1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/bootmem.h> 13 #include <linux/module.h> 14 #include <linux/mm.h> 15 #include <linux/genalloc.h> 16 #include <linux/gfp.h> 17 #include <linux/errno.h> 18 #include <linux/list.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/dma-contiguous.h> 23 #include <linux/highmem.h> 24 #include <linux/memblock.h> 25 #include <linux/slab.h> 26 #include <linux/iommu.h> 27 #include <linux/io.h> 28 #include <linux/vmalloc.h> 29 #include <linux/sizes.h> 30 #include <linux/cma.h> 31 32 #include <asm/memory.h> 33 #include <asm/highmem.h> 34 #include <asm/cacheflush.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mach/arch.h> 37 #include <asm/dma-iommu.h> 38 #include <asm/mach/map.h> 39 #include <asm/system_info.h> 40 #include <asm/dma-contiguous.h> 41 42 #include "dma.h" 43 #include "mm.h" 44 45 struct arm_dma_alloc_args { 46 struct device *dev; 47 size_t size; 48 gfp_t gfp; 49 pgprot_t prot; 50 const void *caller; 51 bool want_vaddr; 52 int coherent_flag; 53 }; 54 55 struct arm_dma_free_args { 56 struct device *dev; 57 size_t size; 58 void *cpu_addr; 59 struct page *page; 60 bool want_vaddr; 61 }; 62 63 #define NORMAL 0 64 #define COHERENT 1 65 66 struct arm_dma_allocator { 67 void *(*alloc)(struct arm_dma_alloc_args *args, 68 struct page **ret_page); 69 void (*free)(struct arm_dma_free_args *args); 70 }; 71 72 struct arm_dma_buffer { 73 struct list_head list; 74 void *virt; 75 struct arm_dma_allocator *allocator; 76 }; 77 78 static LIST_HEAD(arm_dma_bufs); 79 static DEFINE_SPINLOCK(arm_dma_bufs_lock); 80 81 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) 82 { 83 struct arm_dma_buffer *buf, *found = NULL; 84 unsigned long flags; 85 86 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 87 list_for_each_entry(buf, &arm_dma_bufs, list) { 88 if (buf->virt == virt) { 89 list_del(&buf->list); 90 found = buf; 91 break; 92 } 93 } 94 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 95 return found; 96 } 97 98 /* 99 * The DMA API is built upon the notion of "buffer ownership". A buffer 100 * is either exclusively owned by the CPU (and therefore may be accessed 101 * by it) or exclusively owned by the DMA device. These helper functions 102 * represent the transitions between these two ownership states. 103 * 104 * Note, however, that on later ARMs, this notion does not work due to 105 * speculative prefetches. We model our approach on the assumption that 106 * the CPU does do speculative prefetches, which means we clean caches 107 * before transfers and delay cache invalidation until transfer completion. 108 * 109 */ 110 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 111 size_t, enum dma_data_direction); 112 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 113 size_t, enum dma_data_direction); 114 115 /** 116 * arm_dma_map_page - map a portion of a page for streaming DMA 117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 118 * @page: page that buffer resides in 119 * @offset: offset into page for start of buffer 120 * @size: size of buffer to map 121 * @dir: DMA transfer direction 122 * 123 * Ensure that any data held in the cache is appropriately discarded 124 * or written back. 125 * 126 * The device owns this memory once this call has completed. The CPU 127 * can regain ownership by calling dma_unmap_page(). 128 */ 129 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 130 unsigned long offset, size_t size, enum dma_data_direction dir, 131 unsigned long attrs) 132 { 133 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 134 __dma_page_cpu_to_dev(page, offset, size, dir); 135 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 136 } 137 138 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 139 unsigned long offset, size_t size, enum dma_data_direction dir, 140 unsigned long attrs) 141 { 142 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 143 } 144 145 /** 146 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 147 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 148 * @handle: DMA address of buffer 149 * @size: size of buffer (same as passed to dma_map_page) 150 * @dir: DMA transfer direction (same as passed to dma_map_page) 151 * 152 * Unmap a page streaming mode DMA translation. The handle and size 153 * must match what was provided in the previous dma_map_page() call. 154 * All other usages are undefined. 155 * 156 * After this call, reads by the CPU to the buffer are guaranteed to see 157 * whatever the device wrote there. 158 */ 159 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 160 size_t size, enum dma_data_direction dir, unsigned long attrs) 161 { 162 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 163 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 164 handle & ~PAGE_MASK, size, dir); 165 } 166 167 static void arm_dma_sync_single_for_cpu(struct device *dev, 168 dma_addr_t handle, size_t size, enum dma_data_direction dir) 169 { 170 unsigned int offset = handle & (PAGE_SIZE - 1); 171 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 172 __dma_page_dev_to_cpu(page, offset, size, dir); 173 } 174 175 static void arm_dma_sync_single_for_device(struct device *dev, 176 dma_addr_t handle, size_t size, enum dma_data_direction dir) 177 { 178 unsigned int offset = handle & (PAGE_SIZE - 1); 179 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 180 __dma_page_cpu_to_dev(page, offset, size, dir); 181 } 182 183 static int arm_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 184 { 185 return dma_addr == ARM_MAPPING_ERROR; 186 } 187 188 const struct dma_map_ops arm_dma_ops = { 189 .alloc = arm_dma_alloc, 190 .free = arm_dma_free, 191 .mmap = arm_dma_mmap, 192 .get_sgtable = arm_dma_get_sgtable, 193 .map_page = arm_dma_map_page, 194 .unmap_page = arm_dma_unmap_page, 195 .map_sg = arm_dma_map_sg, 196 .unmap_sg = arm_dma_unmap_sg, 197 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 198 .sync_single_for_device = arm_dma_sync_single_for_device, 199 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 200 .sync_sg_for_device = arm_dma_sync_sg_for_device, 201 .mapping_error = arm_dma_mapping_error, 202 .dma_supported = arm_dma_supported, 203 }; 204 EXPORT_SYMBOL(arm_dma_ops); 205 206 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 207 dma_addr_t *handle, gfp_t gfp, unsigned long attrs); 208 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 209 dma_addr_t handle, unsigned long attrs); 210 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 211 void *cpu_addr, dma_addr_t dma_addr, size_t size, 212 unsigned long attrs); 213 214 const struct dma_map_ops arm_coherent_dma_ops = { 215 .alloc = arm_coherent_dma_alloc, 216 .free = arm_coherent_dma_free, 217 .mmap = arm_coherent_dma_mmap, 218 .get_sgtable = arm_dma_get_sgtable, 219 .map_page = arm_coherent_dma_map_page, 220 .map_sg = arm_dma_map_sg, 221 .mapping_error = arm_dma_mapping_error, 222 .dma_supported = arm_dma_supported, 223 }; 224 EXPORT_SYMBOL(arm_coherent_dma_ops); 225 226 static int __dma_supported(struct device *dev, u64 mask, bool warn) 227 { 228 unsigned long max_dma_pfn; 229 230 /* 231 * If the mask allows for more memory than we can address, 232 * and we actually have that much memory, then we must 233 * indicate that DMA to this device is not supported. 234 */ 235 if (sizeof(mask) != sizeof(dma_addr_t) && 236 mask > (dma_addr_t)~0 && 237 dma_to_pfn(dev, ~0) < max_pfn - 1) { 238 if (warn) { 239 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n", 240 mask); 241 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n"); 242 } 243 return 0; 244 } 245 246 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); 247 248 /* 249 * Translate the device's DMA mask to a PFN limit. This 250 * PFN number includes the page which we can DMA to. 251 */ 252 if (dma_to_pfn(dev, mask) < max_dma_pfn) { 253 if (warn) 254 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", 255 mask, 256 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, 257 max_dma_pfn + 1); 258 return 0; 259 } 260 261 return 1; 262 } 263 264 static u64 get_coherent_dma_mask(struct device *dev) 265 { 266 u64 mask = (u64)DMA_BIT_MASK(32); 267 268 if (dev) { 269 mask = dev->coherent_dma_mask; 270 271 /* 272 * Sanity check the DMA mask - it must be non-zero, and 273 * must be able to be satisfied by a DMA allocation. 274 */ 275 if (mask == 0) { 276 dev_warn(dev, "coherent DMA mask is unset\n"); 277 return 0; 278 } 279 280 if (!__dma_supported(dev, mask, true)) 281 return 0; 282 } 283 284 return mask; 285 } 286 287 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) 288 { 289 /* 290 * Ensure that the allocated pages are zeroed, and that any data 291 * lurking in the kernel direct-mapped region is invalidated. 