xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 9aa2cba7a275b2c0b10c95ea60aced015a5535e1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/dma-mapping.c
4  *
5  *  Copyright (C) 2000-2004 Russell King
6  *
7  *  DMA uncached mapping support.
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dma-map-ops.h>
19 #include <linux/highmem.h>
20 #include <linux/memblock.h>
21 #include <linux/slab.h>
22 #include <linux/iommu.h>
23 #include <linux/io.h>
24 #include <linux/vmalloc.h>
25 #include <linux/sizes.h>
26 #include <linux/cma.h>
27 
28 #include <asm/page.h>
29 #include <asm/highmem.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mach/arch.h>
33 #include <asm/dma-iommu.h>
34 #include <asm/mach/map.h>
35 #include <asm/system_info.h>
36 #include <asm/xen/xen-ops.h>
37 
38 #include "dma.h"
39 #include "mm.h"
40 
41 struct arm_dma_alloc_args {
42 	struct device *dev;
43 	size_t size;
44 	gfp_t gfp;
45 	pgprot_t prot;
46 	const void *caller;
47 	bool want_vaddr;
48 	int coherent_flag;
49 };
50 
51 struct arm_dma_free_args {
52 	struct device *dev;
53 	size_t size;
54 	void *cpu_addr;
55 	struct page *page;
56 	bool want_vaddr;
57 };
58 
59 #define NORMAL	    0
60 #define COHERENT    1
61 
62 struct arm_dma_allocator {
63 	void *(*alloc)(struct arm_dma_alloc_args *args,
64 		       struct page **ret_page);
65 	void (*free)(struct arm_dma_free_args *args);
66 };
67 
68 struct arm_dma_buffer {
69 	struct list_head list;
70 	void *virt;
71 	struct arm_dma_allocator *allocator;
72 };
73 
74 static LIST_HEAD(arm_dma_bufs);
75 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76 
77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78 {
79 	struct arm_dma_buffer *buf, *found = NULL;
80 	unsigned long flags;
81 
82 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 	list_for_each_entry(buf, &arm_dma_bufs, list) {
84 		if (buf->virt == virt) {
85 			list_del(&buf->list);
86 			found = buf;
87 			break;
88 		}
89 	}
90 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 	return found;
92 }
93 
94 /*
95  * The DMA API is built upon the notion of "buffer ownership".  A buffer
96  * is either exclusively owned by the CPU (and therefore may be accessed
97  * by it) or exclusively owned by the DMA device.  These helper functions
98  * represent the transitions between these two ownership states.
99  *
100  * Note, however, that on later ARMs, this notion does not work due to
101  * speculative prefetches.  We model our approach on the assumption that
102  * the CPU does do speculative prefetches, which means we clean caches
103  * before transfers and delay cache invalidation until transfer completion.
104  *
105  */
106 
107 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
108 {
109 	/*
110 	 * Ensure that the allocated pages are zeroed, and that any data
111 	 * lurking in the kernel direct-mapped region is invalidated.
112 	 */
113 	if (PageHighMem(page)) {
114 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
115 		phys_addr_t end = base + size;
116 		while (size > 0) {
117 			void *ptr = kmap_atomic(page);
118 			memset(ptr, 0, PAGE_SIZE);
119 			if (coherent_flag != COHERENT)
120 				dmac_flush_range(ptr, ptr + PAGE_SIZE);
121 			kunmap_atomic(ptr);
122 			page++;
123 			size -= PAGE_SIZE;
124 		}
125 		if (coherent_flag != COHERENT)
126 			outer_flush_range(base, end);
127 	} else {
128 		void *ptr = page_address(page);
129 		memset(ptr, 0, size);
130 		if (coherent_flag != COHERENT) {
131 			dmac_flush_range(ptr, ptr + size);
132 			outer_flush_range(__pa(ptr), __pa(ptr) + size);
133 		}
134 	}
135 }
136 
137 /*
138  * Allocate a DMA buffer for 'dev' of size 'size' using the
139  * specified gfp mask.  Note that 'size' must be page aligned.
140  */
141 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
142 				       gfp_t gfp, int coherent_flag)
143 {
144 	unsigned long order = get_order(size);
145 	struct page *page, *p, *e;
146 
147 	page = alloc_pages(gfp, order);
148 	if (!page)
149 		return NULL;
150 
151 	/*
152 	 * Now split the huge page and free the excess pages
153 	 */
154 	split_page(page, order);
155 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
156 		__free_page(p);
157 
158 	__dma_clear_buffer(page, size, coherent_flag);
159 
160 	return page;
161 }
162 
163 /*
164  * Free a DMA buffer.  'size' must be page aligned.
165  */
166 static void __dma_free_buffer(struct page *page, size_t size)
167 {
168 	struct page *e = page + (size >> PAGE_SHIFT);
169 
170 	while (page < e) {
171 		__free_page(page);
172 		page++;
173 	}
174 }
175 
176 static void *__alloc_from_contiguous(struct device *dev, size_t size,
177 				     pgprot_t prot, struct page **ret_page,
178 				     const void *caller, bool want_vaddr,
179 				     int coherent_flag, gfp_t gfp);
180 
181 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
182 				 pgprot_t prot, struct page **ret_page,
183 				 const void *caller, bool want_vaddr);
184 
185 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
186 static struct gen_pool *atomic_pool __ro_after_init;
187 
188 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
189 
190 static int __init early_coherent_pool(char *p)
191 {
192 	atomic_pool_size = memparse(p, &p);
193 	return 0;
194 }
195 early_param("coherent_pool", early_coherent_pool);
196 
197 /*
198  * Initialise the coherent pool for atomic allocations.
199  */
200 static int __init atomic_pool_init(void)
201 {
202 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
203 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
204 	struct page *page;
205 	void *ptr;
206 
207 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
208 	if (!atomic_pool)
209 		goto out;
210 	/*
211 	 * The atomic pool is only used for non-coherent allocations
212 	 * so we must pass NORMAL for coherent_flag.
213 	 */
214 	if (dev_get_cma_area(NULL))
215 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
216 				      &page, atomic_pool_init, true, NORMAL,
217 				      GFP_KERNEL);
218 	else
219 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
220 					   &page, atomic_pool_init, true);
221 	if (ptr) {
222 		int ret;
223 
224 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
225 					page_to_phys(page),
226 					atomic_pool_size, -1);
227 		if (ret)
228 			goto destroy_genpool;
229 
230 		gen_pool_set_algo(atomic_pool,
231 				gen_pool_first_fit_order_align,
232 				NULL);
233 		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
234 		       atomic_pool_size / 1024);
235 		return 0;
236 	}
237 
238 destroy_genpool:
239 	gen_pool_destroy(atomic_pool);
240 	atomic_pool = NULL;
241 out:
242 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
243 	       atomic_pool_size / 1024);
244 	return -ENOMEM;
245 }
246 /*
247  * CMA is activated by core_initcall, so we must be called after it.
