xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 95e9fd10)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28 
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
38 
39 #include "mm.h"
40 
41 /*
42  * The DMA API is built upon the notion of "buffer ownership".  A buffer
43  * is either exclusively owned by the CPU (and therefore may be accessed
44  * by it) or exclusively owned by the DMA device.  These helper functions
45  * represent the transitions between these two ownership states.
46  *
47  * Note, however, that on later ARMs, this notion does not work due to
48  * speculative prefetches.  We model our approach on the assumption that
49  * the CPU does do speculative prefetches, which means we clean caches
50  * before transfers and delay cache invalidation until transfer completion.
51  *
52  */
53 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54 		size_t, enum dma_data_direction);
55 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 		size_t, enum dma_data_direction);
57 
58 /**
59  * arm_dma_map_page - map a portion of a page for streaming DMA
60  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61  * @page: page that buffer resides in
62  * @offset: offset into page for start of buffer
63  * @size: size of buffer to map
64  * @dir: DMA transfer direction
65  *
66  * Ensure that any data held in the cache is appropriately discarded
67  * or written back.
68  *
69  * The device owns this memory once this call has completed.  The CPU
70  * can regain ownership by calling dma_unmap_page().
71  */
72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 	     unsigned long offset, size_t size, enum dma_data_direction dir,
74 	     struct dma_attrs *attrs)
75 {
76 	if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 		__dma_page_cpu_to_dev(page, offset, size, dir);
78 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
79 }
80 
81 /**
82  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
83  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
84  * @handle: DMA address of buffer
85  * @size: size of buffer (same as passed to dma_map_page)
86  * @dir: DMA transfer direction (same as passed to dma_map_page)
87  *
88  * Unmap a page streaming mode DMA translation.  The handle and size
89  * must match what was provided in the previous dma_map_page() call.
90  * All other usages are undefined.
91  *
92  * After this call, reads by the CPU to the buffer are guaranteed to see
93  * whatever the device wrote there.
94  */
95 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
96 		size_t size, enum dma_data_direction dir,
97 		struct dma_attrs *attrs)
98 {
99 	if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
100 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
101 				      handle & ~PAGE_MASK, size, dir);
102 }
103 
104 static void arm_dma_sync_single_for_cpu(struct device *dev,
105 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
106 {
107 	unsigned int offset = handle & (PAGE_SIZE - 1);
108 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
109 	if (!arch_is_coherent())
110 		__dma_page_dev_to_cpu(page, offset, size, dir);
111 }
112 
113 static void arm_dma_sync_single_for_device(struct device *dev,
114 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
115 {
116 	unsigned int offset = handle & (PAGE_SIZE - 1);
117 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
118 	if (!arch_is_coherent())
119 		__dma_page_cpu_to_dev(page, offset, size, dir);
120 }
121 
122 static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
123 
124 struct dma_map_ops arm_dma_ops = {
125 	.alloc			= arm_dma_alloc,
126 	.free			= arm_dma_free,
127 	.mmap			= arm_dma_mmap,
128 	.get_sgtable		= arm_dma_get_sgtable,
129 	.map_page		= arm_dma_map_page,
130 	.unmap_page		= arm_dma_unmap_page,
131 	.map_sg			= arm_dma_map_sg,
132 	.unmap_sg		= arm_dma_unmap_sg,
133 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
134 	.sync_single_for_device	= arm_dma_sync_single_for_device,
135 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
136 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
137 	.set_dma_mask		= arm_dma_set_mask,
138 };
139 EXPORT_SYMBOL(arm_dma_ops);
140 
141 static u64 get_coherent_dma_mask(struct device *dev)
142 {
143 	u64 mask = (u64)arm_dma_limit;
144 
145 	if (dev) {
146 		mask = dev->coherent_dma_mask;
147 
148 		/*
149 		 * Sanity check the DMA mask - it must be non-zero, and
150 		 * must be able to be satisfied by a DMA allocation.
151 		 */
152 		if (mask == 0) {
153 			dev_warn(dev, "coherent DMA mask is unset\n");
154 			return 0;
155 		}
156 
157 		if ((~mask) & (u64)arm_dma_limit) {
158 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
159 				 "than system GFP_DMA mask %#llx\n",
160 				 mask, (u64)arm_dma_limit);
161 			return 0;
162 		}
163 	}
164 
165 	return mask;
166 }
167 
168 static void __dma_clear_buffer(struct page *page, size_t size)
169 {
170 	void *ptr;
171 	/*
172 	 * Ensure that the allocated pages are zeroed, and that any data
173 	 * lurking in the kernel direct-mapped region is invalidated.
174 	 */
175 	ptr = page_address(page);
176 	if (ptr) {
177 		memset(ptr, 0, size);
178 		dmac_flush_range(ptr, ptr + size);
179 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
180 	}
181 }
182 
183 /*
184  * Allocate a DMA buffer for 'dev' of size 'size' using the
185  * specified gfp mask.  Note that 'size' must be page aligned.
186  */
187 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
188 {
189 	unsigned long order = get_order(size);
190 	struct page *page, *p, *e;
191 
192 	page = alloc_pages(gfp, order);
193 	if (!page)
194 		return NULL;
195 
196 	/*
197 	 * Now split the huge page and free the excess pages
198 	 */
199 	split_page(page, order);
200 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
201 		__free_page(p);
202 
203 	__dma_clear_buffer(page, size);
204 
205 	return page;
206 }
207 
208 /*
209  * Free a DMA buffer.  'size' must be page aligned.
210  */
211 static void __dma_free_buffer(struct page *page, size_t size)
212 {
213 	struct page *e = page + (size >> PAGE_SHIFT);
214 
215 	while (page < e) {
216 		__free_page(page);
217 		page++;
218 	}
219 }
220 
221 #ifdef CONFIG_MMU
222 #ifdef CONFIG_HUGETLB_PAGE
223 #error ARM Coherent DMA allocator does not (yet) support huge TLB
224 #endif
225 
226 static void *__alloc_from_contiguous(struct device *dev, size_t size,
227 				     pgprot_t prot, struct page **ret_page);
228 
229 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
230 				 pgprot_t prot, struct page **ret_page,
231 				 const void *caller);
232 
233 static void *
234 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
235 	const void *caller)
236 {
237 	struct vm_struct *area;
238 	unsigned long addr;
239 
240 	/*
241 	 * DMA allocation can be mapped to user space, so lets
242 	 * set VM_USERMAP flags too.
