1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/module.h> 13 #include <linux/mm.h> 14 #include <linux/slab.h> 15 #include <linux/errno.h> 16 #include <linux/list.h> 17 #include <linux/init.h> 18 #include <linux/device.h> 19 #include <linux/dma-mapping.h> 20 21 #include <asm/memory.h> 22 #include <asm/cacheflush.h> 23 #include <asm/tlbflush.h> 24 #include <asm/sizes.h> 25 26 /* Sanity check size */ 27 #if (CONSISTENT_DMA_SIZE % SZ_2M) 28 #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB" 29 #endif 30 31 #define CONSISTENT_END (0xffe00000) 32 #define CONSISTENT_BASE (CONSISTENT_END - CONSISTENT_DMA_SIZE) 33 34 #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT) 35 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT) 36 #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT) 37 38 39 /* 40 * These are the page tables (2MB each) covering uncached, DMA consistent allocations 41 */ 42 static pte_t *consistent_pte[NUM_CONSISTENT_PTES]; 43 static DEFINE_SPINLOCK(consistent_lock); 44 45 /* 46 * VM region handling support. 47 * 48 * This should become something generic, handling VM region allocations for 49 * vmalloc and similar (ioremap, module space, etc). 50 * 51 * I envisage vmalloc()'s supporting vm_struct becoming: 52 * 53 * struct vm_struct { 54 * struct vm_region region; 55 * unsigned long flags; 56 * struct page **pages; 57 * unsigned int nr_pages; 58 * unsigned long phys_addr; 59 * }; 60 * 61 * get_vm_area() would then call vm_region_alloc with an appropriate 62 * struct vm_region head (eg): 63 * 64 * struct vm_region vmalloc_head = { 65 * .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list), 66 * .vm_start = VMALLOC_START, 67 * .vm_end = VMALLOC_END, 68 * }; 69 * 70 * However, vmalloc_head.vm_start is variable (typically, it is dependent on 71 * the amount of RAM found at boot time.) I would imagine that get_vm_area() 72 * would have to initialise this each time prior to calling vm_region_alloc(). 73 */ 74 struct vm_region { 75 struct list_head vm_list; 76 unsigned long vm_start; 77 unsigned long vm_end; 78 struct page *vm_pages; 79 int vm_active; 80 }; 81 82 static struct vm_region consistent_head = { 83 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list), 84 .vm_start = CONSISTENT_BASE, 85 .vm_end = CONSISTENT_END, 86 }; 87 88 static struct vm_region * 89 vm_region_alloc(struct vm_region *head, size_t size, gfp_t gfp) 90 { 91 unsigned long addr = head->vm_start, end = head->vm_end - size; 92 unsigned long flags; 93 struct vm_region *c, *new; 94 95 new = kmalloc(sizeof(struct vm_region), gfp); 96 if (!new) 97 goto out; 98 99 spin_lock_irqsave(&consistent_lock, flags); 100 101 list_for_each_entry(c, &head->vm_list, vm_list) { 102 if ((addr + size) < addr) 103 goto nospc; 104 if ((addr + size) <= c->vm_start) 105 goto found; 106 addr = c->vm_end; 107 if (addr > end) 108 goto nospc; 109 } 110 111 found: 112 /* 113 * Insert this entry _before_ the one we found. 114 */ 115 list_add_tail(&new->vm_list, &c->vm_list); 116 new->vm_start = addr; 117 new->vm_end = addr + size; 118 new->vm_active = 1; 119 120 spin_unlock_irqrestore(&consistent_lock, flags); 121 return new; 122 123 nospc: 124 spin_unlock_irqrestore(&consistent_lock, flags); 125 kfree(new); 126 out: 127 return NULL; 128 } 129 130 static struct vm_region *vm_region_find(struct vm_region *head, unsigned long addr) 131 { 132 struct vm_region *c; 133 134 list_for_each_entry(c, &head->vm_list, vm_list) { 135 if (c->vm_active && c->vm_start == addr) 136 goto out; 137 } 138 c = NULL; 139 out: 140 return c; 141 } 142 143 #ifdef CONFIG_HUGETLB_PAGE 144 #error ARM Coherent DMA allocator does not (yet) support huge TLB 145 #endif 146 147 static void * 148 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, 149 pgprot_t prot) 150 { 151 struct page *page; 152 struct vm_region *c; 153 unsigned long order; 154 u64 mask = ISA_DMA_THRESHOLD, limit; 155 156 if (!consistent_pte[0]) { 157 printk(KERN_ERR "%s: not initialised\n", __func__); 158 dump_stack(); 159 return NULL; 160 } 161 162 if (dev) { 163 mask = dev->coherent_dma_mask; 164 165 /* 166 * Sanity check the DMA mask - it must be non-zero, and 167 * must be able to be satisfied by a DMA allocation. 