xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 840ef8b7)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28 
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
38 
39 #include "mm.h"
40 
41 /*
42  * The DMA API is built upon the notion of "buffer ownership".  A buffer
43  * is either exclusively owned by the CPU (and therefore may be accessed
44  * by it) or exclusively owned by the DMA device.  These helper functions
45  * represent the transitions between these two ownership states.
46  *
47  * Note, however, that on later ARMs, this notion does not work due to
48  * speculative prefetches.  We model our approach on the assumption that
49  * the CPU does do speculative prefetches, which means we clean caches
50  * before transfers and delay cache invalidation until transfer completion.
51  *
52  */
53 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54 		size_t, enum dma_data_direction);
55 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 		size_t, enum dma_data_direction);
57 
58 /**
59  * arm_dma_map_page - map a portion of a page for streaming DMA
60  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61  * @page: page that buffer resides in
62  * @offset: offset into page for start of buffer
63  * @size: size of buffer to map
64  * @dir: DMA transfer direction
65  *
66  * Ensure that any data held in the cache is appropriately discarded
67  * or written back.
68  *
69  * The device owns this memory once this call has completed.  The CPU
70  * can regain ownership by calling dma_unmap_page().
71  */
72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 	     unsigned long offset, size_t size, enum dma_data_direction dir,
74 	     struct dma_attrs *attrs)
75 {
76 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 		__dma_page_cpu_to_dev(page, offset, size, dir);
78 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
79 }
80 
81 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
82 	     unsigned long offset, size_t size, enum dma_data_direction dir,
83 	     struct dma_attrs *attrs)
84 {
85 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
86 }
87 
88 /**
89  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
90  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
91  * @handle: DMA address of buffer
92  * @size: size of buffer (same as passed to dma_map_page)
93  * @dir: DMA transfer direction (same as passed to dma_map_page)
94  *
95  * Unmap a page streaming mode DMA translation.  The handle and size
96  * must match what was provided in the previous dma_map_page() call.
97  * All other usages are undefined.
98  *
99  * After this call, reads by the CPU to the buffer are guaranteed to see
100  * whatever the device wrote there.
101  */
102 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
103 		size_t size, enum dma_data_direction dir,
104 		struct dma_attrs *attrs)
105 {
106 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
107 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
108 				      handle & ~PAGE_MASK, size, dir);
109 }
110 
111 static void arm_dma_sync_single_for_cpu(struct device *dev,
112 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
113 {
114 	unsigned int offset = handle & (PAGE_SIZE - 1);
115 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
116 	__dma_page_dev_to_cpu(page, offset, size, dir);
117 }
118 
119 static void arm_dma_sync_single_for_device(struct device *dev,
120 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
121 {
122 	unsigned int offset = handle & (PAGE_SIZE - 1);
123 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
124 	__dma_page_cpu_to_dev(page, offset, size, dir);
125 }
126 
127 struct dma_map_ops arm_dma_ops = {
128 	.alloc			= arm_dma_alloc,
129 	.free			= arm_dma_free,
130 	.mmap			= arm_dma_mmap,
131 	.get_sgtable		= arm_dma_get_sgtable,
132 	.map_page		= arm_dma_map_page,
133 	.unmap_page		= arm_dma_unmap_page,
134 	.map_sg			= arm_dma_map_sg,
135 	.unmap_sg		= arm_dma_unmap_sg,
136 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
137 	.sync_single_for_device	= arm_dma_sync_single_for_device,
138 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
139 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
140 	.set_dma_mask		= arm_dma_set_mask,
141 };
142 EXPORT_SYMBOL(arm_dma_ops);
143 
144 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
145 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
146 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
147 				  dma_addr_t handle, struct dma_attrs *attrs);
148 
149 struct dma_map_ops arm_coherent_dma_ops = {
150 	.alloc			= arm_coherent_dma_alloc,
151 	.free			= arm_coherent_dma_free,
152 	.mmap			= arm_dma_mmap,
153 	.get_sgtable		= arm_dma_get_sgtable,
154 	.map_page		= arm_coherent_dma_map_page,
155 	.map_sg			= arm_dma_map_sg,
156 	.set_dma_mask		= arm_dma_set_mask,
157 };
158 EXPORT_SYMBOL(arm_coherent_dma_ops);
159 
160 static u64 get_coherent_dma_mask(struct device *dev)
161 {
162 	u64 mask = (u64)arm_dma_limit;
163 
164 	if (dev) {
165 		mask = dev->coherent_dma_mask;
166 
167 		/*
168 		 * Sanity check the DMA mask - it must be non-zero, and
169 		 * must be able to be satisfied by a DMA allocation.
170 		 */
171 		if (mask == 0) {
172 			dev_warn(dev, "coherent DMA mask is unset\n");
173 			return 0;
174 		}
175 
176 		if ((~mask) & (u64)arm_dma_limit) {
177 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
178 				 "than system GFP_DMA mask %#llx\n",
179 				 mask, (u64)arm_dma_limit);
180 			return 0;
181 		}
182 	}
183 
184 	return mask;
185 }
186 
187 static void __dma_clear_buffer(struct page *page, size_t size)
188 {
189 	/*
190 	 * Ensure that the allocated pages are zeroed, and that any data
191 	 * lurking in the kernel direct-mapped region is invalidated.
192 	 */
193 	if (PageHighMem(page)) {
194 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
195 		phys_addr_t end = base + size;
196 		while (size > 0) {
197 			void *ptr = kmap_atomic(page);
198 			memset(ptr, 0, PAGE_SIZE);
199 			dmac_flush_range(ptr, ptr + PAGE_SIZE);
200 			kunmap_atomic(ptr);
201 			page++;
202 			size -= PAGE_SIZE;
203 		}
204 		outer_flush_range(base, end);
205 	} else {
206 		void *ptr = page_address(page);
207 		memset(ptr, 0, size);
208 		dmac_flush_range(ptr, ptr + size);
209 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
210 	}
211 }
212 
213 /*
214  * Allocate a DMA buffer for 'dev' of size 'size' using the
215  * specified gfp mask.  Note that 'size' must be page aligned.
216  */
217 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
218 {
219 	unsigned long order = get_order(size);
220 	struct page *page, *p, *e;
221 
222 	page = alloc_pages(gfp, order);
223 	if (!page)
224 		return NULL;
225 
226 	/*
227 	 * Now split the huge page and free the excess pages
228 	 */
229 	split_page(page, order);
230 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
231 		__free_page(p);
232 
233 	__dma_clear_buffer(page, size);
234 
235 	return page;
236 }
237 
238 /*
239  * Free a DMA buffer.  'size' must be page aligned.