243 	 */
244 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
245 				  caller);
246 	if (!area)
247 		return NULL;
248 	addr = (unsigned long)area->addr;
249 	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
250 
251 	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
252 		vunmap((void *)addr);
253 		return NULL;
254 	}
255 	return (void *)addr;
256 }
257 
258 static void __dma_free_remap(void *cpu_addr, size_t size)
259 {
260 	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
261 	struct vm_struct *area = find_vm_area(cpu_addr);
262 	if (!area || (area->flags & flags) != flags) {
263 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
264 		return;
265 	}
266 	unmap_kernel_range((unsigned long)cpu_addr, size);
267 	vunmap(cpu_addr);
268 }
269 
270 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
271 
272 struct dma_pool {
273 	size_t size;
274 	spinlock_t lock;
275 	unsigned long *bitmap;
276 	unsigned long nr_pages;
277 	void *vaddr;
278 	struct page **pages;
279 };
280 
281 static struct dma_pool atomic_pool = {
282 	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
283 };
284 
285 static int __init early_coherent_pool(char *p)
286 {
287 	atomic_pool.size = memparse(p, &p);
288 	return 0;
289 }
290 early_param("coherent_pool", early_coherent_pool);
291 
292 void __init init_dma_coherent_pool_size(unsigned long size)
293 {
294 	/*
295 	 * Catch any attempt to set the pool size too late.
296 	 */
297 	BUG_ON(atomic_pool.vaddr);
298 
299 	/*
300 	 * Set architecture specific coherent pool size only if
301 	 * it has not been changed by kernel command line parameter.
302 	 */
303 	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
304 		atomic_pool.size = size;
305 }
306 
307 /*
308  * Initialise the coherent pool for atomic allocations.
309  */
310 static int __init atomic_pool_init(void)
311 {
312 	struct dma_pool *pool = &atomic_pool;
313 	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
314 	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
315 	unsigned long *bitmap;
316 	struct page *page;
317 	struct page **pages;
318 	void *ptr;
319 	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
320 
321 	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
322 	if (!bitmap)
323 		goto no_bitmap;
324 
325 	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
326 	if (!pages)
327 		goto no_pages;
328 
329 	if (IS_ENABLED(CONFIG_CMA))
330 		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);
331 	else
332 		ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
333 					   &page, NULL);
334 	if (ptr) {
335 		int i;
336 
337 		for (i = 0; i < nr_pages; i++)
338 			pages[i] = page + i;
339 
340 		spin_lock_init(&pool->lock);
341 		pool->vaddr = ptr;
342 		pool->pages = pages;
343 		pool->bitmap = bitmap;
344 		pool->nr_pages = nr_pages;
345 		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
346 		       (unsigned)pool->size / 1024);
347 		return 0;
348 	}
349 no_pages:
350 	kfree(bitmap);
351 no_bitmap:
352 	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
353 	       (unsigned)pool->size / 1024);
354 	return -ENOMEM;
355 }
356 /*
357  * CMA is activated by core_initcall, so we must be called after it.
358  */
359 postcore_initcall(atomic_pool_init);
360 
361 struct dma_contig_early_reserve {
362 	phys_addr_t base;
363 	unsigned long size;
364 };
365 
366 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
367 
368 static int dma_mmu_remap_num __initdata;
369 
370 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
371 {
372 	dma_mmu_remap[dma_mmu_remap_num].base = base;
373 	dma_mmu_remap[dma_mmu_remap_num].size = size;
374 	dma_mmu_remap_num++;
375 }
376 
377 void __init dma_contiguous_remap(void)
378 {
379 	int i;
380 	for (i = 0; i < dma_mmu_remap_num; i++) {
381 		phys_addr_t start = dma_mmu_remap[i].base;
382 		phys_addr_t end = start + dma_mmu_remap[i].size;
383 		struct map_desc map;
384 		unsigned long addr;
385 
386 		if (end > arm_lowmem_limit)
387 			end = arm_lowmem_limit;
388 		if (start >= end)
389 			continue;
390 
391 		map.pfn = __phys_to_pfn(start);
392 		map.virtual = __phys_to_virt(start);
393 		map.length = end - start;
394 		map.type = MT_MEMORY_DMA_READY;
395 
396 		/*
397 		 * Clear previous low-memory mapping
398 		 */
399 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
400 		     addr += PMD_SIZE)
401 			pmd_clear(pmd_off_k(addr));
402 
403 		iotable_init(&map, 1);
404 	}
405 }
406 
407 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
408 			    void *data)
409 {
410 	struct page *page = virt_to_page(addr);
411 	pgprot_t prot = *(pgprot_t *)data;
412 
413 	set_pte_ext(pte, mk_pte(page, prot), 0);
414 	return 0;
415 }
416 
417 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
418 {
419 	unsigned long start = (unsigned long) page_address(page);
420 	unsigned end = start + size;
421 
422 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
423 	dsb();
424 	flush_tlb_kernel_range(start, end);
425 }
426 
427 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
428 				 pgprot_t prot, struct page **ret_page,
429 				 const void *caller)
430 {
431 	struct page *page;
432 	void *ptr;
433 	page = __dma_alloc_buffer(dev, size, gfp);
434 	if (!page)
435 		return NULL;
436 
437 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
438 	if (!ptr) {
439 		__dma_free_buffer(page, size);
440 		return NULL;
441 	}
442 
443 	*ret_page = page;
444 	return ptr;
445 }
446 
447 static void *__alloc_from_pool(size_t size, struct page **ret_page)
448 {
449 	struct dma_pool *pool = &atomic_pool;
450 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
451 	unsigned int pageno;
452 	unsigned long flags;
453 	void *ptr = NULL;
454 	unsigned long align_mask;
455 
456 	if (!pool->vaddr) {
457 		WARN(1, "coherent pool not initialised!\n");
458 		return NULL;
459 	}
460 
461 	/*
462 	 * Align the region allocation - allocations from pool are rather
463 	 * small, so align them to their order in pages, minimum is a page
464 	 * size. This helps reduce fragmentation of the DMA space.
