xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 90cde558)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31 
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41 
42 #include "mm.h"
43 
44 /*
45  * The DMA API is built upon the notion of "buffer ownership".  A buffer
46  * is either exclusively owned by the CPU (and therefore may be accessed
47  * by it) or exclusively owned by the DMA device.  These helper functions
48  * represent the transitions between these two ownership states.
49  *
50  * Note, however, that on later ARMs, this notion does not work due to
51  * speculative prefetches.  We model our approach on the assumption that
52  * the CPU does do speculative prefetches, which means we clean caches
53  * before transfers and delay cache invalidation until transfer completion.
54  *
55  */
56 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
57 		size_t, enum dma_data_direction);
58 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
59 		size_t, enum dma_data_direction);
60 
61 /**
62  * arm_dma_map_page - map a portion of a page for streaming DMA
63  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
64  * @page: page that buffer resides in
65  * @offset: offset into page for start of buffer
66  * @size: size of buffer to map
67  * @dir: DMA transfer direction
68  *
69  * Ensure that any data held in the cache is appropriately discarded
70  * or written back.
71  *
72  * The device owns this memory once this call has completed.  The CPU
73  * can regain ownership by calling dma_unmap_page().
74  */
75 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
76 	     unsigned long offset, size_t size, enum dma_data_direction dir,
77 	     struct dma_attrs *attrs)
78 {
79 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
80 		__dma_page_cpu_to_dev(page, offset, size, dir);
81 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
82 }
83 
84 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
85 	     unsigned long offset, size_t size, enum dma_data_direction dir,
86 	     struct dma_attrs *attrs)
87 {
88 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
89 }
90 
91 /**
92  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
93  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
94  * @handle: DMA address of buffer
95  * @size: size of buffer (same as passed to dma_map_page)
96  * @dir: DMA transfer direction (same as passed to dma_map_page)
97  *
98  * Unmap a page streaming mode DMA translation.  The handle and size
99  * must match what was provided in the previous dma_map_page() call.
100  * All other usages are undefined.
101  *
102  * After this call, reads by the CPU to the buffer are guaranteed to see
103  * whatever the device wrote there.
104  */
105 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
106 		size_t size, enum dma_data_direction dir,
107 		struct dma_attrs *attrs)
108 {
109 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
110 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
111 				      handle & ~PAGE_MASK, size, dir);
112 }
113 
114 static void arm_dma_sync_single_for_cpu(struct device *dev,
115 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
116 {
117 	unsigned int offset = handle & (PAGE_SIZE - 1);
118 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
119 	__dma_page_dev_to_cpu(page, offset, size, dir);
120 }
121 
122 static void arm_dma_sync_single_for_device(struct device *dev,
123 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
124 {
125 	unsigned int offset = handle & (PAGE_SIZE - 1);
126 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
127 	__dma_page_cpu_to_dev(page, offset, size, dir);
128 }
129 
130 struct dma_map_ops arm_dma_ops = {
131 	.alloc			= arm_dma_alloc,
132 	.free			= arm_dma_free,
133 	.mmap			= arm_dma_mmap,
134 	.get_sgtable		= arm_dma_get_sgtable,
135 	.map_page		= arm_dma_map_page,
136 	.unmap_page		= arm_dma_unmap_page,
137 	.map_sg			= arm_dma_map_sg,
138 	.unmap_sg		= arm_dma_unmap_sg,
139 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
140 	.sync_single_for_device	= arm_dma_sync_single_for_device,
141 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
142 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
143 	.set_dma_mask		= arm_dma_set_mask,
144 };
145 EXPORT_SYMBOL(arm_dma_ops);
146 
147 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
148 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
149 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
150 				  dma_addr_t handle, struct dma_attrs *attrs);
151 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
152 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
153 		 struct dma_attrs *attrs);
154 
155 struct dma_map_ops arm_coherent_dma_ops = {
156 	.alloc			= arm_coherent_dma_alloc,
157 	.free			= arm_coherent_dma_free,
158 	.mmap			= arm_coherent_dma_mmap,
159 	.get_sgtable		= arm_dma_get_sgtable,
160 	.map_page		= arm_coherent_dma_map_page,
161 	.map_sg			= arm_dma_map_sg,
162 	.set_dma_mask		= arm_dma_set_mask,
163 };
164 EXPORT_SYMBOL(arm_coherent_dma_ops);
165 
166 static int __dma_supported(struct device *dev, u64 mask, bool warn)
167 {
168 	unsigned long max_dma_pfn;
169 
170 	/*
171 	 * If the mask allows for more memory than we can address,
172 	 * and we actually have that much memory, then we must
173 	 * indicate that DMA to this device is not supported.
174 	 */
175 	if (sizeof(mask) != sizeof(dma_addr_t) &&
176 	    mask > (dma_addr_t)~0 &&
177 	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
178 		if (warn) {
179 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
180 				 mask);
181 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
182 		}
183 		return 0;
184 	}
185 
186 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
187 
188 	/*
189 	 * Translate the device's DMA mask to a PFN limit.  This
190 	 * PFN number includes the page which we can DMA to.
191 	 */
192 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
193 		if (warn)
194 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
195 				 mask,
196 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
197 				 max_dma_pfn + 1);
198 		return 0;
199 	}
200 
201 	return 1;
202 }
203 
204 static u64 get_coherent_dma_mask(struct device *dev)
205 {
206 	u64 mask = (u64)DMA_BIT_MASK(32);
207 
208 	if (dev) {
209 		mask = dev->coherent_dma_mask;
210 
211 		/*
212 		 * Sanity check the DMA mask - it must be non-zero, and
213 		 * must be able to be satisfied by a DMA allocation.
214 		 */
215 		if (mask == 0) {
216 			dev_warn(dev, "coherent DMA mask is unset\n");
217 			return 0;
218 		}
219 
220 		if (!__dma_supported(dev, mask, true))
221 			return 0;
222 	}
223 
224 	return mask;
225 }
226 
227 static void __dma_clear_buffer(struct page *page, size_t size)
228 {
229 	/*
230 	 * Ensure that the allocated pages are zeroed, and that any data
231 	 * lurking in the kernel direct-mapped region is invalidated.
232 	 */
233 	if (PageHighMem(page)) {
234 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
235 		phys_addr_t end = base + size;
236 		while (size > 0) {
237 			void *ptr = kmap_atomic(page);
238 			memset(ptr, 0, PAGE_SIZE);
239 			dmac_flush_range(ptr, ptr + PAGE_SIZE);
240 			kunmap_atomic(ptr);
241 			page++;
242 			size -= PAGE_SIZE;
243 		}
244 		outer_flush_range(base, end);
245 	} else {
246 		void *ptr = page_address(page);
247 		memset(ptr, 0, size);
248 		dmac_flush_range(ptr, ptr + size);
249 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
250 	}
251 }
252 
253 /*
254  * Allocate a DMA buffer for 'dev' of size 'size' using the
255  * specified gfp mask.  Note that 'size' must be page aligned.
256  */
257 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
258 {
259 	unsigned long order = get_order(size);
260 	struct page *page, *p, *e;
261 
262 	page = alloc_pages(gfp, order);
263 	if (!page)
264 		return NULL;
265 
266 	/*
267 	 * Now split the huge page and free the excess pages
268 	 */
269 	split_page(page, order);
270 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
271 		__free_page(p);
272 
273 	__dma_clear_buffer(page, size);
274 
275 	return page;
276 }
277 
278 /*
279  * Free a DMA buffer.  'size' must be page aligned.
