xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 99d1717d)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/highmem.h>
21 #include <linux/slab.h>
22 
23 #include <asm/memory.h>
24 #include <asm/highmem.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/sizes.h>
28 #include <asm/mach/arch.h>
29 
30 #include "mm.h"
31 
32 static u64 get_coherent_dma_mask(struct device *dev)
33 {
34 	u64 mask = (u64)arm_dma_limit;
35 
36 	if (dev) {
37 		mask = dev->coherent_dma_mask;
38 
39 		/*
40 		 * Sanity check the DMA mask - it must be non-zero, and
41 		 * must be able to be satisfied by a DMA allocation.
42 		 */
43 		if (mask == 0) {
44 			dev_warn(dev, "coherent DMA mask is unset\n");
45 			return 0;
46 		}
47 
48 		if ((~mask) & (u64)arm_dma_limit) {
49 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
50 				 "than system GFP_DMA mask %#llx\n",
51 				 mask, (u64)arm_dma_limit);
52 			return 0;
53 		}
54 	}
55 
56 	return mask;
57 }
58 
59 /*
60  * Allocate a DMA buffer for 'dev' of size 'size' using the
61  * specified gfp mask.  Note that 'size' must be page aligned.
62  */
63 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
64 {
65 	unsigned long order = get_order(size);
66 	struct page *page, *p, *e;
67 	void *ptr;
68 	u64 mask = get_coherent_dma_mask(dev);
69 
70 #ifdef CONFIG_DMA_API_DEBUG
71 	u64 limit = (mask + 1) & ~mask;
72 	if (limit && size >= limit) {
73 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
74 			size, mask);
75 		return NULL;
76 	}
77 #endif
78 
79 	if (!mask)
80 		return NULL;
81 
82 	if (mask < 0xffffffffULL)
83 		gfp |= GFP_DMA;
84 
85 	page = alloc_pages(gfp, order);
86 	if (!page)
87 		return NULL;
88 
89 	/*
90 	 * Now split the huge page and free the excess pages
91 	 */
92 	split_page(page, order);
93 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
94 		__free_page(p);
95 
96 	/*
97 	 * Ensure that the allocated pages are zeroed, and that any data
98 	 * lurking in the kernel direct-mapped region is invalidated.
99 	 */
100 	ptr = page_address(page);
101 	memset(ptr, 0, size);
102 	dmac_flush_range(ptr, ptr + size);
103 	outer_flush_range(__pa(ptr), __pa(ptr) + size);
104 
105 	return page;
106 }
107 
108 /*
109  * Free a DMA buffer.  'size' must be page aligned.
110  */
111 static void __dma_free_buffer(struct page *page, size_t size)
112 {
113 	struct page *e = page + (size >> PAGE_SHIFT);
114 
115 	while (page < e) {
116 		__free_page(page);
117 		page++;
118 	}
119 }
120 
121 #ifdef CONFIG_MMU
122 
123 
124 #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
125 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PGDIR_SHIFT)
126 
127 /*
128  * These are the page tables (2MB each) covering uncached, DMA consistent allocations
129  */
130 static pte_t **consistent_pte;
131 
132 #ifdef CONSISTENT_DMA_SIZE
133 #define DEFAULT_CONSISTENT_DMA_SIZE CONSISTENT_DMA_SIZE
134 #else
135 #define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M
136 #endif
137 
138 unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;
139 
140 void __init init_consistent_dma_size(unsigned long size)
141 {
142 	unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);
143 
144 	BUG_ON(consistent_pte); /* Check we're called before DMA region init */
145 	BUG_ON(base < VMALLOC_END);
146 
147 	/* Grow region to accommodate specified size  */
148 	if (base < consistent_base)
149 		consistent_base = base;
150 }
151 
152 #include "vmregion.h"
153 
154 static struct arm_vmregion_head consistent_head = {
155 	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
156 	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
157 	.vm_end		= CONSISTENT_END,
158 };
159 
160 #ifdef CONFIG_HUGETLB_PAGE
161 #error ARM Coherent DMA allocator does not (yet) support huge TLB
162 #endif
163 
164 /*
165  * Initialise the consistent memory allocation.