240  */
241 static void __dma_free_buffer(struct page *page, size_t size)
242 {
243 	struct page *e = page + (size >> PAGE_SHIFT);
244 
245 	while (page < e) {
246 		__free_page(page);
247 		page++;
248 	}
249 }
250 
251 #ifdef CONFIG_MMU
252 #ifdef CONFIG_HUGETLB_PAGE
253 #error ARM Coherent DMA allocator does not (yet) support huge TLB
254 #endif
255 
256 static void *__alloc_from_contiguous(struct device *dev, size_t size,
257 				     pgprot_t prot, struct page **ret_page,
258 				     const void *caller);
259 
260 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
261 				 pgprot_t prot, struct page **ret_page,
262 				 const void *caller);
263 
264 static void *
265 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
266 	const void *caller)
267 {
268 	struct vm_struct *area;
269 	unsigned long addr;
270 
271 	/*
272 	 * DMA allocation can be mapped to user space, so lets
273 	 * set VM_USERMAP flags too.
274 	 */
275 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
276 				  caller);
277 	if (!area)
278 		return NULL;
279 	addr = (unsigned long)area->addr;
280 	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
281 
282 	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
283 		vunmap((void *)addr);
284 		return NULL;
285 	}
286 	return (void *)addr;
287 }
288 
289 static void __dma_free_remap(void *cpu_addr, size_t size)
290 {
291 	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
292 	struct vm_struct *area = find_vm_area(cpu_addr);
293 	if (!area || (area->flags & flags) != flags) {
294 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
295 		return;
296 	}
297 	unmap_kernel_range((unsigned long)cpu_addr, size);
298 	vunmap(cpu_addr);
299 }
300 
301 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
302 
303 struct dma_pool {
304 	size_t size;
305 	spinlock_t lock;
306 	unsigned long *bitmap;
307 	unsigned long nr_pages;
308 	void *vaddr;
309 	struct page **pages;
310 };
311 
312 static struct dma_pool atomic_pool = {
313 	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
314 };
315 
316 static int __init early_coherent_pool(char *p)
317 {
318 	atomic_pool.size = memparse(p, &p);
319 	return 0;
320 }
321 early_param("coherent_pool", early_coherent_pool);
322 
323 void __init init_dma_coherent_pool_size(unsigned long size)
324 {
325 	/*
326 	 * Catch any attempt to set the pool size too late.
327 	 */
328 	BUG_ON(atomic_pool.vaddr);
329 
330 	/*
331 	 * Set architecture specific coherent pool size only if
332 	 * it has not been changed by kernel command line parameter.
333 	 */
334 	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
335 		atomic_pool.size = size;
336 }
337 
338 /*
339  * Initialise the coherent pool for atomic allocations.
340  */
341 static int __init atomic_pool_init(void)
342 {
343 	struct dma_pool *pool = &atomic_pool;
344 	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
345 	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
346 	unsigned long *bitmap;
347 	struct page *page;
348 	struct page **pages;
349 	void *ptr;
350 	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
351 
352 	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
353 	if (!bitmap)
354 		goto no_bitmap;
355 
356 	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
357 	if (!pages)
358 		goto no_pages;
359 
360 	if (IS_ENABLED(CONFIG_CMA))
361 		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
362 					      atomic_pool_init);
363 	else
364 		ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
365 					   &page, atomic_pool_init);
366 	if (ptr) {
367 		int i;
368 
369 		for (i = 0; i < nr_pages; i++)
370 			pages[i] = page + i;
371 
372 		spin_lock_init(&pool->lock);
373 		pool->vaddr = ptr;
374 		pool->pages = pages;
375 		pool->bitmap = bitmap;
376 		pool->nr_pages = nr_pages;
377 		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
378 		       (unsigned)pool->size / 1024);
379 		return 0;
380 	}
381 
382 	kfree(pages);
383 no_pages:
384 	kfree(bitmap);
385 no_bitmap:
386 	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
387 	       (unsigned)pool->size / 1024);
388 	return -ENOMEM;
389 }
390 /*
391  * CMA is activated by core_initcall, so we must be called after it.
392  */
393 postcore_initcall(atomic_pool_init);
394 
395 struct dma_contig_early_reserve {
396 	phys_addr_t base;
397 	unsigned long size;
398 };
399 
400 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
401 
402 static int dma_mmu_remap_num __initdata;
403 
404 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
405 {
406 	dma_mmu_remap[dma_mmu_remap_num].base = base;
407 	dma_mmu_remap[dma_mmu_remap_num].size = size;
408 	dma_mmu_remap_num++;
409 }
410 
411 void __init dma_contiguous_remap(void)
412 {
413 	int i;
414 	for (i = 0; i < dma_mmu_remap_num; i++) {
415 		phys_addr_t start = dma_mmu_remap[i].base;
416 		phys_addr_t end = start + dma_mmu_remap[i].size;
417 		struct map_desc map;
418 		unsigned long addr;
419 
420 		if (end > arm_lowmem_limit)
421 			end = arm_lowmem_limit;
422 		if (start >= end)
423 			continue;
424 
425 		map.pfn = __phys_to_pfn(start);
426 		map.virtual = __phys_to_virt(start);
427 		map.length = end - start;
428 		map.type = MT_MEMORY_DMA_READY;
429 
430 		/*
431 		 * Clear previous low-memory mapping
432 		 */
433 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
434 		     addr += PMD_SIZE)
435 			pmd_clear(pmd_off_k(addr));
436 
437 		iotable_init(&map, 1);
438 	}
439 }
440 
441 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
442 			    void *data)
443 {
444 	struct page *page = virt_to_page(addr);
445 	pgprot_t prot = *(pgprot_t *)data;
446 
447 	set_pte_ext(pte, mk_pte(page, prot), 0);
448 	return 0;
449 }
450 
451 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
452 {
453 	unsigned long start = (unsigned long) page_address(page);
454 	unsigned end = start + size;
455 
456 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
457 	dsb();
458 	flush_tlb_kernel_range(start, end);
459 }
460 
461 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
462 				 pgprot_t prot, struct page **ret_page,
463 				 const void *caller)
464 {
465 	struct page *page;
466 	void *ptr;
467 	page = __dma_alloc_buffer(dev, size, gfp);
468 	if (!page)
469 		return NULL;
470 
471 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
472 	if (!ptr) {
473 		__dma_free_buffer(page, size);
474 		return NULL;
475 	}
476 
477 	*ret_page = page;
478 	return ptr;
479 }
480 
481 static void *__alloc_from_pool(size_t size, struct page **ret_page)
482 {
483 	struct dma_pool *pool = &atomic_pool;
484 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
485 	unsigned int pageno;
486 	unsigned long flags;
487 	void *ptr = NULL;
488 	unsigned long align_mask;
489 
490 	if (!pool->vaddr) {
491 		WARN(1, "coherent pool not initialised!\n");
492 		return NULL;
493 	}
494 
495 	/*
496 	 * Align the region allocation - allocations from pool are rather
497 	 * small, so align them to their order in pages, minimum is a page
498 	 * size. This helps reduce fragmentation of the DMA space.