280  */
281 static void __dma_free_buffer(struct page *page, size_t size)
282 {
283 	struct page *e = page + (size >> PAGE_SHIFT);
284 
285 	while (page < e) {
286 		__free_page(page);
287 		page++;
288 	}
289 }
290 
291 #ifdef CONFIG_MMU
292 
293 static void *__alloc_from_contiguous(struct device *dev, size_t size,
294 				     pgprot_t prot, struct page **ret_page,
295 				     const void *caller, bool want_vaddr);
296 
297 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
298 				 pgprot_t prot, struct page **ret_page,
299 				 const void *caller, bool want_vaddr);
300 
301 static void *
302 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
303 	const void *caller)
304 {
305 	/*
306 	 * DMA allocation can be mapped to user space, so lets
307 	 * set VM_USERMAP flags too.
308 	 */
309 	return dma_common_contiguous_remap(page, size,
310 			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
311 			prot, caller);
312 }
313 
314 static void __dma_free_remap(void *cpu_addr, size_t size)
315 {
316 	dma_common_free_remap(cpu_addr, size,
317 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
318 }
319 
320 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
321 static struct gen_pool *atomic_pool;
322 
323 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
324 
325 static int __init early_coherent_pool(char *p)
326 {
327 	atomic_pool_size = memparse(p, &p);
328 	return 0;
329 }
330 early_param("coherent_pool", early_coherent_pool);
331 
332 void __init init_dma_coherent_pool_size(unsigned long size)
333 {
334 	/*
335 	 * Catch any attempt to set the pool size too late.
336 	 */
337 	BUG_ON(atomic_pool);
338 
339 	/*
340 	 * Set architecture specific coherent pool size only if
341 	 * it has not been changed by kernel command line parameter.
342 	 */
343 	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
344 		atomic_pool_size = size;
345 }
346 
347 /*
348  * Initialise the coherent pool for atomic allocations.
349  */
350 static int __init atomic_pool_init(void)
351 {
352 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
353 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
354 	struct page *page;
355 	void *ptr;
356 
357 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
358 	if (!atomic_pool)
359 		goto out;
360 
361 	if (dev_get_cma_area(NULL))
362 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
363 					      &page, atomic_pool_init, true);
364 	else
365 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
366 					   &page, atomic_pool_init, true);
367 	if (ptr) {
368 		int ret;
369 
370 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
371 					page_to_phys(page),
372 					atomic_pool_size, -1);
373 		if (ret)
374 			goto destroy_genpool;
375 
376 		gen_pool_set_algo(atomic_pool,
377 				gen_pool_first_fit_order_align,
378 				(void *)PAGE_SHIFT);
379 		pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
380 		       atomic_pool_size / 1024);
381 		return 0;
382 	}
383 
384 destroy_genpool:
385 	gen_pool_destroy(atomic_pool);
386 	atomic_pool = NULL;
387 out:
388 	pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
389 	       atomic_pool_size / 1024);
390 	return -ENOMEM;
391 }
392 /*
393  * CMA is activated by core_initcall, so we must be called after it.
394  */
395 postcore_initcall(atomic_pool_init);
396 
397 struct dma_contig_early_reserve {
398 	phys_addr_t base;
399 	unsigned long size;
400 };
401 
402 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
403 
404 static int dma_mmu_remap_num __initdata;
405 
406 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
407 {
408 	dma_mmu_remap[dma_mmu_remap_num].base = base;
409 	dma_mmu_remap[dma_mmu_remap_num].size = size;
410 	dma_mmu_remap_num++;
411 }
412 
413 void __init dma_contiguous_remap(void)
414 {
415 	int i;
416 	for (i = 0; i < dma_mmu_remap_num; i++) {
417 		phys_addr_t start = dma_mmu_remap[i].base;
418 		phys_addr_t end = start + dma_mmu_remap[i].size;
419 		struct map_desc map;
420 		unsigned long addr;
421 
422 		if (end > arm_lowmem_limit)
423 			end = arm_lowmem_limit;
424 		if (start >= end)
425 			continue;
426 
427 		map.pfn = __phys_to_pfn(start);
428 		map.virtual = __phys_to_virt(start);
429 		map.length = end - start;
430 		map.type = MT_MEMORY_DMA_READY;
431 
432 		/*
433 		 * Clear previous low-memory mapping to ensure that the
434 		 * TLB does not see any conflicting entries, then flush
435 		 * the TLB of the old entries before creating new mappings.
436 		 *
437 		 * This ensures that any speculatively loaded TLB entries
438 		 * (even though they may be rare) can not cause any problems,
439 		 * and ensures that this code is architecturally compliant.
440 		 */
441 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
442 		     addr += PMD_SIZE)
443 			pmd_clear(pmd_off_k(addr));
444 
445 		flush_tlb_kernel_range(__phys_to_virt(start),
446 				       __phys_to_virt(end));
447 
448 		iotable_init(&map, 1);
449 	}
450 }
451 
452 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
453 			    void *data)
454 {
455 	struct page *page = virt_to_page(addr);
456 	pgprot_t prot = *(pgprot_t *)data;
457 
458 	set_pte_ext(pte, mk_pte(page, prot), 0);
459 	return 0;
460 }
461 
462 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
463 {
464 	unsigned long start = (unsigned long) page_address(page);
465 	unsigned end = start + size;
466 
467 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
468 	flush_tlb_kernel_range(start, end);
469 }
470 
471 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
472 				 pgprot_t prot, struct page **ret_page,
473 				 const void *caller, bool want_vaddr)
474 {
475 	struct page *page;
476 	void *ptr = NULL;
477 	page = __dma_alloc_buffer(dev, size, gfp);
478 	if (!page)
479 		return NULL;
480 	if (!want_vaddr)
481 		goto out;
482 
483 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
484 	if (!ptr) {
485 		__dma_free_buffer(page, size);
486 		return NULL;
487 	}
488 
489  out:
490 	*ret_page = page;
491 	return ptr;
492 }
493 
494 static void *__alloc_from_pool(size_t size, struct page **ret_page)
495 {
496 	unsigned long val;
497 	void *ptr = NULL;
498 
499 	if (!atomic_pool) {
500 		WARN(1, "coherent pool not initialised!\n");
501 		return NULL;
502 	}
503 
504 	val = gen_pool_alloc(atomic_pool, size);
505 	if (val) {
506 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
507 
508 		*ret_page = phys_to_page(phys);
509 		ptr = (void *)val;
510 	}
511 
512 	return ptr;
513 }
514 
515 static bool __in_atomic_pool(void *start, size_t size)
516 {
517 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
518 }
519 
520 static int __free_from_pool(void *start, size_t size)
521 {
522 	if (!__in_atomic_pool(start, size))
523 		return 0;
524 
525 	gen_pool_free(atomic_pool, (unsigned long)start, size);
526 
527 	return 1;
528 }
529 
530 static void *__alloc_from_contiguous(struct device *dev, size_t size,
531 				     pgprot_t prot, struct page **ret_page,
532 				     const void *caller, bool want_vaddr)
533 {
534 	unsigned long order = get_order(size);
535 	size_t count = size >> PAGE_SHIFT;
536 	struct page *page;
537 	void *ptr = NULL;
538 
539 	page = dma_alloc_from_contiguous(dev, count, order);
540 	if (!page)
541 		return NULL;
542 
543 	__dma_clear_buffer(page, size);
544 
545 	if (!want_vaddr)
546 		goto out;
547 
548 	if (PageHighMem(page)) {
549 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
550 		if (!ptr) {
551 			dma_release_from_contiguous(dev, page, count);
552 			return NULL;
553 		}
554 	} else {
555 		__dma_remap(page, size, prot);
556 		ptr = page_address(page);
557 	}
558 
559  out:
560 	*ret_page = page;
561 	return ptr;
562 }
563 
564 static void __free_from_contiguous(struct device *dev, struct page *page,
565 				   void *cpu_addr, size_t size, bool want_vaddr)
566 {
567 	if (want_vaddr) {
568 		if (PageHighMem(page))
569 			__dma_free_remap(cpu_addr, size);
570 		else
571 			__dma_remap(page, size, PAGE_KERNEL);
572 	}
573 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
574 }