465 	 */
466 	align_mask = (1 << get_order(size)) - 1;
467 
468 	spin_lock_irqsave(&pool->lock, flags);
469 	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
470 					    0, count, align_mask);
471 	if (pageno < pool->nr_pages) {
472 		bitmap_set(pool->bitmap, pageno, count);
473 		ptr = pool->vaddr + PAGE_SIZE * pageno;
474 		*ret_page = pool->pages[pageno];
475 	} else {
476 		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
477 			    "Please increase it with coherent_pool= kernel parameter!\n",
478 			    (unsigned)pool->size / 1024);
479 	}
480 	spin_unlock_irqrestore(&pool->lock, flags);
481 
482 	return ptr;
483 }
484 
485 static bool __in_atomic_pool(void *start, size_t size)
486 {
487 	struct dma_pool *pool = &atomic_pool;
488 	void *end = start + size;
489 	void *pool_start = pool->vaddr;
490 	void *pool_end = pool->vaddr + pool->size;
491 
492 	if (start < pool_start || start > pool_end)
493 		return false;
494 
495 	if (end <= pool_end)
496 		return true;
497 
498 	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
499 	     start, end - 1, pool_start, pool_end - 1);
500 
501 	return false;
502 }
503 
504 static int __free_from_pool(void *start, size_t size)
505 {
506 	struct dma_pool *pool = &atomic_pool;
507 	unsigned long pageno, count;
508 	unsigned long flags;
509 
510 	if (!__in_atomic_pool(start, size))
511 		return 0;
512 
513 	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
514 	count = size >> PAGE_SHIFT;
515 
516 	spin_lock_irqsave(&pool->lock, flags);
517 	bitmap_clear(pool->bitmap, pageno, count);
518 	spin_unlock_irqrestore(&pool->lock, flags);
519 
520 	return 1;
521 }
522 
523 static void *__alloc_from_contiguous(struct device *dev, size_t size,
524 				     pgprot_t prot, struct page **ret_page)
525 {
526 	unsigned long order = get_order(size);
527 	size_t count = size >> PAGE_SHIFT;
528 	struct page *page;
529 
530 	page = dma_alloc_from_contiguous(dev, count, order);
531 	if (!page)
532 		return NULL;
533 
534 	__dma_clear_buffer(page, size);
535 	__dma_remap(page, size, prot);
536 
537 	*ret_page = page;
538 	return page_address(page);
539 }
540 
541 static void __free_from_contiguous(struct device *dev, struct page *page,
542 				   size_t size)
543 {
544 	__dma_remap(page, size, pgprot_kernel);
545 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
546 }
547 
548 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
549 {
550 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
551 			    pgprot_writecombine(prot) :
552 			    pgprot_dmacoherent(prot);
553 	return prot;
554 }
555 
556 #define nommu() 0
557 
558 #else	/* !CONFIG_MMU */
559 
560 #define nommu() 1
561 
562 #define __get_dma_pgprot(attrs, prot)	__pgprot(0)
563 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
564 #define __alloc_from_pool(size, ret_page)			NULL
565 #define __alloc_from_contiguous(dev, size, prot, ret)		NULL
566 #define __free_from_pool(cpu_addr, size)			0
567 #define __free_from_contiguous(dev, page, size)			do { } while (0)
568 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
569 
570 #endif	/* CONFIG_MMU */
571 
572 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
573 				   struct page **ret_page)
574 {
575 	struct page *page;
576 	page = __dma_alloc_buffer(dev, size, gfp);
577 	if (!page)
578 		return NULL;
579 
580 	*ret_page = page;
581 	return page_address(page);
582 }
583 
584 
585 
586 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
587 			 gfp_t gfp, pgprot_t prot, const void *caller)
588 {
589 	u64 mask = get_coherent_dma_mask(dev);
590 	struct page *page;
591 	void *addr;
592 
593 #ifdef CONFIG_DMA_API_DEBUG
594 	u64 limit = (mask + 1) & ~mask;
595 	if (limit && size >= limit) {
596 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
597 			size, mask);
598 		return NULL;
599 	}
600 #endif
601 
602 	if (!mask)
603 		return NULL;
604 
605 	if (mask < 0xffffffffULL)
606 		gfp |= GFP_DMA;
607 
608 	/*
609 	 * Following is a work-around (a.k.a. hack) to prevent pages
610 	 * with __GFP_COMP being passed to split_page() which cannot
611 	 * handle them.  The real problem is that this flag probably
612 	 * should be 0 on ARM as it is not supported on this
613 	 * platform; see CONFIG_HUGETLBFS.
614 	 */
615 	gfp &= ~(__GFP_COMP);
616 
617 	*handle = DMA_ERROR_CODE;
618 	size = PAGE_ALIGN(size);
619 
620 	if (arch_is_coherent() || nommu())
621 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
622 	else if (gfp & GFP_ATOMIC)
623 		addr = __alloc_from_pool(size, &page);
624 	else if (!IS_ENABLED(CONFIG_CMA))
625 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
626 	else
627 		addr = __alloc_from_contiguous(dev, size, prot, &page);
628 
629 	if (addr)
630 		*handle = pfn_to_dma(dev, page_to_pfn(page));
631 
632 	return addr;
633 }
634 
635 /*
636  * Allocate DMA-coherent memory space and return both the kernel remapped
637  * virtual and bus address for that space.