168 */ 169 if (mask == 0) { 170 dev_warn(dev, "coherent DMA mask is unset\n"); 171 goto no_page; 172 } 173 174 if ((~mask) & ISA_DMA_THRESHOLD) { 175 dev_warn(dev, "coherent DMA mask %#llx is smaller " 176 "than system GFP_DMA mask %#llx\n", 177 mask, (unsigned long long)ISA_DMA_THRESHOLD); 178 goto no_page; 179 } 180 } 181 182 /* 183 * Sanity check the allocation size. 184 */ 185 size = PAGE_ALIGN(size); 186 limit = (mask + 1) & ~mask; 187 if ((limit && size >= limit) || 188 size >= (CONSISTENT_END - CONSISTENT_BASE)) { 189 printk(KERN_WARNING "coherent allocation too big " 190 "(requested %#x mask %#llx)\n", size, mask); 191 goto no_page; 192 } 193 194 order = get_order(size); 195 196 if (mask != 0xffffffff) 197 gfp |= GFP_DMA; 198 199 page = alloc_pages(gfp, order); 200 if (!page) 201 goto no_page; 202 203 /* 204 * Invalidate any data that might be lurking in the 205 * kernel direct-mapped region for device DMA. 206 */ 207 { 208 void *ptr = page_address(page); 209 memset(ptr, 0, size); 210 dmac_flush_range(ptr, ptr + size); 211 outer_flush_range(__pa(ptr), __pa(ptr) + size); 212 } 213 214 /* 215 * Allocate a virtual address in the consistent mapping region. 216 */ 217 c = vm_region_alloc(&consistent_head, size, 218 gfp & ~(__GFP_DMA | __GFP_HIGHMEM)); 219 if (c) { 220 pte_t *pte; 221 struct page *end = page + (1 << order); 222 int idx = CONSISTENT_PTE_INDEX(c->vm_start); 223 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); 224 225 pte = consistent_pte[idx] + off; 226 c->vm_pages = page; 227 228 split_page(page, order); 229 230 /* 231 * Set the "dma handle" 232 */ 233 *handle = page_to_dma(dev, page); 234 235 do { 236 BUG_ON(!pte_none(*pte)); 237 238 /* 239 * x86 does not mark the pages reserved... 240 */ 241 SetPageReserved(page); 242 set_pte_ext(pte, mk_pte(page, prot), 0); 243 page++; 244 pte++; 245 off++; 246 if (off >= PTRS_PER_PTE) { 247 off = 0; 248 pte = consistent_pte[++idx]; 249 } 250 } while (size -= PAGE_SIZE); 251 252 /* 253 * Free the otherwise unused pages. 254 */ 255 while (page < end) { 256 __free_page(page); 257 page++; 258 } 259 260 return (void *)c->vm_start; 261 } 262 263 if (page) 264 __free_pages(page, order); 265 no_page: 266 *handle = ~0; 267 return NULL; 268 } 269 270 /* 271 * Allocate DMA-coherent memory space and return both the kernel remapped 272 * virtual and bus address for that space. 273 */ 274 void * 275 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) 276 { 277 void *memory; 278 279 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 280 return memory; 281 282 if (arch_is_coherent()) { 283 void *virt; 284 285 virt = kmalloc(size, gfp); 286 if (!virt) 287 return NULL; 288 *handle = virt_to_dma(dev, virt); 289 290 return virt; 291 } 292 293 return __dma_alloc(dev, size, handle, gfp, 294 pgprot_noncached(pgprot_kernel)); 295 } 296 EXPORT_SYMBOL(dma_alloc_coherent); 297 298 /* 299 * Allocate a writecombining region, in much the same way as 300 * dma_alloc_coherent above. 301 */ 302 void * 303 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) 304 { 305 return __dma_alloc(dev, size, handle, gfp, 306 pgprot_writecombine(pgprot_kernel)); 307 } 308 EXPORT_SYMBOL(dma_alloc_writecombine); 309 310 static int dma_mmap(struct device *dev, struct vm_area_struct *vma, 311 void *cpu_addr, dma_addr_t dma_addr, size_t size) 312 { 313 unsigned long flags, user_size, kern_size; 314 struct vm_region *c; 315 int ret = -ENXIO; 316 317 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 318 319 spin_lock_irqsave(&consistent_lock, flags); 320 c = vm_region_find(&consistent_head, (unsigned long)cpu_addr); 321 spin_unlock_irqrestore(&consistent_lock, flags); 322 323 if (c) { 324 unsigned long off = vma->vm_pgoff; 