166  */
167 static int __init consistent_init(void)
168 {
169 	int ret = 0;
170 	pgd_t *pgd;
171 	pud_t *pud;
172 	pmd_t *pmd;
173 	pte_t *pte;
174 	int i = 0;
175 	unsigned long base = consistent_base;
176 	unsigned long num_ptes = (CONSISTENT_END - base) >> PGDIR_SHIFT;
177 
178 	consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
179 	if (!consistent_pte) {
180 		pr_err("%s: no memory\n", __func__);
181 		return -ENOMEM;
182 	}
183 
184 	pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
185 	consistent_head.vm_start = base;
186 
187 	do {
188 		pgd = pgd_offset(&init_mm, base);
189 
190 		pud = pud_alloc(&init_mm, pgd, base);
191 		if (!pud) {
192 			printk(KERN_ERR "%s: no pud tables\n", __func__);
193 			ret = -ENOMEM;
194 			break;
195 		}
196 
197 		pmd = pmd_alloc(&init_mm, pud, base);
198 		if (!pmd) {
199 			printk(KERN_ERR "%s: no pmd tables\n", __func__);
200 			ret = -ENOMEM;
201 			break;
202 		}
203 		WARN_ON(!pmd_none(*pmd));
204 
205 		pte = pte_alloc_kernel(pmd, base);
206 		if (!pte) {
207 			printk(KERN_ERR "%s: no pte tables\n", __func__);
208 			ret = -ENOMEM;
209 			break;
210 		}
211 
212 		consistent_pte[i++] = pte;
213 		base += (1 << PGDIR_SHIFT);
214 	} while (base < CONSISTENT_END);
215 
216 	return ret;
217 }
218 
219 core_initcall(consistent_init);
220 
221 static void *
222 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
223 {
224 	struct arm_vmregion *c;
225 	size_t align;
226 	int bit;
227 
228 	if (!consistent_pte) {
229 		printk(KERN_ERR "%s: not initialised\n", __func__);
230 		dump_stack();
231 		return NULL;
232 	}
233 
234 	/*
235 	 * Align the virtual region allocation - maximum alignment is
236 	 * a section size, minimum is a page size.  This helps reduce
237 	 * fragmentation of the DMA space, and also prevents allocations
238 	 * smaller than a section from crossing a section boundary.
239 	 */
240 	bit = fls(size - 1);
241 	if (bit > SECTION_SHIFT)
242 		bit = SECTION_SHIFT;
243 	align = 1 << bit;
244 
245 	/*
246 	 * Allocate a virtual address in the consistent mapping region.
247 	 */
248 	c = arm_vmregion_alloc(&consistent_head, align, size,
249 			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
250 	if (c) {
251 		pte_t *pte;
252 		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
253 		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
254 
255 		pte = consistent_pte[idx] + off;
256 		c->vm_pages = page;
257 
258 		do {
259 			BUG_ON(!pte_none(*pte));
260 
261 			set_pte_ext(pte, mk_pte(page, prot), 0);
262 			page++;
263 			pte++;
264 			off++;
265 			if (off >= PTRS_PER_PTE) {
266 				off = 0;
267 				pte = consistent_pte[++idx];
268 			}
269 		} while (size -= PAGE_SIZE);
270 
271 		dsb();
272 
273 		return (void *)c->vm_start;
274 	}
275 	return NULL;
276 }
277 
278 static void __dma_free_remap(void *cpu_addr, size_t size)
279 {
280 	struct arm_vmregion *c;
281 	unsigned long addr;
282 	pte_t *ptep;
283 	int idx;
284 	u32 off;
285 
286 	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
287 	if (!c) {
288 		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
289 		       __func__, cpu_addr);
290 		dump_stack();
291 		return;
292 	}
293 
294 	if ((c->vm_end - c->vm_start) != size) {
295 		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
296 		       __func__, c->vm_end - c->vm_start, size);
297 		dump_stack();
298 		size = c->vm_end - c->vm_start;
299 	}
300 
301 	idx = CONSISTENT_PTE_INDEX(c->vm_start);
302 	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
303 	ptep = consistent_pte[idx] + off;
304 	addr = c->vm_start;
305 	do {
306 		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
307 
308 		ptep++;
309 		addr += PAGE_SIZE;
310 		off++;
311 		if (off >= PTRS_PER_PTE) {
312 			off = 0;
313 			ptep = consistent_pte[++idx];