248  */
249 postcore_initcall(atomic_pool_init);
250 
251 #ifdef CONFIG_CMA_AREAS
252 struct dma_contig_early_reserve {
253 	phys_addr_t base;
254 	unsigned long size;
255 };
256 
257 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
258 
259 static int dma_mmu_remap_num __initdata;
260 
261 #ifdef CONFIG_DMA_CMA
262 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
263 {
264 	dma_mmu_remap[dma_mmu_remap_num].base = base;
265 	dma_mmu_remap[dma_mmu_remap_num].size = size;
266 	dma_mmu_remap_num++;
267 }
268 #endif
269 
270 void __init dma_contiguous_remap(void)
271 {
272 	int i;
273 	for (i = 0; i < dma_mmu_remap_num; i++) {
274 		phys_addr_t start = dma_mmu_remap[i].base;
275 		phys_addr_t end = start + dma_mmu_remap[i].size;
276 		struct map_desc map;
277 		unsigned long addr;
278 
279 		if (end > arm_lowmem_limit)
280 			end = arm_lowmem_limit;
281 		if (start >= end)
282 			continue;
283 
284 		map.pfn = __phys_to_pfn(start);
285 		map.virtual = __phys_to_virt(start);
286 		map.length = end - start;
287 		map.type = MT_MEMORY_DMA_READY;
288 
289 		/*
290 		 * Clear previous low-memory mapping to ensure that the
291 		 * TLB does not see any conflicting entries, then flush
292 		 * the TLB of the old entries before creating new mappings.
293 		 *
294 		 * This ensures that any speculatively loaded TLB entries
295 		 * (even though they may be rare) can not cause any problems,
296 		 * and ensures that this code is architecturally compliant.
297 		 */
298 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
299 		     addr += PMD_SIZE)
300 			pmd_clear(pmd_off_k(addr));
301 
302 		flush_tlb_kernel_range(__phys_to_virt(start),
303 				       __phys_to_virt(end));
304 
305 		iotable_init(&map, 1);
306 	}
307 }
308 #endif
309 
310 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
311 {
312 	struct page *page = virt_to_page((void *)addr);
313 	pgprot_t prot = *(pgprot_t *)data;
314 
315 	set_pte_ext(pte, mk_pte(page, prot), 0);
316 	return 0;
317 }
318 
319 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
320 {
321 	unsigned long start = (unsigned long) page_address(page);
322 	unsigned end = start + size;
323 
324 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
325 	flush_tlb_kernel_range(start, end);
326 }
327 
328 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
329 				 pgprot_t prot, struct page **ret_page,
330 				 const void *caller, bool want_vaddr)
331 {
332 	struct page *page;
333 	void *ptr = NULL;
334 	/*
335 	 * __alloc_remap_buffer is only called when the device is
336 	 * non-coherent
337 	 */
338 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
339 	if (!page)
340 		return NULL;
341 	if (!want_vaddr)
342 		goto out;
343 
344 	ptr = dma_common_contiguous_remap(page, size, prot, caller);
345 	if (!ptr) {
346 		__dma_free_buffer(page, size);
347 		return NULL;
348 	}
349 
350  out:
351 	*ret_page = page;
352 	return ptr;
353 }
354 
355 static void *__alloc_from_pool(size_t size, struct page **ret_page)
356 {
357 	unsigned long val;
358 	void *ptr = NULL;
359 
360 	if (!atomic_pool) {
361 		WARN(1, "coherent pool not initialised!\n");
362 		return NULL;
363 	}
364 
365 	val = gen_pool_alloc(atomic_pool, size);
366 	if (val) {
367 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
368 
369 		*ret_page = phys_to_page(phys);
370 		ptr = (void *)val;
371 	}
372 
373 	return ptr;
374 }
375 
376 static bool __in_atomic_pool(void *start, size_t size)
377 {
378 	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
379 }
380 
381 static int __free_from_pool(void *start, size_t size)
382 {
383 	if (!__in_atomic_pool(start, size))
384 		return 0;
385 
386 	gen_pool_free(atomic_pool, (unsigned long)start, size);
387 
388 	return 1;
389 }
390 
391 static void *__alloc_from_contiguous(struct device *dev, size_t size,
392 				     pgprot_t prot, struct page **ret_page,
393 				     const void *caller, bool want_vaddr,
394 				     int coherent_flag, gfp_t gfp)
395 {
396 	unsigned long order = get_order(size);
397 	size_t count = size >> PAGE_SHIFT;
398 	struct page *page;
399 	void *ptr = NULL;
400 
401 	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
402 	if (!page)
403 		return NULL;
404 
405 	__dma_clear_buffer(page, size, coherent_flag);
406 
407 	if (!want_vaddr)
408 		goto out;
409 
410 	if (PageHighMem(page)) {
411 		ptr = dma_common_contiguous_remap(page, size, prot, caller);
412 		if (!ptr) {
413 			dma_release_from_contiguous(dev, page, count);
414 			return NULL;
415 		}
416 	} else {
417 		__dma_remap(page, size, prot);
418 		ptr = page_address(page);
419 	}
420 
421  out:
422 	*ret_page = page;
423 	return ptr;
424 }
425 
426 static void __free_from_contiguous(struct device *dev, struct page *page,
427 				   void *cpu_addr, size_t size, bool want_vaddr)
428 {
429 	if (want_vaddr) {
430 		if (PageHighMem(page))
431 			dma_common_free_remap(cpu_addr, size);
432 		else
433 			__dma_remap(page, size, PAGE_KERNEL);
434 	}
435 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
436 }
437 
438 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
439 {
440 	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
441 			pgprot_writecombine(prot) :
442 			pgprot_dmacoherent(prot);
443 	return prot;
444 }
445 
446 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
447 				   struct page **ret_page)
448 {
449 	struct page *page;
450 	/* __alloc_simple_buffer is only called when the device is coherent */
451 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
452 	if (!page)
453 		return NULL;
454 
455 	*ret_page = page;
456 	return page_address(page);
457 }
458 
459 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
460 				    struct page **ret_page)
461 {
462 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
463 				     ret_page);
464 }
465 
466 static void simple_allocator_free(struct arm_dma_free_args *args)
467 {
468 	__dma_free_buffer(args->page, args->size);
469 }
470 
471 static struct arm_dma_allocator simple_allocator = {
472 	.alloc = simple_allocator_alloc,
473 	.free = simple_allocator_free,
474 };
475 
476 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
477 				 struct page **ret_page)
478 {
479 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
480 				       ret_page, args->caller,
481 				       args->want_vaddr, args->coherent_flag,
482 				       args->gfp);
483 }
484 
