xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 7a2eb736)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/dma-mapping.c
4  *
5  *  Copyright (C) 2000-2004 Russell King
6  *
7  *  DMA uncached mapping support.
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dma-noncoherent.h>
19 #include <linux/dma-contiguous.h>
20 #include <linux/highmem.h>
21 #include <linux/memblock.h>
22 #include <linux/slab.h>
23 #include <linux/iommu.h>
24 #include <linux/io.h>
25 #include <linux/vmalloc.h>
26 #include <linux/sizes.h>
27 #include <linux/cma.h>
28 
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
38 
39 #include "dma.h"
40 #include "mm.h"
41 
42 struct arm_dma_alloc_args {
43 	struct device *dev;
44 	size_t size;
45 	gfp_t gfp;
46 	pgprot_t prot;
47 	const void *caller;
48 	bool want_vaddr;
49 	int coherent_flag;
50 };
51 
52 struct arm_dma_free_args {
53 	struct device *dev;
54 	size_t size;
55 	void *cpu_addr;
56 	struct page *page;
57 	bool want_vaddr;
58 };
59 
60 #define NORMAL	    0
61 #define COHERENT    1
62 
63 struct arm_dma_allocator {
64 	void *(*alloc)(struct arm_dma_alloc_args *args,
65 		       struct page **ret_page);
66 	void (*free)(struct arm_dma_free_args *args);
67 };
68 
69 struct arm_dma_buffer {
70 	struct list_head list;
71 	void *virt;
72 	struct arm_dma_allocator *allocator;
73 };
74 
75 static LIST_HEAD(arm_dma_bufs);
76 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
77 
78 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
79 {
80 	struct arm_dma_buffer *buf, *found = NULL;
81 	unsigned long flags;
82 
83 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
84 	list_for_each_entry(buf, &arm_dma_bufs, list) {
85 		if (buf->virt == virt) {
86 			list_del(&buf->list);
87 			found = buf;
88 			break;
89 		}
90 	}
91 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
92 	return found;
93 }
94 
95 /*
96  * The DMA API is built upon the notion of "buffer ownership".  A buffer
97  * is either exclusively owned by the CPU (and therefore may be accessed
98  * by it) or exclusively owned by the DMA device.  These helper functions
99  * represent the transitions between these two ownership states.
100  *
101  * Note, however, that on later ARMs, this notion does not work due to
102  * speculative prefetches.  We model our approach on the assumption that
103  * the CPU does do speculative prefetches, which means we clean caches
104  * before transfers and delay cache invalidation until transfer completion.
105  *
106  */
107 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
108 		size_t, enum dma_data_direction);
109 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
110 		size_t, enum dma_data_direction);
111 
112 /**
113  * arm_dma_map_page - map a portion of a page for streaming DMA
114  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
115  * @page: page that buffer resides in
116  * @offset: offset into page for start of buffer
117  * @size: size of buffer to map
118  * @dir: DMA transfer direction
119  *
120  * Ensure that any data held in the cache is appropriately discarded
121  * or written back.
122  *
123  * The device owns this memory once this call has completed.  The CPU
124  * can regain ownership by calling dma_unmap_page().
125  */
126 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
127 	     unsigned long offset, size_t size, enum dma_data_direction dir,
128 	     unsigned long attrs)
129 {
130 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
131 		__dma_page_cpu_to_dev(page, offset, size, dir);
132 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
133 }
134 
135 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
136 	     unsigned long offset, size_t size, enum dma_data_direction dir,
137 	     unsigned long attrs)
138 {
139 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
140 }
141 
142 /**
143  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
144  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
145  * @handle: DMA address of buffer
146  * @size: size of buffer (same as passed to dma_map_page)
147  * @dir: DMA transfer direction (same as passed to dma_map_page)
148  *
149  * Unmap a page streaming mode DMA translation.  The handle and size
150  * must match what was provided in the previous dma_map_page() call.
151  * All other usages are undefined.
152  *
153  * After this call, reads by the CPU to the buffer are guaranteed to see
154  * whatever the device wrote there.
155  */
156 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
157 		size_t size, enum dma_data_direction dir, unsigned long attrs)
158 {
159 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
160 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
161 				      handle & ~PAGE_MASK, size, dir);
162 }
163 
164 static void arm_dma_sync_single_for_cpu(struct device *dev,
165 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
166 {
167 	unsigned int offset = handle & (PAGE_SIZE - 1);
168 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
169 	__dma_page_dev_to_cpu(page, offset, size, dir);
170 }
171 
172 static void arm_dma_sync_single_for_device(struct device *dev,
173 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
174 {
175 	unsigned int offset = handle & (PAGE_SIZE - 1);
176 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
177 	__dma_page_cpu_to_dev(page, offset, size, dir);
178 }
179 
180 const struct dma_map_ops arm_dma_ops = {
181 	.alloc			= arm_dma_alloc,
182 	.free			= arm_dma_free,
183 	.mmap			= arm_dma_mmap,
184 	.get_sgtable		= arm_dma_get_sgtable,
185 	.map_page		= arm_dma_map_page,
186 	.unmap_page		= arm_dma_unmap_page,
187 	.map_sg			= arm_dma_map_sg,
188 	.unmap_sg		= arm_dma_unmap_sg,
189 	.map_resource		= dma_direct_map_resource,
190 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
191 	.sync_single_for_device	= arm_dma_sync_single_for_device,
192 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
193 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
194 	.dma_supported		= arm_dma_supported,
195 };
196 EXPORT_SYMBOL(arm_dma_ops);
197 
198 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
199 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
200 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
201 				  dma_addr_t handle, unsigned long attrs);
202 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
203 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
204 		 unsigned long attrs);
205 
206 const struct dma_map_ops arm_coherent_dma_ops = {
207 	.alloc			= arm_coherent_dma_alloc,
208 	.free			= arm_coherent_dma_free,
209 	.mmap			= arm_coherent_dma_mmap,
210 	.get_sgtable		= arm_dma_get_sgtable,
211 	.map_page		= arm_coherent_dma_map_page,
212 	.map_sg			= arm_dma_map_sg,
213 	.map_resource		= dma_direct_map_resource,
214 	.dma_supported		= arm_dma_supported,
215 };
216 EXPORT_SYMBOL(arm_coherent_dma_ops);
217 
218 static int __dma_supported(struct device *dev, u64 mask, bool warn)
219 {
220 	unsigned long max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
221 
222 	/*
223 	 * Translate the device's DMA mask to a PFN limit.  This
224 	 * PFN number includes the page which we can DMA to.
225 	 */
226 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
227 		if (warn)
228 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
229 				 mask,
230 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
231 				 max_dma_pfn + 1);
232 		return 0;
233 	}
234 
235 	return 1;
236 }
237 
238 static u64 get_coherent_dma_mask(struct device *dev)
239 {
240 	u64 mask = (u64)DMA_BIT_MASK(32);
241 
242 	if (dev) {
243 		mask = dev->coherent_dma_mask;
244 
245 		/*
246 		 * Sanity check the DMA mask - it must be non-zero, and
247 		 * must be able to be satisfied by a DMA allocation.
248 		 */
249 		if (mask == 0) {
250 			dev_warn(dev, "coherent DMA mask is unset\n");
251 			return 0;
252 		}
253 
254 		if (!__dma_supported(dev, mask, true))
255 			return 0;
256 	}
257 
258 	return mask;
259 }
260 
261 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
262 {
263 	/*
264 	 * Ensure that the allocated pages are zeroed, and that any data
265 	 * lurking in the kernel direct-mapped region is invalidated.
266 	 */
267 	if (PageHighMem(page)) {
268 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
269 		phys_addr_t end = base + size;
270 		while (size > 0) {
271 			void *ptr = kmap_atomic(page);
272 			memset(ptr, 0, PAGE_SIZE);
273 			if (coherent_flag != COHERENT)
274 				dmac_flush_range(ptr, ptr + PAGE_SIZE);
275 			kunmap_atomic(ptr);
276 			page++;
277 			size -= PAGE_SIZE;
278 		}
279 		if (coherent_flag != COHERENT)
280 			outer_flush_range(base, end);
281 	} else {
282 		void *ptr = page_address(page);
283 		memset(ptr, 0, size);
284 		if (coherent_flag != COHERENT) {
285 			dmac_flush_range(ptr, ptr + size);
286 			outer_flush_range(__pa(ptr), __pa(ptr) + size);
287 		}
288 	}
289 }
290 
291 /*
292  * Allocate a DMA buffer for 'dev' of size 'size' using the
293  * specified gfp mask.  Note that 'size' must be page aligned.