638  */
639 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
640 		    gfp_t gfp, struct dma_attrs *attrs)
641 {
642 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
643 	void *memory;
644 
645 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
646 		return memory;
647 
648 	return __dma_alloc(dev, size, handle, gfp, prot,
649 			   __builtin_return_address(0));
650 }
651 
652 /*
653  * Create userspace mapping for the DMA-coherent memory.
654  */
655 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
656 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
657 		 struct dma_attrs *attrs)
658 {
659 	int ret = -ENXIO;
660 #ifdef CONFIG_MMU
661 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
662 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
663 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
664 	unsigned long off = vma->vm_pgoff;
665 
666 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
667 
668 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
669 		return ret;
670 
671 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
672 		ret = remap_pfn_range(vma, vma->vm_start,
673 				      pfn + off,
674 				      vma->vm_end - vma->vm_start,
675 				      vma->vm_page_prot);
676 	}
677 #endif	/* CONFIG_MMU */
678 
679 	return ret;
680 }
681 
682 /*
683  * Free a buffer as defined by the above mapping.
684  */
685 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
686 		  dma_addr_t handle, struct dma_attrs *attrs)
687 {
688 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
689 
690 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
691 		return;
692 
693 	size = PAGE_ALIGN(size);
694 
695 	if (arch_is_coherent() || nommu()) {
696 		__dma_free_buffer(page, size);
697 	} else if (__free_from_pool(cpu_addr, size)) {
698 		return;
699 	} else if (!IS_ENABLED(CONFIG_CMA)) {
700 		__dma_free_remap(cpu_addr, size);
701 		__dma_free_buffer(page, size);
702 	} else {
703 		/*
704 		 * Non-atomic allocations cannot be freed with IRQs disabled
705 		 */
706 		WARN_ON(irqs_disabled());
707 		__free_from_contiguous(dev, page, size);
708 	}
709 }
710 
711 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
712 		 void *cpu_addr, dma_addr_t handle, size_t size,
713 		 struct dma_attrs *attrs)
714 {
715 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
716 	int ret;
717 
718 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
719 	if (unlikely(ret))
720 		return ret;
721 
722 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
723 	return 0;
724 }
725 
726 static void dma_cache_maint_page(struct page *page, unsigned long offset,
727 	size_t size, enum dma_data_direction dir,
728 	void (*op)(const void *, size_t, int))
729 {
730 	/*
731 	 * A single sg entry may refer to multiple physically contiguous
732 	 * pages.  But we still need to process highmem pages individually.
733 	 * If highmem is not configured then the bulk of this loop gets
734 	 * optimized out.
735 	 */
736 	size_t left = size;
737 	do {
738 		size_t len = left;
739 		void *vaddr;
740 
741 		if (PageHighMem(page)) {
742 			if (len + offset > PAGE_SIZE) {
743 				if (offset >= PAGE_SIZE) {
744 					page += offset / PAGE_SIZE;
745 					offset %= PAGE_SIZE;
746 				}
747 				len = PAGE_SIZE - offset;
748 			}
749 			vaddr = kmap_high_get(page);
750 			if (vaddr) {
751 				vaddr += offset;
752 				op(vaddr, len, dir);
753 				kunmap_high(page);
754 			} else if (cache_is_vipt()) {
755 				/* unmapped pages might still be cached */
756 				vaddr = kmap_atomic(page);
757 				op(vaddr + offset, len, dir);
758 				kunmap_atomic(vaddr);
759 			}
760 		} else {
761 			vaddr = page_address(page) + offset;
762 			op(vaddr, len, dir);
763 		}
764 		offset = 0;
765 		page++;
766 		left -= len;
767 	} while (left);
768 }
769 
770 /*
771  * Make an area consistent for devices.
772  * Note: Drivers should NOT use this function directly, as it will break
773  * platforms with CONFIG_DMABOUNCE.
774  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
775  */
776 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
777 	size_t size, enum dma_data_direction dir)
778 {
779 	unsigned long paddr;
780 
781 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
782 
783 	paddr = page_to_phys(page) + off;
784 	if (dir == DMA_FROM_DEVICE) {
785 		outer_inv_range(paddr, paddr + size);
786 	} else {
787 		outer_clean_range(paddr, paddr + size);
788 	}
789 	/* FIXME: non-speculating: flush on bidirectional mappings? */
790 }
791 
792 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
793 	size_t size, enum dma_data_direction dir)
794 {
795 	unsigned long paddr = page_to_phys(page) + off;
796 
797 	/* FIXME: non-speculating: not required */
798 	/* don't bother invalidating if DMA to device */
799 	if (dir != DMA_TO_DEVICE)
800 		outer_inv_range(paddr, paddr + size);
801 
802 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
803 
804 	/*
805 	 * Mark the D-cache clean for this page to avoid extra flushing.
806 	 */
807 	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
808 		set_bit(PG_dcache_clean, &page->flags);
809 }
810 
811 /**
812  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
813  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
814  * @sg: list of buffers
815  * @nents: number of buffers to map
816  * @dir: DMA transfer direction
817  *
818  * Map a set of buffers described by scatterlist in streaming mode for DMA.
819  * This is the scatter-gather version of the dma_map_single interface.
820  * Here the scatter gather list elements are each tagged with the
821  * appropriate dma address and length.  They are obtained via
822  * sg_dma_{address,length}.
823  *
824  * Device ownership issues as mentioned for dma_map_single are the same
825  * here.
826  */
827 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
828 		enum dma_data_direction dir, struct dma_attrs *attrs)
829 {
830 	struct dma_map_ops *ops = get_dma_ops(dev);
831 	struct scatterlist *s;
832 	int i, j;
833 
834 	for_each_sg(sg, s, nents, i) {
835 #ifdef CONFIG_NEED_SG_DMA_LENGTH
836 		s->dma_length = s->length;
837 #endif
838 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
839 						s->length, dir, attrs);
840 		if (dma_mapping_error(dev, s->dma_address))
841 			goto bad_mapping;
842 	}
843 	return nents;
844 
845  bad_mapping:
846 	for_each_sg(sg, s, i, j)
847 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
848 	return 0;
849 }
850 
851 /**
852  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
853  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
854  * @sg: list of buffers
855  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
856  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
857  *
858  * Unmap a set of streaming mode DMA translations.  Again, CPU access
859  * rules concerning calls here are the same as for dma_unmap_single().