499 	 */
500 	align_mask = (1 << get_order(size)) - 1;
501 
502 	spin_lock_irqsave(&pool->lock, flags);
503 	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
504 					    0, count, align_mask);
505 	if (pageno < pool->nr_pages) {
506 		bitmap_set(pool->bitmap, pageno, count);
507 		ptr = pool->vaddr + PAGE_SIZE * pageno;
508 		*ret_page = pool->pages[pageno];
509 	} else {
510 		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
511 			    "Please increase it with coherent_pool= kernel parameter!\n",
512 			    (unsigned)pool->size / 1024);
513 	}
514 	spin_unlock_irqrestore(&pool->lock, flags);
515 
516 	return ptr;
517 }
518 
519 static bool __in_atomic_pool(void *start, size_t size)
520 {
521 	struct dma_pool *pool = &atomic_pool;
522 	void *end = start + size;
523 	void *pool_start = pool->vaddr;
524 	void *pool_end = pool->vaddr + pool->size;
525 
526 	if (start < pool_start || start >= pool_end)
527 		return false;
528 
529 	if (end <= pool_end)
530 		return true;
531 
532 	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
533 	     start, end - 1, pool_start, pool_end - 1);
534 
535 	return false;
536 }
537 
538 static int __free_from_pool(void *start, size_t size)
539 {
540 	struct dma_pool *pool = &atomic_pool;
541 	unsigned long pageno, count;
542 	unsigned long flags;
543 
544 	if (!__in_atomic_pool(start, size))
545 		return 0;
546 
547 	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
548 	count = size >> PAGE_SHIFT;
549 
550 	spin_lock_irqsave(&pool->lock, flags);
551 	bitmap_clear(pool->bitmap, pageno, count);
552 	spin_unlock_irqrestore(&pool->lock, flags);
553 
554 	return 1;
555 }
556 
557 static void *__alloc_from_contiguous(struct device *dev, size_t size,
558 				     pgprot_t prot, struct page **ret_page,
559 				     const void *caller)
560 {
561 	unsigned long order = get_order(size);
562 	size_t count = size >> PAGE_SHIFT;
563 	struct page *page;
564 	void *ptr;
565 
566 	page = dma_alloc_from_contiguous(dev, count, order);
567 	if (!page)
568 		return NULL;
569 
570 	__dma_clear_buffer(page, size);
571 
572 	if (PageHighMem(page)) {
573 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
574 		if (!ptr) {
575 			dma_release_from_contiguous(dev, page, count);
576 			return NULL;
577 		}
578 	} else {
579 		__dma_remap(page, size, prot);
580 		ptr = page_address(page);
581 	}
582 	*ret_page = page;
583 	return ptr;
584 }
585 
586 static void __free_from_contiguous(struct device *dev, struct page *page,
587 				   void *cpu_addr, size_t size)
588 {
589 	if (PageHighMem(page))
590 		__dma_free_remap(cpu_addr, size);
591 	else
592 		__dma_remap(page, size, pgprot_kernel);
593 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
594 }
595 
596 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
597 {
598 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
599 			    pgprot_writecombine(prot) :
600 			    pgprot_dmacoherent(prot);
601 	return prot;
602 }
603 
604 #define nommu() 0
605 
606 #else	/* !CONFIG_MMU */
607 
608 #define nommu() 1
609 
610 #define __get_dma_pgprot(attrs, prot)	__pgprot(0)
611 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
612 #define __alloc_from_pool(size, ret_page)			NULL
613 #define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
614 #define __free_from_pool(cpu_addr, size)			0
615 #define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
616 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
617 
618 #endif	/* CONFIG_MMU */
619 
620 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
621 				   struct page **ret_page)
622 {
623 	struct page *page;
624 	page = __dma_alloc_buffer(dev, size, gfp);
625 	if (!page)
626 		return NULL;
627 
628 	*ret_page = page;
629 	return page_address(page);
630 }
631 
632 
633 
634 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
635 			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
636 {
637 	u64 mask = get_coherent_dma_mask(dev);
638 	struct page *page = NULL;
639 	void *addr;
640 
641 #ifdef CONFIG_DMA_API_DEBUG
642 	u64 limit = (mask + 1) & ~mask;
643 	if (limit && size >= limit) {
644 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
645 			size, mask);
646 		return NULL;
647 	}
648 #endif
649 
650 	if (!mask)
651 		return NULL;
652 
653 	if (mask < 0xffffffffULL)
654 		gfp |= GFP_DMA;
655 
656 	/*
657 	 * Following is a work-around (a.k.a. hack) to prevent pages
658 	 * with __GFP_COMP being passed to split_page() which cannot
659 	 * handle them.  The real problem is that this flag probably
660 	 * should be 0 on ARM as it is not supported on this
661 	 * platform; see CONFIG_HUGETLBFS.
662 	 */
663 	gfp &= ~(__GFP_COMP);
664 
665 	*handle = DMA_ERROR_CODE;
666 	size = PAGE_ALIGN(size);
667 
668 	if (is_coherent || nommu())
669 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
670 	else if (!(gfp & __GFP_WAIT))
671 		addr = __alloc_from_pool(size, &page);
672 	else if (!IS_ENABLED(CONFIG_CMA))
673 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
674 	else
675 		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
676 
677 	if (addr)
678 		*handle = pfn_to_dma(dev, page_to_pfn(page));
679 
680 	return addr;
681 }
682 
683 /*
684  * Allocate DMA-coherent memory space and return both the kernel remapped
685  * virtual and bus address for that space.
686  */
687 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
688 		    gfp_t gfp, struct dma_attrs *attrs)
689 {
690 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
691 	void *memory;
692 
693 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
694 		return memory;
695 
696 	return __dma_alloc(dev, size, handle, gfp, prot, false,
697 			   __builtin_return_address(0));
698 }
699 
700 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
701 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
702 {
703 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
704 	void *memory;
705 
706 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
707 		return memory;
708 
709 	return __dma_alloc(dev, size, handle, gfp, prot, true,
710 			   __builtin_return_address(0));
711 }
712 
713 /*
714  * Create userspace mapping for the DMA-coherent memory.
715  */
716 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
717 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
718 		 struct dma_attrs *attrs)
719 {
720 	int ret = -ENXIO;
721 #ifdef CONFIG_MMU
722 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
723 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
724 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
725 	unsigned long off = vma->vm_pgoff;
726 
727 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
728 
729 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
730 		return ret;
731 
732 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
733 		ret = remap_pfn_range(vma, vma->vm_start,
734 				      pfn + off,
735 				      vma->vm_end - vma->vm_start,
736 				      vma->vm_page_prot);
737 	}
738 #endif	/* CONFIG_MMU */
739 
740 	return ret;
741 }
742 
743 /*
744  * Free a buffer as defined by the above mapping.