575 
576 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
577 {
578 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
579 			    pgprot_writecombine(prot) :
580 			    pgprot_dmacoherent(prot);
581 	return prot;
582 }
583 
584 #define nommu() 0
585 
586 #else	/* !CONFIG_MMU */
587 
588 #define nommu() 1
589 
590 #define __get_dma_pgprot(attrs, prot)				__pgprot(0)
591 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
592 #define __alloc_from_pool(size, ret_page)			NULL
593 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv)	NULL
594 #define __free_from_pool(cpu_addr, size)			0
595 #define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
596 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
597 
598 #endif	/* CONFIG_MMU */
599 
600 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
601 				   struct page **ret_page)
602 {
603 	struct page *page;
604 	page = __dma_alloc_buffer(dev, size, gfp);
605 	if (!page)
606 		return NULL;
607 
608 	*ret_page = page;
609 	return page_address(page);
610 }
611 
612 
613 
614 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
615 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
616 			 struct dma_attrs *attrs, const void *caller)
617 {
618 	u64 mask = get_coherent_dma_mask(dev);
619 	struct page *page = NULL;
620 	void *addr;
621 	bool want_vaddr;
622 
623 #ifdef CONFIG_DMA_API_DEBUG
624 	u64 limit = (mask + 1) & ~mask;
625 	if (limit && size >= limit) {
626 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
627 			size, mask);
628 		return NULL;
629 	}
630 #endif
631 
632 	if (!mask)
633 		return NULL;
634 
635 	if (mask < 0xffffffffULL)
636 		gfp |= GFP_DMA;
637 
638 	/*
639 	 * Following is a work-around (a.k.a. hack) to prevent pages
640 	 * with __GFP_COMP being passed to split_page() which cannot
641 	 * handle them.  The real problem is that this flag probably
642 	 * should be 0 on ARM as it is not supported on this
643 	 * platform; see CONFIG_HUGETLBFS.
644 	 */
645 	gfp &= ~(__GFP_COMP);
646 
647 	*handle = DMA_ERROR_CODE;
648 	size = PAGE_ALIGN(size);
649 	want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
650 
651 	if (is_coherent || nommu())
652 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
653 	else if (!(gfp & __GFP_WAIT))
654 		addr = __alloc_from_pool(size, &page);
655 	else if (!dev_get_cma_area(dev))
656 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller, want_vaddr);
657 	else
658 		addr = __alloc_from_contiguous(dev, size, prot, &page, caller, want_vaddr);
659 
660 	if (page)
661 		*handle = pfn_to_dma(dev, page_to_pfn(page));
662 
663 	return want_vaddr ? addr : page;
664 }
665 
666 /*
667  * Allocate DMA-coherent memory space and return both the kernel remapped
668  * virtual and bus address for that space.
669  */
670 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
671 		    gfp_t gfp, struct dma_attrs *attrs)
672 {
673 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
674 	void *memory;
675 
676 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
677 		return memory;
678 
679 	return __dma_alloc(dev, size, handle, gfp, prot, false,
680 			   attrs, __builtin_return_address(0));
681 }
682 
683 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
684 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
685 {
686 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
687 	void *memory;
688 
689 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
690 		return memory;
691 
692 	return __dma_alloc(dev, size, handle, gfp, prot, true,
693 			   attrs, __builtin_return_address(0));
694 }
695 
696 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
697 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
698 		 struct dma_attrs *attrs)
699 {
700 	int ret = -ENXIO;
701 #ifdef CONFIG_MMU
702 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
703 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
704 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
705 	unsigned long off = vma->vm_pgoff;
706 
707 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
708 		return ret;
709 
710 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
711 		ret = remap_pfn_range(vma, vma->vm_start,
712 				      pfn + off,
713 				      vma->vm_end - vma->vm_start,
714 				      vma->vm_page_prot);
715 	}
716 #endif	/* CONFIG_MMU */
717 
718 	return ret;
719 }
720 
721 /*
722  * Create userspace mapping for the DMA-coherent memory.
723  */
724 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
725 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
726 		 struct dma_attrs *attrs)
727 {
728 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
729 }
730 
731 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
732 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
733 		 struct dma_attrs *attrs)
734 {
735 #ifdef CONFIG_MMU
736 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
737 #endif	/* CONFIG_MMU */
738 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
739 }
740 
741 /*
742  * Free a buffer as defined by the above mapping.
743  */
744 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
745 			   dma_addr_t handle, struct dma_attrs *attrs,
746 			   bool is_coherent)
747 {
748 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
749 	bool want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
750 
751 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
752 		return;
753 
754 	size = PAGE_ALIGN(size);
755 
756 	if (is_coherent || nommu()) {
757 		__dma_free_buffer(page, size);
758 	} else if (__free_from_pool(cpu_addr, size)) {
759 		return;
760 	} else if (!dev_get_cma_area(dev)) {
761 		if (want_vaddr)
762 			__dma_free_remap(cpu_addr, size);
763 		__dma_free_buffer(page, size);
764 	} else {
765 		/*
766 		 * Non-atomic allocations cannot be freed with IRQs disabled
767 		 */
768 		WARN_ON(irqs_disabled());
769 		__free_from_contiguous(dev, page, cpu_addr, size, want_vaddr);
770 	}
771 }
772 
773 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
774 		  dma_addr_t handle, struct dma_attrs *attrs)
775 {
776 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
777 }
778 
779 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
780 				  dma_addr_t handle, struct dma_attrs *attrs)
781 {
782 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
783 }
784 
785 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
786 		 void *cpu_addr, dma_addr_t handle, size_t size,
787 		 struct dma_attrs *attrs)
788 {
789 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
790 	int ret;
791 
792 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
793 	if (unlikely(ret))
794 		return ret;
795 
796 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
797 	return 0;
798 }
799 
800 static void dma_cache_maint_page(struct page *page, unsigned long offset,
801 	size_t size, enum dma_data_direction dir,
802 	void (*op)(const void *, size_t, int))
803 {
804 	unsigned long pfn;
805 	size_t left = size;
806 
807 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
808 	offset %= PAGE_SIZE;
809 
810 	/*
811 	 * A single sg entry may refer to multiple physically contiguous
812 	 * pages.  But we still need to process highmem pages individually.
813 	 * If highmem is not configured then the bulk of this loop gets
814 	 * optimized out.
815 	 */
816 	do {
817 		size_t len = left;
818 		void *vaddr;
819 
820 		page = pfn_to_page(pfn);
821 
822 		if (PageHighMem(page)) {
823 			if (len + offset > PAGE_SIZE)
824 				len = PAGE_SIZE - offset;
825 
826 			if (cache_is_vipt_nonaliasing()) {
827 				vaddr = kmap_atomic(page);
828 				op(vaddr + offset, len, dir);
829 				kunmap_atomic(vaddr);
830 			} else {
831 				vaddr = kmap_high_get(page);
832 				if (vaddr) {
833 					op(vaddr + offset, len, dir);
834 					kunmap_high(page);
835 				}
836 			}
837 		} else {
838 			vaddr = page_address(page) + offset;
839 			op(vaddr, len, dir);
840 		}
841 		offset = 0;
842 		pfn++;
843 		left -= len;
844 	} while (left);
845 }
846 
847 /*
848  * Make an area consistent for devices.
