1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/module.h> 13 #include <linux/mm.h> 14 #include <linux/gfp.h> 15 #include <linux/errno.h> 16 #include <linux/list.h> 17 #include <linux/init.h> 18 #include <linux/device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/dma-contiguous.h> 21 #include <linux/highmem.h> 22 #include <linux/memblock.h> 23 #include <linux/slab.h> 24 #include <linux/iommu.h> 25 #include <linux/io.h> 26 #include <linux/vmalloc.h> 27 #include <linux/sizes.h> 28 29 #include <asm/memory.h> 30 #include <asm/highmem.h> 31 #include <asm/cacheflush.h> 32 #include <asm/tlbflush.h> 33 #include <asm/mach/arch.h> 34 #include <asm/dma-iommu.h> 35 #include <asm/mach/map.h> 36 #include <asm/system_info.h> 37 #include <asm/dma-contiguous.h> 38 39 #include "mm.h" 40 41 /* 42 * The DMA API is built upon the notion of "buffer ownership". A buffer 43 * is either exclusively owned by the CPU (and therefore may be accessed 44 * by it) or exclusively owned by the DMA device. These helper functions 45 * represent the transitions between these two ownership states. 46 * 47 * Note, however, that on later ARMs, this notion does not work due to 48 * speculative prefetches. We model our approach on the assumption that 49 * the CPU does do speculative prefetches, which means we clean caches 50 * before transfers and delay cache invalidation until transfer completion. 51 * 52 */ 53 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 54 size_t, enum dma_data_direction); 55 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 56 size_t, enum dma_data_direction); 57 58 /** 59 * arm_dma_map_page - map a portion of a page for streaming DMA 60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 61 * @page: page that buffer resides in 62 * @offset: offset into page for start of buffer 63 * @size: size of buffer to map 64 * @dir: DMA transfer direction 65 * 66 * Ensure that any data held in the cache is appropriately discarded 67 * or written back. 68 * 69 * The device owns this memory once this call has completed. The CPU 70 * can regain ownership by calling dma_unmap_page(). 71 */ 72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 73 unsigned long offset, size_t size, enum dma_data_direction dir, 74 struct dma_attrs *attrs) 75 { 76 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 77 __dma_page_cpu_to_dev(page, offset, size, dir); 78 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 79 } 80 81 /** 82 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 83 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 84 * @handle: DMA address of buffer 85 * @size: size of buffer (same as passed to dma_map_page) 86 * @dir: DMA transfer direction (same as passed to dma_map_page) 87 * 88 * Unmap a page streaming mode DMA translation. The handle and size 89 * must match what was provided in the previous dma_map_page() call. 90 * All other usages are undefined. 91 * 92 * After this call, reads by the CPU to the buffer are guaranteed to see 93 * whatever the device wrote there. 94 */ 95 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 96 size_t size, enum dma_data_direction dir, 97 struct dma_attrs *attrs) 98 { 99 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 100 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 101 handle & ~PAGE_MASK, size, dir); 102 } 103 104 static void arm_dma_sync_single_for_cpu(struct device *dev, 105 dma_addr_t handle, size_t size, enum dma_data_direction dir) 106 { 107 unsigned int offset = handle & (PAGE_SIZE - 1); 108 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 109 if (!arch_is_coherent()) 110 __dma_page_dev_to_cpu(page, offset, size, dir); 111 } 112 113 static void arm_dma_sync_single_for_device(struct device *dev, 114 dma_addr_t handle, size_t size, enum dma_data_direction dir) 115 { 116 unsigned int offset = handle & (PAGE_SIZE - 1); 117 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 118 if (!arch_is_coherent()) 119 __dma_page_cpu_to_dev(page, offset, size, dir); 120 } 121 122 static int arm_dma_set_mask(struct device *dev, u64 dma_mask); 123 124 struct dma_map_ops arm_dma_ops = { 125 .alloc = arm_dma_alloc, 126 .free = arm_dma_free, 127 .mmap = arm_dma_mmap, 128 .get_sgtable = arm_dma_get_sgtable, 129 .map_page = arm_dma_map_page, 130 .unmap_page = arm_dma_unmap_page, 131 .map_sg = arm_dma_map_sg, 132 .unmap_sg = arm_dma_unmap_sg, 133 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 134 .sync_single_for_device = arm_dma_sync_single_for_device, 135 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 136 .sync_sg_for_device = arm_dma_sync_sg_for_device, 137 .set_dma_mask = arm_dma_set_mask, 138 }; 139 EXPORT_SYMBOL(arm_dma_ops); 140 141 static u64 get_coherent_dma_mask(struct device *dev) 142 { 143 u64 mask = (u64)arm_dma_limit; 144 145 if (dev) { 146 mask = dev->coherent_dma_mask; 147 148 /* 149 * Sanity check the DMA mask - it must be non-zero, and 150 * must be able to be satisfied by a DMA allocation. 151 */ 152 if (mask == 0) { 153 dev_warn(dev, "coherent DMA mask is unset\n"); 154 return 0; 155 } 156 157 if ((~mask) & (u64)arm_dma_limit) { 158 dev_warn(dev, "coherent DMA mask %#llx is smaller " 159 "than system GFP_DMA mask %#llx\n", 160 mask, (u64)arm_dma_limit); 161 return 0; 162 } 163 } 164 165 return mask; 166 } 167 168 static void __dma_clear_buffer(struct page *page, size_t size) 169 { 170 void *ptr; 171 /* 172 * Ensure that the allocated pages are zeroed, and that any data 173 * lurking in the kernel direct-mapped region is invalidated. 174 */ 175 ptr = page_address(page); 176 if (ptr) { 177 memset(ptr, 0, size); 178 dmac_flush_range(ptr, ptr + size); 179 outer_flush_range(__pa(ptr), __pa(ptr) + size); 180 } 181 } 182 183 /* 184 * Allocate a DMA buffer for 'dev' of size 'size' using the 185 * specified gfp mask. Note that 'size' must be page aligned. 