314 		}
315 
316 		if (pte_none(pte) || !pte_present(pte))
317 			printk(KERN_CRIT "%s: bad page in kernel page table\n",
318 			       __func__);
319 	} while (size -= PAGE_SIZE);
320 
321 	flush_tlb_kernel_range(c->vm_start, c->vm_end);
322 
323 	arm_vmregion_free(&consistent_head, c);
324 }
325 
326 #else	/* !CONFIG_MMU */
327 
328 #define __dma_alloc_remap(page, size, gfp, prot)	page_address(page)
329 #define __dma_free_remap(addr, size)			do { } while (0)
330 
331 #endif	/* CONFIG_MMU */
332 
333 static void *
334 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
335 	    pgprot_t prot)
336 {
337 	struct page *page;
338 	void *addr;
339 
340 	*handle = ~0;
341 	size = PAGE_ALIGN(size);
342 
343 	page = __dma_alloc_buffer(dev, size, gfp);
344 	if (!page)
345 		return NULL;
346 
347 	if (!arch_is_coherent())
348 		addr = __dma_alloc_remap(page, size, gfp, prot);
349 	else
350 		addr = page_address(page);
351 
352 	if (addr)
353 		*handle = pfn_to_dma(dev, page_to_pfn(page));
354 
355 	return addr;
356 }
357 
358 /*
359  * Allocate DMA-coherent memory space and return both the kernel remapped
360  * virtual and bus address for that space.
361  */
362 void *
363 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
364 {
365 	void *memory;
366 
367 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
368 		return memory;
369 
370 	return __dma_alloc(dev, size, handle, gfp,
371 			   pgprot_dmacoherent(pgprot_kernel));
372 }
373 EXPORT_SYMBOL(dma_alloc_coherent);
374 
375 /*
376  * Allocate a writecombining region, in much the same way as
377  * dma_alloc_coherent above.
378  */
379 void *
380 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
381 {
382 	return __dma_alloc(dev, size, handle, gfp,
383 			   pgprot_writecombine(pgprot_kernel));
384 }
385 EXPORT_SYMBOL(dma_alloc_writecombine);
386 
387 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
388 		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
389 {
390 	int ret = -ENXIO;
391 #ifdef CONFIG_MMU
392 	unsigned long user_size, kern_size;
393 	struct arm_vmregion *c;
394 
395 	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
396 
397 	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
398 	if (c) {
399 		unsigned long off = vma->vm_pgoff;
400 
401 		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
402 
403 		if (off < kern_size &&
404 		    user_size <= (kern_size - off)) {
405 			ret = remap_pfn_range(vma, vma->vm_start,
406 					      page_to_pfn(c->vm_pages) + off,
407 					      user_size << PAGE_SHIFT,
408 					      vma->vm_page_prot);
409 		}
410 	}
411 #endif	/* CONFIG_MMU */
412 
413 	return ret;
414 }
415 
416 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
417 		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
418 {
419 	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
420 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
421 }
422 EXPORT_SYMBOL(dma_mmap_coherent);
423 
424 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
425 			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
426 {
427 	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
428 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
429 }
430 EXPORT_SYMBOL(dma_mmap_writecombine);
431 
432 /*
433  * free a page as defined by the above mapping.
434  * Must not be called with IRQs disabled.
435  */
436 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
437 {
438 	WARN_ON(irqs_disabled());
439 
440 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
441 		return;
442 
443 	size = PAGE_ALIGN(size);
444 
445 	if (!arch_is_coherent())
446 		__dma_free_remap(cpu_addr, size);
447 
448 	__dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
449 }
450 EXPORT_SYMBOL(dma_free_coherent);
451 
452 /*
453  * Make an area consistent for devices.