294  */
295 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
296 				       gfp_t gfp, int coherent_flag)
297 {
298 	unsigned long order = get_order(size);
299 	struct page *page, *p, *e;
300 
301 	page = alloc_pages(gfp, order);
302 	if (!page)
303 		return NULL;
304 
305 	/*
306 	 * Now split the huge page and free the excess pages
307 	 */
308 	split_page(page, order);
309 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
310 		__free_page(p);
311 
312 	__dma_clear_buffer(page, size, coherent_flag);
313 
314 	return page;
315 }
316 
317 /*
318  * Free a DMA buffer.  'size' must be page aligned.
319  */
320 static void __dma_free_buffer(struct page *page, size_t size)
321 {
322 	struct page *e = page + (size >> PAGE_SHIFT);
323 
324 	while (page < e) {
325 		__free_page(page);
326 		page++;
327 	}
328 }
329 
330 static void *__alloc_from_contiguous(struct device *dev, size_t size,
331 				     pgprot_t prot, struct page **ret_page,
332 				     const void *caller, bool want_vaddr,
333 				     int coherent_flag, gfp_t gfp);
334 
335 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
336 				 pgprot_t prot, struct page **ret_page,
337 				 const void *caller, bool want_vaddr);
338 
339 static void *
340 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
341 	const void *caller)
342 {
343 	/*
344 	 * DMA allocation can be mapped to user space, so lets
345 	 * set VM_USERMAP flags too.
346 	 */
347 	return dma_common_contiguous_remap(page, size,
348 			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
349 			prot, caller);
350 }
351 
352 static void __dma_free_remap(void *cpu_addr, size_t size)
353 {
354 	dma_common_free_remap(cpu_addr, size,
355 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
356 }
357 
358 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
359 static struct gen_pool *atomic_pool __ro_after_init;
360 
361 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
362 
363 static int __init early_coherent_pool(char *p)
364 {
365 	atomic_pool_size = memparse(p, &p);
366 	return 0;
367 }
368 early_param("coherent_pool", early_coherent_pool);
369 
370 /*
371  * Initialise the coherent pool for atomic allocations.
372  */
373 static int __init atomic_pool_init(void)
374 {
375 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
376 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
377 	struct page *page;
378 	void *ptr;
379 
380 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
381 	if (!atomic_pool)
382 		goto out;
383 	/*
384 	 * The atomic pool is only used for non-coherent allocations
385 	 * so we must pass NORMAL for coherent_flag.
386 	 */
387 	if (dev_get_cma_area(NULL))
388 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
389 				      &page, atomic_pool_init, true, NORMAL,
390 				      GFP_KERNEL);
391 	else
392 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
393 					   &page, atomic_pool_init, true);
394 	if (ptr) {
395 		int ret;
396 
397 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
398 					page_to_phys(page),
399 					atomic_pool_size, -1);
400 		if (ret)
401 			goto destroy_genpool;
402 
403 		gen_pool_set_algo(atomic_pool,
404 				gen_pool_first_fit_order_align,
405 				NULL);
406 		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
407 		       atomic_pool_size / 1024);
408 		return 0;
409 	}
410 
411 destroy_genpool:
412 	gen_pool_destroy(atomic_pool);
413 	atomic_pool = NULL;
414 out:
415 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
416 	       atomic_pool_size / 1024);
417 	return -ENOMEM;
418 }
419 /*
420  * CMA is activated by core_initcall, so we must be called after it.
421  */
422 postcore_initcall(atomic_pool_init);
423 
424 struct dma_contig_early_reserve {
425 	phys_addr_t base;
426 	unsigned long size;
427 };
428 
429 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
430 
431 static int dma_mmu_remap_num __initdata;
432 
433 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
434 {
435 	dma_mmu_remap[dma_mmu_remap_num].base = base;
436 	dma_mmu_remap[dma_mmu_remap_num].size = size;
437 	dma_mmu_remap_num++;
438 }
439 
440 void __init dma_contiguous_remap(void)
441 {
442 	int i;
443 	for (i = 0; i < dma_mmu_remap_num; i++) {
444 		phys_addr_t start = dma_mmu_remap[i].base;
445 		phys_addr_t end = start + dma_mmu_remap[i].size;
446 		struct map_desc map;
447 		unsigned long addr;
448 
449 		if (end > arm_lowmem_limit)
450 			end = arm_lowmem_limit;
451 		if (start >= end)
452 			continue;
453 
454 		map.pfn = __phys_to_pfn(start);
455 		map.virtual = __phys_to_virt(start);
456 		map.length = end - start;
457 		map.type = MT_MEMORY_DMA_READY;
458 
459 		/*
460 		 * Clear previous low-memory mapping to ensure that the
461 		 * TLB does not see any conflicting entries, then flush
462 		 * the TLB of the old entries before creating new mappings.
463 		 *
464 		 * This ensures that any speculatively loaded TLB entries
465 		 * (even though they may be rare) can not cause any problems,
466 		 * and ensures that this code is architecturally compliant.
467 		 */
468 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
469 		     addr += PMD_SIZE)
470 			pmd_clear(pmd_off_k(addr));
471 
472 		flush_tlb_kernel_range(__phys_to_virt(start),
473 				       __phys_to_virt(end));
474 
475 		iotable_init(&map, 1);
476 	}
477 }
478 
479 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
480 {
481 	struct page *page = virt_to_page(addr);
482 	pgprot_t prot = *(pgprot_t *)data;
483 
484 	set_pte_ext(pte, mk_pte(page, prot), 0);
485 	return 0;
486 }
487 
488 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
489 {
490 	unsigned long start = (unsigned long) page_address(page);
491 	unsigned end = start + size;
492 
493 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
494 	flush_tlb_kernel_range(start, end);
495 }
496 
497 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
498 				 pgprot_t prot, struct page **ret_page,
499 				 const void *caller, bool want_vaddr)
500 {
501 	struct page *page;
502 	void *ptr = NULL;
503 	/*
504 	 * __alloc_remap_buffer is only called when the device is
505 	 * non-coherent
506 	 */
507 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
508 	if (!page)
509 		return NULL;
510 	if (!want_vaddr)
511 		goto out;
512 
513 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
514 	if (!ptr) {
515 		__dma_free_buffer(page, size);
516 		return NULL;
517 	}
518 
519  out:
520 	*ret_page = page;
521 	return ptr;
522 }
523 
524 static void *__alloc_from_pool(size_t size, struct page **ret_page)
525 {
526 	unsigned long val;
527 	void *ptr = NULL;
528 
529 	if (!atomic_pool) {
530 		WARN(1, "coherent pool not initialised!\n");
531 		return NULL;
532 	}
533 
534 	val = gen_pool_alloc(atomic_pool, size);
535 	if (val) {
536 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
537 
538 		*ret_page = phys_to_page(phys);
539 		ptr = (void *)val;
540 	}
541 
542 	return ptr;
543 }
544 
545 static bool __in_atomic_pool(void *start, size_t size)
546 {
547 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
548 }
549 
550 static int __free_from_pool(void *start, size_t size)
551 {
552 	if (!__in_atomic_pool(start, size))
553 		return 0;
554 
555 	gen_pool_free(atomic_pool, (unsigned long)start, size);
556 
557 	return 1;
558 }
559 
560 static void *__alloc_from_contiguous(struct device *dev, size_t size,
561 				     pgprot_t prot, struct page **ret_page,
562 				     const void *caller, bool want_vaddr,
563 				     int coherent_flag, gfp_t gfp)
564 {
565 	unsigned long order = get_order(size);
566 	size_t count = size >> PAGE_SHIFT;
567 	struct page *page;
568 	void *ptr = NULL;
569 
570 	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
571 	if (!page)
572 		return NULL;
573 
574 	__dma_clear_buffer(page, size, coherent_flag);
575 
576 	if (!want_vaddr)
577 		goto out;
578 
579 	if (PageHighMem(page)) {
580 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
581 		if (!ptr) {
582 			dma_release_from_contiguous(dev, page, count);
583 			return NULL;
584 		}
585 	} else {
586 		__dma_remap(page, size, prot);
587 		ptr = page_address(page);
588 	}
589 
590  out:
591 	*ret_page = page;
592 	return ptr;
593 }
594 
595 static void __free_from_contiguous(struct device *dev, struct page *page,
596 				   void *cpu_addr, size_t size, bool want_vaddr)
597 {
598 	if (want_vaddr) {
599 		if (PageHighMem(page))
600 			__dma_free_remap(cpu_addr, size);
601 		else
602 			__dma_remap(page, size, PAGE_KERNEL);
603 	}
604 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
605 }
606 
607 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
608 {
609 	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
610 			pgprot_writecombine(prot) :
611 			pgprot_dmacoherent(prot);
612 	return prot;
613 }
614 
615 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
616 				   struct page **ret_page)
617 {
618 	struct page *page;
619 	/* __alloc_simple_buffer is only called when the device is coherent */
620 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
621 	if (!page)
622 		return NULL;
623 
624 	*ret_page = page;
625 	return page_address(page);
