xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 79f08d9e)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28 
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
38 
39 #include "mm.h"
40 
41 /*
42  * The DMA API is built upon the notion of "buffer ownership".  A buffer
43  * is either exclusively owned by the CPU (and therefore may be accessed
44  * by it) or exclusively owned by the DMA device.  These helper functions
45  * represent the transitions between these two ownership states.
46  *
47  * Note, however, that on later ARMs, this notion does not work due to
48  * speculative prefetches.  We model our approach on the assumption that
49  * the CPU does do speculative prefetches, which means we clean caches
50  * before transfers and delay cache invalidation until transfer completion.
51  *
52  */
53 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54 		size_t, enum dma_data_direction);
55 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 		size_t, enum dma_data_direction);
57 
58 /**
59  * arm_dma_map_page - map a portion of a page for streaming DMA
60  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61  * @page: page that buffer resides in
62  * @offset: offset into page for start of buffer
63  * @size: size of buffer to map
64  * @dir: DMA transfer direction
65  *
66  * Ensure that any data held in the cache is appropriately discarded
67  * or written back.
68  *
69  * The device owns this memory once this call has completed.  The CPU
70  * can regain ownership by calling dma_unmap_page().
71  */
72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 	     unsigned long offset, size_t size, enum dma_data_direction dir,
74 	     struct dma_attrs *attrs)
75 {
76 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 		__dma_page_cpu_to_dev(page, offset, size, dir);
78 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
79 }
80 
81 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
82 	     unsigned long offset, size_t size, enum dma_data_direction dir,
83 	     struct dma_attrs *attrs)
84 {
85 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
86 }
87 
88 /**
89  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
90  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
91  * @handle: DMA address of buffer
92  * @size: size of buffer (same as passed to dma_map_page)
93  * @dir: DMA transfer direction (same as passed to dma_map_page)
94  *
95  * Unmap a page streaming mode DMA translation.  The handle and size
96  * must match what was provided in the previous dma_map_page() call.
97  * All other usages are undefined.
98  *
99  * After this call, reads by the CPU to the buffer are guaranteed to see
100  * whatever the device wrote there.
101  */
102 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
103 		size_t size, enum dma_data_direction dir,
104 		struct dma_attrs *attrs)
105 {
106 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
107 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
108 				      handle & ~PAGE_MASK, size, dir);
109 }
110 
111 static void arm_dma_sync_single_for_cpu(struct device *dev,
112 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
113 {
114 	unsigned int offset = handle & (PAGE_SIZE - 1);
115 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
116 	__dma_page_dev_to_cpu(page, offset, size, dir);
117 }
118 
119 static void arm_dma_sync_single_for_device(struct device *dev,
120 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
121 {
122 	unsigned int offset = handle & (PAGE_SIZE - 1);
123 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
124 	__dma_page_cpu_to_dev(page, offset, size, dir);
125 }
126 
127 struct dma_map_ops arm_dma_ops = {
128 	.alloc			= arm_dma_alloc,
129 	.free			= arm_dma_free,
130 	.mmap			= arm_dma_mmap,
131 	.get_sgtable		= arm_dma_get_sgtable,
132 	.map_page		= arm_dma_map_page,
133 	.unmap_page		= arm_dma_unmap_page,
134 	.map_sg			= arm_dma_map_sg,
135 	.unmap_sg		= arm_dma_unmap_sg,
136 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
137 	.sync_single_for_device	= arm_dma_sync_single_for_device,
138 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
139 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
140 	.set_dma_mask		= arm_dma_set_mask,
141 };
142 EXPORT_SYMBOL(arm_dma_ops);
143 
144 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
145 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
146 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
147 				  dma_addr_t handle, struct dma_attrs *attrs);
148 
149 struct dma_map_ops arm_coherent_dma_ops = {
150 	.alloc			= arm_coherent_dma_alloc,
151 	.free			= arm_coherent_dma_free,
152 	.mmap			= arm_dma_mmap,
153 	.get_sgtable		= arm_dma_get_sgtable,
154 	.map_page		= arm_coherent_dma_map_page,
155 	.map_sg			= arm_dma_map_sg,
156 	.set_dma_mask		= arm_dma_set_mask,
157 };
158 EXPORT_SYMBOL(arm_coherent_dma_ops);
159 
160 static u64 get_coherent_dma_mask(struct device *dev)
161 {
162 	u64 mask = (u64)DMA_BIT_MASK(32);
163 
164 	if (dev) {
165 		mask = dev->coherent_dma_mask;
166 
167 		/*
168 		 * Sanity check the DMA mask - it must be non-zero, and
169 		 * must be able to be satisfied by a DMA allocation.