325 326 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT; 327 328 if (off < kern_size && 329 user_size <= (kern_size - off)) { 330 ret = remap_pfn_range(vma, vma->vm_start, 331 page_to_pfn(c->vm_pages) + off, 332 user_size << PAGE_SHIFT, 333 vma->vm_page_prot); 334 } 335 } 336 337 return ret; 338 } 339 340 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma, 341 void *cpu_addr, dma_addr_t dma_addr, size_t size) 342 { 343 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 344 return dma_mmap(dev, vma, cpu_addr, dma_addr, size); 345 } 346 EXPORT_SYMBOL(dma_mmap_coherent); 347 348 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma, 349 void *cpu_addr, dma_addr_t dma_addr, size_t size) 350 { 351 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 352 return dma_mmap(dev, vma, cpu_addr, dma_addr, size); 353 } 354 EXPORT_SYMBOL(dma_mmap_writecombine); 355 356 /* 357 * free a page as defined by the above mapping. 358 * Must not be called with IRQs disabled. 359 */ 360 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle) 361 { 362 struct vm_region *c; 363 unsigned long flags, addr; 364 pte_t *ptep; 365 int idx; 366 u32 off; 367 368 WARN_ON(irqs_disabled()); 369 370 if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) 371 return; 372 373 if (arch_is_coherent()) { 374 kfree(cpu_addr); 375 return; 376 } 377 378 size = PAGE_ALIGN(size); 379 380 spin_lock_irqsave(&consistent_lock, flags); 381 c = vm_region_find(&consistent_head, (unsigned long)cpu_addr); 382 if (!c) 383 goto no_area; 384 385 c->vm_active = 0; 386 spin_unlock_irqrestore(&consistent_lock, flags); 387 388 if ((c->vm_end - c->vm_start) != size) { 389 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n", 390 __func__, c->vm_end - c->vm_start, size); 391 dump_stack(); 392 size = c->vm_end - c->vm_start; 393 } 394 395 idx = CONSISTENT_PTE_INDEX(c->vm_start); 396 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); 397 ptep = consistent_pte[idx] + off; 398 addr = c->vm_start; 399 do { 400 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep); 401 unsigned long pfn; 402 403 ptep++; 404 addr += PAGE_SIZE; 405 off++; 406 if (off >= PTRS_PER_PTE) { 407 off = 0; 408 ptep = consistent_pte[++idx]; 409 } 410 411 if (!pte_none(pte) && pte_present(pte)) { 412 pfn = pte_pfn(pte); 413 414 if (pfn_valid(pfn)) { 415 struct page *page = pfn_to_page(pfn); 416 417 /* 418 * x86 does not mark the pages reserved... 419 */ 420 ClearPageReserved(page); 421 422 __free_page(page); 423 continue; 424 } 425 } 426 427 printk(KERN_CRIT "%s: bad page in kernel page table\n", 428 __func__); 429 } while (size -= PAGE_SIZE); 430 431 flush_tlb_kernel_range(c->vm_start, c->vm_end); 432 433 spin_lock_irqsave(&consistent_lock, flags); 434 list_del(&c->vm_list); 435 spin_unlock_irqrestore(&consistent_lock, flags); 436 437 kfree(c); 438 return; 439 440 no_area: 441 spin_unlock_irqrestore(&consistent_lock, flags); 442 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n", 443 __func__, cpu_addr); 444 dump_stack(); 445 } 446 EXPORT_SYMBOL(dma_free_coherent); 447 448 /* 449 * Initialise the consistent memory allocation. 450 */ 451 static int __init consistent_init(void) 452 { 453 pgd_t *pgd; 454 pmd_t *pmd; 455 pte_t *pte; 456 int ret = 0, i = 0; 457 u32 base = CONSISTENT_BASE; 458 459 do { 460 pgd = pgd_offset(&init_mm, base); 461 pmd = pmd_alloc(&init_mm, pgd, base); 462 if (!pmd) { 463 printk(KERN_ERR "%s: no pmd tables\n", __func__); 464 ret = -ENOMEM; 465 break; 466 } 467 WARN_ON(!pmd_none(*pmd)); 468 469 pte = pte_alloc_kernel(pmd, base); 470 if (!pte) { 471 printk(KERN_ERR "%s: no pte tables\n", __func__); 472 ret = -ENOMEM; 473 break; 474 } 475 476 consistent_pte[i++] = pte; 477 base += (1 << PGDIR_SHIFT); 478 } while (base < CONSISTENT_END); 479 480 return ret; 481 } 482 483 core_initcall(consistent_init); 484 485 /* 486 * Make an area consistent for devices. 487 * Note: Drivers should NOT use this function directly, as it will break 488 * platforms with CONFIG_DMABOUNCE. 