626 }
627 
628 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
629 				    struct page **ret_page)
630 {
631 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
632 				     ret_page);
633 }
634 
635 static void simple_allocator_free(struct arm_dma_free_args *args)
636 {
637 	__dma_free_buffer(args->page, args->size);
638 }
639 
640 static struct arm_dma_allocator simple_allocator = {
641 	.alloc = simple_allocator_alloc,
642 	.free = simple_allocator_free,
643 };
644 
645 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
646 				 struct page **ret_page)
647 {
648 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
649 				       ret_page, args->caller,
650 				       args->want_vaddr, args->coherent_flag,
651 				       args->gfp);
652 }
653 
654 static void cma_allocator_free(struct arm_dma_free_args *args)
655 {
656 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
657 			       args->size, args->want_vaddr);
658 }
659 
660 static struct arm_dma_allocator cma_allocator = {
661 	.alloc = cma_allocator_alloc,
662 	.free = cma_allocator_free,
663 };
664 
665 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
666 				  struct page **ret_page)
667 {
668 	return __alloc_from_pool(args->size, ret_page);
669 }
670 
671 static void pool_allocator_free(struct arm_dma_free_args *args)
672 {
673 	__free_from_pool(args->cpu_addr, args->size);
674 }
675 
676 static struct arm_dma_allocator pool_allocator = {
677 	.alloc = pool_allocator_alloc,
678 	.free = pool_allocator_free,
679 };
680 
681 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
682 				   struct page **ret_page)
683 {
684 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
685 				    args->prot, ret_page, args->caller,
686 				    args->want_vaddr);
687 }
688 
689 static void remap_allocator_free(struct arm_dma_free_args *args)
690 {
691 	if (args->want_vaddr)
692 		__dma_free_remap(args->cpu_addr, args->size);
693 
694 	__dma_free_buffer(args->page, args->size);
695 }
696 
697 static struct arm_dma_allocator remap_allocator = {
698 	.alloc = remap_allocator_alloc,
699 	.free = remap_allocator_free,
700 };
701 
702 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
703 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
704 			 unsigned long attrs, const void *caller)
705 {
706 	u64 mask = get_coherent_dma_mask(dev);
707 	struct page *page = NULL;
708 	void *addr;
709 	bool allowblock, cma;
710 	struct arm_dma_buffer *buf;
711 	struct arm_dma_alloc_args args = {
712 		.dev = dev,
713 		.size = PAGE_ALIGN(size),
714 		.gfp = gfp,
715 		.prot = prot,
716 		.caller = caller,
717 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
718 		.coherent_flag = is_coherent ? COHERENT : NORMAL,
719 	};
720 
721 #ifdef CONFIG_DMA_API_DEBUG
722 	u64 limit = (mask + 1) & ~mask;
723 	if (limit && size >= limit) {
724 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
725 			size, mask);
726 		return NULL;
727 	}
728 #endif
729 
730 	if (!mask)
731 		return NULL;
732 
733 	buf = kzalloc(sizeof(*buf),
734 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
735 	if (!buf)
736 		return NULL;
737 
738 	if (mask < 0xffffffffULL)
739 		gfp |= GFP_DMA;
740 
741 	/*
742 	 * Following is a work-around (a.k.a. hack) to prevent pages
743 	 * with __GFP_COMP being passed to split_page() which cannot
744 	 * handle them.  The real problem is that this flag probably
745 	 * should be 0 on ARM as it is not supported on this
746 	 * platform; see CONFIG_HUGETLBFS.
747 	 */
748 	gfp &= ~(__GFP_COMP);
749 	args.gfp = gfp;
750 
751 	*handle = DMA_MAPPING_ERROR;
752 	allowblock = gfpflags_allow_blocking(gfp);
753 	cma = allowblock ? dev_get_cma_area(dev) : false;
754 
755 	if (cma)
756 		buf->allocator = &cma_allocator;
757 	else if (is_coherent)
758 		buf->allocator = &simple_allocator;
759 	else if (allowblock)
760 		buf->allocator = &remap_allocator;
761 	else
762 		buf->allocator = &pool_allocator;
763 
764 	addr = buf->allocator->alloc(&args, &page);
765 
766 	if (page) {
767 		unsigned long flags;
768 
769 		*handle = pfn_to_dma(dev, page_to_pfn(page));
770 		buf->virt = args.want_vaddr ? addr : page;
771 
772 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
773 		list_add(&buf->list, &arm_dma_bufs);
774 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
775 	} else {
776 		kfree(buf);
777 	}
778 
779 	return args.want_vaddr ? addr : page;
780 }
781 
782 /*
783  * Allocate DMA-coherent memory space and return both the kernel remapped
784  * virtual and bus address for that space.
785  */
786 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
787 		    gfp_t gfp, unsigned long attrs)
788 {
789 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
790 
791 	return __dma_alloc(dev, size, handle, gfp, prot, false,
792 			   attrs, __builtin_return_address(0));
793 }
794 
795 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
796 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
797 {
798 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
799 			   attrs, __builtin_return_address(0));
800 }
801 
802 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
803 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
804 		 unsigned long attrs)
805 {
806 	int ret = -ENXIO;
807 	unsigned long nr_vma_pages = vma_pages(vma);
808 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
809 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
810 	unsigned long off = vma->vm_pgoff;
811 
812 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
813 		return ret;
814 
815 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
816 		ret = remap_pfn_range(vma, vma->vm_start,
817 				      pfn + off,
818 				      vma->vm_end - vma->vm_start,
819 				      vma->vm_page_prot);
820 	}
821 
822 	return ret;
823 }
824 
825 /*
826  * Create userspace mapping for the DMA-coherent memory.
827  */
828 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
829 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
830 		 unsigned long attrs)
831 {
832 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
833 }
834 
835 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
836 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
837 		 unsigned long attrs)
838 {
839 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
840 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
841 }
842 
843 /*
844  * Free a buffer as defined by the above mapping.
845  */
846 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
847 			   dma_addr_t handle, unsigned long attrs,
848 			   bool is_coherent)
849 {
850 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
851 	struct arm_dma_buffer *buf;
852 	struct arm_dma_free_args args = {
853 		.dev = dev,
854 		.size = PAGE_ALIGN(size),
855 		.cpu_addr = cpu_addr,
856 		.page = page,
857 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
858 	};
859 
860 	buf = arm_dma_buffer_find(cpu_addr);
861 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
862 		return;
863 
864 	buf->allocator->free(&args);
865 	kfree(buf);
866 }
867 
868 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
869 		  dma_addr_t handle, unsigned long attrs)
870 {
871 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
872 }
873 
874 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
875 				  dma_addr_t handle, unsigned long attrs)
876 {
877 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
878 }
879 
880 /*
881  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
882  * that the intention is to allow exporting memory allocated via the
883  * coherent DMA APIs through the dma_buf API, which only accepts a
884  * scattertable.  This presents a couple of problems:
885  * 1. Not all memory allocated via the coherent DMA APIs is backed by
886  *    a struct page
887  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
888  *    as we will try to flush the memory through a different alias to that
889  *    actually being used (and the flushes are redundant.)
890  */
891 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
892 		 void *cpu_addr, dma_addr_t handle, size_t size,
893 		 unsigned long attrs)
894 {
895 	unsigned long pfn = dma_to_pfn(dev, handle);
896 	struct page *page;
897 	int ret;
898 
899 	/* If the PFN is not valid, we do not have a struct page */
900 	if (!pfn_valid(pfn))
901 		return -ENXIO;
902 
903 	page = pfn_to_page(pfn);
904 
905 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
906 	if (unlikely(ret))
907 		return ret;
908 
909 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
910 	return 0;
911 }
912 
913 static void dma_cache_maint_page(struct page *page, unsigned long offset,
914 	size_t size, enum dma_data_direction dir,
915 	void (*op)(const void *, size_t, int))
916 {
917 	unsigned long pfn;
918 	size_t left = size;
919 
920 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
921 	offset %= PAGE_SIZE;
922 
923 	/*
924 	 * A single sg entry may refer to multiple physically contiguous
925 	 * pages.  But we still need to process highmem pages individually.
926 	 * If highmem is not configured then the bulk of this loop gets
927 	 * optimized out.