292 */ 293 if (PageHighMem(page)) { 294 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 295 phys_addr_t end = base + size; 296 while (size > 0) { 297 void *ptr = kmap_atomic(page); 298 memset(ptr, 0, PAGE_SIZE); 299 if (coherent_flag != COHERENT) 300 dmac_flush_range(ptr, ptr + PAGE_SIZE); 301 kunmap_atomic(ptr); 302 page++; 303 size -= PAGE_SIZE; 304 } 305 if (coherent_flag != COHERENT) 306 outer_flush_range(base, end); 307 } else { 308 void *ptr = page_address(page); 309 memset(ptr, 0, size); 310 if (coherent_flag != COHERENT) { 311 dmac_flush_range(ptr, ptr + size); 312 outer_flush_range(__pa(ptr), __pa(ptr) + size); 313 } 314 } 315 } 316 317 /* 318 * Allocate a DMA buffer for 'dev' of size 'size' using the 319 * specified gfp mask. Note that 'size' must be page aligned. 320 */ 321 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, 322 gfp_t gfp, int coherent_flag) 323 { 324 unsigned long order = get_order(size); 325 struct page *page, *p, *e; 326 327 page = alloc_pages(gfp, order); 328 if (!page) 329 return NULL; 330 331 /* 332 * Now split the huge page and free the excess pages 333 */ 334 split_page(page, order); 335 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 336 __free_page(p); 337 338 __dma_clear_buffer(page, size, coherent_flag); 339 340 return page; 341 } 342 343 /* 344 * Free a DMA buffer. 'size' must be page aligned. 345 */ 346 static void __dma_free_buffer(struct page *page, size_t size) 347 { 348 struct page *e = page + (size >> PAGE_SHIFT); 349 350 while (page < e) { 351 __free_page(page); 352 page++; 353 } 354 } 355 356 static void *__alloc_from_contiguous(struct device *dev, size_t size, 357 pgprot_t prot, struct page **ret_page, 358 const void *caller, bool want_vaddr, 359 int coherent_flag, gfp_t gfp); 360 361 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 362 pgprot_t prot, struct page **ret_page, 363 const void *caller, bool want_vaddr); 364 365 static void * 366 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 367 const void *caller) 368 { 369 /* 370 * DMA allocation can be mapped to user space, so lets 371 * set VM_USERMAP flags too. 372 */ 373 return dma_common_contiguous_remap(page, size, 374 VM_ARM_DMA_CONSISTENT | VM_USERMAP, 375 prot, caller); 376 } 377 378 static void __dma_free_remap(void *cpu_addr, size_t size) 379 { 380 dma_common_free_remap(cpu_addr, size, 381 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 382 } 383 384 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 385 static struct gen_pool *atomic_pool; 386 387 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE; 388 389 static int __init early_coherent_pool(char *p) 390 { 391 atomic_pool_size = memparse(p, &p); 392 return 0; 393 } 394 early_param("coherent_pool", early_coherent_pool); 395 396 void __init init_dma_coherent_pool_size(unsigned long size) 397 { 398 /* 399 * Catch any attempt to set the pool size too late. 400 */ 401 BUG_ON(atomic_pool); 402 403 /* 404 * Set architecture specific coherent pool size only if 405 * it has not been changed by kernel command line parameter. 406 */ 407 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE) 408 atomic_pool_size = size; 409 } 410 411 /* 412 * Initialise the coherent pool for atomic allocations. 413 */ 414 static int __init atomic_pool_init(void) 415 { 416 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 417 gfp_t gfp = GFP_KERNEL | GFP_DMA; 418 struct page *page; 419 void *ptr; 420 421 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 422 if (!atomic_pool) 423 goto out; 424 /* 425 * The atomic pool is only used for non-coherent allocations 426 * so we must pass NORMAL for coherent_flag. 427 */ 428 if (dev_get_cma_area(NULL)) 429 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, 430 &page, atomic_pool_init, true, NORMAL, 431 GFP_KERNEL); 432 else 433 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, 434 &page, atomic_pool_init, true); 435 if (ptr) { 436 int ret; 437 438 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, 439 page_to_phys(page), 440 atomic_pool_size, -1); 441 if (ret) 442 goto destroy_genpool; 443 444 gen_pool_set_algo(atomic_pool, 445 gen_pool_first_fit_order_align, 446 (void *)PAGE_SHIFT); 447 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", 448 atomic_pool_size / 1024); 449 return 0; 450 } 451 452 destroy_genpool: 453 gen_pool_destroy(atomic_pool); 454 atomic_pool = NULL; 455 out: 456 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 457 atomic_pool_size / 1024); 458 return -ENOMEM; 459 } 460 /* 461 * CMA is activated by core_initcall, so we must be called after it. 462 */ 463 postcore_initcall(atomic_pool_init); 464 465 struct dma_contig_early_reserve { 466 phys_addr_t base; 467 unsigned long size; 468 }; 469 470 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 471 472 static int dma_mmu_remap_num __initdata; 473 474 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 475 { 476 dma_mmu_remap[dma_mmu_remap_num].base = base; 477 dma_mmu_remap[dma_mmu_remap_num].size = size; 478 dma_mmu_remap_num++; 479 } 480 481 void __init dma_contiguous_remap(void) 482 { 483 int i; 484 for (i = 0; i < dma_mmu_remap_num; i++) { 485 phys_addr_t start = dma_mmu_remap[i].base; 486 phys_addr_t end = start + dma_mmu_remap[i].size; 487 struct map_desc map; 488 unsigned long addr; 489 490 if (end > arm_lowmem_limit) 491 end = arm_lowmem_limit; 492 if (start >= end) 493 continue; 494 495 map.pfn = __phys_to_pfn(start); 496 map.virtual = __phys_to_virt(start); 497 map.length = end - start; 498 map.type = MT_MEMORY_DMA_READY; 499 500 /* 501 * Clear previous low-memory mapping to ensure that the 502 * TLB does not see any conflicting entries, then flush 503 * the TLB of the old entries before creating new mappings. 504 * 505 * This ensures that any speculatively loaded TLB entries 506 * (even though they may be rare) can not cause any problems, 507 * and ensures that this code is architecturally compliant. 508 */ 509 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 510 addr += PMD_SIZE) 511 pmd_clear(pmd_off_k(addr)); 512 513 flush_tlb_kernel_range(__phys_to_virt(start), 514 __phys_to_virt(end)); 515 516 iotable_init(&map, 1); 517 } 518 } 519 520 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 521 void *data) 522 { 523 struct page *page = virt_to_page(addr); 524 pgprot_t prot = *(pgprot_t *)data; 525 526 set_pte_ext(pte, mk_pte(page, prot), 0); 527 return 0; 528 } 529 530 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 531 { 532 unsigned long start = (unsigned long) page_address(page); 533 unsigned end = start + size; 534 535 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 536 flush_tlb_kernel_range(start, end); 537 } 538 539 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 540 pgprot_t prot, struct page **ret_page, 541 const void *caller, bool want_vaddr) 542 { 543 struct page *page; 544 void *ptr = NULL; 545 /* 546 * __alloc_remap_buffer is only called when the device is 547 * non-coherent 548 */ 549 page = __dma_alloc_buffer(dev, size, gfp, NORMAL); 550 if (!page) 551 return NULL; 552 if (!want_vaddr) 553 goto out; 554 555 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 556 if (!ptr) { 557 __dma_free_buffer(page, size); 558 return NULL; 559 } 560 561 out: 562 *ret_page = page; 563 return ptr; 564 } 565 566 static void *__alloc_from_pool(size_t size, struct page **ret_page) 567 { 568 unsigned long val; 569 void *ptr = NULL; 570 571 if (!atomic_pool) { 572 WARN(1, "coherent pool not initialised!\n"); 573 return NULL; 574 } 575 576 val = gen_pool_alloc(atomic_pool, size); 577 if (val) { 578 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 579 580 *ret_page = phys_to_page(phys); 581 ptr = (void *)val; 582 } 583 584 return ptr; 585 } 586 587 static bool __in_atomic_pool(void *start, size_t size) 588 { 589 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 590 } 591 592 static int __free_from_pool(void *start, size_t size) 593 { 594 if (!__in_atomic_pool(start, size)) 595 return 0; 596 597 gen_pool_free(atomic_pool, (unsigned long)start, size); 598 599 return 1; 600 } 601 602 static void *__alloc_from_contiguous(struct device *dev, size_t size, 603 pgprot_t prot, struct page **ret_page, 604 const void *caller, bool want_vaddr, 605 int coherent_flag, gfp_t gfp) 606 { 607 unsigned long order = get_order(size); 608 size_t count = size >> PAGE_SHIFT; 609 struct page *page; 610 void *ptr = NULL; 611 612 page = dma_alloc_from_contiguous(dev, count, order, gfp); 613 if (!page) 614 return NULL; 615 616 __dma_clear_buffer(page, size, coherent_flag); 617 618 if (!want_vaddr) 619 goto out; 620 621 if (PageHighMem(page)) { 622 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 623 if (!ptr) { 624 dma_release_from_contiguous(dev, page, count); 625 return NULL; 626 } 627 } else { 628 __dma_remap(page, size, prot); 629 ptr = page_address(page); 630 } 631 632 out: 633 *ret_page = page; 634 return ptr; 635 } 636 637 static void __free_from_contiguous(struct device *dev, struct page *page, 638 void *cpu_addr, size_t size, bool want_vaddr) 639 { 640 if (want_vaddr) { 641 if (PageHighMem(page)) 642 __dma_free_remap(cpu_addr, size); 643 else 644 __dma_remap(page, size, PAGE_KERNEL); 645 } 646 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 647 } 648 649 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) 650 { 651 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? 