMA transfer direction 2029 */ 2030 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, 2031 size_t size, enum dma_data_direction dir, 2032 unsigned long attrs) 2033 { 2034 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2035 dma_addr_t iova = dma_handle & PAGE_MASK; 2036 unsigned int offset = dma_handle & ~PAGE_MASK; 2037 size_t len = PAGE_ALIGN(size + offset); 2038 2039 if (!iova) 2040 return; 2041 2042 iommu_unmap(mapping->domain, iova, len); 2043 __free_iova(mapping, iova, len); 2044 } 2045 2046 static void arm_iommu_sync_single_for_cpu(struct device *dev, 2047 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2048 { 2049 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2050 dma_addr_t iova = handle & PAGE_MASK; 2051 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2052 unsigned int offset = handle & ~PAGE_MASK; 2053 2054 if (!iova) 2055 return; 2056 2057 __dma_page_dev_to_cpu(page, offset, size, dir); 2058 } 2059 2060 static void arm_iommu_sync_single_for_device(struct device *dev, 2061 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2062 { 2063 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2064 dma_addr_t iova = handle & PAGE_MASK; 2065 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2066 unsigned int offset = handle & ~PAGE_MASK; 2067 2068 if (!iova) 2069 return; 2070 2071 __dma_page_cpu_to_dev(page, offset, size, dir); 2072 } 2073 2074 const struct dma_map_ops iommu_ops = { 2075 .alloc = arm_iommu_alloc_attrs, 2076 .free = arm_iommu_free_attrs, 2077 .mmap = arm_iommu_mmap_attrs, 2078 .get_sgtable = arm_iommu_get_sgtable, 2079 2080 .map_page = arm_iommu_map_page, 2081 .unmap_page = arm_iommu_unmap_page, 2082 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 2083 .sync_single_for_device = arm_iommu_sync_single_for_device, 2084 2085 .map_sg = arm_iommu_map_sg, 2086 .unmap_sg = arm_iommu_unmap_sg, 2087 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 2088 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 2089 2090 .map_resource = arm_iommu_map_resource, 2091 .unmap_resource = arm_iommu_unmap_resource, 2092 2093 .dma_supported = arm_dma_supported, 2094 }; 2095 2096 const struct dma_map_ops iommu_coherent_ops = { 2097 .alloc = arm_coherent_iommu_alloc_attrs, 2098 .free = arm_coherent_iommu_free_attrs, 2099 .mmap = arm_coherent_iommu_mmap_attrs, 2100 .get_sgtable = arm_iommu_get_sgtable, 2101 2102 .map_page = arm_coherent_iommu_map_page, 2103 .unmap_page = arm_coherent_iommu_unmap_page, 2104 2105 .map_sg = arm_coherent_iommu_map_sg, 2106 .unmap_sg = arm_coherent_iommu_unmap_sg, 2107 2108 .map_resource = arm_iommu_map_resource, 2109 .unmap_resource = arm_iommu_unmap_resource, 2110 2111 .dma_supported = arm_dma_supported, 2112 }; 2113 2114 /** 2115 * arm_iommu_create_mapping 2116 * @bus: pointer to the bus holding the client device (for IOMMU calls) 2117 * @base: start address of the valid IO address space 2118 * @size: maximum size of the valid IO address space 2119 * 2120 * Creates a mapping structure which holds information about used/unused 2121 * IO address ranges, which is required to perform memory allocation and 2122 * mapping with IOMMU aware functions. 2123 * 2124 * The client device need to be attached to the mapping with 2125 * arm_iommu_attach_device function. 2126 */ 2127 struct dma_iommu_mapping * 2128 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) 2129 { 2130 unsigned int bits = size >> PAGE_SHIFT; 2131 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 2132 struct dma_iommu_mapping *mapping; 2133 int extensions = 1; 2134 int err = -ENOMEM; 2135 2136 /* currently only 32-bit DMA address space is supported */ 2137 if (size > DMA_BIT_MASK(32) + 1) 2138 return ERR_PTR(-ERANGE); 2139 2140 if (!bitmap_size) 2141 return ERR_PTR(-EINVAL); 2142 2143 if (bitmap_size > PAGE_SIZE) { 2144 extensions = bitmap_size / PAGE_SIZE; 2145 bitmap_size = PAGE_SIZE; 2146 } 2147 2148 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 2149 if (!mapping) 2150 goto err; 2151 2152 mapping->bitmap_size = bitmap_size; 2153 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *), 2154 GFP_KERNEL); 2155 if (!mapping->bitmaps) 2156 goto err2; 2157 2158 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 2159 if (!mapping->bitmaps[0]) 2160 goto err3; 2161 2162 mapping->nr_bitmaps = 1; 2163 mapping->extensions = extensions; 2164 mapping->base = base; 2165 mapping->bits = BITS_PER_BYTE * bitmap_size; 2166 2167 spin_lock_init(&mapping->lock); 2168 2169 mapping->domain = iommu_domain_alloc(bus); 2170 if (!mapping->domain) 2171 goto err4; 2172 2173 kref_init(&mapping->kref); 2174 return mapping; 2175 err4: 2176 kfree(mapping->bitmaps[0]); 2177 err3: 2178 kfree(mapping->bitmaps); 2179 err2: 2180 kfree(mapping); 2181 err: 2182 return ERR_PTR(err); 2183 } 2184 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 2185 2186 static void release_iommu_mapping(struct kref *kref) 2187 { 2188 int i; 2189 struct dma_iommu_mapping *mapping = 2190 container_of(kref, struct dma_iommu_mapping, kref); 2191 2192 iommu_domain_free(mapping->domain); 2193 for (i = 0; i < mapping->nr_bitmaps; i++) 2194 kfree(mapping->bitmaps[i]); 2195 kfree(mapping->bitmaps); 