186 */ 187 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) 188 { 189 unsigned long order = get_order(size); 190 struct page *page, *p, *e; 191 192 page = alloc_pages(gfp, order); 193 if (!page) 194 return NULL; 195 196 /* 197 * Now split the huge page and free the excess pages 198 */ 199 split_page(page, order); 200 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 201 __free_page(p); 202 203 __dma_clear_buffer(page, size); 204 205 return page; 206 } 207 208 /* 209 * Free a DMA buffer. 'size' must be page aligned. 210 */ 211 static void __dma_free_buffer(struct page *page, size_t size) 212 { 213 struct page *e = page + (size >> PAGE_SHIFT); 214 215 while (page < e) { 216 __free_page(page); 217 page++; 218 } 219 } 220 221 #ifdef CONFIG_MMU 222 #ifdef CONFIG_HUGETLB_PAGE 223 #error ARM Coherent DMA allocator does not (yet) support huge TLB 224 #endif 225 226 static void *__alloc_from_contiguous(struct device *dev, size_t size, 227 pgprot_t prot, struct page **ret_page); 228 229 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 230 pgprot_t prot, struct page **ret_page, 231 const void *caller); 232 233 static void * 234 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 235 const void *caller) 236 { 237 struct vm_struct *area; 238 unsigned long addr; 239 240 /* 241 * DMA allocation can be mapped to user space, so lets 242 * set VM_USERMAP flags too. 243 */ 244 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP, 245 caller); 246 if (!area) 247 return NULL; 248 addr = (unsigned long)area->addr; 249 area->phys_addr = __pfn_to_phys(page_to_pfn(page)); 250 251 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) { 252 vunmap((void *)addr); 253 return NULL; 254 } 255 return (void *)addr; 256 } 257 258 static void __dma_free_remap(void *cpu_addr, size_t size) 259 { 260 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP; 261 struct vm_struct *area = find_vm_area(cpu_addr); 262 if (!area || (area->flags & flags) != flags) { 263 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 264 return; 265 } 266 unmap_kernel_range((unsigned long)cpu_addr, size); 267 vunmap(cpu_addr); 268 } 269 270 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 271 272 struct dma_pool { 273 size_t size; 274 spinlock_t lock; 275 unsigned long *bitmap; 276 unsigned long nr_pages; 277 void *vaddr; 278 struct page **pages; 279 }; 280 281 static struct dma_pool atomic_pool = { 282 .size = DEFAULT_DMA_COHERENT_POOL_SIZE, 283 }; 284 285 static int __init early_coherent_pool(char *p) 286 { 287 atomic_pool.size = memparse(p, &p); 288 return 0; 289 } 290 early_param("coherent_pool", early_coherent_pool); 291 292 void __init init_dma_coherent_pool_size(unsigned long size) 293 { 294 /* 295 * Catch any attempt to set the pool size too late. 296 */ 297 BUG_ON(atomic_pool.vaddr); 298 299 /* 300 * Set architecture specific coherent pool size only if 301 * it has not been changed by kernel command line parameter. 302 */ 303 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE) 304 atomic_pool.size = size; 305 } 306 307 /* 308 * Initialise the coherent pool for atomic allocations. 309 */ 310 static int __init atomic_pool_init(void) 311 { 312 struct dma_pool *pool = &atomic_pool; 313 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel); 314 unsigned long nr_pages = pool->size >> PAGE_SHIFT; 315 unsigned long *bitmap; 316 struct page *page; 317 struct page **pages; 318 void *ptr; 319 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long); 320 321 bitmap = kzalloc(bitmap_size, GFP_KERNEL); 322 if (!bitmap) 323 goto no_bitmap; 324 325 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL); 326 if (!pages) 327 goto no_pages; 328 329 if (IS_ENABLED(CONFIG_CMA)) 330 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page); 331 else 332 ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot, 333 &page, NULL); 334 if (ptr) { 335 int i; 336 337 for (i = 0; i < nr_pages; i++) 338 pages[i] = page + i; 339 340 spin_lock_init(&pool->lock); 341 pool->vaddr = ptr; 342 pool->pages = pages; 343 pool->bitmap = bitmap; 344 pool->nr_pages = nr_pages; 345 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n", 346 (unsigned)pool->size / 1024); 347 return 0; 348 } 349 no_pages: 350 kfree(bitmap); 351 no_bitmap: 352 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n", 353 (unsigned)pool->size / 1024); 354 return -ENOMEM; 355 } 356 /* 357 * CMA is activated by core_initcall, so we must be called after it. 358 */ 359 postcore_initcall(atomic_pool_init); 360 361 struct dma_contig_early_reserve { 362 phys_addr_t base; 363 unsigned long size; 364 }; 365 366 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 367 368 static int dma_mmu_remap_num __initdata; 369 370 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 371 { 372 dma_mmu_remap[dma_mmu_remap_num].base = base; 373 dma_mmu_remap[dma_mmu_remap_num].size = size; 374 dma_mmu_remap_num++; 375 } 376 377 void __init dma_contiguous_remap(void) 378 { 379 int i; 380 for (i = 0; i < dma_mmu_remap_num; i++) { 381 phys_addr_t start = dma_mmu_remap[i].base; 382 phys_addr_t end = start + dma_mmu_remap[i].size; 383 struct map_desc map; 384 unsigned long addr; 385 386 if (end > arm_lowmem_limit) 387 end = arm_lowmem_limit; 388 if (start >= end) 389 continue; 390 391 map.pfn = __phys_to_pfn(start); 392 map.virtual = __phys_to_virt(start); 393 map.length = end - start; 394 map.type = MT_MEMORY_DMA_READY; 395 396 /* 397 * Clear previous low-memory mapping 398 */ 399 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 400 addr += PMD_SIZE) 401 pmd_clear(pmd_off_k(addr)); 402 403 iotable_init(&map, 1); 404 } 405 } 406 407 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 408 void *data) 409 { 410 struct page *page = virt_to_page(addr); 411 pgprot_t prot = *(pgprot_t *)data; 412 413 set_pte_ext(pte, mk_pte(page, prot), 0); 414 return 0; 415 } 416 417 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 418 { 419 unsigned long start = (unsigned long) page_address(page); 420 unsigned