745  */
746 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
747 			   dma_addr_t handle, struct dma_attrs *attrs,
748 			   bool is_coherent)
749 {
750 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
751 
752 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
753 		return;
754 
755 	size = PAGE_ALIGN(size);
756 
757 	if (is_coherent || nommu()) {
758 		__dma_free_buffer(page, size);
759 	} else if (__free_from_pool(cpu_addr, size)) {
760 		return;
761 	} else if (!IS_ENABLED(CONFIG_CMA)) {
762 		__dma_free_remap(cpu_addr, size);
763 		__dma_free_buffer(page, size);
764 	} else {
765 		/*
766 		 * Non-atomic allocations cannot be freed with IRQs disabled
767 		 */
768 		WARN_ON(irqs_disabled());
769 		__free_from_contiguous(dev, page, cpu_addr, size);
770 	}
771 }
772 
773 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
774 		  dma_addr_t handle, struct dma_attrs *attrs)
775 {
776 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
777 }
778 
779 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
780 				  dma_addr_t handle, struct dma_attrs *attrs)
781 {
782 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
783 }
784 
785 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
786 		 void *cpu_addr, dma_addr_t handle, size_t size,
787 		 struct dma_attrs *attrs)
788 {
789 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
790 	int ret;
791 
792 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
793 	if (unlikely(ret))
794 		return ret;
795 
796 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
797 	return 0;
798 }
799 
800 static void dma_cache_maint_page(struct page *page, unsigned long offset,
801 	size_t size, enum dma_data_direction dir,
802 	void (*op)(const void *, size_t, int))
803 {
804 	unsigned long pfn;
805 	size_t left = size;
806 
807 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
808 	offset %= PAGE_SIZE;
809 
810 	/*
811 	 * A single sg entry may refer to multiple physically contiguous
812 	 * pages.  But we still need to process highmem pages individually.
813 	 * If highmem is not configured then the bulk of this loop gets
814 	 * optimized out.
815 	 */
816 	do {
817 		size_t len = left;
818 		void *vaddr;
819 
820 		page = pfn_to_page(pfn);
821 
822 		if (PageHighMem(page)) {
823 			if (len + offset > PAGE_SIZE)
824 				len = PAGE_SIZE - offset;
825 			vaddr = kmap_high_get(page);
826 			if (vaddr) {
827 				vaddr += offset;
828 				op(vaddr, len, dir);
829 				kunmap_high(page);
830 			} else if (cache_is_vipt()) {
831 				/* unmapped pages might still be cached */
832 				vaddr = kmap_atomic(page);
833 				op(vaddr + offset, len, dir);
834 				kunmap_atomic(vaddr);
835 			}
836 		} else {
837 			vaddr = page_address(page) + offset;
838 			op(vaddr, len, dir);
839 		}
840 		offset = 0;
841 		pfn++;
842 		left -= len;
843 	} while (left);
844 }
845 
846 /*
847  * Make an area consistent for devices.
848  * Note: Drivers should NOT use this function directly, as it will break
849  * platforms with CONFIG_DMABOUNCE.
850  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
851  */
852 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
853 	size_t size, enum dma_data_direction dir)
854 {
855 	unsigned long paddr;
856 
857 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
858 
859 	paddr = page_to_phys(page) + off;
860 	if (dir == DMA_FROM_DEVICE) {
861 		outer_inv_range(paddr, paddr + size);
862 	} else {
863 		outer_clean_range(paddr, paddr + size);
864 	}
865 	/* FIXME: non-speculating: flush on bidirectional mappings? */
866 }
867 
868 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
869 	size_t size, enum dma_data_direction dir)
870 {
871 	unsigned long paddr = page_to_phys(page) + off;
872 
873 	/* FIXME: non-speculating: not required */
874 	/* don't bother invalidating if DMA to device */
875 	if (dir != DMA_TO_DEVICE)
876 		outer_inv_range(paddr, paddr + size);
877 
878 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
879 
880 	/*
881 	 * Mark the D-cache clean for this page to avoid extra flushing.
882 	 */
883 	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
884 		set_bit(PG_dcache_clean, &page->flags);
885 }
886 
887 /**
888  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
889  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
890  * @sg: list of buffers
891  * @nents: number of buffers to map
892  * @dir: DMA transfer direction
893  *
894  * Map a set of buffers described by scatterlist in streaming mode for DMA.
895  * This is the scatter-gather version of the dma_map_single interface.
896  * Here the scatter gather list elements are each tagged with the
897  * appropriate dma address and length.  They are obtained via
898  * sg_dma_{address,length}.
899  *
900  * Device ownership issues as mentioned for dma_map_single are the same
901  * here.
902  */
903 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
904 		enum dma_data_direction dir, struct dma_attrs *attrs)
905 {
906 	struct dma_map_ops *ops = get_dma_ops(dev);
907 	struct scatterlist *s;
908 	int i, j;
909 
910 	for_each_sg(sg, s, nents, i) {
911 #ifdef CONFIG_NEED_SG_DMA_LENGTH
912 		s->dma_length = s->length;
913 #endif
914 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
915 						s->length, dir, attrs);
916 		if (dma_mapping_error(dev, s->dma_address))
917 			goto bad_mapping;
918 	}
919 	return nents;
920 
921  bad_mapping:
922 	for_each_sg(sg, s, i, j)
923 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
924 	return 0;
925 }
926 
927 /**
928  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
929  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
930  * @sg: list of buffers
931  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
932  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
933  *
934  * Unmap a set of streaming mode DMA translations.  Again, CPU access
935  * rules concerning calls here are the same as for dma_unmap_single().
936  */
937 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
938 		enum dma_data_direction dir, struct dma_attrs *attrs)
939 {
940 	struct dma_map_ops *ops = get_dma_ops(dev);
941 	struct scatterlist *s;
942 
943 	int i;
944 
945 	for_each_sg(sg, s, nents, i)
946 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
947 }
948 
949 /**
950  * arm_dma_sync_sg_for_cpu
951  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
952  * @sg: list of buffers
953  * @nents: number of buffers to map (returned from dma_map_sg)
954  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
955  */
956 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
957 			int nents, enum dma_data_direction dir)
958 {
959 	struct dma_map_ops *ops = get_dma_ops(dev);
960 	struct scatterlist *s;
961 	int i;
962 
963 	for_each_sg(sg, s, nents, i)
964 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
965 					 dir);
966 }
967 
968 /**
969  * arm_dma_sync_sg_for_device
970  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
971  * @sg: list of buffers
972  * @nents: number of buffers to map (returned from dma_map_sg)
973  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
974  */
975 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
976 			int nents, enum dma_data_direction dir)
977 {
978 	struct dma_map_ops *ops = get_dma_ops(dev);
979 	struct scatterlist *s;
980 	int i;
981 
982 	for_each_sg(sg, s, nents, i)
983 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
984 					    dir);
985 }
986 
987 /*
988  * Return whether the given device DMA address mask can be supported
989  * properly.  For example, if your device can only drive the low 24-bits
990  * during bus mastering, then you would pass 0x00ffffff as the mask
991  * to this function.