849  * Note: Drivers should NOT use this function directly, as it will break
850  * platforms with CONFIG_DMABOUNCE.
851  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
852  */
853 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
854 	size_t size, enum dma_data_direction dir)
855 {
856 	phys_addr_t paddr;
857 
858 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
859 
860 	paddr = page_to_phys(page) + off;
861 	if (dir == DMA_FROM_DEVICE) {
862 		outer_inv_range(paddr, paddr + size);
863 	} else {
864 		outer_clean_range(paddr, paddr + size);
865 	}
866 	/* FIXME: non-speculating: flush on bidirectional mappings? */
867 }
868 
869 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
870 	size_t size, enum dma_data_direction dir)
871 {
872 	phys_addr_t paddr = page_to_phys(page) + off;
873 
874 	/* FIXME: non-speculating: not required */
875 	/* in any case, don't bother invalidating if DMA to device */
876 	if (dir != DMA_TO_DEVICE) {
877 		outer_inv_range(paddr, paddr + size);
878 
879 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
880 	}
881 
882 	/*
883 	 * Mark the D-cache clean for these pages to avoid extra flushing.
884 	 */
885 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
886 		unsigned long pfn;
887 		size_t left = size;
888 
889 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
890 		off %= PAGE_SIZE;
891 		if (off) {
892 			pfn++;
893 			left -= PAGE_SIZE - off;
894 		}
895 		while (left >= PAGE_SIZE) {
896 			page = pfn_to_page(pfn++);
897 			set_bit(PG_dcache_clean, &page->flags);
898 			left -= PAGE_SIZE;
899 		}
900 	}
901 }
902 
903 /**
904  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
905  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
906  * @sg: list of buffers
907  * @nents: number of buffers to map
908  * @dir: DMA transfer direction
909  *
910  * Map a set of buffers described by scatterlist in streaming mode for DMA.
911  * This is the scatter-gather version of the dma_map_single interface.
912  * Here the scatter gather list elements are each tagged with the
913  * appropriate dma address and length.  They are obtained via
914  * sg_dma_{address,length}.
915  *
916  * Device ownership issues as mentioned for dma_map_single are the same
917  * here.
918  */
919 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
920 		enum dma_data_direction dir, struct dma_attrs *attrs)
921 {
922 	struct dma_map_ops *ops = get_dma_ops(dev);
923 	struct scatterlist *s;
924 	int i, j;
925 
926 	for_each_sg(sg, s, nents, i) {
927 #ifdef CONFIG_NEED_SG_DMA_LENGTH
928 		s->dma_length = s->length;
929 #endif
930 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
931 						s->length, dir, attrs);
932 		if (dma_mapping_error(dev, s->dma_address))
933 			goto bad_mapping;
934 	}
935 	return nents;
936 
937  bad_mapping:
938 	for_each_sg(sg, s, i, j)
939 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
940 	return 0;
941 }
942 
943 /**
944  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
945  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
946  * @sg: list of buffers
947  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
948  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
949  *
950  * Unmap a set of streaming mode DMA translations.  Again, CPU access
951  * rules concerning calls here are the same as for dma_unmap_single().
952  */
953 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
954 		enum dma_data_direction dir, struct dma_attrs *attrs)
955 {
956 	struct dma_map_ops *ops = get_dma_ops(dev);
957 	struct scatterlist *s;
958 
959 	int i;
960 
961 	for_each_sg(sg, s, nents, i)
962 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
963 }
964 
965 /**
966  * arm_dma_sync_sg_for_cpu
967  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
968  * @sg: list of buffers
969  * @nents: number of buffers to map (returned from dma_map_sg)
970  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
971  */
972 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
973 			int nents, enum dma_data_direction dir)
974 {
975 	struct dma_map_ops *ops = get_dma_ops(dev);
976 	struct scatterlist *s;
977 	int i;
978 
979 	for_each_sg(sg, s, nents, i)
980 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
981 					 dir);
982 }
983 
984 /**
985  * arm_dma_sync_sg_for_device
986  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
987  * @sg: list of buffers
988  * @nents: number of buffers to map (returned from dma_map_sg)
989  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
990  */
991 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
992 			int nents, enum dma_data_direction dir)
993 {
994 	struct dma_map_ops *ops = get_dma_ops(dev);
995 	struct scatterlist *s;
996 	int i;
997 
998 	for_each_sg(sg, s, nents, i)
999 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1000 					    dir);
1001 }
1002 
1003 /*
1004  * Return whether the given device DMA address mask can be supported
1005  * properly.  For example, if your device can only drive the low 24-bits
1006  * during bus mastering, then you would pass 0x00ffffff as the mask
1007  * to this function.
1008  */
1009 int dma_supported(struct device *dev, u64 mask)
1010 {
1011 	return __dma_supported(dev, mask, false);
1012 }
1013 EXPORT_SYMBOL(dma_supported);
1014 
1015 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1016 {
1017 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1018 		return -EIO;
1019 
1020 	*dev->dma_mask = dma_mask;
1021 
1022 	return 0;
1023 }
1024 
1025 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1026 
1027 static int __init dma_debug_do_init(void)
1028 {
1029 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1030 	return 0;
1031 }
1032 fs_initcall(dma_debug_do_init);
1033 
1034 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1035 
1036 /* IOMMU */
1037 
1038 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1039 
1040 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1041 				      size_t size)
1042 {
1043 	unsigned int order = get_order(size);
1044 	unsigned int align = 0;
1045 	unsigned int count, start;
1046 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1047 	unsigned long flags;
1048 	dma_addr_t iova;
1049 	int i;
1050 
1051 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1052 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1053 
1054 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1055 	align = (1 << order) - 1;
1056 
1057 	spin_lock_irqsave(&mapping->lock, flags);
1058 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1059 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1060 				mapping->bits, 0, count, align);
1061 
1062 		if (start > mapping->bits)
1063 			continue;
1064 
1065 		bitmap_set(mapping->bitmaps[i], start, count);
1066 		break;
1067 	}
1068 
1069 	/*
1070 	 * No unused range found. Try to extend the existing mapping
1071 	 * and perform a second attempt to reserve an IO virtual
1072 	 * address range of size bytes.
1073 	 */
1074 	if (i == mapping->nr_bitmaps) {
1075 		if (extend_iommu_mapping(mapping)) {
1076 			spin_unlock_irqrestore(&mapping->lock, flags);
1077 			return DMA_ERROR_CODE;
1078 		}
1079 
1080 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1081 				mapping->bits, 0, count, align);
1082 
1083 		if (start > mapping->bits) {
1084 			spin_unlock_irqrestore(&mapping->lock, flags);
1085 			return DMA_ERROR_CODE;
1086 		}
1087 
1088 		bitmap_set(mapping->bitmaps[i], start, count);
1089 	}
1090 	spin_unlock_irqrestore(&mapping->lock, flags);
1091 
1092 	iova = mapping->base + (mapping_size * i);
1093 	iova += start << PAGE_SHIFT;
1094 
1095 	return iova;
1096 }
1097 
1098 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1099 			       dma_addr_t addr, size_t size)
1100 {
1101 	unsigned int start, count;
1102 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1103 	unsigned long flags;
1104 	dma_addr_t bitmap_base;
1105 	u32 bitmap_index;
1106 
1107 	if (!size)
1108 		return;
1109 
1110 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1111 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1112 
1113 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1114 
1115 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1116 
1117 	if (addr + size > bitmap_base + mapping_size) {
1118 		/*
1119 		 * The address range to be freed reaches into the iova
1120 		 * range of the next bitmap. This should not happen as
1121 		 * we don't allow this in __alloc_iova (at the
1122 		 * moment).