end = start + size; 421 422 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 423 dsb(); 424 flush_tlb_kernel_range(start, end); 425 } 426 427 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 428 pgprot_t prot, struct page **ret_page, 429 const void *caller) 430 { 431 struct page *page; 432 void *ptr; 433 page = __dma_alloc_buffer(dev, size, gfp); 434 if (!page) 435 return NULL; 436 437 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 438 if (!ptr) { 439 __dma_free_buffer(page, size); 440 return NULL; 441 } 442 443 *ret_page = page; 444 return ptr; 445 } 446 447 static void *__alloc_from_pool(size_t size, struct page **ret_page) 448 { 449 struct dma_pool *pool = &atomic_pool; 450 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 451 unsigned int pageno; 452 unsigned long flags; 453 void *ptr = NULL; 454 unsigned long align_mask; 455 456 if (!pool->vaddr) { 457 WARN(1, "coherent pool not initialised!\n"); 458 return NULL; 459 } 460 461 /* 462 * Align the region allocation - allocations from pool are rather 463 * small, so align them to their order in pages, minimum is a page 464 * size. This helps reduce fragmentation of the DMA space. 465 */ 466 align_mask = (1 << get_order(size)) - 1; 467 468 spin_lock_irqsave(&pool->lock, flags); 469 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages, 470 0, count, align_mask); 471 if (pageno < pool->nr_pages) { 472 bitmap_set(pool->bitmap, pageno, count); 473 ptr = pool->vaddr + PAGE_SIZE * pageno; 474 *ret_page = pool->pages[pageno]; 475 } else { 476 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n" 477 "Please increase it with coherent_pool= kernel parameter!\n", 478 (unsigned)pool->size / 1024); 479 } 480 spin_unlock_irqrestore(&pool->lock, flags); 481 482 return ptr; 483 } 484 485 static bool __in_atomic_pool(void *start, size_t size) 486 { 487 struct dma_pool *pool = &atomic_pool; 488 void *end = start + size; 489 void *pool_start = pool->vaddr; 490 void *pool_end = pool->vaddr + pool->size; 491 492 if (start < pool_start || start > pool_end) 493 return false; 494 495 if (end <= pool_end) 496 return true; 497 498 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n", 499 start, end - 1, pool_start, pool_end - 1); 500 501 return false; 502 } 503 504 static int __free_from_pool(void *start, size_t size) 505 { 506 struct dma_pool *pool = &atomic_pool; 507 unsigned long pageno, count; 508 unsigned long flags; 509 510 if (!__in_atomic_pool(start, size)) 511 return 0; 512 513 pageno = (start - pool->vaddr) >> PAGE_SHIFT; 514 count = size >> PAGE_SHIFT; 515 516 spin_lock_irqsave(&pool->lock, flags); 517 bitmap_clear(pool->bitmap, pageno, count); 518 spin_unlock_irqrestore(&pool->lock, flags); 519 520 return 1; 521 } 522 523 static void *__alloc_from_contiguous(struct device *dev, size_t size, 524 pgprot_t prot, struct page **ret_page) 525 { 526 unsigned long order = get_order(size); 527 size_t count = size >> PAGE_SHIFT; 528 struct page *page; 529 530 page = dma_alloc_from_contiguous(dev, count, order); 531 if (!page) 532 return NULL; 533 534 __dma_clear_buffer(page, size); 535 __dma_remap(page, size, prot); 536 537 *ret_page = page; 538 return page_address(page); 539 } 540 541 static void __free_from_contiguous(struct device *dev, struct page *page, 542 size_t size) 543 { 544 __dma_remap(page, size, pgprot_kernel); 545 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 546 } 547 548 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot) 549 { 550 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ? 551 pgprot_writecombine(prot) : 552 pgprot_dmacoherent(prot); 553 return prot; 554 } 555 556 #define nommu() 0 557 558 #else /* !CONFIG_MMU */ 559 560 #define nommu() 1 561 562 #define __get_dma_pgprot(attrs, prot) __pgprot(0) 563 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL 564 #define __alloc_from_pool(size, ret_page) NULL 565 #define __alloc_from_contiguous(dev, size, prot, ret) NULL 566 #define __free_from_pool(cpu_addr, size) 0 567 #define __free_from_contiguous(dev, page, size) do { } while (0) 568 #define __dma_free_remap(cpu_addr, size) do { } while (0) 569 570 #endif /* CONFIG_MMU */ 571 572 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 573 struct page **ret_page) 574 { 575 struct page *page; 576 page = __dma_alloc_buffer(dev, size, gfp); 577 if (!page) 578 return NULL; 579 580 *ret_page = page; 581 return page_address(page); 582 } 583 584 585 586 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 587 gfp_t gfp, pgprot_t prot, const void *caller) 588 { 589 u64 mask = get_coherent_dma_mask(dev); 590 struct page *page; 591 void *addr; 592 593 #ifdef CONFIG_DMA_API_DEBUG 594 u64 limit = (mask + 1) & ~mask; 595 if (limit && size >= limit) { 596 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 597 size, mask); 598 return NULL; 599 } 600 #endif 601 602 if (!mask) 603 return NULL; 604 605 if (mask < 0xffffffffULL) 606 gfp |= GFP_DMA; 607 608 /* 609 * Following is a work-around (a.k.a. hack) to prevent pages 610 * with __GFP_COMP being passed to split_page() which cannot 611 * handle them. The real problem is that this flag probably 612 * should be 0 on ARM as it is not supported on this 613 * platform; see CONFIG_HUGETLBFS. 614 */ 615 gfp &= ~(__GFP_COMP); 616 617 *handle = DMA_ERROR_CODE; 618 size = PAGE_ALIGN(size); 619 620 if (arch_is_coherent() || nommu()) 621 addr = __alloc_simple_buffer(dev, size, gfp, &page); 622 else if (gfp & GFP_ATOMIC) 623 addr = __alloc_from_pool(size, &page); 624 else if (!IS_ENABLED(CONFIG_CMA)) 625 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller); 626 else 627 addr = __alloc_from_contiguous(dev, size, prot, &page); 628 629 if (addr) 630 *handle = pfn_to_dma(dev, page_to_pfn(page)); 631 632 return addr; 633 } 634 635 /* 636 * Allocate DMA-coherent memory space and return both the kernel remapped 637 * virtual and bus address for that space. 