860  */
861 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
862 		enum dma_data_direction dir, struct dma_attrs *attrs)
863 {
864 	struct dma_map_ops *ops = get_dma_ops(dev);
865 	struct scatterlist *s;
866 
867 	int i;
868 
869 	for_each_sg(sg, s, nents, i)
870 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
871 }
872 
873 /**
874  * arm_dma_sync_sg_for_cpu
875  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
876  * @sg: list of buffers
877  * @nents: number of buffers to map (returned from dma_map_sg)
878  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
879  */
880 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
881 			int nents, enum dma_data_direction dir)
882 {
883 	struct dma_map_ops *ops = get_dma_ops(dev);
884 	struct scatterlist *s;
885 	int i;
886 
887 	for_each_sg(sg, s, nents, i)
888 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
889 					 dir);
890 }
891 
892 /**
893  * arm_dma_sync_sg_for_device
894  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
895  * @sg: list of buffers
896  * @nents: number of buffers to map (returned from dma_map_sg)
897  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
898  */
899 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
900 			int nents, enum dma_data_direction dir)
901 {
902 	struct dma_map_ops *ops = get_dma_ops(dev);
903 	struct scatterlist *s;
904 	int i;
905 
906 	for_each_sg(sg, s, nents, i)
907 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
908 					    dir);
909 }
910 
911 /*
912  * Return whether the given device DMA address mask can be supported
913  * properly.  For example, if your device can only drive the low 24-bits
914  * during bus mastering, then you would pass 0x00ffffff as the mask
915  * to this function.
916  */
917 int dma_supported(struct device *dev, u64 mask)
918 {
919 	if (mask < (u64)arm_dma_limit)
920 		return 0;
921 	return 1;
922 }
923 EXPORT_SYMBOL(dma_supported);
924 
925 static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
926 {
927 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
928 		return -EIO;
929 
930 	*dev->dma_mask = dma_mask;
931 
932 	return 0;
933 }
934 
935 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
936 
937 static int __init dma_debug_do_init(void)
938 {
939 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
940 	return 0;
941 }
942 fs_initcall(dma_debug_do_init);
943 
944 #ifdef CONFIG_ARM_DMA_USE_IOMMU
945 
946 /* IOMMU */
947 
948 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
949 				      size_t size)
950 {
951 	unsigned int order = get_order(size);
952 	unsigned int align = 0;
953 	unsigned int count, start;
954 	unsigned long flags;
955 
956 	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
957 		 (1 << mapping->order) - 1) >> mapping->order;
958 
959 	if (order > mapping->order)
960 		align = (1 << (order - mapping->order)) - 1;
961 
962 	spin_lock_irqsave(&mapping->lock, flags);
963 	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
964 					   count, align);
965 	if (start > mapping->bits) {
966 		spin_unlock_irqrestore(&mapping->lock, flags);
967 		return DMA_ERROR_CODE;
968 	}
969 
970 	bitmap_set(mapping->bitmap, start, count);
971 	spin_unlock_irqrestore(&mapping->lock, flags);
972 
973 	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
974 }
975 
976 static inline void __free_iova(struct dma_iommu_mapping *mapping,
977 			       dma_addr_t addr, size_t size)
978 {
979 	unsigned int start = (addr - mapping->base) >>
980 			     (mapping->order + PAGE_SHIFT);
981 	unsigned int count = ((size >> PAGE_SHIFT) +
982 			      (1 << mapping->order) - 1) >> mapping->order;
983 	unsigned long flags;
984 
985 	spin_lock_irqsave(&mapping->lock, flags);
986 	bitmap_clear(mapping->bitmap, start, count);
987 	spin_unlock_irqrestore(&mapping->lock, flags);
988 }
989 
990 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
991 {
992 	struct page **pages;
993 	int count = size >> PAGE_SHIFT;
994 	int array_size = count * sizeof(struct page *);
995 	int i = 0;
996 
997 	if (array_size <= PAGE_SIZE)
998 		pages = kzalloc(array_size, gfp);
999 	else
1000 		pages = vzalloc(array_size);
1001 	if (!pages)
1002 		return NULL;
1003 
1004 	while (count) {
1005 		int j, order = __fls(count);
1006 
1007 		pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
1008 		while (!pages[i] && order)
1009 			pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
1010 		if (!pages[i])
1011 			goto error;
1012 
1013 		if (order)
1014 			split_page(pages[i], order);
1015 		j = 1 << order;
1016 		while (--j)
1017 			pages[i + j] = pages[i] + j;
1018 
1019 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1020 		i += 1 << order;
1021 		count -= 1 << order;
1022 	}
1023 
1024 	return pages;
1025 error:
1026 	while (i--)
1027 		if (pages[i])
1028 			__free_pages(pages[i], 0);
1029 	if (array_size <= PAGE_SIZE)
1030 		kfree(pages);
1031 	else
1032 		vfree(pages);
1033 	return NULL;
1034 }
1035 
1036 static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
1037 {
1038 	int count = size >> PAGE_SHIFT;
1039 	int array_size = count * sizeof(struct page *);
1040 	int i;
1041 	for (i = 0; i < count; i++)
1042 		if (pages[i])
1043 			__free_pages(pages[i], 0);
1044 	if (array_size <= PAGE_SIZE)
1045 		kfree(pages);
1046 	else
1047 		vfree(pages);
1048 	return 0;
1049 }
1050 
1051 /*
1052  * Create a CPU mapping for a specified pages
1053  */
1054 static void *
1055 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1056 		    const void *caller)
1057 {