652 pgprot_writecombine(prot) : 653 pgprot_dmacoherent(prot); 654 return prot; 655 } 656 657 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 658 struct page **ret_page) 659 { 660 struct page *page; 661 /* __alloc_simple_buffer is only called when the device is coherent */ 662 page = __dma_alloc_buffer(dev, size, gfp, COHERENT); 663 if (!page) 664 return NULL; 665 666 *ret_page = page; 667 return page_address(page); 668 } 669 670 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, 671 struct page **ret_page) 672 { 673 return __alloc_simple_buffer(args->dev, args->size, args->gfp, 674 ret_page); 675 } 676 677 static void simple_allocator_free(struct arm_dma_free_args *args) 678 { 679 __dma_free_buffer(args->page, args->size); 680 } 681 682 static struct arm_dma_allocator simple_allocator = { 683 .alloc = simple_allocator_alloc, 684 .free = simple_allocator_free, 685 }; 686 687 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, 688 struct page **ret_page) 689 { 690 return __alloc_from_contiguous(args->dev, args->size, args->prot, 691 ret_page, args->caller, 692 args->want_vaddr, args->coherent_flag, 693 args->gfp); 694 } 695 696 static void cma_allocator_free(struct arm_dma_free_args *args) 697 { 698 __free_from_contiguous(args->dev, args->page, args->cpu_addr, 699 args->size, args->want_vaddr); 700 } 701 702 static struct arm_dma_allocator cma_allocator = { 703 .alloc = cma_allocator_alloc, 704 .free = cma_allocator_free, 705 }; 706 707 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, 708 struct page **ret_page) 709 { 710 return __alloc_from_pool(args->size, ret_page); 711 } 712 713 static void pool_allocator_free(struct arm_dma_free_args *args) 714 { 715 __free_from_pool(args->cpu_addr, args->size); 716 } 717 718 static struct arm_dma_allocator pool_allocator = { 719 .alloc = pool_allocator_alloc, 720 .free = pool_allocator_free, 721 }; 722 723 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, 724 struct page **ret_page) 725 { 726 return __alloc_remap_buffer(args->dev, args->size, args->gfp, 727 args->prot, ret_page, args->caller, 728 args->want_vaddr); 729 } 730 731 static void remap_allocator_free(struct arm_dma_free_args *args) 732 { 733 if (args->want_vaddr) 734 __dma_free_remap(args->cpu_addr, args->size); 735 736 __dma_free_buffer(args->page, args->size); 737 } 738 739 static struct arm_dma_allocator remap_allocator = { 740 .alloc = remap_allocator_alloc, 741 .free = remap_allocator_free, 742 }; 743 744 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 745 gfp_t gfp, pgprot_t prot, bool is_coherent, 746 unsigned long attrs, const void *caller) 747 { 748 u64 mask = get_coherent_dma_mask(dev); 749 struct page *page = NULL; 750 void *addr; 751 bool allowblock, cma; 752 struct arm_dma_buffer *buf; 753 struct arm_dma_alloc_args args = { 754 .dev = dev, 755 .size = PAGE_ALIGN(size), 756 .gfp = gfp, 757 .prot = prot, 758 .caller = caller, 759 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 760 .coherent_flag = is_coherent ? COHERENT : NORMAL, 761 }; 762 763 #ifdef CONFIG_DMA_API_DEBUG 764 u64 limit = (mask + 1) & ~mask; 765 if (limit && size >= limit) { 766 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 767 size, mask); 768 return NULL; 769 } 770 #endif 771 772 if (!mask) 773 return NULL; 774 775 buf = kzalloc(sizeof(*buf), 776 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); 777 if (!buf) 778 return NULL; 779 780 if (mask < 0xffffffffULL) 781 gfp |= GFP_DMA; 782 783 /* 784 * Following is a work-around (a.k.a. hack) to prevent pages 785 * with __GFP_COMP being passed to split_page() which cannot 786 * handle them. The real problem is that this flag probably 787 * should be 0 on ARM as it is not supported on this 788 * platform; see CONFIG_HUGETLBFS. 789 */ 790 gfp &= ~(__GFP_COMP); 791 args.gfp = gfp; 792 793 *handle = ARM_MAPPING_ERROR; 794 allowblock = gfpflags_allow_blocking(gfp); 795 cma = allowblock ? dev_get_cma_area(dev) : false; 796 797 if (cma) 798 buf->allocator = &cma_allocator; 799 else if (is_coherent) 800 buf->allocator = &simple_allocator; 801 else if (allowblock) 802 buf->allocator = &remap_allocator; 803 else 804 buf->allocator = &pool_allocator; 805 806 addr = buf->allocator->alloc(&args, &page); 807 808 if (page) { 809 unsigned long flags; 810 811 *handle = pfn_to_dma(dev, page_to_pfn(page)); 812 buf->virt = args.want_vaddr ? addr : page; 813 814 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 815 list_add(&buf->list, &arm_dma_bufs); 816 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 817 } else { 818 kfree(buf); 819 } 820 821 return args.want_vaddr ? addr : page; 822 } 823 824 /* 825 * Allocate DMA-coherent memory space and return both the kernel remapped 826 * virtual and bus address for that space. 827 */ 828 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 829 gfp_t gfp, unsigned long attrs) 830 { 831 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 832 833 return __dma_alloc(dev, size, handle, gfp, prot, false, 834 attrs, __builtin_return_address(0)); 835 } 836 837 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 838 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 839 { 840 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true, 841 attrs, __builtin_return_address(0)); 842 } 843 844 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 845 void *cpu_addr, dma_addr_t dma_addr, size_t size, 846 unsigned long attrs) 847 { 848 int ret; 849 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 850 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 851 unsigned long pfn = dma_to_pfn(dev, dma_addr); 852 unsigned long off = vma->vm_pgoff; 853 854 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 855 return ret; 856 857 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 858 ret = remap_pfn_range(vma, vma->vm_start, 859 pfn + off, 860 vma->vm_end - vma->vm_start, 861 vma->vm_page_prot); 862 } 863 864 return ret; 865 } 866 867 /* 868 * Create userspace mapping for the DMA-coherent memory. 869 */ 870 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 871 void *cpu_addr, dma_addr_t dma_addr, size_t size, 872 unsigned long attrs) 873 { 874 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 875 } 876 877 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 878 void *cpu_addr, dma_addr_t dma_addr, size_t size, 879 unsigned long attrs) 880 { 881 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 882 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 883 } 884 885 /* 886 * Free a buffer as defined by the above mapping. 887 */ 888 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 889 dma_addr_t handle, unsigned long attrs, 890 bool is_coherent) 891 { 892 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 893 struct arm_dma_buffer *buf; 894 struct arm_dma_free_args args = { 895 .dev = dev, 896 .size = PAGE_ALIGN(size), 897 .cpu_addr = cpu_addr, 898 .page = page, 899 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 900 }; 901 902 buf = arm_dma_buffer_find(cpu_addr); 903 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) 904 return; 905 906 buf->allocator->free(&args); 907 kfree(buf); 908 } 909 910 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 911 dma_addr_t handle, unsigned long attrs) 912 { 913 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 914 } 915 916 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 917 dma_addr_t handle, unsigned long attrs) 918 { 919 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 920 } 921 922 /* 923 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems 924 * that the intention is to allow exporting memory allocated via the 925 * coherent DMA APIs through the dma_buf API, which only accepts a 926 * scattertable. This presents a couple of problems: 927 * 1. Not all memory allocated via the coherent DMA APIs is backed by 928 * a struct page 929 * 2. Passing coherent DMA memory into the streaming APIs is not allowed 930 * as we will try to flush the memory through a different alias to that 931 * actually being used (and the flushes are redundant.) 