638 */ 639 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 640 gfp_t gfp, struct dma_attrs *attrs) 641 { 642 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 643 void *memory; 644 645 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 646 return memory; 647 648 return __dma_alloc(dev, size, handle, gfp, prot, 649 __builtin_return_address(0)); 650 } 651 652 /* 653 * Create userspace mapping for the DMA-coherent memory. 654 */ 655 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 656 void *cpu_addr, dma_addr_t dma_addr, size_t size, 657 struct dma_attrs *attrs) 658 { 659 int ret = -ENXIO; 660 #ifdef CONFIG_MMU 661 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 662 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 663 unsigned long pfn = dma_to_pfn(dev, dma_addr); 664 unsigned long off = vma->vm_pgoff; 665 666 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 667 668 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 669 return ret; 670 671 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 672 ret = remap_pfn_range(vma, vma->vm_start, 673 pfn + off, 674 vma->vm_end - vma->vm_start, 675 vma->vm_page_prot); 676 } 677 #endif /* CONFIG_MMU */ 678 679 return ret; 680 } 681 682 /* 683 * Free a buffer as defined by the above mapping. 684 */ 685 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 686 dma_addr_t handle, struct dma_attrs *attrs) 687 { 688 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 689 690 if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) 691 return; 692 693 size = PAGE_ALIGN(size); 694 695 if (arch_is_coherent() || nommu()) { 696 __dma_free_buffer(page, size); 697 } else if (__free_from_pool(cpu_addr, size)) { 698 return; 699 } else if (!IS_ENABLED(CONFIG_CMA)) { 700 __dma_free_remap(cpu_addr, size); 701 __dma_free_buffer(page, size); 702 } else { 703 /* 704 * Non-atomic allocations cannot be freed with IRQs disabled 705 */ 706 WARN_ON(irqs_disabled()); 707 __free_from_contiguous(dev, page, size); 708 } 709 } 710 711 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 712 void *cpu_addr, dma_addr_t handle, size_t size, 713 struct dma_attrs *attrs) 714 { 715 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 716 int ret; 717 718 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 719 if (unlikely(ret)) 720 return ret; 721 722 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 723 return 0; 724 } 725 726 static void dma_cache_maint_page(struct page *page, unsigned long offset, 727 size_t size, enum dma_data_direction dir, 728 void (*op)(const void *, size_t, int)) 729 { 730 /* 731 * A single sg entry may refer to multiple physically contiguous 732 * pages. But we still need to process highmem pages individually. 733 * If highmem is not configured then the bulk of this loop gets 734 * optimized out. 735 */ 736 size_t left = size; 737 do { 738 size_t len = left; 739 void *vaddr; 740 741 if (PageHighMem(page)) { 742 if (len + offset > PAGE_SIZE) { 743 if (offset >= PAGE_SIZE) { 744 page += offset / PAGE_SIZE; 745 offset %= PAGE_SIZE; 746 } 747 len = PAGE_SIZE - offset; 748 } 749 vaddr = kmap_high_get(page); 750 if (vaddr) { 751 vaddr += offset; 752 op(vaddr, len, dir); 753 kunmap_high(page); 754 } else if (cache_is_vipt()) { 755 /* unmapped pages might still be cached */ 756 vaddr = kmap_atomic(page); 757 op(vaddr + offset, len, dir); 758 kunmap_atomic(vaddr); 759 } 760 } else { 761 vaddr = page_address(page) + offset; 762 op(vaddr, len, dir); 763 } 764 offset = 0; 765 page++; 766 left -= len; 767 } while (left); 768 } 769 770 /* 771 * Make an area consistent for devices. 772 * Note: Drivers should NOT use this function directly, as it will break 773 * platforms with CONFIG_DMABOUNCE. 774 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 775 */ 776 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 777 size_t size, enum dma_data_direction dir) 778 { 779 unsigned long paddr; 780 781 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 782 783 paddr = page_to_phys(page) + off; 784 if (dir == DMA_FROM_DEVICE) { 785 outer_inv_range(paddr, paddr + size); 786 } else { 787 outer_clean_range(paddr, paddr + size); 788 } 789 /* FIXME: non-speculating: flush on bidirectional mappings? */ 790 } 791 792 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 793 size_t size, enum dma_data_direction dir) 794 { 795 unsigned long paddr = page_to_phys(page) + off; 796 797 /* FIXME: non-speculating: not required */ 798 /* don't bother invalidating if DMA to device */ 799 if (dir != DMA_TO_DEVICE) 800 outer_inv_range(paddr, paddr + size); 801 802 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 803 804 /* 805 * Mark the D-cache clean for this page to avoid extra flushing. 806 */ 807 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE) 808 set_bit(PG_dcache_clean, &page->flags); 809 } 810 811 /** 812 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 813 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 814 * @sg: list of buffers 815 * @nents: number of buffers to map 816 * @dir: DMA transfer direction 817 * 818 * Map a set of buffers described by scatterlist in streaming mode for DMA. 819 * This is the scatter-gather version of the dma_map_single interface. 820 * Here the scatter gather list elements are each tagged with the 821 * appropriate dma address and length. They are obtained via 822 * sg_dma_{address,length}. 