485 static void cma_allocator_free(struct arm_dma_free_args *args)
486 {
487 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
488 			       args->size, args->want_vaddr);
489 }
490 
491 static struct arm_dma_allocator cma_allocator = {
492 	.alloc = cma_allocator_alloc,
493 	.free = cma_allocator_free,
494 };
495 
496 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
497 				  struct page **ret_page)
498 {
499 	return __alloc_from_pool(args->size, ret_page);
500 }
501 
502 static void pool_allocator_free(struct arm_dma_free_args *args)
503 {
504 	__free_from_pool(args->cpu_addr, args->size);
505 }
506 
507 static struct arm_dma_allocator pool_allocator = {
508 	.alloc = pool_allocator_alloc,
509 	.free = pool_allocator_free,
510 };
511 
512 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
513 				   struct page **ret_page)
514 {
515 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
516 				    args->prot, ret_page, args->caller,
517 				    args->want_vaddr);
518 }
519 
520 static void remap_allocator_free(struct arm_dma_free_args *args)
521 {
522 	if (args->want_vaddr)
523 		dma_common_free_remap(args->cpu_addr, args->size);
524 
525 	__dma_free_buffer(args->page, args->size);
526 }
527 
528 static struct arm_dma_allocator remap_allocator = {
529 	.alloc = remap_allocator_alloc,
530 	.free = remap_allocator_free,
531 };
532 
533 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
534 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
535 			 unsigned long attrs, const void *caller)
536 {
537 	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
538 	struct page *page = NULL;
539 	void *addr;
540 	bool allowblock, cma;
541 	struct arm_dma_buffer *buf;
542 	struct arm_dma_alloc_args args = {
543 		.dev = dev,
544 		.size = PAGE_ALIGN(size),
545 		.gfp = gfp,
546 		.prot = prot,
547 		.caller = caller,
548 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
549 		.coherent_flag = is_coherent ? COHERENT : NORMAL,
550 	};
551 
552 #ifdef CONFIG_DMA_API_DEBUG
553 	u64 limit = (mask + 1) & ~mask;
554 	if (limit && size >= limit) {
555 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
556 			size, mask);
557 		return NULL;
558 	}
559 #endif
560 
561 	buf = kzalloc(sizeof(*buf),
562 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
563 	if (!buf)
564 		return NULL;
565 
566 	if (mask < 0xffffffffULL)
567 		gfp |= GFP_DMA;
568 
569 	args.gfp = gfp;
570 
571 	*handle = DMA_MAPPING_ERROR;
572 	allowblock = gfpflags_allow_blocking(gfp);
573 	cma = allowblock ? dev_get_cma_area(dev) : NULL;
574 
575 	if (cma)
576 		buf->allocator = &cma_allocator;
577 	else if (is_coherent)
578 		buf->allocator = &simple_allocator;
579 	else if (allowblock)
580 		buf->allocator = &remap_allocator;
581 	else
582 		buf->allocator = &pool_allocator;
583 
584 	addr = buf->allocator->alloc(&args, &page);
585 
586 	if (page) {
587 		unsigned long flags;
588 
589 		*handle = phys_to_dma(dev, page_to_phys(page));
590 		buf->virt = args.want_vaddr ? addr : page;
591 
592 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
593 		list_add(&buf->list, &arm_dma_bufs);
594 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
595 	} else {
596 		kfree(buf);
597 	}
598 
599 	return args.want_vaddr ? addr : page;
600 }
601 
602 /*
603  * Free a buffer as defined by the above mapping.
604  */
605 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
606 			   dma_addr_t handle, unsigned long attrs,
607 			   bool is_coherent)
608 {
609 	struct page *page = phys_to_page(dma_to_phys(dev, handle));
610 	struct arm_dma_buffer *buf;
611 	struct arm_dma_free_args args = {
612 		.dev = dev,
613 		.size = PAGE_ALIGN(size),
614 		.cpu_addr = cpu_addr,
615 		.page = page,
616 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
617 	};
618 
619 	buf = arm_dma_buffer_find(cpu_addr);
620 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
621 		return;
622 
623 	buf->allocator->free(&args);
624 	kfree(buf);
625 }
626 
627 static void dma_cache_maint_page(struct page *page, unsigned long offset,
628 	size_t size, enum dma_data_direction dir,
629 	void (*op)(const void *, size_t, int))
630 {
631 	unsigned long pfn;
632 	size_t left = size;
633 
634 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
635 	offset %= PAGE_SIZE;
636 
637 	/*
638 	 * A single sg entry may refer to multiple physically contiguous
639 	 * pages.  But we still need to process highmem pages individually.
640 	 * If highmem is not configured then the bulk of this loop gets
641 	 * optimized out.
642 	 */
643 	do {
644 		size_t len = left;
645 		void *vaddr;
646 
647 		page = pfn_to_page(pfn);
648 
649 		if (PageHighMem(page)) {
650 			if (len + offset > PAGE_SIZE)
651 				len = PAGE_SIZE - offset;
652 
653 			if (cache_is_vipt_nonaliasing()) {
654 				vaddr = kmap_atomic(page);
655 				op(vaddr + offset, len, dir);
656 				kunmap_atomic(vaddr);
657 			} else {
658 				vaddr = kmap_high_get(page);
659 				if (vaddr) {
660 					op(vaddr + offset, len, dir);
661 					kunmap_high(page);
662 				}
663 			}
664 		} else {
665 			vaddr = page_address(page) + offset;
666 			op(vaddr, len, dir);
667 		}
668 		offset = 0;
669 		pfn++;
670 		left -= len;
671 	} while (left);
672 }
673 
674 /*
675  * Make an area consistent for devices.
676  * Note: Drivers should NOT use this function directly.
677  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
678  */
679 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
680 	size_t size, enum dma_data_direction dir)
681 {
682 	phys_addr_t paddr;
683 
684 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
685 
686 	paddr = page_to_phys(page) + off;
687 	if (dir == DMA_FROM_DEVICE) {
688 		outer_inv_range(paddr, paddr + size);
689 	} else {
690 		outer_clean_range(paddr, paddr + size);
691 	}
692 	/* FIXME: non-speculating: flush on bidirectional mappings? */
693 }
694 
695 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
696 	size_t size, enum dma_data_direction dir)
697 {
698 	phys_addr_t paddr = page_to_phys(page) + off;
699 
700 	/* FIXME: non-speculating: not required */
701 	/* in any case, don't bother invalidating if DMA to device */
702 	if (dir != DMA_TO_DEVICE) {
703 		outer_inv_range(paddr, paddr + size);
704 
705 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
706 	}
707 
708 	/*
709 	 * Mark the D-cache clean for these pages to avoid extra flushing.