992  */
993 int dma_supported(struct device *dev, u64 mask)
994 {
995 	if (mask < (u64)arm_dma_limit)
996 		return 0;
997 	return 1;
998 }
999 EXPORT_SYMBOL(dma_supported);
1000 
1001 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1002 {
1003 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1004 		return -EIO;
1005 
1006 	*dev->dma_mask = dma_mask;
1007 
1008 	return 0;
1009 }
1010 
1011 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1012 
1013 static int __init dma_debug_do_init(void)
1014 {
1015 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1016 	return 0;
1017 }
1018 fs_initcall(dma_debug_do_init);
1019 
1020 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1021 
1022 /* IOMMU */
1023 
1024 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1025 				      size_t size)
1026 {
1027 	unsigned int order = get_order(size);
1028 	unsigned int align = 0;
1029 	unsigned int count, start;
1030 	unsigned long flags;
1031 
1032 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1033 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1034 
1035 	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1036 		 (1 << mapping->order) - 1) >> mapping->order;
1037 
1038 	if (order > mapping->order)
1039 		align = (1 << (order - mapping->order)) - 1;
1040 
1041 	spin_lock_irqsave(&mapping->lock, flags);
1042 	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1043 					   count, align);
1044 	if (start > mapping->bits) {
1045 		spin_unlock_irqrestore(&mapping->lock, flags);
1046 		return DMA_ERROR_CODE;
1047 	}
1048 
1049 	bitmap_set(mapping->bitmap, start, count);
1050 	spin_unlock_irqrestore(&mapping->lock, flags);
1051 
1052 	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1053 }
1054 
1055 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1056 			       dma_addr_t addr, size_t size)
1057 {
1058 	unsigned int start = (addr - mapping->base) >>
1059 			     (mapping->order + PAGE_SHIFT);
1060 	unsigned int count = ((size >> PAGE_SHIFT) +
1061 			      (1 << mapping->order) - 1) >> mapping->order;
1062 	unsigned long flags;
1063 
1064 	spin_lock_irqsave(&mapping->lock, flags);
1065 	bitmap_clear(mapping->bitmap, start, count);
1066 	spin_unlock_irqrestore(&mapping->lock, flags);
1067 }
1068 
1069 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1070 					  gfp_t gfp, struct dma_attrs *attrs)
1071 {
1072 	struct page **pages;
1073 	int count = size >> PAGE_SHIFT;
1074 	int array_size = count * sizeof(struct page *);
1075 	int i = 0;
1076 
1077 	if (array_size <= PAGE_SIZE)
1078 		pages = kzalloc(array_size, gfp);
1079 	else
1080 		pages = vzalloc(array_size);
1081 	if (!pages)
1082 		return NULL;
1083 
1084 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1085 	{
1086 		unsigned long order = get_order(size);
1087 		struct page *page;
1088 
1089 		page = dma_alloc_from_contiguous(dev, count, order);
1090 		if (!page)
1091 			goto error;
1092 
1093 		__dma_clear_buffer(page, size);
1094 
1095 		for (i = 0; i < count; i++)
1096 			pages[i] = page + i;
1097 
1098 		return pages;
1099 	}
1100 
1101 	/*
1102 	 * IOMMU can map any pages, so himem can also be used here
1103 	 */
1104 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1105 
1106 	while (count) {
1107 		int j, order = __fls(count);
1108 
1109 		pages[i] = alloc_pages(gfp, order);
1110 		while (!pages[i] && order)
1111 			pages[i] = alloc_pages(gfp, --order);
1112 		if (!pages[i])
1113 			goto error;
1114 
1115 		if (order) {
1116 			split_page(pages[i], order);
1117 			j = 1 << order;
1118 			while (--j)
1119 				pages[i + j] = pages[i] + j;
1120 		}
1121 
1122 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1123 		i += 1 << order;
1124 		count -= 1 << order;
1125 	}
1126 
1127 	return pages;
1128 error:
1129 	while (i--)
1130 		if (pages[i])
1131 			__free_pages(pages[i], 0);
1132 	if (array_size <= PAGE_SIZE)
1133 		kfree(pages);
1134 	else
1135 		vfree(pages);
1136 	return NULL;
1137 }
1138 
1139 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1140 			       size_t size, struct dma_attrs *attrs)
1141 {
1142 	int count = size >> PAGE_SHIFT;
1143 	int array_size = count * sizeof(struct page *);
1144 	int i;
1145 
1146 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1147 		dma_release_from_contiguous(dev, pages[0], count);
1148 	} else {
1149 		for (i = 0; i < count; i++)
1150 			if (pages[i])
1151 				__free_pages(pages[i], 0);
1152 	}
1153 
1154 	if (array_size <= PAGE_SIZE)
1155 		kfree(pages);
1156 	else
1157 		vfree(pages);
1158 	return 0;
1159 }
1160 
1161 /*
1162  * Create a CPU mapping for a specified pages
1163  */
1164 static void *
1165 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1166 		    const void *caller)
1167 {
1168 	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1169 	struct vm_struct *area;
1170 	unsigned long p;
1171 
1172 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1173 				  caller);
1174 	if (!area)
1175 		return NULL;
1176 
1177 	area->pages = pages;
1178 	area->nr_pages = nr_pages;
1179 	p = (unsigned long)area->addr;
1180 
1181 	for (i = 0; i < nr_pages; i++) {
1182 		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1183 		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1184 			goto err;
1185 		p += PAGE_SIZE;
1186 	}
1187 	return area->addr;
1188 err:
1189 	unmap_kernel_range((unsigned long)area->addr, size);
1190 	vunmap(area->addr);
1191 	return NULL;
1192 }
1193 
1194 /*
1195  * Create a mapping in device IO address space for specified pages
1196  */
1197 static dma_addr_t
1198 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1199 {
1200 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1201 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1202 	dma_addr_t dma_addr, iova;
1203 	int i, ret = DMA_ERROR_CODE;
1204 
1205 	dma_addr = __alloc_iova(mapping, size);
1206 	if (dma_addr == DMA_ERROR_CODE)
1207 		return dma_addr;
1208 
1209 	iova = dma_addr;
1210 	for (i = 0; i < count; ) {
1211 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1212 		phys_addr_t phys = page_to_phys(pages[i]);
1213 		unsigned int len, j;
1214 
1215 		for (j = i + 1; j < count; j++, next_pfn++)
1216 			if (page_to_pfn(pages[j]) != next_pfn)
1217 				break;
1218 
1219 		len = (j - i) << PAGE_SHIFT;
1220 		ret = iommu_map(mapping->domain, iova, phys, len, 0);
1221 		if (ret < 0)
1222 			goto fail;
1223 		iova += len;
1224 		i = j;
1225 	}
1226 	return dma_addr;
1227 fail:
1228 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1229 	__free_iova(mapping, dma_addr, size);
1230 	return DMA_ERROR_CODE;
1231 }
1232 
1233 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1234 {
1235 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1236 
1237 	/*
1238 	 * add optional in-page offset from iova to size and align
1239 	 * result to page size
1240 	 */
1241 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1242 	iova &= PAGE_MASK;
1243 
1244 	iommu_unmap(mapping->domain, iova, size);
1245 	__free_iova(mapping, iova, size);
1246 	return 0;
1247 }
1248 
1249 static struct page **__atomic_get_pages(void *addr)
1250 {
1251 	struct dma_pool *pool = &atomic_pool;
1252 	struct page **pages = pool->pages;
1253 	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1254 
1255 	return pages + offs;
1256 }
1257 