823 * 824 * Device ownership issues as mentioned for dma_map_single are the same 825 * here. 826 */ 827 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 828 enum dma_data_direction dir, struct dma_attrs *attrs) 829 { 830 struct dma_map_ops *ops = get_dma_ops(dev); 831 struct scatterlist *s; 832 int i, j; 833 834 for_each_sg(sg, s, nents, i) { 835 #ifdef CONFIG_NEED_SG_DMA_LENGTH 836 s->dma_length = s->length; 837 #endif 838 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 839 s->length, dir, attrs); 840 if (dma_mapping_error(dev, s->dma_address)) 841 goto bad_mapping; 842 } 843 return nents; 844 845 bad_mapping: 846 for_each_sg(sg, s, i, j) 847 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 848 return 0; 849 } 850 851 /** 852 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 853 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 854 * @sg: list of buffers 855 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 856 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 857 * 858 * Unmap a set of streaming mode DMA translations. Again, CPU access 859 * rules concerning calls here are the same as for dma_unmap_single(). 860 */ 861 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 862 enum dma_data_direction dir, struct dma_attrs *attrs) 863 { 864 struct dma_map_ops *ops = get_dma_ops(dev); 865 struct scatterlist *s; 866 867 int i; 868 869 for_each_sg(sg, s, nents, i) 870 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 871 } 872 873 /** 874 * arm_dma_sync_sg_for_cpu 875 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 876 * @sg: list of buffers 877 * @nents: number of buffers to map (returned from dma_map_sg) 878 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 879 */ 880 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 881 int nents, enum dma_data_direction dir) 882 { 883 struct dma_map_ops *ops = get_dma_ops(dev); 884 struct scatterlist *s; 885 int i; 886 887 for_each_sg(sg, s, nents, i) 888 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 889 dir); 890 } 891 892 /** 893 * arm_dma_sync_sg_for_device 894 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 895 * @sg: list of buffers 896 * @nents: number of buffers to map (returned from dma_map_sg) 897 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 898 */ 899 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 900 int nents, enum dma_data_direction dir) 901 { 902 struct dma_map_ops *ops = get_dma_ops(dev); 903 struct scatterlist *s; 904 int i; 905 906 for_each_sg(sg, s, nents, i) 907 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 908 dir); 909 } 910 911 /* 912 * Return whether the given device DMA address mask can be supported 913 * properly. For example, if your device can only drive the low 24-bits 914 * during bus mastering, then you would pass 0x00ffffff as the mask 915 * to this function. 916 */ 917 int dma_supported(struct device *dev, u64 mask) 918 { 919 if (mask < (u64)arm_dma_limit) 920 return 0; 921 return 1; 922 } 923 EXPORT_SYMBOL(dma_supported); 924 925 static int arm_dma_set_mask(struct device *dev, u64 dma_mask) 926 { 927 if (!dev->dma_mask || !dma_supported(dev, dma_mask)) 928 return -EIO; 929 930 *dev->dma_mask = dma_mask; 931 932 return 0; 933 } 934 935 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 936 937 static int __init dma_debug_do_init(void) 938 { 939 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 940 return 0; 941 } 942 fs_initcall(dma_debug_do_init); 943 944 #ifdef CONFIG_ARM_DMA_USE_IOMMU 945 946 /* IOMMU */ 947 948 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 949 size_t size) 950 { 951 unsigned int order = get_order(size); 952 unsigned int align = 0; 953 unsigned int count, start; 954 unsigned long flags; 955 956 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) + 957 (1 << mapping->order) - 1) >> mapping->order; 958 959 if (order > mapping->order) 960 align = (1 << (order - mapping->order)) - 1; 961 962 spin_lock_irqsave(&mapping->lock, flags); 963 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0, 964 count, align); 965 if (start > mapping->bits) { 966 spin_unlock_irqrestore(&mapping->lock, flags); 967 return DMA_ERROR_CODE; 968 } 969 970 bitmap_set(mapping->bitmap, start, count); 971 spin_unlock_irqrestore(&mapping->lock, flags); 972 973 return mapping->base + (start << (mapping->order + PAGE_SHIFT)); 974 } 975 976 static inline void __free_iova(struct dma_iommu_mapping *mapping, 977 dma_addr_t addr, size_t size) 978 { 979 unsigned int start = (addr - mapping->base) >> 980 (mapping->order + PAGE_SHIFT); 981 unsigned int count = ((size >> PAGE_SHIFT) + 982 (1 << mapping->order) - 1) >> mapping->order; 983 unsigned long flags; 984 985 spin_lock_irqsave(&mapping->lock, flags); 986 bitmap_clear(mapping->bitmap, start, count); 987 spin_unlock_irqrestore(&mapping->lock, flags); 988 } 989 990 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) 991 { 992 struct page **pages; 993 int count = size >> PAGE_SHIFT; 994 int array_size = count * sizeof(struct page *); 995 int i = 0; 996 997 if (array_size <= PAGE_SIZE) 998 pages = kzalloc(array_size, gfp); 999 else 1000 pages = vzalloc(array_size); 1001 if (!pages) 1002 return NULL; 1003 1004 while (count) { 1005 int j, order = __fls(count); 1006 1007 pages[i] = alloc_pages(gfp | __GFP_NOWARN, order); 1008 while (!pages[i] && order) 1009 pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order); 1010 if (!pages[i]) 1011 goto error; 1012 1013 if (order) 1014 split_page(pages[i], order); 1015 j = 1 << order; 1016 while (--j) 1017 pages[i + j] = pages[i] + j; 1018 1019 __dma_clear_buffer(pages[i], PAGE_SIZE << order); 1020 i += 1 << order; 1021 count -= 1 << order; 1022 } 1023 1024 return pages; 1025 error: 1026 while (i--) 1027 if (pages[i]) 1028 __free_pages(pages[i], 0); 1029 if (array_size <= PAGE_SIZE) 1030 kfree(pages); 1031 else 1032 vfree(pages); 1033 return NULL; 1034 } 1035 1036 static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size) 1037 { 1038 int count = size >> PAGE_SHIFT; 1039 int array_size = count * sizeof(struct page *); 1040 int i; 1041 for (i = 0; i < count; i++) 1042 if (pages[i]) 1043 __free_pages(pages[i], 0); 1044 if (array_size <= PAGE_SIZE) 1045 kfree(pages); 1046 else 1047 vfree(pages); 1048 return 0; 1049 } 1050 1051 /* 1052 * Create a CPU mapping for a specified pages 1053 */ 1054 static void * 1055 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1056 const void *caller) 1057 { 1058 