170 		 */
171 		if (mask == 0) {
172 			dev_warn(dev, "coherent DMA mask is unset\n");
173 			return 0;
174 		}
175 
176 		/*
177 		 * If the mask allows for more memory than we can address,
178 		 * and we actually have that much memory, then fail the
179 		 * allocation.
180 		 */
181 		if (sizeof(mask) != sizeof(dma_addr_t) &&
182 		    mask > (dma_addr_t)~0 &&
183 		    dma_to_pfn(dev, ~0) > arm_dma_pfn_limit) {
184 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
185 				 mask);
186 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
187 			return 0;
188 		}
189 
190 		/*
191 		 * Now check that the mask, when translated to a PFN,
192 		 * fits within the allowable addresses which we can
193 		 * allocate.
194 		 */
195 		if (dma_to_pfn(dev, mask) < arm_dma_pfn_limit) {
196 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
197 				 mask,
198 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
199 				 arm_dma_pfn_limit + 1);
200 			return 0;
201 		}
202 	}
203 
204 	return mask;
205 }
206 
207 static void __dma_clear_buffer(struct page *page, size_t size)
208 {
209 	/*
210 	 * Ensure that the allocated pages are zeroed, and that any data
211 	 * lurking in the kernel direct-mapped region is invalidated.
212 	 */
213 	if (PageHighMem(page)) {
214 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
215 		phys_addr_t end = base + size;
216 		while (size > 0) {
217 			void *ptr = kmap_atomic(page);
218 			memset(ptr, 0, PAGE_SIZE);
219 			dmac_flush_range(ptr, ptr + PAGE_SIZE);
220 			kunmap_atomic(ptr);
221 			page++;
222 			size -= PAGE_SIZE;
223 		}
224 		outer_flush_range(base, end);
225 	} else {
226 		void *ptr = page_address(page);
227 		memset(ptr, 0, size);
228 		dmac_flush_range(ptr, ptr + size);
229 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
230 	}
231 }
232 
233 /*
234  * Allocate a DMA buffer for 'dev' of size 'size' using the
235  * specified gfp mask.  Note that 'size' must be page aligned.
236  */
237 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
238 {
239 	unsigned long order = get_order(size);
240 	struct page *page, *p, *e;
241 
242 	page = alloc_pages(gfp, order);
243 	if (!page)
244 		return NULL;
245 
246 	/*
247 	 * Now split the huge page and free the excess pages
248 	 */
249 	split_page(page, order);
250 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
251 		__free_page(p);
252 
253 	__dma_clear_buffer(page, size);
254 
255 	return page;
256 }
257 
258 /*
259  * Free a DMA buffer.  'size' must be page aligned.
260  */
261 static void __dma_free_buffer(struct page *page, size_t size)
262 {
263 	struct page *e = page + (size >> PAGE_SHIFT);
264 
265 	while (page < e) {
266 		__free_page(page);
267 		page++;
268 	}
269 }
270 
271 #ifdef CONFIG_MMU
272 #ifdef CONFIG_HUGETLB_PAGE
273 #warning ARM Coherent DMA allocator does not (yet) support huge TLB
274 #endif
275 
276 static void *__alloc_from_contiguous(struct device *dev, size_t size,
277 				     pgprot_t prot, struct page **ret_page,
278 				     const void *caller);
279 
280 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
281 				 pgprot_t prot, struct page **ret_page,
282 				 const void *caller);
283 
284 static void *
285 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
286 	const void *caller)
287 {
288 	struct vm_struct *area;
289 	unsigned long addr;
290 
291 	/*
292 	 * DMA allocation can be mapped to user space, so lets
293 	 * set VM_USERMAP flags too.
294 	 */
295 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
296 				  caller);
297 	if (!area)
298 		return NULL;
299 	addr = (unsigned long)area->addr;
300 	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
301 
302 	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
303 		vunmap((void *)addr);
304 		return NULL;
305 	}
306 	return (void *)addr;
307 }
308 
309 static void __dma_free_remap(void *cpu_addr, size_t size)
310 {
311 	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
312 	struct vm_struct *area = find_vm_area(cpu_addr);
313 	if (!area || (area->flags & flags) != flags) {
314 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
315 		return;
316 	}
317 	unmap_kernel_range((unsigned long)cpu_addr, size);
318 	vunmap(cpu_addr);
319 }
320 
321 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
322 
323 struct dma_pool {
324 	size_t size;
325 	spinlock_t lock;
326 	unsigned long *bitmap;
327 	unsigned long nr_pages;
328 	void *vaddr;
329 	struct page **pages;
330 };
331 
332 static struct dma_pool atomic_pool = {
333 	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
334 };
335 
336 static int __init early_coherent_pool(char *p)
337 {
338 	atomic_pool.size = memparse(p, &p);
339 	return 0;
340 }
341 early_param("coherent_pool", early_coherent_pool);
342 
343 void __init init_dma_coherent_pool_size(unsigned long size)
344 {
345 	/*
346 	 * Catch any attempt to set the pool size too late.