1258 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1259 {
1260 	struct vm_struct *area;
1261 
1262 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1263 		return __atomic_get_pages(cpu_addr);
1264 
1265 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1266 		return cpu_addr;
1267 
1268 	area = find_vm_area(cpu_addr);
1269 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1270 		return area->pages;
1271 	return NULL;
1272 }
1273 
1274 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1275 				  dma_addr_t *handle)
1276 {
1277 	struct page *page;
1278 	void *addr;
1279 
1280 	addr = __alloc_from_pool(size, &page);
1281 	if (!addr)
1282 		return NULL;
1283 
1284 	*handle = __iommu_create_mapping(dev, &page, size);
1285 	if (*handle == DMA_ERROR_CODE)
1286 		goto err_mapping;
1287 
1288 	return addr;
1289 
1290 err_mapping:
1291 	__free_from_pool(addr, size);
1292 	return NULL;
1293 }
1294 
1295 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1296 				dma_addr_t handle, size_t size)
1297 {
1298 	__iommu_remove_mapping(dev, handle, size);
1299 	__free_from_pool(cpu_addr, size);
1300 }
1301 
1302 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1303 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1304 {
1305 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1306 	struct page **pages;
1307 	void *addr = NULL;
1308 
1309 	*handle = DMA_ERROR_CODE;
1310 	size = PAGE_ALIGN(size);
1311 
1312 	if (gfp & GFP_ATOMIC)
1313 		return __iommu_alloc_atomic(dev, size, handle);
1314 
1315 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1316 	if (!pages)
1317 		return NULL;
1318 
1319 	*handle = __iommu_create_mapping(dev, pages, size);
1320 	if (*handle == DMA_ERROR_CODE)
1321 		goto err_buffer;
1322 
1323 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1324 		return pages;
1325 
1326 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1327 				   __builtin_return_address(0));
1328 	if (!addr)
1329 		goto err_mapping;
1330 
1331 	return addr;
1332 
1333 err_mapping:
1334 	__iommu_remove_mapping(dev, *handle, size);
1335 err_buffer:
1336 	__iommu_free_buffer(dev, pages, size, attrs);
1337 	return NULL;
1338 }
1339 
1340 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1341 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1342 		    struct dma_attrs *attrs)
1343 {
1344 	unsigned long uaddr = vma->vm_start;
1345 	unsigned long usize = vma->vm_end - vma->vm_start;
1346 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1347 
1348 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1349 
1350 	if (!pages)
1351 		return -ENXIO;
1352 
1353 	do {
1354 		int ret = vm_insert_page(vma, uaddr, *pages++);
1355 		if (ret) {
1356 			pr_err("Remapping memory failed: %d\n", ret);
1357 			return ret;
1358 		}
1359 		uaddr += PAGE_SIZE;
1360 		usize -= PAGE_SIZE;
1361 	} while (usize > 0);
1362 
1363 	return 0;
1364 }
1365 
1366 /*
1367  * free a page as defined by the above mapping.
1368  * Must not be called with IRQs disabled.
1369  */
1370 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1371 			  dma_addr_t handle, struct dma_attrs *attrs)
1372 {
1373 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1374 	size = PAGE_ALIGN(size);
1375 
1376 	if (!pages) {
1377 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1378 		return;
1379 	}
1380 
1381 	if (__in_atomic_pool(cpu_addr, size)) {
1382 		__iommu_free_atomic(dev, cpu_addr, handle, size);
1383 		return;
1384 	}
1385 
1386 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1387 		unmap_kernel_range((unsigned long)cpu_addr, size);
1388 		vunmap(cpu_addr);
1389 	}
1390 
1391 	__iommu_remove_mapping(dev, handle, size);
1392 	__iommu_free_buffer(dev, pages, size, attrs);
1393 }
1394 
1395 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1396 				 void *cpu_addr, dma_addr_t dma_addr,
1397 				 size_t size, struct dma_attrs *attrs)
1398 {
1399 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1400 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1401 
1402 	if (!pages)
1403 		return -ENXIO;
1404 
1405 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1406 					 GFP_KERNEL);
1407 }
1408 
1409 /*
1410  * Map a part of the scatter-gather list into contiguous io address space
1411  */
1412 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1413 			  size_t size, dma_addr_t *handle,
1414 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1415 			  bool is_coherent)
1416 {
1417 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1418 	dma_addr_t iova, iova_base;
1419 	int ret = 0;
1420 	unsigned int count;
1421 	struct scatterlist *s;
1422 
1423 	size = PAGE_ALIGN(size);
1424 	*handle = DMA_ERROR_CODE;
1425 
1426 	iova_base = iova = __alloc_iova(mapping, size);
1427 	if (iova == DMA_ERROR_CODE)
1428 		return -ENOMEM;
1429 
1430 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1431 		phys_addr_t phys = page_to_phys(sg_page(s));
1432 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1433 
1434 		if (!is_coherent &&
1435 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1436 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1437 
1438 		ret = iommu_map(mapping->domain, iova, phys, len, 0);
1439 		if (ret < 0)
1440 			goto fail;
1441 		count += len >> PAGE_SHIFT;
1442 		iova += len;
1443 	}
1444 	*handle = iova_base;
1445 
1446 	return 0;
1447 fail:
1448 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1449 	__free_iova(mapping, iova_base, size);
1450 	return ret;
1451 }
1452 
1453 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1454 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1455 		     bool is_coherent)
1456 {
1457 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1458 	int i, count = 0;
1459 	unsigned int offset = s->offset;
1460 	unsigned int size = s->offset + s->length;
1461 	unsigned int max = dma_get_max_seg_size(dev);
1462 
1463 	for (i = 1; i < nents; i++) {
1464 		s = sg_next(s);
1465 
1466 		s->dma_address = DMA_ERROR_CODE;
1467 		s->dma_length = 0;
1468 
1469 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1470 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1471 			    dir, attrs, is_coherent) < 0)
1472 				goto bad_mapping;
1473 
1474 			dma->dma_address += offset;
1475 			dma->dma_length = size - offset;
1476 
1477 			size = offset = s->offset;
1478 			start = s;
1479 			dma = sg_next(dma);
1480 			count += 1;
1481 		}
1482 		size += s->length;
1483 	}
1484 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1485 		is_coherent) < 0)
1486 		goto bad_mapping;
1487 
1488 	dma->dma_address += offset;
1489 	dma->dma_length = size - offset;
1490 
1491 	return count+1;
1492 
1493 bad_mapping:
1494 	for_each_sg(sg, s, count, i)
1495 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1496 	return 0;
1497 }
1498 
1499 /**
1500  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1501  * @dev: valid struct device pointer
1502  * @sg: list of buffers
1503  * @nents: number of buffers to map
1504  * @dir: DMA transfer direction
1505  *
1506  * Map a set of i/o coherent buffers described by scatterlist in streaming
1507  * mode for DMA. The scatter gather list elements are merged together (if
1508  * possible) and tagged with the appropriate dma address and length. They are
1509  * obtained via sg_dma_{address,length}.