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1059 struct vm_struct *area; 1060 unsigned long p; 1061 1062 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP, 1063 caller); 1064 if (!area) 1065 return NULL; 1066 1067 area->pages = pages; 1068 area->nr_pages = nr_pages; 1069 p = (unsigned long)area->addr; 1070 1071 for (i = 0; i < nr_pages; i++) { 1072 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i])); 1073 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot)) 1074 goto err; 1075 p += PAGE_SIZE; 1076 } 1077 return area->addr; 1078 err: 1079 unmap_kernel_range((unsigned long)area->addr, size); 1080 vunmap(area->addr); 1081 return NULL; 1082 } 1083 1084 /* 1085 * Create a mapping in device IO address space for specified pages 1086 */ 1087 static dma_addr_t 1088 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size) 1089 { 1090 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1091 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1092 dma_addr_t dma_addr, iova; 1093 int i, ret = DMA_ERROR_CODE; 1094 1095 dma_addr = __alloc_iova(mapping, size); 1096 if (dma_addr == DMA_ERROR_CODE) 1097 return dma_addr; 1098 1099 iova = dma_addr; 1100 for (i = 0; i < count; ) { 1101 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1102 phys_addr_t phys = page_to_phys(pages[i]); 1103 unsigned int len, j; 1104 1105 for (j = i + 1; j < count; j++, next_pfn++) 1106 if (page_to_pfn(pages[j]) != next_pfn) 1107 break; 1108 1109 len = (j - i) << PAGE_SHIFT; 1110 ret = iommu_map(mapping->domain, iova, phys, len, 0); 1111 if (ret < 0) 1112 goto fail; 1113 iova += len; 1114 i = j; 1115 } 1116 return dma_addr; 1117 fail: 1118 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1119 __free_iova(mapping, dma_addr, size); 1120 return DMA_ERROR_CODE; 1121 } 1122 1123 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1124 { 1125 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1126 1127 /* 1128 * add optional in-page offset from iova to size and align 1129 * result to page size 1130 */ 1131 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1132 iova &= PAGE_MASK; 1133 1134 iommu_unmap(mapping->domain, iova, size); 1135 __free_iova(mapping, iova, size); 1136 return 0; 1137 } 1138 1139 static struct page **__atomic_get_pages(void *addr) 1140 { 1141 struct dma_pool *pool = &atomic_pool; 1142 struct page **pages = pool->pages; 1143 int offs = (addr - pool->vaddr) >> PAGE_SHIFT; 1144 1145 return pages + offs; 1146 } 1147 1148 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs) 1149 { 1150 struct vm_struct *area; 1151 1152 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1153 return __atomic_get_pages(cpu_addr); 1154 1155 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1156 return cpu_addr; 1157 1158 area = find_vm_area(cpu_addr); 1159 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1160 return area->pages; 1161 return NULL; 1162 } 1163 1164 static void *__iommu_alloc_atomic(struct device *dev, size_t size, 1165 dma_addr_t *handle) 1166 { 1167 struct page *page; 1168 void *addr; 1169 1170 addr = __alloc_from_pool(size, &page); 1171 if (!addr) 1172 return NULL; 1173 1174 *handle = __iommu_create_mapping(dev, &page, size); 1175 if (*handle == DMA_ERROR_CODE) 1176 goto err_mapping; 1177 1178 return addr; 1179 1180 err_mapping: 1181 __free_from_pool(addr, size); 1182 return NULL; 1183 } 1184 1185 static void __iommu_free_atomic(struct device *dev, struct page **pages, 1186 dma_addr_t handle, size_t size) 1187 { 1188 __iommu_remove_mapping(dev, handle, size); 1189 __free_from_pool(page_address(pages[0]), size); 1190 } 1191 1192 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1193 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 1194 { 1195 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 1196 struct page **pages; 1197 void *addr = NULL; 1198 1199 *handle = DMA_ERROR_CODE; 1200 size = PAGE_ALIGN(size); 1201 1202 if (gfp & GFP_ATOMIC) 1203 return __iommu_alloc_atomic(dev, size, handle); 1204 1205 pages = __iommu_alloc_buffer(dev, size, gfp); 1206 if (!pages) 1207 return NULL; 1208 1209 *handle = __iommu_create_mapping(dev, pages, size); 1210 if (*handle == DMA_ERROR_CODE) 1211 goto err_buffer; 1212 1213 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1214 return pages; 1215 1216 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1217 __builtin_return_address(0)); 1218 if (!addr) 1219 goto err_mapping; 1220 1221 return addr; 1222 1223 err_mapping: 1224 __iommu_remove_mapping(dev, *handle, size); 1225 err_buffer: 1226 __iommu_free_buffer(dev, pages, size); 1227 return NULL; 1228 } 1229 1230 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1231 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1232 struct dma_attrs *attrs) 1233 { 1234 unsigned long uaddr = vma->vm_start; 1235 unsigned long usize = vma->vm_end - vma->vm_start; 1236 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1237 1238 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1239 1240 if (!pages) 1241 return -ENXIO; 1242 1243 do { 1244 int ret = vm_insert_page(vma, uaddr, *pages++); 1245 if (ret) { 1246 pr_err("Remapping memory failed: %d\n", ret); 1247 return ret; 1248 } 1249 uaddr += PAGE_SIZE; 1250 usize -= PAGE_SIZE; 1251 } while (usize > 0); 1252 1253 return 0; 1254 } 1255 1256 /* 1257 * free a page as defined by the above mapping. 1258 * Must not be called with IRQs disabled. 