1123 		 */
1124 		BUG();
1125 	} else
1126 		count = size >> PAGE_SHIFT;
1127 
1128 	spin_lock_irqsave(&mapping->lock, flags);
1129 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1130 	spin_unlock_irqrestore(&mapping->lock, flags);
1131 }
1132 
1133 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1134 					  gfp_t gfp, struct dma_attrs *attrs)
1135 {
1136 	struct page **pages;
1137 	int count = size >> PAGE_SHIFT;
1138 	int array_size = count * sizeof(struct page *);
1139 	int i = 0;
1140 
1141 	if (array_size <= PAGE_SIZE)
1142 		pages = kzalloc(array_size, GFP_KERNEL);
1143 	else
1144 		pages = vzalloc(array_size);
1145 	if (!pages)
1146 		return NULL;
1147 
1148 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1149 	{
1150 		unsigned long order = get_order(size);
1151 		struct page *page;
1152 
1153 		page = dma_alloc_from_contiguous(dev, count, order);
1154 		if (!page)
1155 			goto error;
1156 
1157 		__dma_clear_buffer(page, size);
1158 
1159 		for (i = 0; i < count; i++)
1160 			pages[i] = page + i;
1161 
1162 		return pages;
1163 	}
1164 
1165 	/*
1166 	 * IOMMU can map any pages, so himem can also be used here
1167 	 */
1168 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1169 
1170 	while (count) {
1171 		int j, order;
1172 
1173 		for (order = __fls(count); order > 0; --order) {
1174 			/*
1175 			 * We do not want OOM killer to be invoked as long
1176 			 * as we can fall back to single pages, so we force
1177 			 * __GFP_NORETRY for orders higher than zero.
1178 			 */
1179 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1180 			if (pages[i])
1181 				break;
1182 		}
1183 
1184 		if (!pages[i]) {
1185 			/*
1186 			 * Fall back to single page allocation.
1187 			 * Might invoke OOM killer as last resort.
1188 			 */
1189 			pages[i] = alloc_pages(gfp, 0);
1190 			if (!pages[i])
1191 				goto error;
1192 		}
1193 
1194 		if (order) {
1195 			split_page(pages[i], order);
1196 			j = 1 << order;
1197 			while (--j)
1198 				pages[i + j] = pages[i] + j;
1199 		}
1200 
1201 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1202 		i += 1 << order;
1203 		count -= 1 << order;
1204 	}
1205 
1206 	return pages;
1207 error:
1208 	while (i--)
1209 		if (pages[i])
1210 			__free_pages(pages[i], 0);
1211 	if (array_size <= PAGE_SIZE)
1212 		kfree(pages);
1213 	else
1214 		vfree(pages);
1215 	return NULL;
1216 }
1217 
1218 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1219 			       size_t size, struct dma_attrs *attrs)
1220 {
1221 	int count = size >> PAGE_SHIFT;
1222 	int array_size = count * sizeof(struct page *);
1223 	int i;
1224 
1225 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1226 		dma_release_from_contiguous(dev, pages[0], count);
1227 	} else {
1228 		for (i = 0; i < count; i++)
1229 			if (pages[i])
1230 				__free_pages(pages[i], 0);
1231 	}
1232 
1233 	if (array_size <= PAGE_SIZE)
1234 		kfree(pages);
1235 	else
1236 		vfree(pages);
1237 	return 0;
1238 }
1239 
1240 /*
1241  * Create a CPU mapping for a specified pages
1242  */
1243 static void *
1244 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1245 		    const void *caller)
1246 {
1247 	return dma_common_pages_remap(pages, size,
1248 			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1249 }
1250 
1251 /*
1252  * Create a mapping in device IO address space for specified pages
1253  */
1254 static dma_addr_t
1255 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1256 {
1257 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1258 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1259 	dma_addr_t dma_addr, iova;
1260 	int i;
1261 
1262 	dma_addr = __alloc_iova(mapping, size);
1263 	if (dma_addr == DMA_ERROR_CODE)
1264 		return dma_addr;
1265 
1266 	iova = dma_addr;
1267 	for (i = 0; i < count; ) {
1268 		int ret;
1269 
1270 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1271 		phys_addr_t phys = page_to_phys(pages[i]);
1272 		unsigned int len, j;
1273 
1274 		for (j = i + 1; j < count; j++, next_pfn++)
1275 			if (page_to_pfn(pages[j]) != next_pfn)
1276 				break;
1277 
1278 		len = (j - i) << PAGE_SHIFT;
1279 		ret = iommu_map(mapping->domain, iova, phys, len,
1280 				IOMMU_READ|IOMMU_WRITE);
1281 		if (ret < 0)
1282 			goto fail;
1283 		iova += len;
1284 		i = j;
1285 	}
1286 	return dma_addr;
1287 fail:
1288 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1289 	__free_iova(mapping, dma_addr, size);
1290 	return DMA_ERROR_CODE;
1291 }
1292 
1293 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1294 {
1295 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1296 
1297 	/*
1298 	 * add optional in-page offset from iova to size and align
1299 	 * result to page size
1300 	 */
1301 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1302 	iova &= PAGE_MASK;
1303 
1304 	iommu_unmap(mapping->domain, iova, size);
1305 	__free_iova(mapping, iova, size);
1306 	return 0;
1307 }
1308 
1309 static struct page **__atomic_get_pages(void *addr)
1310 {
1311 	struct page *page;
1312 	phys_addr_t phys;
1313 
1314 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1315 	page = phys_to_page(phys);
1316 
1317 	return (struct page **)page;
1318 }
1319 
1320 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1321 {
1322 	struct vm_struct *area;
1323 
1324 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1325 		return __atomic_get_pages(cpu_addr);
1326 
1327 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1328 		return cpu_addr;
1329 
1330 	area = find_vm_area(cpu_addr);
1331 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1332 		return area->pages;
1333 	return NULL;
1334 }
1335 
1336 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1337 				  dma_addr_t *handle)
1338 {
1339 	struct page *page;
1340 	void *addr;
1341 
1342 	addr = __alloc_from_pool(size, &page);
1343 	if (!addr)
1344 		return NULL;
1345 
1346 	*handle = __iommu_create_mapping(dev, &page, size);
1347 	if (*handle == DMA_ERROR_CODE)
1348 		goto err_mapping;
1349 
1350 	return addr;
1351 
1352 err_mapping:
1353 	__free_from_pool(addr, size);
1354 	return NULL;
1355 }
1356 
1357 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1358 				dma_addr_t handle, size_t size)
1359 {
1360 	__iommu_remove_mapping(dev, handle, size);
1361 	__free_from_pool(cpu_addr, size);
1362 }
1363 
1364 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1365 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1366 {
1367 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1368 	struct page **pages;
1369 	void *addr = NULL;
1370 
1371 	*handle = DMA_ERROR_CODE;
1372 	size = PAGE_ALIGN(size);
1373 
1374 	if (!(gfp & __GFP_WAIT))
1375 		return __iommu_alloc_atomic(dev, size, handle);
1376 
1377 	/*
1378 	 * Following is a work-around (a.k.a. hack) to prevent pages
1379 	 * with __GFP_COMP being passed to split_page() which cannot
1380 	 * handle them.  The real problem is that this flag probably
1381 	 * should be 0 on ARM as it is not supported on this
1382 	 * platform; see CONFIG_HUGETLBFS.