932 */ 933 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 934 void *cpu_addr, dma_addr_t handle, size_t size, 935 unsigned long attrs) 936 { 937 unsigned long pfn = dma_to_pfn(dev, handle); 938 struct page *page; 939 int ret; 940 941 /* If the PFN is not valid, we do not have a struct page */ 942 if (!pfn_valid(pfn)) 943 return -ENXIO; 944 945 page = pfn_to_page(pfn); 946 947 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 948 if (unlikely(ret)) 949 return ret; 950 951 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 952 return 0; 953 } 954 955 static void dma_cache_maint_page(struct page *page, unsigned long offset, 956 size_t size, enum dma_data_direction dir, 957 void (*op)(const void *, size_t, int)) 958 { 959 unsigned long pfn; 960 size_t left = size; 961 962 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 963 offset %= PAGE_SIZE; 964 965 /* 966 * A single sg entry may refer to multiple physically contiguous 967 * pages. But we still need to process highmem pages individually. 968 * If highmem is not configured then the bulk of this loop gets 969 * optimized out. 970 */ 971 do { 972 size_t len = left; 973 void *vaddr; 974 975 page = pfn_to_page(pfn); 976 977 if (PageHighMem(page)) { 978 if (len + offset > PAGE_SIZE) 979 len = PAGE_SIZE - offset; 980 981 if (cache_is_vipt_nonaliasing()) { 982 vaddr = kmap_atomic(page); 983 op(vaddr + offset, len, dir); 984 kunmap_atomic(vaddr); 985 } else { 986 vaddr = kmap_high_get(page); 987 if (vaddr) { 988 op(vaddr + offset, len, dir); 989 kunmap_high(page); 990 } 991 } 992 } else { 993 vaddr = page_address(page) + offset; 994 op(vaddr, len, dir); 995 } 996 offset = 0; 997 pfn++; 998 left -= len; 999 } while (left); 1000 } 1001 1002 /* 1003 * Make an area consistent for devices. 1004 * Note: Drivers should NOT use this function directly, as it will break 1005 * platforms with CONFIG_DMABOUNCE. 1006 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 1007 */ 1008 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 1009 size_t size, enum dma_data_direction dir) 1010 { 1011 phys_addr_t paddr; 1012 1013 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 1014 1015 paddr = page_to_phys(page) + off; 1016 if (dir == DMA_FROM_DEVICE) { 1017 outer_inv_range(paddr, paddr + size); 1018 } else { 1019 outer_clean_range(paddr, paddr + size); 1020 } 1021 /* FIXME: non-speculating: flush on bidirectional mappings? */ 1022 } 1023 1024 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 1025 size_t size, enum dma_data_direction dir) 1026 { 1027 phys_addr_t paddr = page_to_phys(page) + off; 1028 1029 /* FIXME: non-speculating: not required */ 1030 /* in any case, don't bother invalidating if DMA to device */ 1031 if (dir != DMA_TO_DEVICE) { 1032 outer_inv_range(paddr, paddr + size); 1033 1034 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 1035 } 1036 1037 /* 1038 * Mark the D-cache clean for these pages to avoid extra flushing. 1039 */ 1040 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 1041 unsigned long pfn; 1042 size_t left = size; 1043 1044 pfn = page_to_pfn(page) + off / PAGE_SIZE; 1045 off %= PAGE_SIZE; 1046 if (off) { 1047 pfn++; 1048 left -= PAGE_SIZE - off; 1049 } 1050 while (left >= PAGE_SIZE) { 1051 page = pfn_to_page(pfn++); 1052 set_bit(PG_dcache_clean, &page->flags); 1053 left -= PAGE_SIZE; 1054 } 1055 } 1056 } 1057 1058 /** 1059 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 1060 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1061 * @sg: list of buffers 1062 * @nents: number of buffers to map 1063 * @dir: DMA transfer direction 1064 * 1065 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1066 * This is the scatter-gather version of the dma_map_single interface. 1067 * Here the scatter gather list elements are each tagged with the 1068 * appropriate dma address and length. They are obtained via 1069 * sg_dma_{address,length}. 1070 * 1071 * Device ownership issues as mentioned for dma_map_single are the same 1072 * here. 1073 */ 1074 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1075 enum dma_data_direction dir, unsigned long attrs) 1076 { 1077 const struct dma_map_ops *ops = get_dma_ops(dev); 1078 struct scatterlist *s; 1079 int i, j; 1080 1081 for_each_sg(sg, s, nents, i) { 1082 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1083 s->dma_length = s->length; 1084 #endif 1085 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 1086 s->length, dir, attrs); 1087 if (dma_mapping_error(dev, s->dma_address)) 1088 goto bad_mapping; 1089 } 1090 return nents; 1091 1092 bad_mapping: 1093 for_each_sg(sg, s, i, j) 1094 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1095 return 0; 1096 } 1097 1098 /** 1099 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1100 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1101 * @sg: list of buffers 1102 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1103 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1104 * 1105 * Unmap a set of streaming mode DMA translations. Again, CPU access 1106 * rules concerning calls here are the same as for dma_unmap_single(). 1107 */ 1108 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1109 enum dma_data_direction dir, unsigned long attrs) 1110 { 1111 const struct dma_map_ops *ops = get_dma_ops(dev); 1112 struct scatterlist *s; 1113 1114 int i; 1115 1116 for_each_sg(sg, s, nents, i) 1117 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1118 } 1119 1120 /** 1121 * arm_dma_sync_sg_for_cpu 1122 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1123 * @sg: list of buffers 1124 * @nents: number of buffers to map (returned from dma_map_sg) 1125 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1126 */ 1127 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1128 int nents, enum dma_data_direction dir) 1129 { 1130 const struct dma_map_ops *ops = get_dma_ops(dev); 1131 struct scatterlist *s; 1132 int i; 1133 1134 for_each_sg(sg, s, nents, i) 1135 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 1136 dir); 1137 } 1138 1139 /** 1140 * arm_dma_sync_sg_for_device 1141 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1142 * @sg: list of buffers 1143 * @nents: number of buffers to map (returned from dma_map_sg) 1144 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1145 */ 1146 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1147 int nents, enum dma_data_direction dir) 1148 { 1149 const struct dma_map_ops *ops = get_dma_ops(dev); 1150 struct scatterlist *s; 1151 int i; 1152 1153 for_each_sg(sg, s, nents, i) 1154 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 1155 dir); 1156 } 1157 1158 /* 1159 * Return whether the given device DMA address mask can be supported 1160 * properly. For example, if your device can only drive the low 24-bits 1161 * during bus mastering, then you would pass 0x00ffffff as the mask 1162 * to this function. 1163 */ 1164 int arm_dma_supported(struct device *dev, u64 mask) 1165 { 1166 return __dma_supported(dev, mask, false); 1167 } 1168 1169 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 1170 1171 static int __init dma_debug_do_init(void) 1172 { 1173 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 1174 return 0; 1175 } 1176 core_initcall(dma_debug_do_init); 1177 1178 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1179 1180 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) 1181 { 1182 int prot = 0; 1183 1184 if (attrs & DMA_ATTR_PRIVILEGED) 1185 prot |= IOMMU_PRIV; 1186 1187 switch (dir) { 1188 case DMA_BIDIRECTIONAL: 1189 return prot | IOMMU_READ | IOMMU_WRITE; 1190 case DMA_TO_DEVICE: 1191 return prot | IOMMU_READ; 1192 case DMA_FROM_DEVICE: 1193 return prot | IOMMU_WRITE; 1194 default: 1195 return prot; 1196 } 1197 } 1198 1199 /* IOMMU */ 1200 1201 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 1202 1203 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1204 size_t size) 1205 { 1206 unsigned int order = get_order(size); 1207 unsigned int align = 0; 1208 unsigned int count, start; 1209 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1210 unsigned long flags; 1211 dma_addr_t iova; 1212 int i; 1213 1214 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1215 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1216 1217 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1218 align = (1 << order) - 1; 1219 1220 spin_lock_irqsave(&mapping->lock, flags); 1221 for (i = 0; i < mapping->nr_bitmaps; i++) { 1222 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1223 mapping->bits, 0, count, align); 1224 1225 if (start > mapping->bits) 1226 continue; 1227 1228 bitmap_set(mapping->bitmaps[i], start, count); 1229 break; 1230 } 1231 1232 /* 1233 * No unused range found. Try to extend the existing mapping 1234 * and perform a second attempt to reserve an IO virtual 1235 * address range of size bytes. 