454  * Note: Drivers should NOT use this function directly, as it will break
455  * platforms with CONFIG_DMABOUNCE.
456  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
457  */
458 void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
459 	enum dma_data_direction dir)
460 {
461 	unsigned long paddr;
462 
463 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
464 
465 	dmac_map_area(kaddr, size, dir);
466 
467 	paddr = __pa(kaddr);
468 	if (dir == DMA_FROM_DEVICE) {
469 		outer_inv_range(paddr, paddr + size);
470 	} else {
471 		outer_clean_range(paddr, paddr + size);
472 	}
473 	/* FIXME: non-speculating: flush on bidirectional mappings? */
474 }
475 EXPORT_SYMBOL(___dma_single_cpu_to_dev);
476 
477 void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
478 	enum dma_data_direction dir)
479 {
480 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
481 
482 	/* FIXME: non-speculating: not required */
483 	/* don't bother invalidating if DMA to device */
484 	if (dir != DMA_TO_DEVICE) {
485 		unsigned long paddr = __pa(kaddr);
486 		outer_inv_range(paddr, paddr + size);
487 	}
488 
489 	dmac_unmap_area(kaddr, size, dir);
490 }
491 EXPORT_SYMBOL(___dma_single_dev_to_cpu);
492 
493 static void dma_cache_maint_page(struct page *page, unsigned long offset,
494 	size_t size, enum dma_data_direction dir,
495 	void (*op)(const void *, size_t, int))
496 {
497 	/*
498 	 * A single sg entry may refer to multiple physically contiguous
499 	 * pages.  But we still need to process highmem pages individually.
500 	 * If highmem is not configured then the bulk of this loop gets
501 	 * optimized out.
502 	 */
503 	size_t left = size;
504 	do {
505 		size_t len = left;
506 		void *vaddr;
507 
508 		if (PageHighMem(page)) {
509 			if (len + offset > PAGE_SIZE) {
510 				if (offset >= PAGE_SIZE) {
511 					page += offset / PAGE_SIZE;
512 					offset %= PAGE_SIZE;
513 				}
514 				len = PAGE_SIZE - offset;
515 			}
516 			vaddr = kmap_high_get(page);
517 			if (vaddr) {
518 				vaddr += offset;
519 				op(vaddr, len, dir);
520 				kunmap_high(page);
521 			} else if (cache_is_vipt()) {
522 				/* unmapped pages might still be cached */
523 				vaddr = kmap_atomic(page);
524 				op(vaddr + offset, len, dir);
525 				kunmap_atomic(vaddr);
526 			}
527 		} else {
528 			vaddr = page_address(page) + offset;
529 			op(vaddr, len, dir);
530 		}
531 		offset = 0;
532 		page++;
533 		left -= len;
534 	} while (left);
535 }
536 
537 void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
538 	size_t size, enum dma_data_direction dir)
539 {
540 	unsigned long paddr;
541 
542 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
543 
544 	paddr = page_to_phys(page) + off;
545 	if (dir == DMA_FROM_DEVICE) {
546 		outer_inv_range(paddr, paddr + size);
547 	} else {
548 		outer_clean_range(paddr, paddr + size);
549 	}
550 	/* FIXME: non-speculating: flush on bidirectional mappings? */
551 }
552 EXPORT_SYMBOL(___dma_page_cpu_to_dev);
553 
554 void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
555 	size_t size, enum dma_data_direction dir)
556 {
557 	unsigned long paddr = page_to_phys(page) + off;
558 
559 	/* FIXME: non-speculating: not required */
560 	/* don't bother invalidating if DMA to device */
561 	if (dir != DMA_TO_DEVICE)
562 		outer_inv_range(paddr, paddr + size);
563 
564 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
565 
566 	/*
567 	 * Mark the D-cache clean for this page to avoid extra flushing.
568 	 */
569 	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
570 		set_bit(PG_dcache_clean, &page->flags);
571 }
572 EXPORT_SYMBOL(___dma_page_dev_to_cpu);
573 
574 /**
575  * dma_map_sg - map a set of SG buffers for streaming mode DMA
576  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
577  * @sg: list of buffers
578  * @nents: number of buffers to map
579  * @dir: DMA transfer direction
580  *
581  * Map a set of buffers described by scatterlist in streaming mode for DMA.