1058 	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1059 	struct vm_struct *area;
1060 	unsigned long p;
1061 
1062 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1063 				  caller);
1064 	if (!area)
1065 		return NULL;
1066 
1067 	area->pages = pages;
1068 	area->nr_pages = nr_pages;
1069 	p = (unsigned long)area->addr;
1070 
1071 	for (i = 0; i < nr_pages; i++) {
1072 		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1073 		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1074 			goto err;
1075 		p += PAGE_SIZE;
1076 	}
1077 	return area->addr;
1078 err:
1079 	unmap_kernel_range((unsigned long)area->addr, size);
1080 	vunmap(area->addr);
1081 	return NULL;
1082 }
1083 
1084 /*
1085  * Create a mapping in device IO address space for specified pages
1086  */
1087 static dma_addr_t
1088 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1089 {
1090 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1091 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1092 	dma_addr_t dma_addr, iova;
1093 	int i, ret = DMA_ERROR_CODE;
1094 
1095 	dma_addr = __alloc_iova(mapping, size);
1096 	if (dma_addr == DMA_ERROR_CODE)
1097 		return dma_addr;
1098 
1099 	iova = dma_addr;
1100 	for (i = 0; i < count; ) {
1101 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1102 		phys_addr_t phys = page_to_phys(pages[i]);
1103 		unsigned int len, j;
1104 
1105 		for (j = i + 1; j < count; j++, next_pfn++)
1106 			if (page_to_pfn(pages[j]) != next_pfn)
1107 				break;
1108 
1109 		len = (j - i) << PAGE_SHIFT;
1110 		ret = iommu_map(mapping->domain, iova, phys, len, 0);
1111 		if (ret < 0)
1112 			goto fail;
1113 		iova += len;
1114 		i = j;
1115 	}
1116 	return dma_addr;
1117 fail:
1118 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1119 	__free_iova(mapping, dma_addr, size);
1120 	return DMA_ERROR_CODE;
1121 }
1122 
1123 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1124 {
1125 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1126 
1127 	/*
1128 	 * add optional in-page offset from iova to size and align
1129 	 * result to page size
1130 	 */
1131 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1132 	iova &= PAGE_MASK;
1133 
1134 	iommu_unmap(mapping->domain, iova, size);
1135 	__free_iova(mapping, iova, size);
1136 	return 0;
1137 }
1138 
1139 static struct page **__atomic_get_pages(void *addr)
1140 {
1141 	struct dma_pool *pool = &atomic_pool;
1142 	struct page **pages = pool->pages;
1143 	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1144 
1145 	return pages + offs;
1146 }
1147 
1148 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1149 {
1150 	struct vm_struct *area;
1151 
1152 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1153 		return __atomic_get_pages(cpu_addr);
1154 
1155 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1156 		return cpu_addr;
1157 
1158 	area = find_vm_area(cpu_addr);
1159 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1160 		return area->pages;
1161 	return NULL;
1162 }
1163 
1164 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1165 				  dma_addr_t *handle)
1166 {
1167 	struct page *page;
1168 	void *addr;
1169 
1170 	addr = __alloc_from_pool(size, &page);
1171 	if (!addr)
1172 		return NULL;
1173 
1174 	*handle = __iommu_create_mapping(dev, &page, size);
1175 	if (*handle == DMA_ERROR_CODE)
1176 		goto err_mapping;
1177 
1178 	return addr;
1179 
1180 err_mapping:
1181 	__free_from_pool(addr, size);
1182 	return NULL;
1183 }
1184 
1185 static void __iommu_free_atomic(struct device *dev, struct page **pages,
1186 				dma_addr_t handle, size_t size)
1187 {
1188 	__iommu_remove_mapping(dev, handle, size);
1189 	__free_from_pool(page_address(pages[0]), size);
1190 }
1191 
1192 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1193 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1194 {
1195 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1196 	struct page **pages;
1197 	void *addr = NULL;
1198 
1199 	*handle = DMA_ERROR_CODE;
1200 	size = PAGE_ALIGN(size);
1201 
1202 	if (gfp & GFP_ATOMIC)
1203 		return __iommu_alloc_atomic(dev, size, handle);
1204 
1205 	pages = __iommu_alloc_buffer(dev, size, gfp);
1206 	if (!pages)
1207 		return NULL;
1208 
1209 	*handle = __iommu_create_mapping(dev, pages, size);
1210 	if (*handle == DMA_ERROR_CODE)
1211 		goto err_buffer;
1212 
1213 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1214 		return pages;
1215 
1216 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1217 				   __builtin_return_address(0));
1218 	if (!addr)
1219 		goto err_mapping;
1220 
1221 	return addr;
1222 
1223 err_mapping:
1224 	__iommu_remove_mapping(dev, *handle, size);
1225 err_buffer:
1226 	__iommu_free_buffer(dev, pages, size);
1227 	return NULL;
1228 }
1229 
1230 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1231 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1232 		    struct dma_attrs *attrs)
1233 {
1234 	unsigned long uaddr = vma->vm_start;
1235 	unsigned long usize = vma->vm_end - vma->vm_start;
1236 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1237 
1238 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1239 
1240 	if (!pages)
1241 		return -ENXIO;
1242 
1243 	do {
1244 		int ret = vm_insert_page(vma, uaddr, *pages++);
1245 		if (ret) {
1246 			pr_err("Remapping memory failed: %d\n", ret);
1247 			return ret;
1248 		}
1249 		uaddr += PAGE_SIZE;
1250 		usize -= PAGE_SIZE;
1251 	} while (usize > 0);
1252 
1253 	return 0;
1254 }
1255 
1256 /*
1257  * free a page as defined by the above mapping.
1258  * Must not be called with IRQs disabled.