1383 	 */
1384 	gfp &= ~(__GFP_COMP);
1385 
1386 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1387 	if (!pages)
1388 		return NULL;
1389 
1390 	*handle = __iommu_create_mapping(dev, pages, size);
1391 	if (*handle == DMA_ERROR_CODE)
1392 		goto err_buffer;
1393 
1394 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1395 		return pages;
1396 
1397 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1398 				   __builtin_return_address(0));
1399 	if (!addr)
1400 		goto err_mapping;
1401 
1402 	return addr;
1403 
1404 err_mapping:
1405 	__iommu_remove_mapping(dev, *handle, size);
1406 err_buffer:
1407 	__iommu_free_buffer(dev, pages, size, attrs);
1408 	return NULL;
1409 }
1410 
1411 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1412 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1413 		    struct dma_attrs *attrs)
1414 {
1415 	unsigned long uaddr = vma->vm_start;
1416 	unsigned long usize = vma->vm_end - vma->vm_start;
1417 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1418 
1419 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1420 
1421 	if (!pages)
1422 		return -ENXIO;
1423 
1424 	do {
1425 		int ret = vm_insert_page(vma, uaddr, *pages++);
1426 		if (ret) {
1427 			pr_err("Remapping memory failed: %d\n", ret);
1428 			return ret;
1429 		}
1430 		uaddr += PAGE_SIZE;
1431 		usize -= PAGE_SIZE;
1432 	} while (usize > 0);
1433 
1434 	return 0;
1435 }
1436 
1437 /*
1438  * free a page as defined by the above mapping.
1439  * Must not be called with IRQs disabled.
1440  */
1441 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1442 			  dma_addr_t handle, struct dma_attrs *attrs)
1443 {
1444 	struct page **pages;
1445 	size = PAGE_ALIGN(size);
1446 
1447 	if (__in_atomic_pool(cpu_addr, size)) {
1448 		__iommu_free_atomic(dev, cpu_addr, handle, size);
1449 		return;
1450 	}
1451 
1452 	pages = __iommu_get_pages(cpu_addr, attrs);
1453 	if (!pages) {
1454 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1455 		return;
1456 	}
1457 
1458 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1459 		dma_common_free_remap(cpu_addr, size,
1460 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1461 	}
1462 
1463 	__iommu_remove_mapping(dev, handle, size);
1464 	__iommu_free_buffer(dev, pages, size, attrs);
1465 }
1466 
1467 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1468 				 void *cpu_addr, dma_addr_t dma_addr,
1469 				 size_t size, struct dma_attrs *attrs)
1470 {
1471 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1472 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1473 
1474 	if (!pages)
1475 		return -ENXIO;
1476 
1477 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1478 					 GFP_KERNEL);
1479 }
1480 
1481 static int __dma_direction_to_prot(enum dma_data_direction dir)
1482 {
1483 	int prot;
1484 
1485 	switch (dir) {
1486 	case DMA_BIDIRECTIONAL:
1487 		prot = IOMMU_READ | IOMMU_WRITE;
1488 		break;
1489 	case DMA_TO_DEVICE:
1490 		prot = IOMMU_READ;
1491 		break;
1492 	case DMA_FROM_DEVICE:
1493 		prot = IOMMU_WRITE;
1494 		break;
1495 	default:
1496 		prot = 0;
1497 	}
1498 
1499 	return prot;
1500 }
1501 
1502 /*
1503  * Map a part of the scatter-gather list into contiguous io address space
1504  */
1505 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1506 			  size_t size, dma_addr_t *handle,
1507 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1508 			  bool is_coherent)
1509 {
1510 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1511 	dma_addr_t iova, iova_base;
1512 	int ret = 0;
1513 	unsigned int count;
1514 	struct scatterlist *s;
1515 	int prot;
1516 
1517 	size = PAGE_ALIGN(size);
1518 	*handle = DMA_ERROR_CODE;
1519 
1520 	iova_base = iova = __alloc_iova(mapping, size);
1521 	if (iova == DMA_ERROR_CODE)
1522 		return -ENOMEM;
1523 
1524 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1525 		phys_addr_t phys = page_to_phys(sg_page(s));
1526 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1527 
1528 		if (!is_coherent &&
1529 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1530 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1531 
1532 		prot = __dma_direction_to_prot(dir);
1533 
1534 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1535 		if (ret < 0)
1536 			goto fail;
1537 		count += len >> PAGE_SHIFT;
1538 		iova += len;
1539 	}
1540 	*handle = iova_base;
1541 
1542 	return 0;
1543 fail:
1544 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1545 	__free_iova(mapping, iova_base, size);
1546 	return ret;
1547 }
1548 
1549 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1550 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1551 		     bool is_coherent)
1552 {
1553 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1554 	int i, count = 0;
1555 	unsigned int offset = s->offset;
1556 	unsigned int size = s->offset + s->length;
1557 	unsigned int max = dma_get_max_seg_size(dev);
1558 
1559 	for (i = 1; i < nents; i++) {
1560 		s = sg_next(s);
1561 
1562 		s->dma_address = DMA_ERROR_CODE;
1563 		s->dma_length = 0;
1564 
1565 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1566 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1567 			    dir, attrs, is_coherent) < 0)
1568 				goto bad_mapping;
1569 
1570 			dma->dma_address += offset;
1571 			dma->dma_length = size - offset;
1572 
1573 			size = offset = s->offset;
1574 			start = s;
1575 			dma = sg_next(dma);
1576 			count += 1;
1577 		}
1578 		size += s->length;
1579 	}
1580 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1581 		is_coherent) < 0)
1582 		goto bad_mapping;
1583 
1584 	dma->dma_address += offset;
1585 	dma->dma_length = size - offset;
1586 
1587 	return count+1;
1588 
1589 bad_mapping:
1590 	for_each_sg(sg, s, count, i)
1591 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1592 	return 0;
1593 }
1594 
1595 /**
1596  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1597  * @dev: valid struct device pointer
1598  * @sg: list of buffers
1599  * @nents: number of buffers to map
1600  * @dir: DMA transfer direction
1601  *
1602  * Map a set of i/o coherent buffers described by scatterlist in streaming
1603  * mode for DMA. The scatter gather list elements are merged together (if
1604  * possible) and tagged with the appropriate dma address and length. They are
1605  * obtained via sg_dma_{address,length}.
1606  */
1607 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1608 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1609 {
1610 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1611 }
1612 
1613 /**
1614  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1615  * @dev: valid struct device pointer
1616  * @sg: list of buffers
1617  * @nents: number of buffers to map
1618  * @dir: DMA transfer direction
1619  *
1620  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1621  * The scatter gather list elements are merged together (if possible) and
1622  * tagged with the appropriate dma address and length. They are obtained via
1623  * sg_dma_{address,length}.