347 	 */
348 	BUG_ON(atomic_pool.vaddr);
349 
350 	/*
351 	 * Set architecture specific coherent pool size only if
352 	 * it has not been changed by kernel command line parameter.
353 	 */
354 	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
355 		atomic_pool.size = size;
356 }
357 
358 /*
359  * Initialise the coherent pool for atomic allocations.
360  */
361 static int __init atomic_pool_init(void)
362 {
363 	struct dma_pool *pool = &atomic_pool;
364 	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
365 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
366 	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
367 	unsigned long *bitmap;
368 	struct page *page;
369 	struct page **pages;
370 	void *ptr;
371 	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
372 
373 	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
374 	if (!bitmap)
375 		goto no_bitmap;
376 
377 	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
378 	if (!pages)
379 		goto no_pages;
380 
381 	if (IS_ENABLED(CONFIG_DMA_CMA))
382 		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
383 					      atomic_pool_init);
384 	else
385 		ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
386 					   atomic_pool_init);
387 	if (ptr) {
388 		int i;
389 
390 		for (i = 0; i < nr_pages; i++)
391 			pages[i] = page + i;
392 
393 		spin_lock_init(&pool->lock);
394 		pool->vaddr = ptr;
395 		pool->pages = pages;
396 		pool->bitmap = bitmap;
397 		pool->nr_pages = nr_pages;
398 		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
399 		       (unsigned)pool->size / 1024);
400 		return 0;
401 	}
402 
403 	kfree(pages);
404 no_pages:
405 	kfree(bitmap);
406 no_bitmap:
407 	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
408 	       (unsigned)pool->size / 1024);
409 	return -ENOMEM;
410 }
411 /*
412  * CMA is activated by core_initcall, so we must be called after it.
413  */
414 postcore_initcall(atomic_pool_init);
415 
416 struct dma_contig_early_reserve {
417 	phys_addr_t base;
418 	unsigned long size;
419 };
420 
421 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
422 
423 static int dma_mmu_remap_num __initdata;
424 
425 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
426 {
427 	dma_mmu_remap[dma_mmu_remap_num].base = base;
428 	dma_mmu_remap[dma_mmu_remap_num].size = size;
429 	dma_mmu_remap_num++;
430 }
431 
432 void __init dma_contiguous_remap(void)
433 {
434 	int i;
435 	for (i = 0; i < dma_mmu_remap_num; i++) {
436 		phys_addr_t start = dma_mmu_remap[i].base;
437 		phys_addr_t end = start + dma_mmu_remap[i].size;
438 		struct map_desc map;
439 		unsigned long addr;
440 
441 		if (end > arm_lowmem_limit)
442 			end = arm_lowmem_limit;
443 		if (start >= end)
444 			continue;
445 
446 		map.pfn = __phys_to_pfn(start);
447 		map.virtual = __phys_to_virt(start);
448 		map.length = end - start;
449 		map.type = MT_MEMORY_DMA_READY;
450 
451 		/*
452 		 * Clear previous low-memory mapping
453 		 */
454 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
455 		     addr += PMD_SIZE)
456 			pmd_clear(pmd_off_k(addr));
457 
458 		iotable_init(&map, 1);
459 	}
460 }
461 
462 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
463 			    void *data)
464 {
465 	struct page *page = virt_to_page(addr);
466 	pgprot_t prot = *(pgprot_t *)data;
467 
468 	set_pte_ext(pte, mk_pte(page, prot), 0);
469 	return 0;
470 }
471 
472 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
473 {
474 	unsigned long start = (unsigned long) page_address(page);
475 	unsigned end = start + size;
476 
477 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
478 	flush_tlb_kernel_range(start, end);
479 }
480 
481 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
482 				 pgprot_t prot, struct page **ret_page,
483 				 const void *caller)
484 {
485 	struct page *page;
486 	void *ptr;
487 	page = __dma_alloc_buffer(dev, size, gfp);
488 	if (!page)
489 		return NULL;
490 
491 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
492 	if (!ptr) {
493 		__dma_free_buffer(page, size);
494 		return NULL;
495 	}
496 
497 	*ret_page = page;
498 	return ptr;
499 }
500 
501 static void *__alloc_from_pool(size_t size, struct page **ret_page)
502 {
503 	struct dma_pool *pool = &atomic_pool;
504 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
505 	unsigned int pageno;
506 	unsigned long flags;
507 	void *ptr = NULL;
508 	unsigned long align_mask;
509 
510 	if (!pool->vaddr) {
511 		WARN(1, "coherent pool not initialised!\n");
512 		return NULL;
513 	}
514 
515 	/*
516 	 * Align the region allocation - allocations from pool are rather
517 	 * small, so align them to their order in pages, minimum is a page
518 	 * size. This helps reduce fragmentation of the DMA space.