1259 */ 1260 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1261 dma_addr_t handle, struct dma_attrs *attrs) 1262 { 1263 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1264 size = PAGE_ALIGN(size); 1265 1266 if (!pages) { 1267 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1268 return; 1269 } 1270 1271 if (__in_atomic_pool(cpu_addr, size)) { 1272 __iommu_free_atomic(dev, pages, handle, size); 1273 return; 1274 } 1275 1276 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) { 1277 unmap_kernel_range((unsigned long)cpu_addr, size); 1278 vunmap(cpu_addr); 1279 } 1280 1281 __iommu_remove_mapping(dev, handle, size); 1282 __iommu_free_buffer(dev, pages, size); 1283 } 1284 1285 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1286 void *cpu_addr, dma_addr_t dma_addr, 1287 size_t size, struct dma_attrs *attrs) 1288 { 1289 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1290 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1291 1292 if (!pages) 1293 return -ENXIO; 1294 1295 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1296 GFP_KERNEL); 1297 } 1298 1299 /* 1300 * Map a part of the scatter-gather list into contiguous io address space 1301 */ 1302 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1303 size_t size, dma_addr_t *handle, 1304 enum dma_data_direction dir, struct dma_attrs *attrs) 1305 { 1306 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1307 dma_addr_t iova, iova_base; 1308 int ret = 0; 1309 unsigned int count; 1310 struct scatterlist *s; 1311 1312 size = PAGE_ALIGN(size); 1313 *handle = DMA_ERROR_CODE; 1314 1315 iova_base = iova = __alloc_iova(mapping, size); 1316 if (iova == DMA_ERROR_CODE) 1317 return -ENOMEM; 1318 1319 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1320 phys_addr_t phys = page_to_phys(sg_page(s)); 1321 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1322 1323 if (!arch_is_coherent() && 1324 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1325 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1326 1327 ret = iommu_map(mapping->domain, iova, phys, len, 0); 1328 if (ret < 0) 1329 goto fail; 1330 count += len >> PAGE_SHIFT; 1331 iova += len; 1332 } 1333 *handle = iova_base; 1334 1335 return 0; 1336 fail: 1337 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1338 __free_iova(mapping, iova_base, size); 1339 return ret; 1340 } 1341 1342 /** 1343 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1344 * @dev: valid struct device pointer 1345 * @sg: list of buffers 1346 * @nents: number of buffers to map 1347 * @dir: DMA transfer direction 1348 * 1349 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1350 * The scatter gather list elements are merged together (if possible) and 1351 * tagged with the appropriate dma address and length. They are obtained via 1352 * sg_dma_{address,length}. 1353 */ 1354 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1355 enum dma_data_direction dir, struct dma_attrs *attrs) 1356 { 1357 struct scatterlist *s = sg, *dma = sg, *start = sg; 1358 int i, count = 0; 1359 unsigned int offset = s->offset; 1360 unsigned int size = s->offset + s->length; 1361 unsigned int max = dma_get_max_seg_size(dev); 1362 1363 for (i = 1; i < nents; i++) { 1364 s = sg_next(s); 1365 1366 s->dma_address = DMA_ERROR_CODE; 1367 s->dma_length = 0; 1368 1369 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1370 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1371 dir, attrs) < 0) 1372 goto bad_mapping; 1373 1374 dma->dma_address += offset; 1375 dma->dma_length = size - offset; 1376 1377 size = offset = s->offset; 1378 start = s; 1379 dma = sg_next(dma); 1380 count += 1; 1381 } 1382 size += s->length; 1383 } 1384 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs) < 0) 1385 goto bad_mapping; 1386 1387 dma->dma_address += offset; 1388 dma->dma_length = size - offset; 1389 1390 return count+1; 1391 1392 bad_mapping: 1393 for_each_sg(sg, s, count, i) 1394 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1395 return 0; 1396 } 1397 1398 /** 1399 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1400 * @dev: valid struct device pointer 1401 * @sg: list of buffers 1402 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1403 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1404 * 1405 * Unmap a set of streaming mode DMA translations. Again, CPU access 1406 * rules concerning calls here are the same as for dma_unmap_single(). 1407 */ 1408 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1409 enum dma_data_direction dir, struct dma_attrs *attrs) 1410 { 1411 struct scatterlist *s; 1412 int i; 1413 1414 for_each_sg(sg, s, nents, i) { 1415 if (sg_dma_len(s)) 1416 __iommu_remove_mapping(dev, sg_dma_address(s), 1417 sg_dma_len(s)); 1418 if (!arch_is_coherent() && 1419 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1420 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1421 s->length, dir); 1422 } 1423 } 1424 1425 /** 1426 * arm_iommu_sync_sg_for_cpu 1427 * @dev: valid struct device pointer 1428 * @sg: list of buffers 1429 * @nents: number of buffers to map (returned from dma_map_sg) 1430 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1431 */ 1432 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1433 int nents, enum dma_data_direction dir) 1434 { 1435 struct scatterlist *s; 1436 int i; 1437 1438 for_each_sg(sg, s, nents, i) 1439 if (!arch_is_coherent()) 1440 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1441 1442 } 1443 1444 /** 1445 * arm_iommu_sync_sg_for_device 1446 * @dev: valid struct device pointer 1447 * @sg: list of buffers 1448 * @nents: number of buffers to map (returned from dma_map_sg) 1449 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1450 */ 1451 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1452 int nents, enum dma_data_direction dir) 1453 { 1454 struct scatterlist *s; 1455 int i; 1456 1457 for_each_sg(sg, s, nents, i) 1458 if (!arch_is_coherent()) 1459 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1460 } 1461 1462 1463 /** 1464 * arm_iommu_map_page 1465 * @dev: valid struct device pointer 1466 * @page: page that buffer resides in 1467 * @offset: offset into page for start of buffer 1468 * @size: size of buffer to map 1469 * @dir: DMA transfer direction 1470 * 1471 * IOMMU aware version of arm_dma_map_page() 1472 */ 1473 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1474 unsigned long offset, size_t size, enum dma_data_direction dir, 1475 struct dma_attrs *attrs) 1476 { 1477 