710 	 */
711 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
712 		struct folio *folio = pfn_folio(paddr / PAGE_SIZE);
713 		size_t offset = offset_in_folio(folio, paddr);
714 
715 		for (;;) {
716 			size_t sz = folio_size(folio) - offset;
717 
718 			if (size < sz)
719 				break;
720 			if (!offset)
721 				set_bit(PG_dcache_clean, &folio->flags);
722 			offset = 0;
723 			size -= sz;
724 			if (!size)
725 				break;
726 			folio = folio_next(folio);
727 		}
728 	}
729 }
730 
731 #ifdef CONFIG_ARM_DMA_USE_IOMMU
732 
733 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
734 {
735 	int prot = 0;
736 
737 	if (attrs & DMA_ATTR_PRIVILEGED)
738 		prot |= IOMMU_PRIV;
739 
740 	switch (dir) {
741 	case DMA_BIDIRECTIONAL:
742 		return prot | IOMMU_READ | IOMMU_WRITE;
743 	case DMA_TO_DEVICE:
744 		return prot | IOMMU_READ;
745 	case DMA_FROM_DEVICE:
746 		return prot | IOMMU_WRITE;
747 	default:
748 		return prot;
749 	}
750 }
751 
752 /* IOMMU */
753 
754 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
755 
756 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
757 				      size_t size)
758 {
759 	unsigned int order = get_order(size);
760 	unsigned int align = 0;
761 	unsigned int count, start;
762 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
763 	unsigned long flags;
764 	dma_addr_t iova;
765 	int i;
766 
767 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
768 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
769 
770 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
771 	align = (1 << order) - 1;
772 
773 	spin_lock_irqsave(&mapping->lock, flags);
774 	for (i = 0; i < mapping->nr_bitmaps; i++) {
775 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
776 				mapping->bits, 0, count, align);
777 
778 		if (start > mapping->bits)
779 			continue;
780 
781 		bitmap_set(mapping->bitmaps[i], start, count);
782 		break;
783 	}
784 
785 	/*
786 	 * No unused range found. Try to extend the existing mapping
787 	 * and perform a second attempt to reserve an IO virtual
788 	 * address range of size bytes.
789 	 */
790 	if (i == mapping->nr_bitmaps) {
791 		if (extend_iommu_mapping(mapping)) {
792 			spin_unlock_irqrestore(&mapping->lock, flags);
793 			return DMA_MAPPING_ERROR;
794 		}
795 
796 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
797 				mapping->bits, 0, count, align);
798 
799 		if (start > mapping->bits) {
800 			spin_unlock_irqrestore(&mapping->lock, flags);
801 			return DMA_MAPPING_ERROR;
802 		}
803 
804 		bitmap_set(mapping->bitmaps[i], start, count);
805 	}
806 	spin_unlock_irqrestore(&mapping->lock, flags);
807 
808 	iova = mapping->base + (mapping_size * i);
809 	iova += start << PAGE_SHIFT;
810 
811 	return iova;
812 }
813 
814 static inline void __free_iova(struct dma_iommu_mapping *mapping,
815 			       dma_addr_t addr, size_t size)
816 {
817 	unsigned int start, count;
818 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
819 	unsigned long flags;
820 	dma_addr_t bitmap_base;
821 	u32 bitmap_index;
822 
823 	if (!size)
824 		return;
825 
826 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
827 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
828 
829 	bitmap_base = mapping->base + mapping_size * bitmap_index;
830 
831 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
832 
833 	if (addr + size > bitmap_base + mapping_size) {
834 		/*
835 		 * The address range to be freed reaches into the iova
836 		 * range of the next bitmap. This should not happen as
837 		 * we don't allow this in __alloc_iova (at the
838 		 * moment).
839 		 */
840 		BUG();
841 	} else
842 		count = size >> PAGE_SHIFT;
843 
844 	spin_lock_irqsave(&mapping->lock, flags);
845 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
846 	spin_unlock_irqrestore(&mapping->lock, flags);
847 }
848 
849 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
850 static const int iommu_order_array[] = { 9, 8, 4, 0 };
851 
852 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
853 					  gfp_t gfp, unsigned long attrs,
854 					  int coherent_flag)
855 {
856 	struct page **pages;
857 	int count = size >> PAGE_SHIFT;
858 	int array_size = count * sizeof(struct page *);
859 	int i = 0;
860 	int order_idx = 0;
861 
862 	if (array_size <= PAGE_SIZE)
863 		pages = kzalloc(array_size, GFP_KERNEL);
864 	else
865 		pages = vzalloc(array_size);
866 	if (!pages)
867 		return NULL;
868 
869 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
870 	{
871 		unsigned long order = get_order(size);
872 		struct page *page;
873 
874 		page = dma_alloc_from_contiguous(dev, count, order,
875 						 gfp & __GFP_NOWARN);
876 		if (!page)
877 			goto error;
878 
879 		__dma_clear_buffer(page, size, coherent_flag);
880 
881 		for (i = 0; i < count; i++)
882 			pages[i] = page + i;
883 
884 		return pages;
885 	}
886 
887 	/* Go straight to 4K chunks if caller says it's OK. */
888 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
889 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
890 
891 	/*
892 	 * IOMMU can map any pages, so himem can also be used here
893 	 */
894 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
895 
896 	while (count) {
897 		int j, order;
898 
899 		order = iommu_order_array[order_idx];
900 
901 		/* Drop down when we get small */
902 		if (__fls(count) < order) {
903 			order_idx++;
904 			continue;
905 		}
906 
907 		if (order) {
908 			/* See if it's easy to allocate a high-order chunk */
909 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
910 
911 			/* Go down a notch at first sign of pressure */
912 			if (!pages[i]) {
913 				order_idx++;
914 				continue;
915 			}
916 		} else {
917 			pages[i] = alloc_pages(gfp, 0);
918 			if (!pages[i])
919 				goto error;
920 		}
921 
922 		if (order) {
923 			split_page(pages[i], order);
924 			j = 1 << order;
925 			while (--j)
926 				pages[i + j] = pages[i] + j;
927 		}
928 