519 	 */
520 	align_mask = (1 << get_order(size)) - 1;
521 
522 	spin_lock_irqsave(&pool->lock, flags);
523 	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
524 					    0, count, align_mask);
525 	if (pageno < pool->nr_pages) {
526 		bitmap_set(pool->bitmap, pageno, count);
527 		ptr = pool->vaddr + PAGE_SIZE * pageno;
528 		*ret_page = pool->pages[pageno];
529 	} else {
530 		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
531 			    "Please increase it with coherent_pool= kernel parameter!\n",
532 			    (unsigned)pool->size / 1024);
533 	}
534 	spin_unlock_irqrestore(&pool->lock, flags);
535 
536 	return ptr;
537 }
538 
539 static bool __in_atomic_pool(void *start, size_t size)
540 {
541 	struct dma_pool *pool = &atomic_pool;
542 	void *end = start + size;
543 	void *pool_start = pool->vaddr;
544 	void *pool_end = pool->vaddr + pool->size;
545 
546 	if (start < pool_start || start >= pool_end)
547 		return false;
548 
549 	if (end <= pool_end)
550 		return true;
551 
552 	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
553 	     start, end - 1, pool_start, pool_end - 1);
554 
555 	return false;
556 }
557 
558 static int __free_from_pool(void *start, size_t size)
559 {
560 	struct dma_pool *pool = &atomic_pool;
561 	unsigned long pageno, count;
562 	unsigned long flags;
563 
564 	if (!__in_atomic_pool(start, size))
565 		return 0;
566 
567 	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
568 	count = size >> PAGE_SHIFT;
569 
570 	spin_lock_irqsave(&pool->lock, flags);
571 	bitmap_clear(pool->bitmap, pageno, count);
572 	spin_unlock_irqrestore(&pool->lock, flags);
573 
574 	return 1;
575 }
576 
577 static void *__alloc_from_contiguous(struct device *dev, size_t size,
578 				     pgprot_t prot, struct page **ret_page,
579 				     const void *caller)
580 {
581 	unsigned long order = get_order(size);
582 	size_t count = size >> PAGE_SHIFT;
583 	struct page *page;
584 	void *ptr;
585 
586 	page = dma_alloc_from_contiguous(dev, count, order);
587 	if (!page)
588 		return NULL;
589 
590 	__dma_clear_buffer(page, size);
591 
592 	if (PageHighMem(page)) {
593 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
594 		if (!ptr) {
595 			dma_release_from_contiguous(dev, page, count);
596 			return NULL;
597 		}
598 	} else {
599 		__dma_remap(page, size, prot);
600 		ptr = page_address(page);
601 	}
602 	*ret_page = page;
603 	return ptr;
604 }
605 
606 static void __free_from_contiguous(struct device *dev, struct page *page,
607 				   void *cpu_addr, size_t size)
608 {
609 	if (PageHighMem(page))
610 		__dma_free_remap(cpu_addr, size);
611 	else
612 		__dma_remap(page, size, pgprot_kernel);
613 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
614 }
615 
616 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
617 {
618 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
619 			    pgprot_writecombine(prot) :
620 			    pgprot_dmacoherent(prot);
621 	return prot;
622 }
623 
624 #define nommu() 0
625 
626 #else	/* !CONFIG_MMU */
627 
628 #define nommu() 1
629 
630 #define __get_dma_pgprot(attrs, prot)	__pgprot(0)
631 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
632 #define __alloc_from_pool(size, ret_page)			NULL
633 #define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
634 #define __free_from_pool(cpu_addr, size)			0
635 #define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
636 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
637 
638 #endif	/* CONFIG_MMU */
639 
640 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
641 				   struct page **ret_page)
642 {
643 	struct page *page;
644 	page = __dma_alloc_buffer(dev, size, gfp);
645 	if (!page)
646 		return NULL;
647 
648 	*ret_page = page;
649 	return page_address(page);
650 }
651 
652 
653 
654 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
655 			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
656 {
657 	u64 mask = get_coherent_dma_mask(dev);
658 	struct page *page = NULL;
659 	void *addr;
660 
661 #ifdef CONFIG_DMA_API_DEBUG
662 	u64 limit = (mask + 1) & ~mask;
663 	if (limit && size >= limit) {
664 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
665 			size, mask);
666 		return NULL;
667 	}
668 #endif
669 
670 	if (!mask)
671 		return NULL;
672 
673 	if (mask < 0xffffffffULL)
674 		gfp |= GFP_DMA;
675 
676 	/*
677 	 * Following is a work-around (a.k.a. hack) to prevent pages
678 	 * with __GFP_COMP being passed to split_page() which cannot
679 	 * handle them.  The real problem is that this flag probably
680 	 * should be 0 on ARM as it is not supported on this
681 	 * platform; see CONFIG_HUGETLBFS.