928 	 */
929 	do {
930 		size_t len = left;
931 		void *vaddr;
932 
933 		page = pfn_to_page(pfn);
934 
935 		if (PageHighMem(page)) {
936 			if (len + offset > PAGE_SIZE)
937 				len = PAGE_SIZE - offset;
938 
939 			if (cache_is_vipt_nonaliasing()) {
940 				vaddr = kmap_atomic(page);
941 				op(vaddr + offset, len, dir);
942 				kunmap_atomic(vaddr);
943 			} else {
944 				vaddr = kmap_high_get(page);
945 				if (vaddr) {
946 					op(vaddr + offset, len, dir);
947 					kunmap_high(page);
948 				}
949 			}
950 		} else {
951 			vaddr = page_address(page) + offset;
952 			op(vaddr, len, dir);
953 		}
954 		offset = 0;
955 		pfn++;
956 		left -= len;
957 	} while (left);
958 }
959 
960 /*
961  * Make an area consistent for devices.
962  * Note: Drivers should NOT use this function directly, as it will break
963  * platforms with CONFIG_DMABOUNCE.
964  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
965  */
966 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
967 	size_t size, enum dma_data_direction dir)
968 {
969 	phys_addr_t paddr;
970 
971 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
972 
973 	paddr = page_to_phys(page) + off;
974 	if (dir == DMA_FROM_DEVICE) {
975 		outer_inv_range(paddr, paddr + size);
976 	} else {
977 		outer_clean_range(paddr, paddr + size);
978 	}
979 	/* FIXME: non-speculating: flush on bidirectional mappings? */
980 }
981 
982 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
983 	size_t size, enum dma_data_direction dir)
984 {
985 	phys_addr_t paddr = page_to_phys(page) + off;
986 
987 	/* FIXME: non-speculating: not required */
988 	/* in any case, don't bother invalidating if DMA to device */
989 	if (dir != DMA_TO_DEVICE) {
990 		outer_inv_range(paddr, paddr + size);
991 
992 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
993 	}
994 
995 	/*
996 	 * Mark the D-cache clean for these pages to avoid extra flushing.
997 	 */
998 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
999 		unsigned long pfn;
1000 		size_t left = size;
1001 
1002 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
1003 		off %= PAGE_SIZE;
1004 		if (off) {
1005 			pfn++;
1006 			left -= PAGE_SIZE - off;
1007 		}
1008 		while (left >= PAGE_SIZE) {
1009 			page = pfn_to_page(pfn++);
1010 			set_bit(PG_dcache_clean, &page->flags);
1011 			left -= PAGE_SIZE;
1012 		}
1013 	}
1014 }
1015 
1016 /**
1017  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1018  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1019  * @sg: list of buffers
1020  * @nents: number of buffers to map
1021  * @dir: DMA transfer direction
1022  *
1023  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1024  * This is the scatter-gather version of the dma_map_single interface.
1025  * Here the scatter gather list elements are each tagged with the
1026  * appropriate dma address and length.  They are obtained via
1027  * sg_dma_{address,length}.
1028  *
1029  * Device ownership issues as mentioned for dma_map_single are the same
1030  * here.
1031  */
1032 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1033 		enum dma_data_direction dir, unsigned long attrs)
1034 {
1035 	const struct dma_map_ops *ops = get_dma_ops(dev);
1036 	struct scatterlist *s;
1037 	int i, j;
1038 
1039 	for_each_sg(sg, s, nents, i) {
1040 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1041 		s->dma_length = s->length;
1042 #endif
1043 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1044 						s->length, dir, attrs);
1045 		if (dma_mapping_error(dev, s->dma_address))
1046 			goto bad_mapping;
1047 	}
1048 	return nents;
1049 
1050  bad_mapping:
1051 	for_each_sg(sg, s, i, j)
1052 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1053 	return 0;
1054 }
1055 
1056 /**
1057  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1058  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1059  * @sg: list of buffers
1060  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1061  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1062  *
1063  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1064  * rules concerning calls here are the same as for dma_unmap_single().
1065  */
1066 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1067 		enum dma_data_direction dir, unsigned long attrs)
1068 {
1069 	const struct dma_map_ops *ops = get_dma_ops(dev);
1070 	struct scatterlist *s;
1071 
1072 	int i;
1073 
1074 	for_each_sg(sg, s, nents, i)
1075 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1076 }
1077 
1078 /**
1079  * arm_dma_sync_sg_for_cpu
1080  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1081  * @sg: list of buffers
1082  * @nents: number of buffers to map (returned from dma_map_sg)
1083  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1084  */
1085 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1086 			int nents, enum dma_data_direction dir)
1087 {
1088 	const struct dma_map_ops *ops = get_dma_ops(dev);
1089 	struct scatterlist *s;
1090 	int i;
1091 
1092 	for_each_sg(sg, s, nents, i)
1093 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1094 					 dir);
1095 }
1096 
1097 /**
1098  * arm_dma_sync_sg_for_device
1099  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1100  * @sg: list of buffers
1101  * @nents: number of buffers to map (returned from dma_map_sg)
1102  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1103  */
1104 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1105 			int nents, enum dma_data_direction dir)
1106 {
1107 	const struct dma_map_ops *ops = get_dma_ops(dev);
1108 	struct scatterlist *s;
1109 	int i;
1110 
1111 	for_each_sg(sg, s, nents, i)
1112 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1113 					    dir);
1114 }
1115 
1116 /*
1117  * Return whether the given device DMA address mask can be supported
1118  * properly.  For example, if your device can only drive the low 24-bits
1119  * during bus mastering, then you would pass 0x00ffffff as the mask
1120  * to this function.
1121  */
1122 int arm_dma_supported(struct device *dev, u64 mask)
1123 {
1124 	return __dma_supported(dev, mask, false);
1125 }
1126 
1127 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1128 {
1129 	/*
1130 	 * When CONFIG_ARM_LPAE is set, physical address can extend above
1131 	 * 32-bits, which then can't be addressed by devices that only support
1132 	 * 32-bit DMA.
1133 	 * Use the generic dma-direct / swiotlb ops code in that case, as that
1134 	 * handles bounce buffering for us.
1135 	 *
1136 	 * Note: this checks CONFIG_ARM_LPAE instead of CONFIG_SWIOTLB as the
1137 	 * latter is also selected by the Xen code, but that code for now relies
1138 	 * on non-NULL dev_dma_ops.  To be cleaned up later.
1139 	 */
1140 	if (IS_ENABLED(CONFIG_ARM_LPAE))
1141 		return NULL;
1142 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1143 }
1144 
1145 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1146 
1147 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1148 {
1149 	int prot = 0;
1150 
1151 	if (attrs & DMA_ATTR_PRIVILEGED)
1152 		prot |= IOMMU_PRIV;
1153 
1154 	switch (dir) {
1155 	case DMA_BIDIRECTIONAL:
1156 		return prot | IOMMU_READ | IOMMU_WRITE;
1157 	case DMA_TO_DEVICE:
1158 		return prot | IOMMU_READ;
1159 	case DMA_FROM_DEVICE:
1160 		return prot | IOMMU_WRITE;
1161 	default:
1162 		return prot;
1163 	}
1164 }
1165 
1166 /* IOMMU */
1167 
1168 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1169 
1170 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1171 				      size_t size)
1172 {
1173 	unsigned int order = get_order(size);
1174 	unsigned int align = 0;
1175 	unsigned int count, start;
1176 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1177 	unsigned long flags;
1178 	dma_addr_t iova;
1179 	int i;
1180 
1181 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1182 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1183 
1184 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1185 	align = (1 << order) - 1;
1186 
1187 	spin_lock_irqsave(&mapping->lock, flags);
1188 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1189 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1190 				mapping->bits, 0, count, align);
1191 
1192 		if (start > mapping->bits)
1193 			continue;
1194 
1195 		bitmap_set(mapping->bitmaps[i], start, count);
1196 		break;
1197 	}
1198 
1199 	/*
1200 	 * No unused range found. Try to extend the existing mapping
1201 	 * and perform a second attempt to reserve an IO virtual
1202 	 * address range of size bytes.