929 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
930 		i += 1 << order;
931 		count -= 1 << order;
932 	}
933 
934 	return pages;
935 error:
936 	while (i--)
937 		if (pages[i])
938 			__free_pages(pages[i], 0);
939 	kvfree(pages);
940 	return NULL;
941 }
942 
943 static int __iommu_free_buffer(struct device *dev, struct page **pages,
944 			       size_t size, unsigned long attrs)
945 {
946 	int count = size >> PAGE_SHIFT;
947 	int i;
948 
949 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
950 		dma_release_from_contiguous(dev, pages[0], count);
951 	} else {
952 		for (i = 0; i < count; i++)
953 			if (pages[i])
954 				__free_pages(pages[i], 0);
955 	}
956 
957 	kvfree(pages);
958 	return 0;
959 }
960 
961 /*
962  * Create a mapping in device IO address space for specified pages
963  */
964 static dma_addr_t
965 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
966 		       unsigned long attrs)
967 {
968 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
969 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
970 	dma_addr_t dma_addr, iova;
971 	int i;
972 
973 	dma_addr = __alloc_iova(mapping, size);
974 	if (dma_addr == DMA_MAPPING_ERROR)
975 		return dma_addr;
976 
977 	iova = dma_addr;
978 	for (i = 0; i < count; ) {
979 		int ret;
980 
981 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
982 		phys_addr_t phys = page_to_phys(pages[i]);
983 		unsigned int len, j;
984 
985 		for (j = i + 1; j < count; j++, next_pfn++)
986 			if (page_to_pfn(pages[j]) != next_pfn)
987 				break;
988 
989 		len = (j - i) << PAGE_SHIFT;
990 		ret = iommu_map(mapping->domain, iova, phys, len,
991 				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs),
992 				GFP_KERNEL);
993 		if (ret < 0)
994 			goto fail;
995 		iova += len;
996 		i = j;
997 	}
998 	return dma_addr;
999 fail:
1000 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1001 	__free_iova(mapping, dma_addr, size);
1002 	return DMA_MAPPING_ERROR;
1003 }
1004 
1005 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1006 {
1007 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1008 
1009 	/*
1010 	 * add optional in-page offset from iova to size and align
1011 	 * result to page size
1012 	 */
1013 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1014 	iova &= PAGE_MASK;
1015 
1016 	iommu_unmap(mapping->domain, iova, size);
1017 	__free_iova(mapping, iova, size);
1018 	return 0;
1019 }
1020 
1021 static struct page **__atomic_get_pages(void *addr)
1022 {
1023 	struct page *page;
1024 	phys_addr_t phys;
1025 
1026 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1027 	page = phys_to_page(phys);
1028 
1029 	return (struct page **)page;
1030 }
1031 
1032 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1033 {
1034 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1035 		return __atomic_get_pages(cpu_addr);
1036 
1037 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1038 		return cpu_addr;
1039 
1040 	return dma_common_find_pages(cpu_addr);
1041 }
1042 
1043 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1044 				  dma_addr_t *handle, int coherent_flag,
1045 				  unsigned long attrs)
1046 {
1047 	struct page *page;
1048 	void *addr;
1049 
1050 	if (coherent_flag  == COHERENT)
1051 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1052 	else
1053 		addr = __alloc_from_pool(size, &page);
1054 	if (!addr)
1055 		return NULL;
1056 
1057 	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1058 	if (*handle == DMA_MAPPING_ERROR)
1059 		goto err_mapping;
1060 
1061 	return addr;
1062 
1063 err_mapping:
1064 	__free_from_pool(addr, size);
1065 	return NULL;
1066 }
1067 
1068 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1069 			dma_addr_t handle, size_t size, int coherent_flag)
1070 {
1071 	__iommu_remove_mapping(dev, handle, size);
1072 	if (coherent_flag == COHERENT)
1073 		__dma_free_buffer(virt_to_page(cpu_addr), size);
1074 	else
1075 		__free_from_pool(cpu_addr, size);
1076 }
1077 
1078 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1079 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1080 {
1081 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1082 	struct page **pages;
1083 	void *addr = NULL;
1084 	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1085 
1086 	*handle = DMA_MAPPING_ERROR;
1087 	size = PAGE_ALIGN(size);
1088 
1089 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1090 		return __iommu_alloc_simple(dev, size, gfp, handle,
1091 					    coherent_flag, attrs);
1092 
1093 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1094 	if (!pages)
1095 		return NULL;
1096 
1097 	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1098 	if (*handle == DMA_MAPPING_ERROR)
1099 		goto err_buffer;
1100 
1101 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1102 		return pages;
1103 
1104 	addr = dma_common_pages_remap(pages, size, prot,
1105 				   __builtin_return_address(0));
1106 	if (!addr)
1107 		goto err_mapping;
1108 
1109 	return addr;
1110 
1111 err_mapping:
1112 	__iommu_remove_mapping(dev, *handle, size);
1113 err_buffer:
1114 	__iommu_free_buffer(dev, pages, size, attrs);
1115 	return NULL;
1116 }
1117 
1118 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1119 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1120 		    unsigned long attrs)
1121 {
1122 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1123 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1124 	int err;
1125 
1126 	if (!pages)
1127 		return -ENXIO;
1128 
1129 	if (vma->vm_pgoff >= nr_pages)
1130 		return -ENXIO;
1131 
1132 	if (!dev->dma_coherent)
1133 		vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1134 
1135 	err = vm_map_pages(vma, pages, nr_pages);
1136 	if (err)
1137 		pr_err("Remapping memory failed: %d\n", err);
1138 
1139 	return err;
1140 }
1141 
1142 /*
1143  * free a page as defined by the above mapping.
1144  * Must not be called with IRQs disabled.