1259  */
1260 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1261 			  dma_addr_t handle, struct dma_attrs *attrs)
1262 {
1263 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1264 	size = PAGE_ALIGN(size);
1265 
1266 	if (!pages) {
1267 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1268 		return;
1269 	}
1270 
1271 	if (__in_atomic_pool(cpu_addr, size)) {
1272 		__iommu_free_atomic(dev, pages, handle, size);
1273 		return;
1274 	}
1275 
1276 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1277 		unmap_kernel_range((unsigned long)cpu_addr, size);
1278 		vunmap(cpu_addr);
1279 	}
1280 
1281 	__iommu_remove_mapping(dev, handle, size);
1282 	__iommu_free_buffer(dev, pages, size);
1283 }
1284 
1285 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1286 				 void *cpu_addr, dma_addr_t dma_addr,
1287 				 size_t size, struct dma_attrs *attrs)
1288 {
1289 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1290 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1291 
1292 	if (!pages)
1293 		return -ENXIO;
1294 
1295 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1296 					 GFP_KERNEL);
1297 }
1298 
1299 /*
1300  * Map a part of the scatter-gather list into contiguous io address space
1301  */
1302 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1303 			  size_t size, dma_addr_t *handle,
1304 			  enum dma_data_direction dir, struct dma_attrs *attrs)
1305 {
1306 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1307 	dma_addr_t iova, iova_base;
1308 	int ret = 0;
1309 	unsigned int count;
1310 	struct scatterlist *s;
1311 
1312 	size = PAGE_ALIGN(size);
1313 	*handle = DMA_ERROR_CODE;
1314 
1315 	iova_base = iova = __alloc_iova(mapping, size);
1316 	if (iova == DMA_ERROR_CODE)
1317 		return -ENOMEM;
1318 
1319 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1320 		phys_addr_t phys = page_to_phys(sg_page(s));
1321 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1322 
1323 		if (!arch_is_coherent() &&
1324 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1325 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1326 
1327 		ret = iommu_map(mapping->domain, iova, phys, len, 0);
1328 		if (ret < 0)
1329 			goto fail;
1330 		count += len >> PAGE_SHIFT;
1331 		iova += len;
1332 	}
1333 	*handle = iova_base;
1334 
1335 	return 0;
1336 fail:
1337 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1338 	__free_iova(mapping, iova_base, size);
1339 	return ret;
1340 }
1341 
1342 /**
1343  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1344  * @dev: valid struct device pointer
1345  * @sg: list of buffers
1346  * @nents: number of buffers to map
1347  * @dir: DMA transfer direction
1348  *
1349  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1350  * The scatter gather list elements are merged together (if possible) and
1351  * tagged with the appropriate dma address and length. They are obtained via
1352  * sg_dma_{address,length}.
1353  */
1354 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1355 		     enum dma_data_direction dir, struct dma_attrs *attrs)
1356 {
1357 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1358 	int i, count = 0;
1359 	unsigned int offset = s->offset;
1360 	unsigned int size = s->offset + s->length;
1361 	unsigned int max = dma_get_max_seg_size(dev);
1362 
1363 	for (i = 1; i < nents; i++) {
1364 		s = sg_next(s);
1365 
1366 		s->dma_address = DMA_ERROR_CODE;
1367 		s->dma_length = 0;
1368 
1369 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1370 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1371 			    dir, attrs) < 0)
1372 				goto bad_mapping;
1373 
1374 			dma->dma_address += offset;
1375 			dma->dma_length = size - offset;
1376 
1377 			size = offset = s->offset;
1378 			start = s;
1379 			dma = sg_next(dma);
1380 			count += 1;
1381 		}
1382 		size += s->length;
1383 	}
1384 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs) < 0)
1385 		goto bad_mapping;
1386 
1387 	dma->dma_address += offset;
1388 	dma->dma_length = size - offset;
1389 
1390 	return count+1;
1391 
1392 bad_mapping:
1393 	for_each_sg(sg, s, count, i)
1394 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1395 	return 0;
1396 }
1397 
1398 /**
1399  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1400  * @dev: valid struct device pointer
1401  * @sg: list of buffers
1402  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1403  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1404  *
1405  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1406  * rules concerning calls here are the same as for dma_unmap_single().
1407  */
1408 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1409 			enum dma_data_direction dir, struct dma_attrs *attrs)
1410 {
1411 	struct scatterlist *s;
1412 	int i;
1413 
1414 	for_each_sg(sg, s, nents, i) {
1415 		if (sg_dma_len(s))
1416 			__iommu_remove_mapping(dev, sg_dma_address(s),
1417 					       sg_dma_len(s));
1418 		if (!arch_is_coherent() &&
1419 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1420 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1421 					      s->length, dir);
1422 	}
1423 }
1424 
1425 /**
1426  * arm_iommu_sync_sg_for_cpu
1427  * @dev: valid struct device pointer
1428  * @sg: list of buffers
1429  * @nents: number of buffers to map (returned from dma_map_sg)
1430  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1431  */
1432 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1433 			int nents, enum dma_data_direction dir)
1434 {
1435 	struct scatterlist *s;
1436 	int i;
1437 
1438 	for_each_sg(sg, s, nents, i)
1439 		if (!arch_is_coherent())
1440 			__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1441 
1442 }
1443 
1444 /**
1445  * arm_iommu_sync_sg_for_device
1446  * @dev: valid struct device pointer
1447  * @sg: list of buffers
1448  * @nents: number of buffers to map (returned from dma_map_sg)
1449  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1450  */
1451 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1452 			int nents, enum dma_data_direction dir)
1453 {
1454 	struct scatterlist *s;
1455 	int i;
1456 
1457 	for_each_sg(sg, s, nents, i)
1458 		if (!arch_is_coherent())
1459 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1460 }
1461 
1462 
1463 /**
1464  * arm_iommu_map_page
1465  * @dev: valid struct device pointer
1466  * @page: page that buffer resides in
1467  * @offset: offset into page for start of buffer