1203 	 */
1204 	if (i == mapping->nr_bitmaps) {
1205 		if (extend_iommu_mapping(mapping)) {
1206 			spin_unlock_irqrestore(&mapping->lock, flags);
1207 			return DMA_MAPPING_ERROR;
1208 		}
1209 
1210 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1211 				mapping->bits, 0, count, align);
1212 
1213 		if (start > mapping->bits) {
1214 			spin_unlock_irqrestore(&mapping->lock, flags);
1215 			return DMA_MAPPING_ERROR;
1216 		}
1217 
1218 		bitmap_set(mapping->bitmaps[i], start, count);
1219 	}
1220 	spin_unlock_irqrestore(&mapping->lock, flags);
1221 
1222 	iova = mapping->base + (mapping_size * i);
1223 	iova += start << PAGE_SHIFT;
1224 
1225 	return iova;
1226 }
1227 
1228 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1229 			       dma_addr_t addr, size_t size)
1230 {
1231 	unsigned int start, count;
1232 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1233 	unsigned long flags;
1234 	dma_addr_t bitmap_base;
1235 	u32 bitmap_index;
1236 
1237 	if (!size)
1238 		return;
1239 
1240 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1241 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1242 
1243 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1244 
1245 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1246 
1247 	if (addr + size > bitmap_base + mapping_size) {
1248 		/*
1249 		 * The address range to be freed reaches into the iova
1250 		 * range of the next bitmap. This should not happen as
1251 		 * we don't allow this in __alloc_iova (at the
1252 		 * moment).
1253 		 */
1254 		BUG();
1255 	} else
1256 		count = size >> PAGE_SHIFT;
1257 
1258 	spin_lock_irqsave(&mapping->lock, flags);
1259 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1260 	spin_unlock_irqrestore(&mapping->lock, flags);
1261 }
1262 
1263 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1264 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1265 
1266 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1267 					  gfp_t gfp, unsigned long attrs,
1268 					  int coherent_flag)
1269 {
1270 	struct page **pages;
1271 	int count = size >> PAGE_SHIFT;
1272 	int array_size = count * sizeof(struct page *);
1273 	int i = 0;
1274 	int order_idx = 0;
1275 
1276 	if (array_size <= PAGE_SIZE)
1277 		pages = kzalloc(array_size, GFP_KERNEL);
1278 	else
1279 		pages = vzalloc(array_size);
1280 	if (!pages)
1281 		return NULL;
1282 
1283 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1284 	{
1285 		unsigned long order = get_order(size);
1286 		struct page *page;
1287 
1288 		page = dma_alloc_from_contiguous(dev, count, order,
1289 						 gfp & __GFP_NOWARN);
1290 		if (!page)
1291 			goto error;
1292 
1293 		__dma_clear_buffer(page, size, coherent_flag);
1294 
1295 		for (i = 0; i < count; i++)
1296 			pages[i] = page + i;
1297 
1298 		return pages;
1299 	}
1300 
1301 	/* Go straight to 4K chunks if caller says it's OK. */
1302 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1303 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1304 
1305 	/*
1306 	 * IOMMU can map any pages, so himem can also be used here
1307 	 */
1308 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1309 
1310 	while (count) {
1311 		int j, order;
1312 
1313 		order = iommu_order_array[order_idx];
1314 
1315 		/* Drop down when we get small */
1316 		if (__fls(count) < order) {
1317 			order_idx++;
1318 			continue;
1319 		}
1320 
1321 		if (order) {
1322 			/* See if it's easy to allocate a high-order chunk */
1323 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1324 
1325 			/* Go down a notch at first sign of pressure */
1326 			if (!pages[i]) {
1327 				order_idx++;
1328 				continue;
1329 			}
1330 		} else {
1331 			pages[i] = alloc_pages(gfp, 0);
1332 			if (!pages[i])
1333 				goto error;
1334 		}
1335 
1336 		if (order) {
1337 			split_page(pages[i], order);
1338 			j = 1 << order;
1339 			while (--j)
1340 				pages[i + j] = pages[i] + j;
1341 		}
1342 
1343 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1344 		i += 1 << order;
1345 		count -= 1 << order;
1346 	}
1347 
1348 	return pages;
1349 error:
1350 	while (i--)
1351 		if (pages[i])
1352 			__free_pages(pages[i], 0);
1353 	kvfree(pages);
1354 	return NULL;
1355 }
1356 
1357 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1358 			       size_t size, unsigned long attrs)
1359 {
1360 	int count = size >> PAGE_SHIFT;
1361 	int i;
1362 
1363 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1364 		dma_release_from_contiguous(dev, pages[0], count);
1365 	} else {
1366 		for (i = 0; i < count; i++)
1367 			if (pages[i])
1368 				__free_pages(pages[i], 0);
1369 	}
1370 
1371 	kvfree(pages);
1372 	return 0;
1373 }
1374 
1375 /*
1376  * Create a CPU mapping for a specified pages
1377  */
1378 static void *
1379 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1380 		    const void *caller)
1381 {
1382 	return dma_common_pages_remap(pages, size,
1383 			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1384 }
1385 
1386 /*
1387  * Create a mapping in device IO address space for specified pages
1388  */
1389 static dma_addr_t
1390 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1391 		       unsigned long attrs)
1392 {
1393 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1394 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1395 	dma_addr_t dma_addr, iova;
1396 	int i;
1397 
1398 	dma_addr = __alloc_iova(mapping, size);
1399 	if (dma_addr == DMA_MAPPING_ERROR)
1400 		return dma_addr;
1401 
1402 	iova = dma_addr;
1403 	for (i = 0; i < count; ) {
1404 		int ret;
1405 
1406 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1407 		phys_addr_t phys = page_to_phys(pages[i]);
1408 		unsigned int len, j;
1409 
1410 		for (j = i + 1; j < count; j++, next_pfn++)
1411 			if (page_to_pfn(pages[j]) != next_pfn)
1412 				break;
1413 
1414 		len = (j - i) << PAGE_SHIFT;
1415 		ret = iommu_map(mapping->domain, iova, phys, len,
1416 				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1417 		if (ret < 0)
1418 			goto fail;
1419 		iova += len;
1420 		i = j;
1421 	}
1422 	return dma_addr;
1423 fail:
1424 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1425 	__free_iova(mapping, dma_addr, size);
1426 	return DMA_MAPPING_ERROR;
1427 }
1428 
1429 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1430 {
1431 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1432 
1433 	/*
1434 	 * add optional in-page offset from iova to size and align
1435 	 * result to page size
1436 	 */
1437 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1438 	iova &= PAGE_MASK;
1439 
1440 	iommu_unmap(mapping->domain, iova, size);
1441 	__free_iova(mapping, iova, size);
1442 	return 0;
1443 }
1444 
1445 static struct page **__atomic_get_pages(void *addr)
1446 {
1447 	struct page *page;
1448 	phys_addr_t phys;
1449 
1450 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1451 	page = phys_to_page(phys);
1452 
1453 	return (struct page **)page;
1454 }
1455 
1456 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1457 {
1458 	struct vm_struct *area;
1459 
1460 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1461 		return __atomic_get_pages(cpu_addr);
1462 
1463 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1464 		return cpu_addr;
1465 
1466 	area = find_vm_area(cpu_addr);
1467 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1468 		return area->pages;
1469 	return NULL;
1470 }
1471 
1472 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1473 				  dma_addr_t *handle, int coherent_flag,
1474 				  unsigned long attrs)
1475 {
1476 	struct page *page;
1477 	void *addr;
1478 
1479 	if (coherent_flag  == COHERENT)
1480 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1481 	else
1482 		addr = __alloc_from_pool(size, &page);
1483 	if (!addr)
1484 		return NULL;
1485 
1486 	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1487 	if (*handle == DMA_MAPPING_ERROR)
1488 		goto err_mapping;
1489 
1490 	return addr;
1491 
1492 err_mapping:
1493 	__free_from_pool(addr, size);
1494 	return NULL;
1495 }
1496 
1497 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1498 			dma_addr_t handle, size_t size, int coherent_flag)
1499 {
1500 	__iommu_remove_mapping(dev, handle, size);
1501 	if (coherent_flag == COHERENT)
1502 		__dma_free_buffer(virt_to_page(cpu_addr), size);
1503 	else
1504 		__free_from_pool(cpu_addr, size);
1505 }
1506 
1507 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1508 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1509 	    int coherent_flag)
1510 {
1511 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1512 	struct page **pages;
1513 	void *addr = NULL;
1514 
1515 	*handle = DMA_MAPPING_ERROR;
1516 	size = PAGE_ALIGN(size);
1517 
1518 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1519 		return __iommu_alloc_simple(dev, size, gfp, handle,
1520 					    coherent_flag, attrs);
1521 
1522 	/*
1523 	 * Following is a work-around (a.k.a. hack) to prevent pages
1524 	 * with __GFP_COMP being passed to split_page() which cannot
1525 	 * handle them.  The real problem is that this flag probably
1526 	 * should be 0 on ARM as it is not supported on this
1527 	 * platform; see CONFIG_HUGETLBFS.