1145  */
1146 static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1147 	dma_addr_t handle, unsigned long attrs)
1148 {
1149 	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1150 	struct page **pages;
1151 	size = PAGE_ALIGN(size);
1152 
1153 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1154 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1155 		return;
1156 	}
1157 
1158 	pages = __iommu_get_pages(cpu_addr, attrs);
1159 	if (!pages) {
1160 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1161 		return;
1162 	}
1163 
1164 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1165 		dma_common_free_remap(cpu_addr, size);
1166 
1167 	__iommu_remove_mapping(dev, handle, size);
1168 	__iommu_free_buffer(dev, pages, size, attrs);
1169 }
1170 
1171 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1172 				 void *cpu_addr, dma_addr_t dma_addr,
1173 				 size_t size, unsigned long attrs)
1174 {
1175 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1176 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1177 
1178 	if (!pages)
1179 		return -ENXIO;
1180 
1181 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1182 					 GFP_KERNEL);
1183 }
1184 
1185 /*
1186  * Map a part of the scatter-gather list into contiguous io address space
1187  */
1188 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1189 			  size_t size, dma_addr_t *handle,
1190 			  enum dma_data_direction dir, unsigned long attrs)
1191 {
1192 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1193 	dma_addr_t iova, iova_base;
1194 	int ret = 0;
1195 	unsigned int count;
1196 	struct scatterlist *s;
1197 	int prot;
1198 
1199 	size = PAGE_ALIGN(size);
1200 	*handle = DMA_MAPPING_ERROR;
1201 
1202 	iova_base = iova = __alloc_iova(mapping, size);
1203 	if (iova == DMA_MAPPING_ERROR)
1204 		return -ENOMEM;
1205 
1206 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1207 		phys_addr_t phys = page_to_phys(sg_page(s));
1208 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1209 
1210 		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1211 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1212 
1213 		prot = __dma_info_to_prot(dir, attrs);
1214 
1215 		ret = iommu_map(mapping->domain, iova, phys, len, prot,
1216 				GFP_KERNEL);
1217 		if (ret < 0)
1218 			goto fail;
1219 		count += len >> PAGE_SHIFT;
1220 		iova += len;
1221 	}
1222 	*handle = iova_base;
1223 
1224 	return 0;
1225 fail:
1226 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1227 	__free_iova(mapping, iova_base, size);
1228 	return ret;
1229 }
1230 
1231 /**
1232  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1233  * @dev: valid struct device pointer
1234  * @sg: list of buffers
1235  * @nents: number of buffers to map
1236  * @dir: DMA transfer direction
1237  *
1238  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1239  * The scatter gather list elements are merged together (if possible) and
1240  * tagged with the appropriate dma address and length. They are obtained via
1241  * sg_dma_{address,length}.
1242  */
1243 static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1244 		int nents, enum dma_data_direction dir, unsigned long attrs)
1245 {
1246 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1247 	int i, count = 0, ret;
1248 	unsigned int offset = s->offset;
1249 	unsigned int size = s->offset + s->length;
1250 	unsigned int max = dma_get_max_seg_size(dev);
1251 
1252 	for (i = 1; i < nents; i++) {
1253 		s = sg_next(s);
1254 
1255 		s->dma_length = 0;
1256 
1257 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1258 			ret = __map_sg_chunk(dev, start, size,
1259 					     &dma->dma_address, dir, attrs);
1260 			if (ret < 0)
1261 				goto bad_mapping;
1262 
1263 			dma->dma_address += offset;
1264 			dma->dma_length = size - offset;
1265 
1266 			size = offset = s->offset;
1267 			start = s;
1268 			dma = sg_next(dma);
1269 			count += 1;
1270 		}
1271 		size += s->length;
1272 	}
1273 	ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
1274 	if (ret < 0)
1275 		goto bad_mapping;
1276 
1277 	dma->dma_address += offset;
1278 	dma->dma_length = size - offset;
1279 
1280 	return count+1;
1281 
1282 bad_mapping:
1283 	for_each_sg(sg, s, count, i)
1284 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1285 	if (ret == -ENOMEM)
1286 		return ret;
1287 	return -EINVAL;
1288 }
1289 
1290 /**
1291  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1292  * @dev: valid struct device pointer
1293  * @sg: list of buffers
1294  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1295  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1296  *
1297  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1298  * rules concerning calls here are the same as for dma_unmap_single().
1299  */
1300 static void arm_iommu_unmap_sg(struct device *dev,
1301 			       struct scatterlist *sg, int nents,
1302 			       enum dma_data_direction dir,
1303 			       unsigned long attrs)
1304 {
1305 	struct scatterlist *s;
1306 	int i;
1307 
1308 	for_each_sg(sg, s, nents, i) {
1309 		if (sg_dma_len(s))
1310 			__iommu_remove_mapping(dev, sg_dma_address(s),
1311 					       sg_dma_len(s));
1312 		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1313 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1314 					      s->length, dir);
1315 	}
1316 }
1317 
1318 /**
1319  * arm_iommu_sync_sg_for_cpu
1320  * @dev: valid struct device pointer
1321  * @sg: list of buffers
1322  * @nents: number of buffers to map (returned from dma_map_sg)
1323  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1324  */
1325 static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1326 			struct scatterlist *sg,
1327 			int nents, enum dma_data_direction dir)
1328 {
1329 	struct scatterlist *s;
1330 	int i;
1331 
1332 	if (dev->dma_coherent)
1333 		return;
1334 
1335 	for_each_sg(sg, s, nents, i)
1336 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1337 
1338 }
1339 
1340 /**
1341  * arm_iommu_sync_sg_for_device
1342  * @dev: valid struct device pointer
1343  * @sg: list of buffers
1344  * @nents: number of buffers to map (returned from dma_map_sg)
1345  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1346  */
1347 static void arm_iommu_sync_sg_for_device(struct device *dev,
1348 			struct scatterlist *sg,
1349 			int nents, enum dma_data_direction dir)
1350 {
1351 	struct scatterlist *s;
1352 	int i;
1353 