1468  * @size: size of buffer to map
1469  * @dir: DMA transfer direction
1470  *
1471  * IOMMU aware version of arm_dma_map_page()
1472  */
1473 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1474 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1475 	     struct dma_attrs *attrs)
1476 {
1477 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1478 	dma_addr_t dma_addr;
1479 	int ret, len = PAGE_ALIGN(size + offset);
1480 
1481 	if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1482 		__dma_page_cpu_to_dev(page, offset, size, dir);
1483 
1484 	dma_addr = __alloc_iova(mapping, len);
1485 	if (dma_addr == DMA_ERROR_CODE)
1486 		return dma_addr;
1487 
1488 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1489 	if (ret < 0)
1490 		goto fail;
1491 
1492 	return dma_addr + offset;
1493 fail:
1494 	__free_iova(mapping, dma_addr, len);
1495 	return DMA_ERROR_CODE;
1496 }
1497 
1498 /**
1499  * arm_iommu_unmap_page
1500  * @dev: valid struct device pointer
1501  * @handle: DMA address of buffer
1502  * @size: size of buffer (same as passed to dma_map_page)
1503  * @dir: DMA transfer direction (same as passed to dma_map_page)
1504  *
1505  * IOMMU aware version of arm_dma_unmap_page()
1506  */
1507 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1508 		size_t size, enum dma_data_direction dir,
1509 		struct dma_attrs *attrs)
1510 {
1511 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1512 	dma_addr_t iova = handle & PAGE_MASK;
1513 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1514 	int offset = handle & ~PAGE_MASK;
1515 	int len = PAGE_ALIGN(size + offset);
1516 
1517 	if (!iova)
1518 		return;
1519 
1520 	if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1521 		__dma_page_dev_to_cpu(page, offset, size, dir);
1522 
1523 	iommu_unmap(mapping->domain, iova, len);
1524 	__free_iova(mapping, iova, len);
1525 }
1526 
1527 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1528 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1529 {
1530 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1531 	dma_addr_t iova = handle & PAGE_MASK;
1532 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1533 	unsigned int offset = handle & ~PAGE_MASK;
1534 
1535 	if (!iova)
1536 		return;
1537 
1538 	if (!arch_is_coherent())
1539 		__dma_page_dev_to_cpu(page, offset, size, dir);
1540 }
1541 
1542 static void arm_iommu_sync_single_for_device(struct device *dev,
1543 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1544 {
1545 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1546 	dma_addr_t iova = handle & PAGE_MASK;
1547 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1548 	unsigned int offset = handle & ~PAGE_MASK;
1549 
1550 	if (!iova)
1551 		return;
1552 
1553 	__dma_page_cpu_to_dev(page, offset, size, dir);
1554 }
1555 
1556 struct dma_map_ops iommu_ops = {
1557 	.alloc		= arm_iommu_alloc_attrs,
1558 	.free		= arm_iommu_free_attrs,
1559 	.mmap		= arm_iommu_mmap_attrs,
1560 	.get_sgtable	= arm_iommu_get_sgtable,
1561 
1562 	.map_page		= arm_iommu_map_page,
1563 	.unmap_page		= arm_iommu_unmap_page,
1564 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1565 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1566 
1567 	.map_sg			= arm_iommu_map_sg,
1568 	.unmap_sg		= arm_iommu_unmap_sg,
1569 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1570 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1571 };
1572 
1573 /**
1574  * arm_iommu_create_mapping
1575  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1576  * @base: start address of the valid IO address space
1577  * @size: size of the valid IO address space
1578  * @order: accuracy of the IO addresses allocations
1579  *
1580  * Creates a mapping structure which holds information about used/unused
1581  * IO address ranges, which is required to perform memory allocation and
1582  * mapping with IOMMU aware functions.
1583  *
1584  * The client device need to be attached to the mapping with
1585  * arm_iommu_attach_device function.
1586  */
1587 struct dma_iommu_mapping *
1588 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1589 			 int order)
1590 {
1591 	unsigned int count = size >> (PAGE_SHIFT + order);
1592 	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1593 	struct dma_iommu_mapping *mapping;
1594 	int err = -ENOMEM;
1595 
1596 	if (!count)
1597 		return ERR_PTR(-EINVAL);
1598 
1599 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1600 	if (!mapping)
1601 		goto err;
1602 
1603 	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1604 	if (!mapping->bitmap)
1605 		goto err2;
1606 
1607 	mapping->base = base;
1608 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1609 	mapping->order = order;
1610 	spin_lock_init(&mapping->lock);
1611 
1612 	mapping->domain = iommu_domain_alloc(bus);
1613 	if (!mapping->domain)
1614 		goto err3;
1615 
1616 	kref_init(&mapping->kref);
1617 	return mapping;
1618 err3:
1619 	kfree(mapping->bitmap);
1620 err2:
1621 	kfree(mapping);
1622 err:
1623 	return ERR_PTR(err);
1624 }
1625 
1626 static void release_iommu_mapping(struct kref *kref)
1627 {
1628 	struct dma_iommu_mapping *mapping =
1629 		container_of(kref, struct dma_iommu_mapping, kref);
1630 
1631 	iommu_domain_free(mapping->domain);
1632 	kfree(mapping->bitmap);
1633 	kfree(mapping);
1634 }
1635 
1636 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1637 {
1638 	if (mapping)
1639 		kref_put(&mapping->kref, release_iommu_mapping);
1640 }
1641 
1642 /**
1643  * arm_iommu_attach_device
1644  * @dev: valid struct device pointer
1645  * @mapping: io address space mapping structure (returned from
1646  *	arm_iommu_create_mapping)
1647  *
1648  * Attaches specified io address space mapping to the provided device,
1649  * this replaces the dma operations (dma_map_ops pointer) with the
1650  * IOMMU aware version. More than one client might be attached to
1651  * the same io address space mapping.
1652  */
1653 int arm_iommu_attach_device(struct device *dev,
1654 			    struct dma_iommu_mapping *mapping)
1655 {
1656 	int err;
1657 
1658 	err = iommu_attach_device(mapping->domain, dev);
1659 	if (err)
1660 		return err;
1661 
1662 	kref_get(&mapping->kref);
1663 	dev->archdata.mapping = mapping;
1664 	set_dma_ops(dev, &iommu_ops);
1665 
1666 	pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));
1667 	return 0;
1668 }
1669 
1670 #endif
1671