1510  */
1511 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1512 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1513 {
1514 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1515 }
1516 
1517 /**
1518  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1519  * @dev: valid struct device pointer
1520  * @sg: list of buffers
1521  * @nents: number of buffers to map
1522  * @dir: DMA transfer direction
1523  *
1524  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1525  * The scatter gather list elements are merged together (if possible) and
1526  * tagged with the appropriate dma address and length. They are obtained via
1527  * sg_dma_{address,length}.
1528  */
1529 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1530 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1531 {
1532 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1533 }
1534 
1535 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1536 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1537 		bool is_coherent)
1538 {
1539 	struct scatterlist *s;
1540 	int i;
1541 
1542 	for_each_sg(sg, s, nents, i) {
1543 		if (sg_dma_len(s))
1544 			__iommu_remove_mapping(dev, sg_dma_address(s),
1545 					       sg_dma_len(s));
1546 		if (!is_coherent &&
1547 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1548 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1549 					      s->length, dir);
1550 	}
1551 }
1552 
1553 /**
1554  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1555  * @dev: valid struct device pointer
1556  * @sg: list of buffers
1557  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1558  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1559  *
1560  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1561  * rules concerning calls here are the same as for dma_unmap_single().
1562  */
1563 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1564 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1565 {
1566 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1567 }
1568 
1569 /**
1570  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1571  * @dev: valid struct device pointer
1572  * @sg: list of buffers
1573  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1574  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1575  *
1576  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1577  * rules concerning calls here are the same as for dma_unmap_single().
1578  */
1579 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1580 			enum dma_data_direction dir, struct dma_attrs *attrs)
1581 {
1582 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1583 }
1584 
1585 /**
1586  * arm_iommu_sync_sg_for_cpu
1587  * @dev: valid struct device pointer
1588  * @sg: list of buffers
1589  * @nents: number of buffers to map (returned from dma_map_sg)
1590  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1591  */
1592 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1593 			int nents, enum dma_data_direction dir)
1594 {
1595 	struct scatterlist *s;
1596 	int i;
1597 
1598 	for_each_sg(sg, s, nents, i)
1599 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1600 
1601 }
1602 
1603 /**
1604  * arm_iommu_sync_sg_for_device
1605  * @dev: valid struct device pointer
1606  * @sg: list of buffers
1607  * @nents: number of buffers to map (returned from dma_map_sg)
1608  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1609  */
1610 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1611 			int nents, enum dma_data_direction dir)
1612 {
1613 	struct scatterlist *s;
1614 	int i;
1615 
1616 	for_each_sg(sg, s, nents, i)
1617 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1618 }
1619 
1620 
1621 /**
1622  * arm_coherent_iommu_map_page
1623  * @dev: valid struct device pointer
1624  * @page: page that buffer resides in
1625  * @offset: offset into page for start of buffer
1626  * @size: size of buffer to map
1627  * @dir: DMA transfer direction
1628  *
1629  * Coherent IOMMU aware version of arm_dma_map_page()
1630  */
1631 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1632 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1633 	     struct dma_attrs *attrs)
1634 {
1635 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1636 	dma_addr_t dma_addr;
1637 	int ret, len = PAGE_ALIGN(size + offset);
1638 
1639 	dma_addr = __alloc_iova(mapping, len);
1640 	if (dma_addr == DMA_ERROR_CODE)
1641 		return dma_addr;
1642 
1643 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1644 	if (ret < 0)
1645 		goto fail;
1646 
1647 	return dma_addr + offset;
1648 fail:
1649 	__free_iova(mapping, dma_addr, len);
1650 	return DMA_ERROR_CODE;
1651 }
1652 
1653 /**
1654  * arm_iommu_map_page
1655  * @dev: valid struct device pointer
1656  * @page: page that buffer resides in
1657  * @offset: offset into page for start of buffer
1658  * @size: size of buffer to map
1659  * @dir: DMA transfer direction
1660  *
1661  * IOMMU aware version of arm_dma_map_page()
1662  */
1663 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1664 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1665 	     struct dma_attrs *attrs)
1666 {
1667 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1668 		__dma_page_cpu_to_dev(page, offset, size, dir);
1669 
1670 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1671 }
1672 
1673 /**
1674  * arm_coherent_iommu_unmap_page
1675  * @dev: valid struct device pointer
1676  * @handle: DMA address of buffer
1677  * @size: size of buffer (same as passed to dma_map_page)
1678  * @dir: DMA transfer direction (same as passed to dma_map_page)
1679  *
1680  * Coherent IOMMU aware version of arm_dma_unmap_page()
1681  */
1682 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1683 		size_t size, enum dma_data_direction dir,
1684 		struct dma_attrs *attrs)
1685 {
1686 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1687 	dma_addr_t iova = handle & PAGE_MASK;
1688 	int offset = handle & ~PAGE_MASK;
1689 	int len = PAGE_ALIGN(size + offset);
1690 
1691 	if (!iova)
1692 		return;
1693 
1694 	iommu_unmap(mapping->domain, iova, len);
1695 	__free_iova(mapping, iova, len);
1696 }
1697 
1698 /**
1699  * arm_iommu_unmap_page
1700  * @dev: valid struct device pointer
1701  * @handle: DMA address of buffer
1702  * @size: size of buffer (same as passed to dma_map_page)
1703  * @dir: DMA transfer direction (same as passed to dma_map_page)
1704  *
1705  * IOMMU aware version of arm_dma_unmap_page()
1706  */