2196 kfree(mapping); 2197 } 2198 2199 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 2200 { 2201 int next_bitmap; 2202 2203 if (mapping->nr_bitmaps >= mapping->extensions) 2204 return -EINVAL; 2205 2206 next_bitmap = mapping->nr_bitmaps; 2207 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 2208 GFP_ATOMIC); 2209 if (!mapping->bitmaps[next_bitmap]) 2210 return -ENOMEM; 2211 2212 mapping->nr_bitmaps++; 2213 2214 return 0; 2215 } 2216 2217 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 2218 { 2219 if (mapping) 2220 kref_put(&mapping->kref, release_iommu_mapping); 2221 } 2222 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 2223 2224 static int __arm_iommu_attach_device(struct device *dev, 2225 struct dma_iommu_mapping *mapping) 2226 { 2227 int err; 2228 2229 err = iommu_attach_device(mapping->domain, dev); 2230 if (err) 2231 return err; 2232 2233 kref_get(&mapping->kref); 2234 to_dma_iommu_mapping(dev) = mapping; 2235 2236 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 2237 return 0; 2238 } 2239 2240 /** 2241 * arm_iommu_attach_device 2242 * @dev: valid struct device pointer 2243 * @mapping: io address space mapping structure (returned from 2244 * arm_iommu_create_mapping) 2245 * 2246 * Attaches specified io address space mapping to the provided device. 2247 * This replaces the dma operations (dma_map_ops pointer) with the 2248 * IOMMU aware version. 2249 * 2250 * More than one client might be attached to the same io address space 2251 * mapping. 2252 */ 2253 int arm_iommu_attach_device(struct device *dev, 2254 struct dma_iommu_mapping *mapping) 2255 { 2256 int err; 2257 2258 err = __arm_iommu_attach_device(dev, mapping); 2259 if (err) 2260 return err; 2261 2262 set_dma_ops(dev, &iommu_ops); 2263 return 0; 2264 } 2265 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 2266 2267 /** 2268 * arm_iommu_detach_device 2269 * @dev: valid struct device pointer 2270 * 2271 * Detaches the provided device from a previously attached map. 2272 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops. 2273 */ 2274 void arm_iommu_detach_device(struct device *dev) 2275 { 2276 struct dma_iommu_mapping *mapping; 2277 2278 mapping = to_dma_iommu_mapping(dev); 2279 if (!mapping) { 2280 dev_warn(dev, "Not attached\n"); 2281 return; 2282 } 2283 2284 iommu_detach_device(mapping->domain, dev); 2285 kref_put(&mapping->kref, release_iommu_mapping); 2286 to_dma_iommu_mapping(dev) = NULL; 2287 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent)); 2288 2289 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 2290 } 2291 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 2292 2293 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) 2294 { 2295 return coherent ? &iommu_coherent_ops : &iommu_ops; 2296 } 2297 2298 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2299 const struct iommu_ops *iommu) 2300 { 2301 struct dma_iommu_mapping *mapping; 2302 2303 if (!iommu) 2304 return false; 2305 2306 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); 2307 if (IS_ERR(mapping)) { 2308 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", 2309 size, dev_name(dev)); 2310 return false; 2311 } 2312 2313 if (__arm_iommu_attach_device(dev, mapping)) { 2314 pr_warn("Failed to attached device %s to IOMMU_mapping\n", 2315 dev_name(dev)); 2316 arm_iommu_release_mapping(mapping); 2317 return false; 2318 } 2319 2320 return true; 2321 } 2322 2323 static void arm_teardown_iommu_dma_ops(struct device *dev) 2324 { 2325 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2326 2327 if (!mapping) 2328 return; 2329 2330 arm_iommu_detach_device(dev); 2331 arm_iommu_release_mapping(mapping); 2332 } 2333 2334 #else 2335 2336 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2337 const struct iommu_ops *iommu) 2338 { 2339 return false; 2340 } 2341 2342 static void arm_teardown_iommu_dma_ops(struct device *dev) { } 2343 2344 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops 2345 2346 #endif /* CONFIG_ARM_DMA_USE_IOMMU */ 2347 2348 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 2349 const struct iommu_ops *iommu, bool coherent) 2350 { 2351 const struct dma_map_ops *dma_ops; 2352 2353 dev->archdata.dma_coherent = coherent; 2354 2355 /* 2356 * Don't override the dma_ops if they have already been set. Ideally 2357 * this should be the only location where dma_ops are set, remove this 2358 * check when all other callers of set_dma_ops will have disappeared. 2359 */ 2360 if (dev->dma_ops) 2361 return; 2362 2363 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) 2364 dma_ops = arm_get_iommu_dma_map_ops(coherent); 2365 else 2366 dma_ops = arm_get_dma_map_ops(coherent); 2367 2368 set_dma_ops(dev, dma_ops); 2369 2370 #ifdef CONFIG_XEN 2371 if (xen_initial_domain()) { 2372 dev->archdata.dev_dma_ops = dev->dma_ops; 2373 dev->dma_ops = xen_dma_ops; 2374 } 2375 #endif 2376 dev->archdata.dma_ops_setup = true; 2377 } 2378 2379 void arch_teardown_dma_ops(struct device *dev) 2380 { 2381 if (!dev->archdata.dma_ops_setup) 2382 return; 2383 2384 arm_teardown_iommu_dma_ops(dev); 2385 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */ 2386 set_dma_ops(dev, NULL); 2387 } 2388