1528 	 */
1529 	gfp &= ~(__GFP_COMP);
1530 
1531 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1532 	if (!pages)
1533 		return NULL;
1534 
1535 	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1536 	if (*handle == DMA_MAPPING_ERROR)
1537 		goto err_buffer;
1538 
1539 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1540 		return pages;
1541 
1542 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1543 				   __builtin_return_address(0));
1544 	if (!addr)
1545 		goto err_mapping;
1546 
1547 	return addr;
1548 
1549 err_mapping:
1550 	__iommu_remove_mapping(dev, *handle, size);
1551 err_buffer:
1552 	__iommu_free_buffer(dev, pages, size, attrs);
1553 	return NULL;
1554 }
1555 
1556 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1557 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1558 {
1559 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1560 }
1561 
1562 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1563 		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1564 {
1565 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1566 }
1567 
1568 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1569 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1570 		    unsigned long attrs)
1571 {
1572 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1573 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1574 	int err;
1575 
1576 	if (!pages)
1577 		return -ENXIO;
1578 
1579 	if (vma->vm_pgoff >= nr_pages)
1580 		return -ENXIO;
1581 
1582 	err = vm_map_pages(vma, pages, nr_pages);
1583 	if (err)
1584 		pr_err("Remapping memory failed: %d\n", err);
1585 
1586 	return err;
1587 }
1588 static int arm_iommu_mmap_attrs(struct device *dev,
1589 		struct vm_area_struct *vma, void *cpu_addr,
1590 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1591 {
1592 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1593 
1594 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1595 }
1596 
1597 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1598 		struct vm_area_struct *vma, void *cpu_addr,
1599 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1600 {
1601 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1602 }
1603 
1604 /*
1605  * free a page as defined by the above mapping.
1606  * Must not be called with IRQs disabled.
1607  */
1608 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1609 	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1610 {
1611 	struct page **pages;
1612 	size = PAGE_ALIGN(size);
1613 
1614 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1615 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1616 		return;
1617 	}
1618 
1619 	pages = __iommu_get_pages(cpu_addr, attrs);
1620 	if (!pages) {
1621 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1622 		return;
1623 	}
1624 
1625 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1626 		dma_common_free_remap(cpu_addr, size,
1627 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1628 	}
1629 
1630 	__iommu_remove_mapping(dev, handle, size);
1631 	__iommu_free_buffer(dev, pages, size, attrs);
1632 }
1633 
1634 void arm_iommu_free_attrs(struct device *dev, size_t size,
1635 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1636 {
1637 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1638 }
1639 
1640 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1641 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1642 {
1643 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1644 }
1645 
1646 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1647 				 void *cpu_addr, dma_addr_t dma_addr,
1648 				 size_t size, unsigned long attrs)
1649 {
1650 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1651 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1652 
1653 	if (!pages)
1654 		return -ENXIO;
1655 
1656 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1657 					 GFP_KERNEL);
1658 }
1659 
1660 /*
1661  * Map a part of the scatter-gather list into contiguous io address space
1662  */
1663 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1664 			  size_t size, dma_addr_t *handle,
1665 			  enum dma_data_direction dir, unsigned long attrs,
1666 			  bool is_coherent)
1667 {
1668 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1669 	dma_addr_t iova, iova_base;
1670 	int ret = 0;
1671 	unsigned int count;
1672 	struct scatterlist *s;
1673 	int prot;
1674 
1675 	size = PAGE_ALIGN(size);
1676 	*handle = DMA_MAPPING_ERROR;
1677 
1678 	iova_base = iova = __alloc_iova(mapping, size);
1679 	if (iova == DMA_MAPPING_ERROR)
1680 		return -ENOMEM;
1681 
1682 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1683 		phys_addr_t phys = page_to_phys(sg_page(s));
1684 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1685 
1686 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1687 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1688 
1689 		prot = __dma_info_to_prot(dir, attrs);
1690 
1691 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1692 		if (ret < 0)
1693 			goto fail;
1694 		count += len >> PAGE_SHIFT;
1695 		iova += len;
1696 	}
1697 	*handle = iova_base;
1698 
1699 	return 0;
1700 fail:
1701 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1702 	__free_iova(mapping, iova_base, size);
1703 	return ret;
1704 }
1705 
1706 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1707 		     enum dma_data_direction dir, unsigned long attrs,
1708 		     bool is_coherent)
1709 {
1710 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1711 	int i, count = 0;
1712 	unsigned int offset = s->offset;
1713 	unsigned int size = s->offset + s->length;
1714 	unsigned int max = dma_get_max_seg_size(dev);
1715 
1716 	for (i = 1; i < nents; i++) {
1717 		s = sg_next(s);
1718 
1719 		s->dma_address = DMA_MAPPING_ERROR;
1720 		s->dma_length = 0;
1721 
1722 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1723 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1724 			    dir, attrs, is_coherent) < 0)
1725 				goto bad_mapping;
1726 
1727 			dma->dma_address += offset;
1728 			dma->dma_length = size - offset;
1729 
1730 			size = offset = s->offset;
1731 			start = s;
1732 			dma = sg_next(dma);
1733 			count += 1;
1734 		}
1735 		size += s->length;
1736 	}
1737 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1738 		is_coherent) < 0)
1739 		goto bad_mapping;
1740 
1741 	dma->dma_address += offset;
1742 	dma->dma_length = size - offset;
1743 
1744 	return count+1;
1745 
1746 bad_mapping:
1747 	for_each_sg(sg, s, count, i)
1748 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1749 	return 0;
1750 }
1751 
1752 /**
1753  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1754  * @dev: valid struct device pointer
1755  * @sg: list of buffers
1756  * @nents: number of buffers to map
1757  * @dir: DMA transfer direction
1758  *
1759  * Map a set of i/o coherent buffers described by scatterlist in streaming
1760  * mode for DMA. The scatter gather list elements are merged together (if
1761  * possible) and tagged with the appropriate dma address and length. They are
1762  * obtained via sg_dma_{address,length}.
1763  */
1764 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1765 		int nents, enum dma_data_direction dir, unsigned long attrs)
1766 {
1767 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1768 }
1769 
1770 /**
1771  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1772  * @dev: valid struct device pointer
1773  * @sg: list of buffers
1774  * @nents: number of buffers to map
1775  * @dir: DMA transfer direction
1776  *
1777  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1778  * The scatter gather list elements are merged together (if possible) and
1779  * tagged with the appropriate dma address and length. They are obtained via
1780  * sg_dma_{address,length}.
1781  */
1782 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1783 		int nents, enum dma_data_direction dir, unsigned long attrs)
1784 {
1785 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1786 }
1787 
1788 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1789 		int nents, enum dma_data_direction dir,
1790 		unsigned long attrs, bool is_coherent)
1791 {
1792 	struct scatterlist *s;
1793 	int i;
1794 
1795 	for_each_sg(sg, s, nents, i) {
1796 		if (sg_dma_len(s))
1797 			__iommu_remove_mapping(dev, sg_dma_address(s),
1798 					       sg_dma_len(s));
1799 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1800 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1801 					      s->length, dir);
1802 	}
1803 }
1804 
1805 /**
1806  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1807  * @dev: valid struct device pointer
1808  * @sg: list of buffers
1809  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1810  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1811  *
1812  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1813  * rules concerning calls here are the same as for dma_unmap_single().
1814  */
1815 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1816 		int nents, enum dma_data_direction dir,
1817 		unsigned long attrs)
1818 {
1819 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1820 }
1821 
1822 /**
1823  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1824  * @dev: valid struct device pointer
1825  * @sg: list of buffers
1826  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1827  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1828  *
1829  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1830  * rules concerning calls here are the same as for dma_unmap_single().