1236 */ 1237 if (i == mapping->nr_bitmaps) { 1238 if (extend_iommu_mapping(mapping)) { 1239 spin_unlock_irqrestore(&mapping->lock, flags); 1240 return ARM_MAPPING_ERROR; 1241 } 1242 1243 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1244 mapping->bits, 0, count, align); 1245 1246 if (start > mapping->bits) { 1247 spin_unlock_irqrestore(&mapping->lock, flags); 1248 return ARM_MAPPING_ERROR; 1249 } 1250 1251 bitmap_set(mapping->bitmaps[i], start, count); 1252 } 1253 spin_unlock_irqrestore(&mapping->lock, flags); 1254 1255 iova = mapping->base + (mapping_size * i); 1256 iova += start << PAGE_SHIFT; 1257 1258 return iova; 1259 } 1260 1261 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1262 dma_addr_t addr, size_t size) 1263 { 1264 unsigned int start, count; 1265 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1266 unsigned long flags; 1267 dma_addr_t bitmap_base; 1268 u32 bitmap_index; 1269 1270 if (!size) 1271 return; 1272 1273 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; 1274 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 1275 1276 bitmap_base = mapping->base + mapping_size * bitmap_index; 1277 1278 start = (addr - bitmap_base) >> PAGE_SHIFT; 1279 1280 if (addr + size > bitmap_base + mapping_size) { 1281 /* 1282 * The address range to be freed reaches into the iova 1283 * range of the next bitmap. This should not happen as 1284 * we don't allow this in __alloc_iova (at the 1285 * moment). 1286 */ 1287 BUG(); 1288 } else 1289 count = size >> PAGE_SHIFT; 1290 1291 spin_lock_irqsave(&mapping->lock, flags); 1292 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 1293 spin_unlock_irqrestore(&mapping->lock, flags); 1294 } 1295 1296 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ 1297 static const int iommu_order_array[] = { 9, 8, 4, 0 }; 1298 1299 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1300 gfp_t gfp, unsigned long attrs, 1301 int coherent_flag) 1302 { 1303 struct page **pages; 1304 int count = size >> PAGE_SHIFT; 1305 int array_size = count * sizeof(struct page *); 1306 int i = 0; 1307 int order_idx = 0; 1308 1309 if (array_size <= PAGE_SIZE) 1310 pages = kzalloc(array_size, GFP_KERNEL); 1311 else 1312 pages = vzalloc(array_size); 1313 if (!pages) 1314 return NULL; 1315 1316 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) 1317 { 1318 unsigned long order = get_order(size); 1319 struct page *page; 1320 1321 page = dma_alloc_from_contiguous(dev, count, order, gfp); 1322 if (!page) 1323 goto error; 1324 1325 __dma_clear_buffer(page, size, coherent_flag); 1326 1327 for (i = 0; i < count; i++) 1328 pages[i] = page + i; 1329 1330 return pages; 1331 } 1332 1333 /* Go straight to 4K chunks if caller says it's OK. */ 1334 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 1335 order_idx = ARRAY_SIZE(iommu_order_array) - 1; 1336 1337 /* 1338 * IOMMU can map any pages, so himem can also be used here 1339 */ 1340 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1341 1342 while (count) { 1343 int j, order; 1344 1345 order = iommu_order_array[order_idx]; 1346 1347 /* Drop down when we get small */ 1348 if (__fls(count) < order) { 1349 order_idx++; 1350 continue; 1351 } 1352 1353 if (order) { 1354 /* See if it's easy to allocate a high-order chunk */ 1355 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); 1356 1357 /* Go down a notch at first sign of pressure */ 1358 if (!pages[i]) { 1359 order_idx++; 1360 continue; 1361 } 1362 } else { 1363 pages[i] = alloc_pages(gfp, 0); 1364 if (!pages[i]) 1365 goto error; 1366 } 1367 1368 if (order) { 1369 split_page(pages[i], order); 1370 j = 1 << order; 1371 while (--j) 1372 pages[i + j] = pages[i] + j; 1373 } 1374 1375 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); 1376 i += 1 << order; 1377 count -= 1 << order; 1378 } 1379 1380 return pages; 1381 error: 1382 while (i--) 1383 if (pages[i]) 1384 __free_pages(pages[i], 0); 1385 kvfree(pages); 1386 return NULL; 1387 } 1388 1389 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1390 size_t size, unsigned long attrs) 1391 { 1392 int count = size >> PAGE_SHIFT; 1393 int i; 1394 1395 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 1396 dma_release_from_contiguous(dev, pages[0], count); 1397 } else { 1398 for (i = 0; i < count; i++) 1399 if (pages[i]) 1400 __free_pages(pages[i], 0); 1401 } 1402 1403 kvfree(pages); 1404 return 0; 1405 } 1406 1407 /* 1408 * Create a CPU mapping for a specified pages 1409 */ 1410 static void * 1411 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1412 const void *caller) 1413 { 1414 return dma_common_pages_remap(pages, size, 1415 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller); 1416 } 1417 1418 /* 1419 * Create a mapping in device IO address space for specified pages 1420 */ 1421 static dma_addr_t 1422 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, 1423 unsigned long attrs) 1424 { 1425 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1426 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1427 dma_addr_t dma_addr, iova; 1428 int i; 1429 1430 dma_addr = __alloc_iova(mapping, size); 1431 if (dma_addr == ARM_MAPPING_ERROR) 1432 return dma_addr; 1433 1434 iova = dma_addr; 1435 for (i = 0; i < count; ) { 1436 int ret; 1437 1438 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1439 phys_addr_t phys = page_to_phys(pages[i]); 1440 unsigned int len, j; 1441 1442 for (j = i + 1; j < count; j++, next_pfn++) 1443 if (page_to_pfn(pages[j]) != next_pfn) 1444 break; 1445 1446 len = (j - i) << PAGE_SHIFT; 1447 ret = iommu_map(mapping->domain, iova, phys, len, 1448 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs)); 1449 if (ret < 0) 1450 goto fail; 1451 iova += len; 1452 i = j; 1453 } 1454 return dma_addr; 1455 fail: 1456 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1457 __free_iova(mapping, dma_addr, size); 1458 return ARM_MAPPING_ERROR; 1459 } 1460 1461 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1462 { 1463 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1464 1465 /* 1466 * add optional in-page offset from iova to size and align 1467 * result to page size 1468 */ 1469 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1470 iova &= PAGE_MASK; 1471 1472 iommu_unmap(mapping->domain, iova, size); 1473 __free_iova(mapping, iova, size); 1474 return 0; 1475 } 1476 1477 static struct page **__atomic_get_pages(void *addr) 1478 { 1479 struct page *page; 1480 phys_addr_t phys; 1481 1482 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); 1483 page = phys_to_page(phys); 1484 1485 return (struct page **)page; 1486 } 1487 1488 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) 1489 { 1490 struct vm_struct *area; 1491 1492 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1493 return __atomic_get_pages(cpu_addr); 1494 1495 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1496 return cpu_addr; 1497 1498 area = find_vm_area(cpu_addr); 1499 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1500 return area->pages; 1501 return NULL; 1502 } 1503 1504 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, 1505 dma_addr_t *handle, int coherent_flag, 1506 unsigned long attrs) 1507 { 1508 struct page *page; 1509 void *addr; 1510 1511 if (coherent_flag == COHERENT) 1512 addr = __alloc_simple_buffer(dev, size, gfp, &page); 1513 else 1514 addr = __alloc_from_pool(size, &page); 1515 if (!addr) 1516 return NULL; 1517 1518 *handle = __iommu_create_mapping(dev, &page, size, attrs); 1519 if (*handle == ARM_MAPPING_ERROR) 1520 goto err_mapping; 1521 1522 return addr; 1523 1524 err_mapping: 1525 __free_from_pool(addr, size); 1526 return NULL; 1527 } 1528 1529 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1530 dma_addr_t handle, size_t size, int coherent_flag) 1531 { 1532 __iommu_remove_mapping(dev, handle, size); 1533 if (coherent_flag == COHERENT) 1534 __dma_free_buffer(virt_to_page(cpu_addr), size); 1535 else 1536 __free_from_pool(cpu_addr, size); 1537 } 1538 1539 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size, 1540 dma_addr_t *handle, gfp_t gfp, unsigned long attrs, 1541 int coherent_flag) 1542 { 1543 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1544 struct page **pages; 1545 void *addr = NULL; 1546 1547 *handle = ARM_MAPPING_ERROR; 1548 size = PAGE_ALIGN(size); 1549 1550 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp)) 1551 return __iommu_alloc_simple(dev, size, gfp, handle, 1552 coherent_flag, attrs); 1553 1554 /* 1555 * Following is a work-around (a.k.a. hack) to prevent pages 1556 * with __GFP_COMP being passed to split_page() which cannot 1557 * handle them. The real problem is that this flag probably 1558 * should be 0 on ARM as it is not supported on this 1559 * platform; see CONFIG_HUGETLBFS. 