1707 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1708 		size_t size, enum dma_data_direction dir,
1709 		struct dma_attrs *attrs)
1710 {
1711 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1712 	dma_addr_t iova = handle & PAGE_MASK;
1713 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1714 	int offset = handle & ~PAGE_MASK;
1715 	int len = PAGE_ALIGN(size + offset);
1716 
1717 	if (!iova)
1718 		return;
1719 
1720 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1721 		__dma_page_dev_to_cpu(page, offset, size, dir);
1722 
1723 	iommu_unmap(mapping->domain, iova, len);
1724 	__free_iova(mapping, iova, len);
1725 }
1726 
1727 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1728 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1729 {
1730 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1731 	dma_addr_t iova = handle & PAGE_MASK;
1732 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1733 	unsigned int offset = handle & ~PAGE_MASK;
1734 
1735 	if (!iova)
1736 		return;
1737 
1738 	__dma_page_dev_to_cpu(page, offset, size, dir);
1739 }
1740 
1741 static void arm_iommu_sync_single_for_device(struct device *dev,
1742 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1743 {
1744 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1745 	dma_addr_t iova = handle & PAGE_MASK;
1746 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1747 	unsigned int offset = handle & ~PAGE_MASK;
1748 
1749 	if (!iova)
1750 		return;
1751 
1752 	__dma_page_cpu_to_dev(page, offset, size, dir);
1753 }
1754 
1755 struct dma_map_ops iommu_ops = {
1756 	.alloc		= arm_iommu_alloc_attrs,
1757 	.free		= arm_iommu_free_attrs,
1758 	.mmap		= arm_iommu_mmap_attrs,
1759 	.get_sgtable	= arm_iommu_get_sgtable,
1760 
1761 	.map_page		= arm_iommu_map_page,
1762 	.unmap_page		= arm_iommu_unmap_page,
1763 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1764 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1765 
1766 	.map_sg			= arm_iommu_map_sg,
1767 	.unmap_sg		= arm_iommu_unmap_sg,
1768 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1769 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1770 
1771 	.set_dma_mask		= arm_dma_set_mask,
1772 };
1773 
1774 struct dma_map_ops iommu_coherent_ops = {
1775 	.alloc		= arm_iommu_alloc_attrs,
1776 	.free		= arm_iommu_free_attrs,
1777 	.mmap		= arm_iommu_mmap_attrs,
1778 	.get_sgtable	= arm_iommu_get_sgtable,
1779 
1780 	.map_page	= arm_coherent_iommu_map_page,
1781 	.unmap_page	= arm_coherent_iommu_unmap_page,
1782 
1783 	.map_sg		= arm_coherent_iommu_map_sg,
1784 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1785 
1786 	.set_dma_mask	= arm_dma_set_mask,
1787 };
1788 
1789 /**
1790  * arm_iommu_create_mapping
1791  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1792  * @base: start address of the valid IO address space
1793  * @size: size of the valid IO address space
1794  * @order: accuracy of the IO addresses allocations
1795  *
1796  * Creates a mapping structure which holds information about used/unused
1797  * IO address ranges, which is required to perform memory allocation and
1798  * mapping with IOMMU aware functions.
1799  *
1800  * The client device need to be attached to the mapping with
1801  * arm_iommu_attach_device function.
1802  */
1803 struct dma_iommu_mapping *
1804 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1805 			 int order)
1806 {
1807 	unsigned int count = size >> (PAGE_SHIFT + order);
1808 	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1809 	struct dma_iommu_mapping *mapping;
1810 	int err = -ENOMEM;
1811 
1812 	if (!count)
1813 		return ERR_PTR(-EINVAL);
1814 
1815 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1816 	if (!mapping)
1817 		goto err;
1818 
1819 	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1820 	if (!mapping->bitmap)
1821 		goto err2;
1822 
1823 	mapping->base = base;
1824 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1825 	mapping->order = order;
1826 	spin_lock_init(&mapping->lock);
1827 
1828 	mapping->domain = iommu_domain_alloc(bus);
1829 	if (!mapping->domain)
1830 		goto err3;
1831 
1832 	kref_init(&mapping->kref);
1833 	return mapping;
1834 err3:
1835 	kfree(mapping->bitmap);
1836 err2:
1837 	kfree(mapping);
1838 err:
1839 	return ERR_PTR(err);
1840 }
1841 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1842 
1843 static void release_iommu_mapping(struct kref *kref)
1844 {
1845 	struct dma_iommu_mapping *mapping =
1846 		container_of(kref, struct dma_iommu_mapping, kref);
1847 
1848 	iommu_domain_free(mapping->domain);
1849 	kfree(mapping->bitmap);
1850 	kfree(mapping);
1851 }
1852 
1853 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1854 {
1855 	if (mapping)
1856 		kref_put(&mapping->kref, release_iommu_mapping);
1857 }
1858 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1859 
1860 /**
1861  * arm_iommu_attach_device
1862  * @dev: valid struct device pointer
1863  * @mapping: io address space mapping structure (returned from
1864  *	arm_iommu_create_mapping)
1865  *
1866  * Attaches specified io address space mapping to the provided device,
1867  * this replaces the dma operations (dma_map_ops pointer) with the
1868  * IOMMU aware version. More than one client might be attached to
1869  * the same io address space mapping.
1870  */
1871 int arm_iommu_attach_device(struct device *dev,
1872 			    struct dma_iommu_mapping *mapping)
1873 {
1874 	int err;
1875 
1876 	err = iommu_attach_device(mapping->domain, dev);
1877 	if (err)
1878 		return err;
1879 
1880 	kref_get(&mapping->kref);
1881 	dev->archdata.mapping = mapping;
1882 	set_dma_ops(dev, &iommu_ops);
1883 
1884 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1885 	return 0;
1886 }
1887 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1888 
1889 /**
1890  * arm_iommu_detach_device
1891  * @dev: valid struct device pointer
1892  *
1893  * Detaches the provided device from a previously attached map.
1894  * This voids the dma operations (dma_map_ops pointer)
1895  */
1896 void arm_iommu_detach_device(struct device *dev)
1897 {
1898 	struct dma_iommu_mapping *mapping;
1899 
1900 	mapping = to_dma_iommu_mapping(dev);
1901 	if (!mapping) {
1902 		dev_warn(dev, "Not attached\n");
1903 		return;
1904 	}
1905 
1906 	iommu_detach_device(mapping->domain, dev);
1907 	kref_put(&mapping->kref, release_iommu_mapping);
1908 	mapping = NULL;
1909 	set_dma_ops(dev, NULL);
1910 
1911 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1912 }
1913 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1914 
1915 #endif
1916