1831  */
1832 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1833 			enum dma_data_direction dir,
1834 			unsigned long attrs)
1835 {
1836 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1837 }
1838 
1839 /**
1840  * arm_iommu_sync_sg_for_cpu
1841  * @dev: valid struct device pointer
1842  * @sg: list of buffers
1843  * @nents: number of buffers to map (returned from dma_map_sg)
1844  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1845  */
1846 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1847 			int nents, enum dma_data_direction dir)
1848 {
1849 	struct scatterlist *s;
1850 	int i;
1851 
1852 	for_each_sg(sg, s, nents, i)
1853 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1854 
1855 }
1856 
1857 /**
1858  * arm_iommu_sync_sg_for_device
1859  * @dev: valid struct device pointer
1860  * @sg: list of buffers
1861  * @nents: number of buffers to map (returned from dma_map_sg)
1862  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1863  */
1864 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1865 			int nents, enum dma_data_direction dir)
1866 {
1867 	struct scatterlist *s;
1868 	int i;
1869 
1870 	for_each_sg(sg, s, nents, i)
1871 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1872 }
1873 
1874 
1875 /**
1876  * arm_coherent_iommu_map_page
1877  * @dev: valid struct device pointer
1878  * @page: page that buffer resides in
1879  * @offset: offset into page for start of buffer
1880  * @size: size of buffer to map
1881  * @dir: DMA transfer direction
1882  *
1883  * Coherent IOMMU aware version of arm_dma_map_page()
1884  */
1885 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1886 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1887 	     unsigned long attrs)
1888 {
1889 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1890 	dma_addr_t dma_addr;
1891 	int ret, prot, len = PAGE_ALIGN(size + offset);
1892 
1893 	dma_addr = __alloc_iova(mapping, len);
1894 	if (dma_addr == DMA_MAPPING_ERROR)
1895 		return dma_addr;
1896 
1897 	prot = __dma_info_to_prot(dir, attrs);
1898 
1899 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1900 	if (ret < 0)
1901 		goto fail;
1902 
1903 	return dma_addr + offset;
1904 fail:
1905 	__free_iova(mapping, dma_addr, len);
1906 	return DMA_MAPPING_ERROR;
1907 }
1908 
1909 /**
1910  * arm_iommu_map_page
1911  * @dev: valid struct device pointer
1912  * @page: page that buffer resides in
1913  * @offset: offset into page for start of buffer
1914  * @size: size of buffer to map
1915  * @dir: DMA transfer direction
1916  *
1917  * IOMMU aware version of arm_dma_map_page()
1918  */
1919 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1920 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1921 	     unsigned long attrs)
1922 {
1923 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1924 		__dma_page_cpu_to_dev(page, offset, size, dir);
1925 
1926 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1927 }
1928 
1929 /**
1930  * arm_coherent_iommu_unmap_page
1931  * @dev: valid struct device pointer
1932  * @handle: DMA address of buffer
1933  * @size: size of buffer (same as passed to dma_map_page)
1934  * @dir: DMA transfer direction (same as passed to dma_map_page)
1935  *
1936  * Coherent IOMMU aware version of arm_dma_unmap_page()
1937  */
1938 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1939 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1940 {
1941 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1942 	dma_addr_t iova = handle & PAGE_MASK;
1943 	int offset = handle & ~PAGE_MASK;
1944 	int len = PAGE_ALIGN(size + offset);
1945 
1946 	if (!iova)
1947 		return;
1948 
1949 	iommu_unmap(mapping->domain, iova, len);
1950 	__free_iova(mapping, iova, len);
1951 }
1952 
1953 /**
1954  * arm_iommu_unmap_page
1955  * @dev: valid struct device pointer
1956  * @handle: DMA address of buffer
1957  * @size: size of buffer (same as passed to dma_map_page)
1958  * @dir: DMA transfer direction (same as passed to dma_map_page)
1959  *
1960  * IOMMU aware version of arm_dma_unmap_page()
1961  */
1962 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1963 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1964 {
1965 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1966 	dma_addr_t iova = handle & PAGE_MASK;
1967 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1968 	int offset = handle & ~PAGE_MASK;
1969 	int len = PAGE_ALIGN(size + offset);
1970 
1971 	if (!iova)
1972 		return;
1973 
1974 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1975 		__dma_page_dev_to_cpu(page, offset, size, dir);
1976 
1977 	iommu_unmap(mapping->domain, iova, len);
1978 	__free_iova(mapping, iova, len);
1979 }
1980 
1981 /**
1982  * arm_iommu_map_resource - map a device resource for DMA
1983  * @dev: valid struct device pointer
1984  * @phys_addr: physical address of resource
1985  * @size: size of resource to map
1986  * @dir: DMA transfer direction
1987  */
1988 static dma_addr_t arm_iommu_map_resource(struct device *dev,
1989 		phys_addr_t phys_addr, size_t size,
1990 		enum dma_data_direction dir, unsigned long attrs)
1991 {
1992 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1993 	dma_addr_t dma_addr;
1994 	int ret, prot;
1995 	phys_addr_t addr = phys_addr & PAGE_MASK;
1996 	unsigned int offset = phys_addr & ~PAGE_MASK;
1997 	size_t len = PAGE_ALIGN(size + offset);
1998 
1999 	dma_addr = __alloc_iova(mapping, len);
2000 	if (dma_addr == DMA_MAPPING_ERROR)
2001 		return dma_addr;
2002 
2003 	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
2004 
2005 	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2006 	if (ret < 0)
2007 		goto fail;
2008 
2009 	return dma_addr + offset;
2010 fail:
2011 	__free_iova(mapping, dma_addr, len);
2012 	return DMA_MAPPING_ERROR;
2013 }
2014 
2015 /**
2016  * arm_iommu_unmap_resource - unmap a device DMA resource
2017  * @dev: valid struct device pointer
2018  * @dma_handle: DMA address to resource
2019  * @size: size of resource to map
2020  * @dir: DMA transfer direction
2021  */
2022 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2023 		size_t size, enum dma_data_direction dir,
2024 		unsigned long attrs)
2025 {
2026 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2027 	dma_addr_t iova = dma_handle & PAGE_MASK;
2028 	unsigned int offset = dma_handle & ~PAGE_MASK;
2029 	size_t len = PAGE_ALIGN(size + offset);
2030 
2031 	if (!iova)
2032 		return;
2033 
2034 	iommu_unmap(mapping->domain, iova, len);
2035 	__free_iova(mapping, iova, len);
2036 }
2037 
2038 static void arm_iommu_sync_single_for_cpu(struct device *dev,
2039 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2040 {
2041 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2042 	dma_addr_t iova = handle & PAGE_MASK;
2043 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2044 	unsigned int offset = handle & ~PAGE_MASK;
2045 
2046 	if (!iova)
2047 		return;
2048 
2049 	__dma_page_dev_to_cpu(page, offset, size, dir);
2050 }
2051 
2052 static void arm_iommu_sync_single_for_device(struct device *dev,
2053 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2054 {
2055 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2056 	dma_addr_t iova = handle & PAGE_MASK;
2057 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2058 	unsigned int offset = handle & ~PAGE_MASK;
2059 
2060 	if (!iova)
2061 		return;
2062 
2063 	__dma_page_cpu_to_dev(page, offset, size, dir);
2064 }
2065 
2066 const struct dma_map_ops iommu_ops = {
2067 	.alloc		= arm_iommu_alloc_attrs,
2068 	.free		= arm_iommu_free_attrs,
2069 	.mmap		= arm_iommu_mmap_attrs,
2070 	.get_sgtable	= arm_iommu_get_sgtable,
2071 
2072 	.map_page		= arm_iommu_map_page,
2073 	.unmap_page		= arm_iommu_unmap_page,
2074 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2075 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2076 
2077 	.map_sg			= arm_iommu_map_sg,
2078 	.unmap_sg		= arm_iommu_unmap_sg,
2079 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2080 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2081 
2082 	.map_resource		= arm_iommu_map_resource,
2083 	.unmap_resource		= arm_iommu_unmap_resource,
2084 
2085 	.dma_supported		= arm_dma_supported,
2086 };
2087 
2088 const struct dma_map_ops iommu_coherent_ops = {
2089 	.alloc		= arm_coherent_iommu_alloc_attrs,
2090 	.free		= arm_coherent_iommu_free_attrs,
2091 	.mmap		= arm_coherent_iommu_mmap_attrs,
2092 	.get_sgtable	= arm_iommu_get_sgtable,
2093 
2094 	.map_page	= arm_coherent_iommu_map_page,
2095 	.unmap_page	= arm_coherent_iommu_unmap_page,
2096 
2097 	.map_sg		= arm_coherent_iommu_map_sg,
2098 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2099 
2100 	.map_resource	= arm_iommu_map_resource,
2101 	.unmap_resource	= arm_iommu_unmap_resource,
2102 
2103 	.dma_supported		= arm_dma_supported,
2104 };
2105 
2106 /**
2107  * arm_iommu_create_mapping
2108  * @bus: pointer to the bus holding the client device (for IOMMU calls)
2109  * @base: start address of the valid IO address space
2110  * @size: maximum size of the valid IO address space
2111  *
2112  * Creates a mapping structure which holds information about used/unused
2113  * IO address ranges, which is required to perform memory allocation and
2114  * mapping with IOMMU aware functions.
2115  *
2116  * The client device need to be attached to the mapping with
2117  * arm_iommu_attach_device function.