1560 */ 1561 gfp &= ~(__GFP_COMP); 1562 1563 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); 1564 if (!pages) 1565 return NULL; 1566 1567 *handle = __iommu_create_mapping(dev, pages, size, attrs); 1568 if (*handle == ARM_MAPPING_ERROR) 1569 goto err_buffer; 1570 1571 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1572 return pages; 1573 1574 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1575 __builtin_return_address(0)); 1576 if (!addr) 1577 goto err_mapping; 1578 1579 return addr; 1580 1581 err_mapping: 1582 __iommu_remove_mapping(dev, *handle, size); 1583 err_buffer: 1584 __iommu_free_buffer(dev, pages, size, attrs); 1585 return NULL; 1586 } 1587 1588 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1589 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1590 { 1591 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL); 1592 } 1593 1594 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size, 1595 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1596 { 1597 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT); 1598 } 1599 1600 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1601 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1602 unsigned long attrs) 1603 { 1604 unsigned long uaddr = vma->vm_start; 1605 unsigned long usize = vma->vm_end - vma->vm_start; 1606 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1607 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1608 unsigned long off = vma->vm_pgoff; 1609 1610 if (!pages) 1611 return -ENXIO; 1612 1613 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off) 1614 return -ENXIO; 1615 1616 pages += off; 1617 1618 do { 1619 int ret = vm_insert_page(vma, uaddr, *pages++); 1620 if (ret) { 1621 pr_err("Remapping memory failed: %d\n", ret); 1622 return ret; 1623 } 1624 uaddr += PAGE_SIZE; 1625 usize -= PAGE_SIZE; 1626 } while (usize > 0); 1627 1628 return 0; 1629 } 1630 static int arm_iommu_mmap_attrs(struct device *dev, 1631 struct vm_area_struct *vma, void *cpu_addr, 1632 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1633 { 1634 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1635 1636 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1637 } 1638 1639 static int arm_coherent_iommu_mmap_attrs(struct device *dev, 1640 struct vm_area_struct *vma, void *cpu_addr, 1641 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1642 { 1643 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1644 } 1645 1646 /* 1647 * free a page as defined by the above mapping. 1648 * Must not be called with IRQs disabled. 1649 */ 1650 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1651 dma_addr_t handle, unsigned long attrs, int coherent_flag) 1652 { 1653 struct page **pages; 1654 size = PAGE_ALIGN(size); 1655 1656 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { 1657 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); 1658 return; 1659 } 1660 1661 pages = __iommu_get_pages(cpu_addr, attrs); 1662 if (!pages) { 1663 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1664 return; 1665 } 1666 1667 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) { 1668 dma_common_free_remap(cpu_addr, size, 1669 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 1670 } 1671 1672 __iommu_remove_mapping(dev, handle, size); 1673 __iommu_free_buffer(dev, pages, size, attrs); 1674 } 1675 1676 void arm_iommu_free_attrs(struct device *dev, size_t size, 1677 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1678 { 1679 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL); 1680 } 1681 1682 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size, 1683 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1684 { 1685 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT); 1686 } 1687 1688 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1689 void *cpu_addr, dma_addr_t dma_addr, 1690 size_t size, unsigned long attrs) 1691 { 1692 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1693 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1694 1695 if (!pages) 1696 return -ENXIO; 1697 1698 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1699 GFP_KERNEL); 1700 } 1701 1702 /* 1703 * Map a part of the scatter-gather list into contiguous io address space 1704 */ 1705 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1706 size_t size, dma_addr_t *handle, 1707 enum dma_data_direction dir, unsigned long attrs, 1708 bool is_coherent) 1709 { 1710 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1711 dma_addr_t iova, iova_base; 1712 int ret = 0; 1713 unsigned int count; 1714 struct scatterlist *s; 1715 int prot; 1716 1717 size = PAGE_ALIGN(size); 1718 *handle = ARM_MAPPING_ERROR; 1719 1720 iova_base = iova = __alloc_iova(mapping, size); 1721 if (iova == ARM_MAPPING_ERROR) 1722 return -ENOMEM; 1723 1724 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1725 phys_addr_t phys = page_to_phys(sg_page(s)); 1726 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1727 1728 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1729 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1730 1731 prot = __dma_info_to_prot(dir, attrs); 1732 1733 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1734 if (ret < 0) 1735 goto fail; 1736 count += len >> PAGE_SHIFT; 1737 iova += len; 1738 } 1739 *handle = iova_base; 1740 1741 return 0; 1742 fail: 1743 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1744 __free_iova(mapping, iova_base, size); 1745 return ret; 1746 } 1747 1748 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1749 enum dma_data_direction dir, unsigned long attrs, 1750 bool is_coherent) 1751 { 1752 struct scatterlist *s = sg, *dma = sg, *start = sg; 1753 int i, count = 0; 1754 unsigned int offset = s->offset; 1755 unsigned int size = s->offset + s->length; 1756 unsigned int max = dma_get_max_seg_size(dev); 1757 1758 for (i = 1; i < nents; i++) { 1759 s = sg_next(s); 1760 1761 s->dma_address = ARM_MAPPING_ERROR; 1762 s->dma_length = 0; 1763 1764 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1765 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1766 dir, attrs, is_coherent) < 0) 1767 goto bad_mapping; 1768 1769 dma->dma_address += offset; 1770 dma->dma_length = size - offset; 1771 1772 size = offset = s->offset; 1773 start = s; 1774 dma = sg_next(dma); 1775 count += 1; 1776 } 1777 size += s->length; 1778 } 1779 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1780 is_coherent) < 0) 1781 goto bad_mapping; 1782 1783 dma->dma_address += offset; 1784 dma->dma_length = size - offset; 1785 1786 return count+1; 1787 1788 bad_mapping: 1789 for_each_sg(sg, s, count, i) 1790 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1791 return 0; 1792 } 1793 1794 /** 1795 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1796 * @dev: valid struct device pointer 1797 * @sg: list of buffers 1798 * @nents: number of buffers to map 1799 * @dir: DMA transfer direction 1800 * 1801 * Map a set of i/o coherent buffers described by scatterlist in streaming 1802 * mode for DMA. The scatter gather list elements are merged together (if 1803 * possible) and tagged with the appropriate dma address and length. They are 1804 * obtained via sg_dma_{address,length}. 1805 */ 1806 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1807 int nents, enum dma_data_direction dir, unsigned long attrs) 1808 { 1809 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1810 } 1811 1812 /** 1813 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1814 * @dev: valid struct device pointer 1815 * @sg: list of buffers 1816 * @nents: number of buffers to map 1817 * @dir: DMA transfer direction 1818 * 1819 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1820 * The scatter gather list elements are merged together (if possible) and 1821 * tagged with the appropriate dma address and length. They are obtained via 1822 * sg_dma_{address,length}. 1823 */ 1824 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1825 int nents, enum dma_data_direction dir, unsigned long attrs) 1826 { 1827 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1828 } 1829 1830 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1831 int nents, enum dma_data_direction dir, 1832 unsigned long attrs, bool is_coherent) 1833 { 1834 struct scatterlist *s; 1835 int i; 1836 1837 for_each_sg(sg, s, nents, i) { 1838 if (sg_dma_len(s)) 1839 __iommu_remove_mapping(dev, sg_dma_address(s), 1840 sg_dma_len(s)); 1841 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1842 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1843 s->length, dir); 1844 } 1845 } 1846 1847 /** 1848 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1849 * @dev: valid struct device pointer 1850 * @sg: list of buffers 1851 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1852 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1853 * 1854 * Unmap a set of streaming mode DMA translations. Again, CPU access 1855 * rules concerning calls here are the same as for dma_unmap_single(). 