1354 	if (dev->dma_coherent)
1355 		return;
1356 
1357 	for_each_sg(sg, s, nents, i)
1358 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1359 }
1360 
1361 /**
1362  * arm_iommu_map_page
1363  * @dev: valid struct device pointer
1364  * @page: page that buffer resides in
1365  * @offset: offset into page for start of buffer
1366  * @size: size of buffer to map
1367  * @dir: DMA transfer direction
1368  *
1369  * IOMMU aware version of arm_dma_map_page()
1370  */
1371 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1372 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1373 	     unsigned long attrs)
1374 {
1375 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1376 	dma_addr_t dma_addr;
1377 	int ret, prot, len = PAGE_ALIGN(size + offset);
1378 
1379 	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1380 		__dma_page_cpu_to_dev(page, offset, size, dir);
1381 
1382 	dma_addr = __alloc_iova(mapping, len);
1383 	if (dma_addr == DMA_MAPPING_ERROR)
1384 		return dma_addr;
1385 
1386 	prot = __dma_info_to_prot(dir, attrs);
1387 
1388 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len,
1389 			prot, GFP_KERNEL);
1390 	if (ret < 0)
1391 		goto fail;
1392 
1393 	return dma_addr + offset;
1394 fail:
1395 	__free_iova(mapping, dma_addr, len);
1396 	return DMA_MAPPING_ERROR;
1397 }
1398 
1399 /**
1400  * arm_iommu_unmap_page
1401  * @dev: valid struct device pointer
1402  * @handle: DMA address of buffer
1403  * @size: size of buffer (same as passed to dma_map_page)
1404  * @dir: DMA transfer direction (same as passed to dma_map_page)
1405  *
1406  * IOMMU aware version of arm_dma_unmap_page()
1407  */
1408 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1409 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1410 {
1411 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1412 	dma_addr_t iova = handle & PAGE_MASK;
1413 	struct page *page;
1414 	int offset = handle & ~PAGE_MASK;
1415 	int len = PAGE_ALIGN(size + offset);
1416 
1417 	if (!iova)
1418 		return;
1419 
1420 	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
1421 		page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1422 		__dma_page_dev_to_cpu(page, offset, size, dir);
1423 	}
1424 
1425 	iommu_unmap(mapping->domain, iova, len);
1426 	__free_iova(mapping, iova, len);
1427 }
1428 
1429 /**
1430  * arm_iommu_map_resource - map a device resource for DMA
1431  * @dev: valid struct device pointer
1432  * @phys_addr: physical address of resource
1433  * @size: size of resource to map
1434  * @dir: DMA transfer direction
1435  */
1436 static dma_addr_t arm_iommu_map_resource(struct device *dev,
1437 		phys_addr_t phys_addr, size_t size,
1438 		enum dma_data_direction dir, unsigned long attrs)
1439 {
1440 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1441 	dma_addr_t dma_addr;
1442 	int ret, prot;
1443 	phys_addr_t addr = phys_addr & PAGE_MASK;
1444 	unsigned int offset = phys_addr & ~PAGE_MASK;
1445 	size_t len = PAGE_ALIGN(size + offset);
1446 
1447 	dma_addr = __alloc_iova(mapping, len);
1448 	if (dma_addr == DMA_MAPPING_ERROR)
1449 		return dma_addr;
1450 
1451 	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1452 
1453 	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot, GFP_KERNEL);
1454 	if (ret < 0)
1455 		goto fail;
1456 
1457 	return dma_addr + offset;
1458 fail:
1459 	__free_iova(mapping, dma_addr, len);
1460 	return DMA_MAPPING_ERROR;
1461 }
1462 
1463 /**
1464  * arm_iommu_unmap_resource - unmap a device DMA resource
1465  * @dev: valid struct device pointer
1466  * @dma_handle: DMA address to resource
1467  * @size: size of resource to map
1468  * @dir: DMA transfer direction
1469  */
1470 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1471 		size_t size, enum dma_data_direction dir,
1472 		unsigned long attrs)
1473 {
1474 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1475 	dma_addr_t iova = dma_handle & PAGE_MASK;
1476 	unsigned int offset = dma_handle & ~PAGE_MASK;
1477 	size_t len = PAGE_ALIGN(size + offset);
1478 
1479 	if (!iova)
1480 		return;
1481 
1482 	iommu_unmap(mapping->domain, iova, len);
1483 	__free_iova(mapping, iova, len);
1484 }
1485 
1486 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1487 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1488 {
1489 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1490 	dma_addr_t iova = handle & PAGE_MASK;
1491 	struct page *page;
1492 	unsigned int offset = handle & ~PAGE_MASK;
1493 
1494 	if (dev->dma_coherent || !iova)
1495 		return;
1496 
1497 	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1498 	__dma_page_dev_to_cpu(page, offset, size, dir);
1499 }
1500 
1501 static void arm_iommu_sync_single_for_device(struct device *dev,
1502 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1503 {
1504 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1505 	dma_addr_t iova = handle & PAGE_MASK;
1506 	struct page *page;
1507 	unsigned int offset = handle & ~PAGE_MASK;
1508 
1509 	if (dev->dma_coherent || !iova)
1510 		return;
1511 
1512 	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1513 	__dma_page_cpu_to_dev(page, offset, size, dir);
1514 }
1515 
1516 static const struct dma_map_ops iommu_ops = {
1517 	.alloc		= arm_iommu_alloc_attrs,
1518 	.free		= arm_iommu_free_attrs,
1519 	.mmap		= arm_iommu_mmap_attrs,
1520 	.get_sgtable	= arm_iommu_get_sgtable,
1521 
1522 	.map_page		= arm_iommu_map_page,
1523 	.unmap_page		= arm_iommu_unmap_page,
1524 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1525 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1526 
1527 	.map_sg			= arm_iommu_map_sg,
1528 	.unmap_sg		= arm_iommu_unmap_sg,
1529 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1530 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1531 
1532 	.map_resource		= arm_iommu_map_resource,
1533 	.unmap_resource		= arm_iommu_unmap_resource,
1534 };
1535 
1536 /**
1537  * arm_iommu_create_mapping
1538  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1539  * @base: start address of the valid IO address space
1540  * @size: maximum size of the valid IO address space
1541  *
1542  * Creates a mapping structure which holds information about used/unused
1543  * IO address ranges, which is required to perform memory allocation and
1544  * mapping with IOMMU aware functions.
1545  *
1546  * The client device need to be attached to the mapping with
1547  * arm_iommu_attach_device function.