2118  */
2119 struct dma_iommu_mapping *
2120 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2121 {
2122 	unsigned int bits = size >> PAGE_SHIFT;
2123 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2124 	struct dma_iommu_mapping *mapping;
2125 	int extensions = 1;
2126 	int err = -ENOMEM;
2127 
2128 	/* currently only 32-bit DMA address space is supported */
2129 	if (size > DMA_BIT_MASK(32) + 1)
2130 		return ERR_PTR(-ERANGE);
2131 
2132 	if (!bitmap_size)
2133 		return ERR_PTR(-EINVAL);
2134 
2135 	if (bitmap_size > PAGE_SIZE) {
2136 		extensions = bitmap_size / PAGE_SIZE;
2137 		bitmap_size = PAGE_SIZE;
2138 	}
2139 
2140 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2141 	if (!mapping)
2142 		goto err;
2143 
2144 	mapping->bitmap_size = bitmap_size;
2145 	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2146 				   GFP_KERNEL);
2147 	if (!mapping->bitmaps)
2148 		goto err2;
2149 
2150 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2151 	if (!mapping->bitmaps[0])
2152 		goto err3;
2153 
2154 	mapping->nr_bitmaps = 1;
2155 	mapping->extensions = extensions;
2156 	mapping->base = base;
2157 	mapping->bits = BITS_PER_BYTE * bitmap_size;
2158 
2159 	spin_lock_init(&mapping->lock);
2160 
2161 	mapping->domain = iommu_domain_alloc(bus);
2162 	if (!mapping->domain)
2163 		goto err4;
2164 
2165 	kref_init(&mapping->kref);
2166 	return mapping;
2167 err4:
2168 	kfree(mapping->bitmaps[0]);
2169 err3:
2170 	kfree(mapping->bitmaps);
2171 err2:
2172 	kfree(mapping);
2173 err:
2174 	return ERR_PTR(err);
2175 }
2176 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2177 
2178 static void release_iommu_mapping(struct kref *kref)
2179 {
2180 	int i;
2181 	struct dma_iommu_mapping *mapping =
2182 		container_of(kref, struct dma_iommu_mapping, kref);
2183 
2184 	iommu_domain_free(mapping->domain);
2185 	for (i = 0; i < mapping->nr_bitmaps; i++)
2186 		kfree(mapping->bitmaps[i]);
2187 	kfree(mapping->bitmaps);
2188 	kfree(mapping);
2189 }
2190 
2191 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2192 {
2193 	int next_bitmap;
2194 
2195 	if (mapping->nr_bitmaps >= mapping->extensions)
2196 		return -EINVAL;
2197 
2198 	next_bitmap = mapping->nr_bitmaps;
2199 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2200 						GFP_ATOMIC);
2201 	if (!mapping->bitmaps[next_bitmap])
2202 		return -ENOMEM;
2203 
2204 	mapping->nr_bitmaps++;
2205 
2206 	return 0;
2207 }
2208 
2209 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2210 {
2211 	if (mapping)
2212 		kref_put(&mapping->kref, release_iommu_mapping);
2213 }
2214 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2215 
2216 static int __arm_iommu_attach_device(struct device *dev,
2217 				     struct dma_iommu_mapping *mapping)
2218 {
2219 	int err;
2220 
2221 	err = iommu_attach_device(mapping->domain, dev);
2222 	if (err)
2223 		return err;
2224 
2225 	kref_get(&mapping->kref);
2226 	to_dma_iommu_mapping(dev) = mapping;
2227 
2228 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2229 	return 0;
2230 }
2231 
2232 /**
2233  * arm_iommu_attach_device
2234  * @dev: valid struct device pointer
2235  * @mapping: io address space mapping structure (returned from
2236  *	arm_iommu_create_mapping)
2237  *
2238  * Attaches specified io address space mapping to the provided device.
2239  * This replaces the dma operations (dma_map_ops pointer) with the
2240  * IOMMU aware version.
2241  *
2242  * More than one client might be attached to the same io address space
2243  * mapping.
2244  */
2245 int arm_iommu_attach_device(struct device *dev,
2246 			    struct dma_iommu_mapping *mapping)
2247 {
2248 	int err;
2249 
2250 	err = __arm_iommu_attach_device(dev, mapping);
2251 	if (err)
2252 		return err;
2253 
2254 	set_dma_ops(dev, &iommu_ops);
2255 	return 0;
2256 }
2257 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2258 
2259 /**
2260  * arm_iommu_detach_device
2261  * @dev: valid struct device pointer
2262  *
2263  * Detaches the provided device from a previously attached map.
2264  * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2265  */
2266 void arm_iommu_detach_device(struct device *dev)
2267 {
2268 	struct dma_iommu_mapping *mapping;
2269 
2270 	mapping = to_dma_iommu_mapping(dev);
2271 	if (!mapping) {
2272 		dev_warn(dev, "Not attached\n");
2273 		return;
2274 	}
2275 
2276 	iommu_detach_device(mapping->domain, dev);
2277 	kref_put(&mapping->kref, release_iommu_mapping);
2278 	to_dma_iommu_mapping(dev) = NULL;
2279 	set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2280 
2281 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2282 }
2283 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2284 
2285 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2286 {
2287 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2288 }
2289 
2290 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2291 				    const struct iommu_ops *iommu)
2292 {
2293 	struct dma_iommu_mapping *mapping;
2294 
2295 	if (!iommu)
2296 		return false;
2297 
2298 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2299 	if (IS_ERR(mapping)) {
2300 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2301 				size, dev_name(dev));
2302 		return false;
2303 	}
2304 
2305 	if (__arm_iommu_attach_device(dev, mapping)) {
2306 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2307 				dev_name(dev));
2308 		arm_iommu_release_mapping(mapping);
2309 		return false;
2310 	}
2311 
2312 	return true;
2313 }
2314 
2315 static void arm_teardown_iommu_dma_ops(struct device *dev)
2316 {
2317 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2318 
2319 	if (!mapping)
2320 		return;
2321 
2322 	arm_iommu_detach_device(dev);
2323 	arm_iommu_release_mapping(mapping);
2324 }
2325 
2326 #else
2327 
2328 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2329 				    const struct iommu_ops *iommu)
2330 {
2331 	return false;
2332 }
2333 
2334 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2335 
2336 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2337 
2338 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2339 
2340 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2341 			const struct iommu_ops *iommu, bool coherent)
2342 {
2343 	const struct dma_map_ops *dma_ops;
2344 
2345 	dev->archdata.dma_coherent = coherent;
2346 #ifdef CONFIG_SWIOTLB
2347 	dev->dma_coherent = coherent;
2348 #endif
2349 
2350 	/*
2351 	 * Don't override the dma_ops if they have already been set. Ideally
2352 	 * this should be the only location where dma_ops are set, remove this
2353 	 * check when all other callers of set_dma_ops will have disappeared.
2354 	 */
2355 	if (dev->dma_ops)
2356 		return;
2357 
2358 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2359 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2360 	else
2361 		dma_ops = arm_get_dma_map_ops(coherent);
2362 
2363 	set_dma_ops(dev, dma_ops);
2364 
2365 #ifdef CONFIG_XEN
2366 	if (xen_initial_domain()) {
2367 		dev->archdata.dev_dma_ops = dev->dma_ops;
2368 		dev->dma_ops = xen_dma_ops;
2369 	}
2370 #endif
2371 	dev->archdata.dma_ops_setup = true;
2372 }
2373 
2374 void arch_teardown_dma_ops(struct device *dev)
2375 {
2376 	if (!dev->archdata.dma_ops_setup)
2377 		return;
2378 
2379 	arm_teardown_iommu_dma_ops(dev);
2380 	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2381 	set_dma_ops(dev, NULL);
2382 }
2383 
2384 #ifdef CONFIG_SWIOTLB
2385 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
2386 		size_t size, enum dma_data_direction dir)
2387 {
2388 	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2389 			      size, dir);
2390 }
2391 
2392 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
2393 		size_t size, enum dma_data_direction dir)
2394 {
2395 	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2396 			      size, dir);
2397 }
2398 
2399 long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
2400 		dma_addr_t dma_addr)
2401 {
2402 	return dma_to_pfn(dev, dma_addr);
2403 }
2404 
2405 pgprot_t arch_dma_mmap_pgprot(struct device *dev, pgprot_t prot,
2406 		unsigned long attrs)
2407 {
2408 	return __get_dma_pgprot(attrs, prot);
2409 }
2410 
2411 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2412 		gfp_t gfp, unsigned long attrs)
2413 {
2414 	return __dma_alloc(dev, size, dma_handle, gfp,
2415 			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2416 			   attrs, __builtin_return_address(0));
2417 }
2418 
2419 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2420 		dma_addr_t dma_handle, unsigned long attrs)
2421 {
2422 	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2423 }
2424 #endif /* CONFIG_SWIOTLB */
2425