1856 */ 1857 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1858 int nents, enum dma_data_direction dir, 1859 unsigned long attrs) 1860 { 1861 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1862 } 1863 1864 /** 1865 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1866 * @dev: valid struct device pointer 1867 * @sg: list of buffers 1868 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1869 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1870 * 1871 * Unmap a set of streaming mode DMA translations. Again, CPU access 1872 * rules concerning calls here are the same as for dma_unmap_single(). 1873 */ 1874 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1875 enum dma_data_direction dir, 1876 unsigned long attrs) 1877 { 1878 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1879 } 1880 1881 /** 1882 * arm_iommu_sync_sg_for_cpu 1883 * @dev: valid struct device pointer 1884 * @sg: list of buffers 1885 * @nents: number of buffers to map (returned from dma_map_sg) 1886 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1887 */ 1888 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1889 int nents, enum dma_data_direction dir) 1890 { 1891 struct scatterlist *s; 1892 int i; 1893 1894 for_each_sg(sg, s, nents, i) 1895 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1896 1897 } 1898 1899 /** 1900 * arm_iommu_sync_sg_for_device 1901 * @dev: valid struct device pointer 1902 * @sg: list of buffers 1903 * @nents: number of buffers to map (returned from dma_map_sg) 1904 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1905 */ 1906 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1907 int nents, enum dma_data_direction dir) 1908 { 1909 struct scatterlist *s; 1910 int i; 1911 1912 for_each_sg(sg, s, nents, i) 1913 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1914 } 1915 1916 1917 /** 1918 * arm_coherent_iommu_map_page 1919 * @dev: valid struct device pointer 1920 * @page: page that buffer resides in 1921 * @offset: offset into page for start of buffer 1922 * @size: size of buffer to map 1923 * @dir: DMA transfer direction 1924 * 1925 * Coherent IOMMU aware version of arm_dma_map_page() 1926 */ 1927 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1928 unsigned long offset, size_t size, enum dma_data_direction dir, 1929 unsigned long attrs) 1930 { 1931 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1932 dma_addr_t dma_addr; 1933 int ret, prot, len = PAGE_ALIGN(size + offset); 1934 1935 dma_addr = __alloc_iova(mapping, len); 1936 if (dma_addr == ARM_MAPPING_ERROR) 1937 return dma_addr; 1938 1939 prot = __dma_info_to_prot(dir, attrs); 1940 1941 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1942 if (ret < 0) 1943 goto fail; 1944 1945 return dma_addr + offset; 1946 fail: 1947 __free_iova(mapping, dma_addr, len); 1948 return ARM_MAPPING_ERROR; 1949 } 1950 1951 /** 1952 * arm_iommu_map_page 1953 * @dev: valid struct device pointer 1954 * @page: page that buffer resides in 1955 * @offset: offset into page for start of buffer 1956 * @size: size of buffer to map 1957 * @dir: DMA transfer direction 1958 * 1959 * IOMMU aware version of arm_dma_map_page() 1960 */ 1961 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1962 unsigned long offset, size_t size, enum dma_data_direction dir, 1963 unsigned long attrs) 1964 { 1965 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1966 __dma_page_cpu_to_dev(page, offset, size, dir); 1967 1968 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1969 } 1970 1971 /** 1972 * arm_coherent_iommu_unmap_page 1973 * @dev: valid struct device pointer 1974 * @handle: DMA address of buffer 1975 * @size: size of buffer (same as passed to dma_map_page) 1976 * @dir: DMA transfer direction (same as passed to dma_map_page) 1977 * 1978 * Coherent IOMMU aware version of arm_dma_unmap_page() 1979 */ 1980 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1981 size_t size, enum dma_data_direction dir, unsigned long attrs) 1982 { 1983 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1984 dma_addr_t iova = handle & PAGE_MASK; 1985 int offset = handle & ~PAGE_MASK; 1986 int len = PAGE_ALIGN(size + offset); 1987 1988 if (!iova) 1989 return; 1990 1991 iommu_unmap(mapping->domain, iova, len); 1992 __free_iova(mapping, iova, len); 1993 } 1994 1995 /** 1996 * arm_iommu_unmap_page 1997 * @dev: valid struct device pointer 1998 * @handle: DMA address of buffer 1999 * @size: size of buffer (same as passed to dma_map_page) 2000 * @dir: DMA transfer direction (same as passed to dma_map_page) 2001 * 2002 * IOMMU aware version of arm_dma_unmap_page() 2003 */ 2004 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 2005 size_t size, enum dma_data_direction dir, unsigned long attrs) 2006 { 2007 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2008 dma_addr_t iova = handle & PAGE_MASK; 2009 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2010 int offset = handle & ~PAGE_MASK; 2011 int len = PAGE_ALIGN(size + offset); 2012 2013 if (!iova) 2014 return; 2015 2016 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 2017 __dma_page_dev_to_cpu(page, offset, size, dir); 2018 2019 iommu_unmap(mapping->domain, iova, len); 2020 __free_iova(mapping, iova, len); 2021 } 2022 2023 /** 2024 * arm_iommu_map_resource - map a device resource for DMA 2025 * @dev: valid struct device pointer 2026 * @phys_addr: physical address of resource 2027 * @size: size of resource to map 2028 * @dir: DMA transfer direction 2029 */ 2030 static dma_addr_t arm_iommu_map_resource(struct device *dev, 2031 phys_addr_t phys_addr, size_t size, 2032 enum dma_data_direction dir, unsigned long attrs) 2033 { 2034 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2035 dma_addr_t dma_addr; 2036 int ret, prot; 2037 phys_addr_t addr = phys_addr & PAGE_MASK; 2038 unsigned int offset = phys_addr & ~PAGE_MASK; 2039 size_t len = PAGE_ALIGN(size + offset); 2040 2041 dma_addr = __alloc_iova(mapping, len); 2042 if (dma_addr == ARM_MAPPING_ERROR) 2043 return dma_addr; 2044 2045 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; 2046 2047 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot); 2048 if (ret < 0) 2049 goto fail; 2050 2051 return dma_addr + offset; 2052 fail: 2053 __free_iova(mapping, dma_addr, len); 2054 return ARM_MAPPING_ERROR; 2055 } 2056 2057 /** 2058 * arm_iommu_unmap_resource - unmap a device DMA resource 2059 * @dev: valid struct device pointer 2060 * @dma_handle: DMA address to resource 2061 * @size: size of resource to map 2062 * @dir: DMA transfer direction 2063 */ 2064 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, 2065 size_t size, enum dma_data_direction dir, 2066 unsigned long attrs) 2067 { 2068 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2069 dma_addr_t iova = dma_handle & PAGE_MASK; 2070 unsigned int offset = dma_handle & ~PAGE_MASK; 2071 size_t len = PAGE_ALIGN(size + offset); 2072 2073 if (!iova) 2074 return; 2075 2076 iommu_unmap(mapping->domain, iova, len); 2077 __free_iova(mapping, iova, len); 2078 } 2079 2080 static void arm_iommu_sync_single_for_cpu(struct device *dev, 2081 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2082 { 2083 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2084 dma_addr_t iova = handle & PAGE_MASK; 2085 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2086 unsigned int offset = handle & ~PAGE_MASK; 2087 2088 if (!iova) 2089 return; 2090 2091 __dma_page_dev_to_cpu(page, offset, size, dir); 2092 } 2093 2094 static void arm_iommu_sync_single_for_device(struct device *dev, 2095 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2096 { 2097 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2098 dma_addr_t iova = handle & PAGE_MASK; 2099 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2100 unsigned int offset = handle & ~PAGE_MASK; 2101 2102 if (!iova) 2103 return; 2104 2105 __dma_page_cpu_to_dev(page, offset, size, dir); 2106 } 2107 2108 const struct dma_map_ops iommu_ops = { 2109 .alloc = arm_iommu_alloc_attrs, 2110 .free = arm_iommu_free_attrs, 2111 .mmap = arm_iommu_mmap_attrs, 2112 .get_sgtable = arm_iommu_get_sgtable, 2113 2114 .map_page = arm_iommu_map_page, 2115 .unmap_page = arm_iommu_unmap_page, 2116 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 