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1478 dma_addr_t dma_addr; 1479 int ret, len = PAGE_ALIGN(size + offset); 1480 1481 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1482 __dma_page_cpu_to_dev(page, offset, size, dir); 1483 1484 dma_addr = __alloc_iova(mapping, len); 1485 if (dma_addr == DMA_ERROR_CODE) 1486 return dma_addr; 1487 1488 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0); 1489 if (ret < 0) 1490 goto fail; 1491 1492 return dma_addr + offset; 1493 fail: 1494 __free_iova(mapping, dma_addr, len); 1495 return DMA_ERROR_CODE; 1496 } 1497 1498 /** 1499 * arm_iommu_unmap_page 1500 * @dev: valid struct device pointer 1501 * @handle: DMA address of buffer 1502 * @size: size of buffer (same as passed to dma_map_page) 1503 * @dir: DMA transfer direction (same as passed to dma_map_page) 1504 * 1505 * IOMMU aware version of arm_dma_unmap_page() 1506 */ 1507 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1508 size_t size, enum dma_data_direction dir, 1509 struct dma_attrs *attrs) 1510 { 1511 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1512 dma_addr_t iova = handle & PAGE_MASK; 1513 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1514 int offset = handle & ~PAGE_MASK; 1515 int len = PAGE_ALIGN(size + offset); 1516 1517 if (!iova) 1518 return; 1519 1520 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1521 __dma_page_dev_to_cpu(page, offset, size, dir); 1522 1523 iommu_unmap(mapping->domain, iova, len); 1524 __free_iova(mapping, iova, len); 1525 } 1526 1527 static void arm_iommu_sync_single_for_cpu(struct device *dev, 1528 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1529 { 1530 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1531 dma_addr_t iova = handle & PAGE_MASK; 1532 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1533 unsigned int offset = handle & ~PAGE_MASK; 1534 1535 if (!iova) 1536 return; 1537 1538 if (!arch_is_coherent()) 1539 __dma_page_dev_to_cpu(page, offset, size, dir); 1540 } 1541 1542 static void arm_iommu_sync_single_for_device(struct device *dev, 1543 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1544 { 1545 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1546 dma_addr_t iova = handle & PAGE_MASK; 1547 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1548 unsigned int offset = handle & ~PAGE_MASK; 1549 1550 if (!iova) 1551 return; 1552 1553 __dma_page_cpu_to_dev(page, offset, size, dir); 1554 } 1555 1556 struct dma_map_ops iommu_ops = { 1557 .alloc = arm_iommu_alloc_attrs, 1558 .free = arm_iommu_free_attrs, 1559 .mmap = arm_iommu_mmap_attrs, 1560 .get_sgtable = arm_iommu_get_sgtable, 1561 1562 .map_page = arm_iommu_map_page, 1563 .unmap_page = arm_iommu_unmap_page, 1564 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 1565 .sync_single_for_device = arm_iommu_sync_single_for_device, 1566 1567 .map_sg = arm_iommu_map_sg, 1568 .unmap_sg = arm_iommu_unmap_sg, 1569 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 1570 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 1571 }; 1572 1573 /** 1574 * arm_iommu_create_mapping 1575 * @bus: pointer to the bus holding the client device (for IOMMU calls) 1576 * @base: start address of the valid IO address space 1577 * @size: size of the valid IO address space 1578 * @order: accuracy of the IO addresses allocations 1579 * 1580 * Creates a mapping structure which holds information about used/unused 1581 * IO address ranges, which is required to perform memory allocation and 1582 * mapping with IOMMU aware functions. 1583 * 1584 * The client device need to be attached to the mapping with 1585 * arm_iommu_attach_device function. 1586 */ 1587 struct dma_iommu_mapping * 1588 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size, 1589 int order) 1590 { 1591 unsigned int count = size >> (PAGE_SHIFT + order); 1592 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long); 1593 struct dma_iommu_mapping *mapping; 1594 int err = -ENOMEM; 1595 1596 if (!count) 1597 return ERR_PTR(-EINVAL); 1598 1599 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 1600 if (!mapping) 1601 goto err; 1602 1603 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1604 if (!mapping->bitmap) 1605 goto err2; 1606 1607 mapping->base = base; 1608 mapping->bits = BITS_PER_BYTE * bitmap_size; 1609 mapping->order = order; 1610 spin_lock_init(&mapping->lock); 1611 1612 mapping->domain = iommu_domain_alloc(bus); 1613 if (!mapping->domain) 1614 goto err3; 1615 1616 kref_init(&mapping->kref); 1617 return mapping; 1618 err3: 1619 kfree(mapping->bitmap); 1620 err2: 1621 kfree(mapping); 1622 err: 1623 return ERR_PTR(err); 1624 } 1625 1626 static void release_iommu_mapping(struct kref *kref) 1627 { 1628 struct dma_iommu_mapping *mapping = 1629 container_of(kref, struct dma_iommu_mapping, kref); 1630 1631 iommu_domain_free(mapping->domain); 1632 kfree(mapping->bitmap); 1633 kfree(mapping); 1634 } 1635 1636 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 1637 { 1638 if (mapping) 1639 kref_put(&mapping->kref, release_iommu_mapping); 1640 } 1641 1642 /** 1643 * arm_iommu_attach_device 1644 * @dev: valid struct device pointer 1645 * @mapping: io address space mapping structure (returned from 1646 * arm_iommu_create_mapping) 1647 * 1648 * Attaches specified io address space mapping to the provided device, 1649 * this replaces the dma operations (dma_map_ops pointer) with the 1650 * IOMMU aware version. More than one client might be attached to 1651 * the same io address space mapping. 1652 */ 1653 int arm_iommu_attach_device(struct device *dev, 1654 struct dma_iommu_mapping *mapping) 1655 { 1656 int err; 1657 1658 err = iommu_attach_device(mapping->domain, dev); 1659 if (err) 1660 return err; 1661 1662 kref_get(&mapping->kref); 1663 dev->archdata.mapping = mapping; 1664 set_dma_ops(dev, &iommu_ops); 1665 1666 pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev)); 1667 return 0; 1668 } 1669 1670 #endif 1671