1624  */
1625 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1626 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1627 {
1628 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1629 }
1630 
1631 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1632 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1633 		bool is_coherent)
1634 {
1635 	struct scatterlist *s;
1636 	int i;
1637 
1638 	for_each_sg(sg, s, nents, i) {
1639 		if (sg_dma_len(s))
1640 			__iommu_remove_mapping(dev, sg_dma_address(s),
1641 					       sg_dma_len(s));
1642 		if (!is_coherent &&
1643 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1644 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1645 					      s->length, dir);
1646 	}
1647 }
1648 
1649 /**
1650  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1651  * @dev: valid struct device pointer
1652  * @sg: list of buffers
1653  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1654  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1655  *
1656  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1657  * rules concerning calls here are the same as for dma_unmap_single().
1658  */
1659 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1660 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1661 {
1662 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1663 }
1664 
1665 /**
1666  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1667  * @dev: valid struct device pointer
1668  * @sg: list of buffers
1669  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1670  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1671  *
1672  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1673  * rules concerning calls here are the same as for dma_unmap_single().
1674  */
1675 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1676 			enum dma_data_direction dir, struct dma_attrs *attrs)
1677 {
1678 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1679 }
1680 
1681 /**
1682  * arm_iommu_sync_sg_for_cpu
1683  * @dev: valid struct device pointer
1684  * @sg: list of buffers
1685  * @nents: number of buffers to map (returned from dma_map_sg)
1686  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1687  */
1688 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1689 			int nents, enum dma_data_direction dir)
1690 {
1691 	struct scatterlist *s;
1692 	int i;
1693 
1694 	for_each_sg(sg, s, nents, i)
1695 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1696 
1697 }
1698 
1699 /**
1700  * arm_iommu_sync_sg_for_device
1701  * @dev: valid struct device pointer
1702  * @sg: list of buffers
1703  * @nents: number of buffers to map (returned from dma_map_sg)
1704  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1705  */
1706 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1707 			int nents, enum dma_data_direction dir)
1708 {
1709 	struct scatterlist *s;
1710 	int i;
1711 
1712 	for_each_sg(sg, s, nents, i)
1713 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1714 }
1715 
1716 
1717 /**
1718  * arm_coherent_iommu_map_page
1719  * @dev: valid struct device pointer
1720  * @page: page that buffer resides in
1721  * @offset: offset into page for start of buffer
1722  * @size: size of buffer to map
1723  * @dir: DMA transfer direction
1724  *
1725  * Coherent IOMMU aware version of arm_dma_map_page()
1726  */
1727 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1728 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1729 	     struct dma_attrs *attrs)
1730 {
1731 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1732 	dma_addr_t dma_addr;
1733 	int ret, prot, len = PAGE_ALIGN(size + offset);
1734 
1735 	dma_addr = __alloc_iova(mapping, len);
1736 	if (dma_addr == DMA_ERROR_CODE)
1737 		return dma_addr;
1738 
1739 	prot = __dma_direction_to_prot(dir);
1740 
1741 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1742 	if (ret < 0)
1743 		goto fail;
1744 
1745 	return dma_addr + offset;
1746 fail:
1747 	__free_iova(mapping, dma_addr, len);
1748 	return DMA_ERROR_CODE;
1749 }
1750 
1751 /**
1752  * arm_iommu_map_page
1753  * @dev: valid struct device pointer
1754  * @page: page that buffer resides in
1755  * @offset: offset into page for start of buffer
1756  * @size: size of buffer to map
1757  * @dir: DMA transfer direction
1758  *
1759  * IOMMU aware version of arm_dma_map_page()
1760  */
1761 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1762 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1763 	     struct dma_attrs *attrs)
1764 {
1765 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1766 		__dma_page_cpu_to_dev(page, offset, size, dir);
1767 
1768 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1769 }
1770 
1771 /**
1772  * arm_coherent_iommu_unmap_page
1773  * @dev: valid struct device pointer
1774  * @handle: DMA address of buffer
1775  * @size: size of buffer (same as passed to dma_map_page)
1776  * @dir: DMA transfer direction (same as passed to dma_map_page)
1777  *
1778  * Coherent IOMMU aware version of arm_dma_unmap_page()
1779  */
1780 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1781 		size_t size, enum dma_data_direction dir,
1782 		struct dma_attrs *attrs)
1783 {
1784 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1785 	dma_addr_t iova = handle & PAGE_MASK;
1786 	int offset = handle & ~PAGE_MASK;
1787 	int len = PAGE_ALIGN(size + offset);
1788 
1789 	if (!iova)
1790 		return;
1791 
1792 	iommu_unmap(mapping->domain, iova, len);
1793 	__free_iova(mapping, iova, len);
1794 }
1795 
1796 /**
1797  * arm_iommu_unmap_page
1798  * @dev: valid struct device pointer
1799  * @handle: DMA address of buffer
1800  * @size: size of buffer (same as passed to dma_map_page)
1801  * @dir: DMA transfer direction (same as passed to dma_map_page)
1802  *
1803  * IOMMU aware version of arm_dma_unmap_page()
1804  */
1805 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1806 		size_t size, enum dma_data_direction dir,
1807 		struct dma_attrs *attrs)
1808 {
1809 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1810 	dma_addr_t iova = handle & PAGE_MASK;
1811 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1812 	int offset = handle & ~PAGE_MASK;
1813 	int len = PAGE_ALIGN(size + offset);
1814 
1815 	if (!iova)
1816 		return;
1817 
1818 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1819 		__dma_page_dev_to_cpu(page, offset, size, dir);
1820 
1821 	iommu_unmap(mapping->domain, iova, len);
1822 	__free_iova(mapping, iova, len);
1823 }
1824 
1825 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1826 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1827 {
1828 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1829 	dma_addr_t iova = handle & PAGE_MASK;
1830 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1831 	unsigned int offset = handle & ~PAGE_MASK;
1832 
1833 	if (!iova)
1834 		return;
1835 
1836 	__dma_page_dev_to_cpu(page, offset, size, dir);
1837 }
1838 
1839 static void arm_iommu_sync_single_for_device(struct device *dev,
1840 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1841 {
1842 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1843 	dma_addr_t iova = handle & PAGE_MASK;
1844 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1845 	unsigned int offset = handle & ~PAGE_MASK;
1846 
1847 	if (!iova)
1848 		return;
1849 
1850 	__dma_page_cpu_to_dev(page, offset, size, dir);
1851 }
1852 
1853 struct dma_map_ops iommu_ops = {
1854 	.alloc		= arm_iommu_alloc_attrs,
1855 	.free		= arm_iommu_free_attrs,
1856 	.mmap		= arm_iommu_mmap_attrs,
1857 	.get_sgtable	= arm_iommu_get_sgtable,
1858 
1859 	.map_page		= arm_iommu_map_page,
1860 	.unmap_page		= arm_iommu_unmap_page,
1861 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1862 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1863 
1864 	.map_sg			= arm_iommu_map_sg,
1865 	.unmap_sg		= arm_iommu_unmap_sg,
1866 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1867 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1868 
1869 	.set_dma_mask		= arm_dma_set_mask,
1870 };
1871 
1872 struct dma_map_ops iommu_coherent_ops = {
1873 	.alloc		= arm_iommu_alloc_attrs,
1874 	.free		= arm_iommu_free_attrs,
1875 	.mmap		= arm_iommu_mmap_attrs,
1876 	.get_sgtable	= arm_iommu_get_sgtable,
1877 
1878 	.map_page	= arm_coherent_iommu_map_page,
1879 	.unmap_page	= arm_coherent_iommu_unmap_page,
1880 
1881 	.map_sg		= arm_coherent_iommu_map_sg,
1882 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1883 
1884 	.set_dma_mask	= arm_dma_set_mask,
1885 };
1886 
1887 /**
1888  * arm_iommu_create_mapping
1889  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1890  * @base: start address of the valid IO address space
1891  * @size: maximum size of the valid IO address space
1892  *
1893  * Creates a mapping structure which holds information about used/unused
1894  * IO address ranges, which is required to perform memory allocation and
1895  * mapping with IOMMU aware functions.