2117 .sync_single_for_device = arm_iommu_sync_single_for_device, 2118 2119 .map_sg = arm_iommu_map_sg, 2120 .unmap_sg = arm_iommu_unmap_sg, 2121 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 2122 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 2123 2124 .map_resource = arm_iommu_map_resource, 2125 .unmap_resource = arm_iommu_unmap_resource, 2126 2127 .mapping_error = arm_dma_mapping_error, 2128 .dma_supported = arm_dma_supported, 2129 }; 2130 2131 const struct dma_map_ops iommu_coherent_ops = { 2132 .alloc = arm_coherent_iommu_alloc_attrs, 2133 .free = arm_coherent_iommu_free_attrs, 2134 .mmap = arm_coherent_iommu_mmap_attrs, 2135 .get_sgtable = arm_iommu_get_sgtable, 2136 2137 .map_page = arm_coherent_iommu_map_page, 2138 .unmap_page = arm_coherent_iommu_unmap_page, 2139 2140 .map_sg = arm_coherent_iommu_map_sg, 2141 .unmap_sg = arm_coherent_iommu_unmap_sg, 2142 2143 .map_resource = arm_iommu_map_resource, 2144 .unmap_resource = arm_iommu_unmap_resource, 2145 2146 .mapping_error = arm_dma_mapping_error, 2147 .dma_supported = arm_dma_supported, 2148 }; 2149 2150 /** 2151 * arm_iommu_create_mapping 2152 * @bus: pointer to the bus holding the client device (for IOMMU calls) 2153 * @base: start address of the valid IO address space 2154 * @size: maximum size of the valid IO address space 2155 * 2156 * Creates a mapping structure which holds information about used/unused 2157 * IO address ranges, which is required to perform memory allocation and 2158 * mapping with IOMMU aware functions. 2159 * 2160 * The client device need to be attached to the mapping with 2161 * arm_iommu_attach_device function. 2162 */ 2163 struct dma_iommu_mapping * 2164 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) 2165 { 2166 unsigned int bits = size >> PAGE_SHIFT; 2167 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 2168 struct dma_iommu_mapping *mapping; 2169 int extensions = 1; 2170 int err = -ENOMEM; 2171 2172 /* currently only 32-bit DMA address space is supported */ 2173 if (size > DMA_BIT_MASK(32) + 1) 2174 return ERR_PTR(-ERANGE); 2175 2176 if (!bitmap_size) 2177 return ERR_PTR(-EINVAL); 2178 2179 if (bitmap_size > PAGE_SIZE) { 2180 extensions = bitmap_size / PAGE_SIZE; 2181 bitmap_size = PAGE_SIZE; 2182 } 2183 2184 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 2185 if (!mapping) 2186 goto err; 2187 2188 mapping->bitmap_size = bitmap_size; 2189 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *), 2190 GFP_KERNEL); 2191 if (!mapping->bitmaps) 2192 goto err2; 2193 2194 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 2195 if (!mapping->bitmaps[0]) 2196 goto err3; 2197 2198 mapping->nr_bitmaps = 1; 2199 mapping->extensions = extensions; 2200 mapping->base = base; 2201 mapping->bits = BITS_PER_BYTE * bitmap_size; 2202 2203 spin_lock_init(&mapping->lock); 2204 2205 mapping->domain = iommu_domain_alloc(bus); 2206 if (!mapping->domain) 2207 goto err4; 2208 2209 kref_init(&mapping->kref); 2210 return mapping; 2211 err4: 2212 kfree(mapping->bitmaps[0]); 2213 err3: 2214 kfree(mapping->bitmaps); 2215 err2: 2216 kfree(mapping); 2217 err: 2218 return ERR_PTR(err); 2219 } 2220 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 2221 2222 static void release_iommu_mapping(struct kref *kref) 2223 { 2224 int i; 2225 struct dma_iommu_mapping *mapping = 2226 container_of(kref, struct dma_iommu_mapping, kref); 2227 2228 iommu_domain_free(mapping->domain); 2229 for (i = 0; i < mapping->nr_bitmaps; i++) 2230 kfree(mapping->bitmaps[i]); 2231 kfree(mapping->bitmaps); 2232 kfree(mapping); 2233 } 2234 2235 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 2236 { 2237 int next_bitmap; 2238 2239 if (mapping->nr_bitmaps >= mapping->extensions) 2240 return -EINVAL; 2241 2242 next_bitmap = mapping->nr_bitmaps; 2243 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 2244 GFP_ATOMIC); 2245 if (!mapping->bitmaps[next_bitmap]) 2246 return -ENOMEM; 2247 2248 mapping->nr_bitmaps++; 2249 2250 return 0; 2251 } 2252 2253 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 2254 { 2255 if (mapping) 2256 kref_put(&mapping->kref, release_iommu_mapping); 2257 } 2258 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 2259 2260 static int __arm_iommu_attach_device(struct device *dev, 2261 struct dma_iommu_mapping *mapping) 2262 { 2263 int err; 2264 2265 err = iommu_attach_device(mapping->domain, dev); 2266 if (err) 2267 return err; 2268 2269 kref_get(&mapping->kref); 2270 to_dma_iommu_mapping(dev) = mapping; 2271 2272 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 2273 return 0; 2274 } 2275 2276 /** 2277 * arm_iommu_attach_device 2278 * @dev: valid struct device pointer 2279 * @mapping: io address space mapping structure (returned from 2280 * arm_iommu_create_mapping) 2281 * 2282 * Attaches specified io address space mapping to the provided device. 2283 * This replaces the dma operations (dma_map_ops pointer) with the 2284 * IOMMU aware version. 2285 * 2286 * More than one client might be attached to the same io address space 2287 * mapping. 2288 */ 2289 int arm_iommu_attach_device(struct device *dev, 2290 struct dma_iommu_mapping *mapping) 2291 { 2292 int err; 2293 2294 err = __arm_iommu_attach_device(dev, mapping); 2295 if (err) 2296 return err; 2297 2298 set_dma_ops(dev, &iommu_ops); 2299 return 0; 2300 } 2301 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 2302 2303 /** 2304 * arm_iommu_detach_device 2305 * @dev: valid struct device pointer 2306 * 2307 * Detaches the provided device from a previously attached map. 2308 * This voids the dma operations (dma_map_ops pointer) 2309 */ 2310 void arm_iommu_detach_device(struct device *dev) 2311 { 2312 struct dma_iommu_mapping *mapping; 2313 2314 mapping = to_dma_iommu_mapping(dev); 2315 if (!mapping) { 2316 dev_warn(dev, "Not attached\n"); 2317 return; 2318 } 2319 2320 iommu_detach_device(mapping->domain, dev); 2321 kref_put(&mapping->kref, release_iommu_mapping); 2322 to_dma_iommu_mapping(dev) = NULL; 2323 set_dma_ops(dev, NULL); 2324 2325 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 2326 } 2327 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 2328 2329 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) 2330 { 2331 return coherent ? &iommu_coherent_ops : &iommu_ops; 2332 } 2333 2334 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2335 const struct iommu_ops *iommu) 2336 { 2337 struct dma_iommu_mapping *mapping; 2338 2339 if (!iommu) 2340 return false; 2341 2342 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); 2343 if (IS_ERR(mapping)) { 2344 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", 2345 size, dev_name(dev)); 2346 return false; 2347 } 2348 2349 if (__arm_iommu_attach_device(dev, mapping)) { 2350 pr_warn("Failed to attached device %s to IOMMU_mapping\n", 2351 dev_name(dev)); 2352 arm_iommu_release_mapping(mapping); 2353 return false; 2354 } 2355 2356 return true; 2357 } 2358 2359 static void arm_teardown_iommu_dma_ops(struct device *dev) 2360 { 2361 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2362 2363 if (!mapping) 2364 return; 2365 2366 arm_iommu_detach_device(dev); 2367 arm_iommu_release_mapping(mapping); 2368 } 2369 2370 #else 2371 2372 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2373 const struct iommu_ops *iommu) 2374 { 2375 return false; 2376 } 2377 2378 static void arm_teardown_iommu_dma_ops(struct device *dev) { } 2379 2380 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops 2381 2382 #endif /* CONFIG_ARM_DMA_USE_IOMMU */ 2383 2384 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent) 2385 { 2386 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; 2387 } 2388 2389 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 2390 const struct iommu_ops *iommu, bool coherent) 2391 { 2392 const struct dma_map_ops *dma_ops; 2393 2394 dev->archdata.dma_coherent = coherent; 2395 2396 /* 2397 * Don't override the dma_ops if they have already been set. Ideally 2398 * this should be the only location where dma_ops are set, remove this 2399 * check when all other callers of set_dma_ops will have disappeared. 2400 */ 2401 if (dev->dma_ops) 2402 return; 2403 2404 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) 2405 dma_ops = arm_get_iommu_dma_map_ops(coherent); 2406 else 2407 dma_ops = arm_get_dma_map_ops(coherent); 2408 2409 set_dma_ops(dev, dma_ops); 2410 2411 #ifdef CONFIG_XEN 2412 if (xen_initial_domain()) { 2413 dev->archdata.dev_dma_ops = dev->dma_ops; 2414 dev->dma_ops = xen_dma_ops; 2415 } 2416 #endif 2417 dev->archdata.dma_ops_setup = true; 2418 } 2419 2420 void arch_teardown_dma_ops(struct device *dev) 2421 { 2422 if (!dev->archdata.dma_ops_setup) 2423 return; 2424 2425 arm_teardown_iommu_dma_ops(dev); 2426 } 2427