582  * This is the scatter-gather version of the dma_map_single interface.
583  * Here the scatter gather list elements are each tagged with the
584  * appropriate dma address and length.  They are obtained via
585  * sg_dma_{address,length}.
586  *
587  * Device ownership issues as mentioned for dma_map_single are the same
588  * here.
589  */
590 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
591 		enum dma_data_direction dir)
592 {
593 	struct scatterlist *s;
594 	int i, j;
595 
596 	BUG_ON(!valid_dma_direction(dir));
597 
598 	for_each_sg(sg, s, nents, i) {
599 		s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
600 						s->length, dir);
601 		if (dma_mapping_error(dev, s->dma_address))
602 			goto bad_mapping;
603 	}
604 	debug_dma_map_sg(dev, sg, nents, nents, dir);
605 	return nents;
606 
607  bad_mapping:
608 	for_each_sg(sg, s, i, j)
609 		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
610 	return 0;
611 }
612 EXPORT_SYMBOL(dma_map_sg);
613 
614 /**
615  * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
616  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
617  * @sg: list of buffers
618  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
619  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
620  *
621  * Unmap a set of streaming mode DMA translations.  Again, CPU access
622  * rules concerning calls here are the same as for dma_unmap_single().
623  */
624 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
625 		enum dma_data_direction dir)
626 {
627 	struct scatterlist *s;
628 	int i;
629 
630 	debug_dma_unmap_sg(dev, sg, nents, dir);
631 
632 	for_each_sg(sg, s, nents, i)
633 		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
634 }
635 EXPORT_SYMBOL(dma_unmap_sg);
636 
637 /**
638  * dma_sync_sg_for_cpu
639  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
640  * @sg: list of buffers
641  * @nents: number of buffers to map (returned from dma_map_sg)
642  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
643  */
644 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
645 			int nents, enum dma_data_direction dir)
646 {
647 	struct scatterlist *s;
648 	int i;
649 
650 	for_each_sg(sg, s, nents, i) {
651 		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
652 					    sg_dma_len(s), dir))
653 			continue;
654 
655 		__dma_page_dev_to_cpu(sg_page(s), s->offset,
656 				      s->length, dir);
657 	}
658 
659 	debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
660 }
661 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
662 
663 /**
664  * dma_sync_sg_for_device
665  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
666  * @sg: list of buffers
667  * @nents: number of buffers to map (returned from dma_map_sg)
668  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
669  */
670 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
671 			int nents, enum dma_data_direction dir)
672 {
673 	struct scatterlist *s;
674 	int i;
675 
676 	for_each_sg(sg, s, nents, i) {
677 		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
678 					sg_dma_len(s), dir))
679 			continue;
680 
681 		__dma_page_cpu_to_dev(sg_page(s), s->offset,
682 				      s->length, dir);
683 	}
684 
685 	debug_dma_sync_sg_for_device(dev, sg, nents, dir);
686 }
687 EXPORT_SYMBOL(dma_sync_sg_for_device);
688 
689 /*
690  * Return whether the given device DMA address mask can be supported
691  * properly.  For example, if your device can only drive the low 24-bits
692  * during bus mastering, then you would pass 0x00ffffff as the mask
693  * to this function.
694  */
695 int dma_supported(struct device *dev, u64 mask)
696 {
697 	if (mask < (u64)arm_dma_limit)
698 		return 0;
699 	return 1;
700 }
701 EXPORT_SYMBOL(dma_supported);
702 
703 int dma_set_mask(struct device *dev, u64 dma_mask)
704 {
705 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
706 		return -EIO;
707 
708 #ifndef CONFIG_DMABOUNCE
709 	*dev->dma_mask = dma_mask;
710 #endif
711 
712 	return 0;
713 }
714 EXPORT_SYMBOL(dma_set_mask);
715 
716 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
717 
718 static int __init dma_debug_do_init(void)
719 {
720 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
721 	return 0;
722 }
723 fs_initcall(dma_debug_do_init);
724