1548  */
1549 struct dma_iommu_mapping *
1550 arm_iommu_create_mapping(const struct bus_type *bus, dma_addr_t base, u64 size)
1551 {
1552 	unsigned int bits = size >> PAGE_SHIFT;
1553 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1554 	struct dma_iommu_mapping *mapping;
1555 	int extensions = 1;
1556 	int err = -ENOMEM;
1557 
1558 	/* currently only 32-bit DMA address space is supported */
1559 	if (size > DMA_BIT_MASK(32) + 1)
1560 		return ERR_PTR(-ERANGE);
1561 
1562 	if (!bitmap_size)
1563 		return ERR_PTR(-EINVAL);
1564 
1565 	if (bitmap_size > PAGE_SIZE) {
1566 		extensions = bitmap_size / PAGE_SIZE;
1567 		bitmap_size = PAGE_SIZE;
1568 	}
1569 
1570 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1571 	if (!mapping)
1572 		goto err;
1573 
1574 	mapping->bitmap_size = bitmap_size;
1575 	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
1576 				   GFP_KERNEL);
1577 	if (!mapping->bitmaps)
1578 		goto err2;
1579 
1580 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1581 	if (!mapping->bitmaps[0])
1582 		goto err3;
1583 
1584 	mapping->nr_bitmaps = 1;
1585 	mapping->extensions = extensions;
1586 	mapping->base = base;
1587 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1588 
1589 	spin_lock_init(&mapping->lock);
1590 
1591 	mapping->domain = iommu_domain_alloc(bus);
1592 	if (!mapping->domain)
1593 		goto err4;
1594 
1595 	kref_init(&mapping->kref);
1596 	return mapping;
1597 err4:
1598 	kfree(mapping->bitmaps[0]);
1599 err3:
1600 	kfree(mapping->bitmaps);
1601 err2:
1602 	kfree(mapping);
1603 err:
1604 	return ERR_PTR(err);
1605 }
1606 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1607 
1608 static void release_iommu_mapping(struct kref *kref)
1609 {
1610 	int i;
1611 	struct dma_iommu_mapping *mapping =
1612 		container_of(kref, struct dma_iommu_mapping, kref);
1613 
1614 	iommu_domain_free(mapping->domain);
1615 	for (i = 0; i < mapping->nr_bitmaps; i++)
1616 		kfree(mapping->bitmaps[i]);
1617 	kfree(mapping->bitmaps);
1618 	kfree(mapping);
1619 }
1620 
1621 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1622 {
1623 	int next_bitmap;
1624 
1625 	if (mapping->nr_bitmaps >= mapping->extensions)
1626 		return -EINVAL;
1627 
1628 	next_bitmap = mapping->nr_bitmaps;
1629 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1630 						GFP_ATOMIC);
1631 	if (!mapping->bitmaps[next_bitmap])
1632 		return -ENOMEM;
1633 
1634 	mapping->nr_bitmaps++;
1635 
1636 	return 0;
1637 }
1638 
1639 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1640 {
1641 	if (mapping)
1642 		kref_put(&mapping->kref, release_iommu_mapping);
1643 }
1644 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1645 
1646 static int __arm_iommu_attach_device(struct device *dev,
1647 				     struct dma_iommu_mapping *mapping)
1648 {
1649 	int err;
1650 
1651 	err = iommu_attach_device(mapping->domain, dev);
1652 	if (err)
1653 		return err;
1654 
1655 	kref_get(&mapping->kref);
1656 	to_dma_iommu_mapping(dev) = mapping;
1657 
1658 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1659 	return 0;
1660 }
1661 
1662 /**
1663  * arm_iommu_attach_device
1664  * @dev: valid struct device pointer
1665  * @mapping: io address space mapping structure (returned from
1666  *	arm_iommu_create_mapping)
1667  *
1668  * Attaches specified io address space mapping to the provided device.
1669  * This replaces the dma operations (dma_map_ops pointer) with the
1670  * IOMMU aware version.
1671  *
1672  * More than one client might be attached to the same io address space
1673  * mapping.
1674  */
1675 int arm_iommu_attach_device(struct device *dev,
1676 			    struct dma_iommu_mapping *mapping)
1677 {
1678 	int err;
1679 
1680 	err = __arm_iommu_attach_device(dev, mapping);
1681 	if (err)
1682 		return err;
1683 
1684 	set_dma_ops(dev, &iommu_ops);
1685 	return 0;
1686 }
1687 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1688 
1689 /**
1690  * arm_iommu_detach_device
1691  * @dev: valid struct device pointer
1692  *
1693  * Detaches the provided device from a previously attached map.
1694  * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
1695  */
1696 void arm_iommu_detach_device(struct device *dev)
1697 {
1698 	struct dma_iommu_mapping *mapping;
1699 
1700 	mapping = to_dma_iommu_mapping(dev);
1701 	if (!mapping) {
1702 		dev_warn(dev, "Not attached\n");
1703 		return;
1704 	}
1705 
1706 	iommu_detach_device(mapping->domain, dev);
1707 	kref_put(&mapping->kref, release_iommu_mapping);
1708 	to_dma_iommu_mapping(dev) = NULL;
1709 	set_dma_ops(dev, NULL);
1710 
1711 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1712 }
1713 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1714 
1715 static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1716 				    const struct iommu_ops *iommu, bool coherent)
1717 {
1718 	struct dma_iommu_mapping *mapping;
1719 
1720 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
1721 	if (IS_ERR(mapping)) {
1722 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
1723 				size, dev_name(dev));
1724 		return;
1725 	}
1726 
1727 	if (__arm_iommu_attach_device(dev, mapping)) {
1728 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
1729 				dev_name(dev));
1730 		arm_iommu_release_mapping(mapping);
1731 		return;
1732 	}
1733 
1734 	set_dma_ops(dev, &iommu_ops);
1735 }
1736 
1737 static void arm_teardown_iommu_dma_ops(struct device *dev)
1738 {
1739 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1740 
1741 	if (!mapping)
1742 		return;
1743 
1744 	arm_iommu_detach_device(dev);
1745 	arm_iommu_release_mapping(mapping);
1746 }
1747 
1748 #else
1749 
1750 static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1751 				    const struct iommu_ops *iommu, bool coherent)
1752 {
1753 }
1754 
1755 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
1756 
1757 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
1758 
1759 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
1760 			const struct iommu_ops *iommu, bool coherent)
1761 {
1762 	/*
1763 	 * Due to legacy code that sets the ->dma_coherent flag from a bus
1764 	 * notifier we can't just assign coherent to the ->dma_coherent flag
1765 	 * here, but instead have to make sure we only set but never clear it
1766 	 * for now.
1767 	 */
1768 	if (coherent)
1769 		dev->dma_coherent = true;
1770 
1771 	/*
1772 	 * Don't override the dma_ops if they have already been set. Ideally
1773 	 * this should be the only location where dma_ops are set, remove this
1774 	 * check when all other callers of set_dma_ops will have disappeared.
1775 	 */
1776 	if (dev->dma_ops)
1777 		return;
1778 
1779 	if (iommu)
1780 		arm_setup_iommu_dma_ops(dev, dma_base, size, iommu, coherent);
1781 
1782 	xen_setup_dma_ops(dev);
1783 	dev->archdata.dma_ops_setup = true;
1784 }
1785 
1786 void arch_teardown_dma_ops(struct device *dev)
1787 {
1788 	if (!dev->archdata.dma_ops_setup)
1789 		return;
1790 
1791 	arm_teardown_iommu_dma_ops(dev);
1792 	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
1793 	set_dma_ops(dev, NULL);
1794 }
1795 
1796 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
1797 		enum dma_data_direction dir)
1798 {
1799 	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1800 			      size, dir);
1801 }
1802 
1803 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
1804 		enum dma_data_direction dir)
1805 {
1806 	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1807 			      size, dir);
1808 }
1809 
1810 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1811 		gfp_t gfp, unsigned long attrs)
1812 {
1813 	return __dma_alloc(dev, size, dma_handle, gfp,
1814 			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
1815 			   attrs, __builtin_return_address(0));
1816 }
1817 
1818 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
1819 		dma_addr_t dma_handle, unsigned long attrs)
1820 {
1821 	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
1822 }
1823