1896  *
1897  * The client device need to be attached to the mapping with
1898  * arm_iommu_attach_device function.
1899  */
1900 struct dma_iommu_mapping *
1901 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
1902 {
1903 	unsigned int bits = size >> PAGE_SHIFT;
1904 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1905 	struct dma_iommu_mapping *mapping;
1906 	int extensions = 1;
1907 	int err = -ENOMEM;
1908 
1909 	/* currently only 32-bit DMA address space is supported */
1910 	if (size > DMA_BIT_MASK(32) + 1)
1911 		return ERR_PTR(-ERANGE);
1912 
1913 	if (!bitmap_size)
1914 		return ERR_PTR(-EINVAL);
1915 
1916 	if (bitmap_size > PAGE_SIZE) {
1917 		extensions = bitmap_size / PAGE_SIZE;
1918 		bitmap_size = PAGE_SIZE;
1919 	}
1920 
1921 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1922 	if (!mapping)
1923 		goto err;
1924 
1925 	mapping->bitmap_size = bitmap_size;
1926 	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1927 				GFP_KERNEL);
1928 	if (!mapping->bitmaps)
1929 		goto err2;
1930 
1931 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1932 	if (!mapping->bitmaps[0])
1933 		goto err3;
1934 
1935 	mapping->nr_bitmaps = 1;
1936 	mapping->extensions = extensions;
1937 	mapping->base = base;
1938 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1939 
1940 	spin_lock_init(&mapping->lock);
1941 
1942 	mapping->domain = iommu_domain_alloc(bus);
1943 	if (!mapping->domain)
1944 		goto err4;
1945 
1946 	kref_init(&mapping->kref);
1947 	return mapping;
1948 err4:
1949 	kfree(mapping->bitmaps[0]);
1950 err3:
1951 	kfree(mapping->bitmaps);
1952 err2:
1953 	kfree(mapping);
1954 err:
1955 	return ERR_PTR(err);
1956 }
1957 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1958 
1959 static void release_iommu_mapping(struct kref *kref)
1960 {
1961 	int i;
1962 	struct dma_iommu_mapping *mapping =
1963 		container_of(kref, struct dma_iommu_mapping, kref);
1964 
1965 	iommu_domain_free(mapping->domain);
1966 	for (i = 0; i < mapping->nr_bitmaps; i++)
1967 		kfree(mapping->bitmaps[i]);
1968 	kfree(mapping->bitmaps);
1969 	kfree(mapping);
1970 }
1971 
1972 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1973 {
1974 	int next_bitmap;
1975 
1976 	if (mapping->nr_bitmaps >= mapping->extensions)
1977 		return -EINVAL;
1978 
1979 	next_bitmap = mapping->nr_bitmaps;
1980 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1981 						GFP_ATOMIC);
1982 	if (!mapping->bitmaps[next_bitmap])
1983 		return -ENOMEM;
1984 
1985 	mapping->nr_bitmaps++;
1986 
1987 	return 0;
1988 }
1989 
1990 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1991 {
1992 	if (mapping)
1993 		kref_put(&mapping->kref, release_iommu_mapping);
1994 }
1995 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1996 
1997 static int __arm_iommu_attach_device(struct device *dev,
1998 				     struct dma_iommu_mapping *mapping)
1999 {
2000 	int err;
2001 
2002 	err = iommu_attach_device(mapping->domain, dev);
2003 	if (err)
2004 		return err;
2005 
2006 	kref_get(&mapping->kref);
2007 	to_dma_iommu_mapping(dev) = mapping;
2008 
2009 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2010 	return 0;
2011 }
2012 
2013 /**
2014  * arm_iommu_attach_device
2015  * @dev: valid struct device pointer
2016  * @mapping: io address space mapping structure (returned from
2017  *	arm_iommu_create_mapping)
2018  *
2019  * Attaches specified io address space mapping to the provided device.
2020  * This replaces the dma operations (dma_map_ops pointer) with the
2021  * IOMMU aware version.
2022  *
2023  * More than one client might be attached to the same io address space
2024  * mapping.
2025  */
2026 int arm_iommu_attach_device(struct device *dev,
2027 			    struct dma_iommu_mapping *mapping)
2028 {
2029 	int err;
2030 
2031 	err = __arm_iommu_attach_device(dev, mapping);
2032 	if (err)
2033 		return err;
2034 
2035 	set_dma_ops(dev, &iommu_ops);
2036 	return 0;
2037 }
2038 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2039 
2040 static void __arm_iommu_detach_device(struct device *dev)
2041 {
2042 	struct dma_iommu_mapping *mapping;
2043 
2044 	mapping = to_dma_iommu_mapping(dev);
2045 	if (!mapping) {
2046 		dev_warn(dev, "Not attached\n");
2047 		return;
2048 	}
2049 
2050 	iommu_detach_device(mapping->domain, dev);
2051 	kref_put(&mapping->kref, release_iommu_mapping);
2052 	to_dma_iommu_mapping(dev) = NULL;
2053 
2054 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2055 }
2056 
2057 /**
2058  * arm_iommu_detach_device
2059  * @dev: valid struct device pointer
2060  *
2061  * Detaches the provided device from a previously attached map.
2062  * This voids the dma operations (dma_map_ops pointer)
2063  */
2064 void arm_iommu_detach_device(struct device *dev)
2065 {
2066 	__arm_iommu_detach_device(dev);
2067 	set_dma_ops(dev, NULL);
2068 }
2069 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2070 
2071 static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2072 {
2073 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2074 }
2075 
2076 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2077 				    struct iommu_ops *iommu)
2078 {
2079 	struct dma_iommu_mapping *mapping;
2080 
2081 	if (!iommu)
2082 		return false;
2083 
2084 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2085 	if (IS_ERR(mapping)) {
2086 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2087 				size, dev_name(dev));
2088 		return false;
2089 	}
2090 
2091 	if (__arm_iommu_attach_device(dev, mapping)) {
2092 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2093 				dev_name(dev));
2094 		arm_iommu_release_mapping(mapping);
2095 		return false;
2096 	}
2097 
2098 	return true;
2099 }
2100 
2101 static void arm_teardown_iommu_dma_ops(struct device *dev)
2102 {
2103 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2104 
2105 	if (!mapping)
2106 		return;
2107 
2108 	__arm_iommu_detach_device(dev);
2109 	arm_iommu_release_mapping(mapping);
2110 }
2111 
2112 #else
2113 
2114 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2115 				    struct iommu_ops *iommu)
2116 {
2117 	return false;
2118 }
2119 
2120 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2121 
2122 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2123 
2124 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2125 
2126 static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2127 {
2128 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2129 }
2130 
2131 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2132 			struct iommu_ops *iommu, bool coherent)
2133 {
2134 	struct dma_map_ops *dma_ops;
2135 
2136 	dev->archdata.dma_coherent = coherent;
2137 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2138 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2139 	else
2140 		dma_ops = arm_get_dma_map_ops(coherent);
2141 
2142 	set_dma_ops(dev, dma_ops);
2143 }
2144 
2145 void arch_teardown_dma_ops(struct device *dev)
2146 {
2147 	arm_teardown_iommu_dma_ops(dev);
2148 }
2149