489 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 490 */ 491 void dma_cache_maint(const void *start, size_t size, int direction) 492 { 493 const void *end = start + size; 494 495 BUG_ON(!virt_addr_valid(start) || !virt_addr_valid(end - 1)); 496 497 switch (direction) { 498 case DMA_FROM_DEVICE: /* invalidate only */ 499 dmac_inv_range(start, end); 500 outer_inv_range(__pa(start), __pa(end)); 501 break; 502 case DMA_TO_DEVICE: /* writeback only */ 503 dmac_clean_range(start, end); 504 outer_clean_range(__pa(start), __pa(end)); 505 break; 506 case DMA_BIDIRECTIONAL: /* writeback and invalidate */ 507 dmac_flush_range(start, end); 508 outer_flush_range(__pa(start), __pa(end)); 509 break; 510 default: 511 BUG(); 512 } 513 } 514 EXPORT_SYMBOL(dma_cache_maint); 515 516 /** 517 * dma_map_sg - map a set of SG buffers for streaming mode DMA 518 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 519 * @sg: list of buffers 520 * @nents: number of buffers to map 521 * @dir: DMA transfer direction 522 * 523 * Map a set of buffers described by scatterlist in streaming mode for DMA. 524 * This is the scatter-gather version of the dma_map_single interface. 525 * Here the scatter gather list elements are each tagged with the 526 * appropriate dma address and length. They are obtained via 527 * sg_dma_{address,length}. 528 * 529 * Device ownership issues as mentioned for dma_map_single are the same 530 * here. 531 */ 532 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 533 enum dma_data_direction dir) 534 { 535 struct scatterlist *s; 536 int i, j; 537 538 for_each_sg(sg, s, nents, i) { 539 s->dma_address = dma_map_page(dev, sg_page(s), s->offset, 540 s->length, dir); 541 if (dma_mapping_error(dev, s->dma_address)) 542 goto bad_mapping; 543 } 544 return nents; 545 546 bad_mapping: 547 for_each_sg(sg, s, i, j) 548 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); 549 return 0; 550 } 551 EXPORT_SYMBOL(dma_map_sg); 552 553 /** 554 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 555 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 556 * @sg: list of buffers 557 * @nents: number of buffers to unmap (returned from dma_map_sg) 558 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 559 * 560 * Unmap a set of streaming mode DMA translations. Again, CPU access 561 * rules concerning calls here are the same as for dma_unmap_single(). 562 */ 563 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 564 enum dma_data_direction dir) 565 { 566 struct scatterlist *s; 567 int i; 568 569 for_each_sg(sg, s, nents, i) 570 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); 571 } 572 EXPORT_SYMBOL(dma_unmap_sg); 573 574 /** 575 * dma_sync_sg_for_cpu 576 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 577 * @sg: list of buffers 578 * @nents: number of buffers to map (returned from dma_map_sg) 579 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 580 */ 581 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 582 int nents, enum dma_data_direction dir) 583 { 584 struct scatterlist *s; 585 int i; 586 587 for_each_sg(sg, s, nents, i) { 588 dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0, 589 sg_dma_len(s), dir); 590 } 591 } 592 EXPORT_SYMBOL(dma_sync_sg_for_cpu); 593 594 /** 595 * dma_sync_sg_for_device 596 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 597 * @sg: list of buffers 598 * @nents: number of buffers to map (returned from dma_map_sg) 599 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 600 */ 601 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 602 int nents, enum dma_data_direction dir) 603 { 604 struct scatterlist *s; 605 int i; 606 607 for_each_sg(sg, s, nents, i) { 608 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0, 609 sg_dma_len(s), dir)) 610 continue; 611 612 if (!arch_is_coherent()) 613 dma_cache_maint(sg_virt(s), s->length, dir); 614 } 615 } 616 EXPORT_SYMBOL(dma_sync_sg_for_device); 617