682 	 */
683 	gfp &= ~(__GFP_COMP);
684 
685 	*handle = DMA_ERROR_CODE;
686 	size = PAGE_ALIGN(size);
687 
688 	if (is_coherent || nommu())
689 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
690 	else if (!(gfp & __GFP_WAIT))
691 		addr = __alloc_from_pool(size, &page);
692 	else if (!IS_ENABLED(CONFIG_DMA_CMA))
693 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
694 	else
695 		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
696 
697 	if (addr)
698 		*handle = pfn_to_dma(dev, page_to_pfn(page));
699 
700 	return addr;
701 }
702 
703 /*
704  * Allocate DMA-coherent memory space and return both the kernel remapped
705  * virtual and bus address for that space.
706  */
707 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
708 		    gfp_t gfp, struct dma_attrs *attrs)
709 {
710 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
711 	void *memory;
712 
713 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
714 		return memory;
715 
716 	return __dma_alloc(dev, size, handle, gfp, prot, false,
717 			   __builtin_return_address(0));
718 }
719 
720 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
721 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
722 {
723 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
724 	void *memory;
725 
726 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
727 		return memory;
728 
729 	return __dma_alloc(dev, size, handle, gfp, prot, true,
730 			   __builtin_return_address(0));
731 }
732 
733 /*
734  * Create userspace mapping for the DMA-coherent memory.
735  */
736 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
737 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
738 		 struct dma_attrs *attrs)
739 {
740 	int ret = -ENXIO;
741 #ifdef CONFIG_MMU
742 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
743 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
744 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
745 	unsigned long off = vma->vm_pgoff;
746 
747 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
748 
749 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
750 		return ret;
751 
752 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
753 		ret = remap_pfn_range(vma, vma->vm_start,
754 				      pfn + off,
755 				      vma->vm_end - vma->vm_start,
756 				      vma->vm_page_prot);
757 	}
758 #endif	/* CONFIG_MMU */
759 
760 	return ret;
761 }
762 
763 /*
764  * Free a buffer as defined by the above mapping.
765  */
766 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
767 			   dma_addr_t handle, struct dma_attrs *attrs,
768 			   bool is_coherent)
769 {
770 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
771 
772 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
773 		return;
774 
775 	size = PAGE_ALIGN(size);
776 
777 	if (is_coherent || nommu()) {
778 		__dma_free_buffer(page, size);
779 	} else if (__free_from_pool(cpu_addr, size)) {
780 		return;
781 	} else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
782 		__dma_free_remap(cpu_addr, size);
783 		__dma_free_buffer(page, size);
784 	} else {
785 		/*
786 		 * Non-atomic allocations cannot be freed with IRQs disabled
787 		 */
788 		WARN_ON(irqs_disabled());
789 		__free_from_contiguous(dev, page, cpu_addr, size);
790 	}
791 }
792 
793 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
794 		  dma_addr_t handle, struct dma_attrs *attrs)
795 {
796 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
797 }
798 
799 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
800 				  dma_addr_t handle, struct dma_attrs *attrs)
801 {
802 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
803 }
804 
805 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
806 		 void *cpu_addr, dma_addr_t handle, size_t size,
807 		 struct dma_attrs *attrs)
808 {
809 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
810 	int ret;
811 
812 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
813 	if (unlikely(ret))
814 		return ret;
815 
816 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
817 	return 0;
818 }
819 
820 static void dma_cache_maint_page(struct page *page, unsigned long offset,
821 	size_t size, enum dma_data_direction dir,
822 	void (*op)(const void *, size_t, int))
823 {
824 	unsigned long pfn;
825 	size_t left = size;
826 
827 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
828 	offset %= PAGE_SIZE;
829 
830 	/*
831 	 * A single sg entry may refer to multiple physically contiguous
832 	 * pages.  But we still need to process highmem pages individually.
833 	 * If highmem is not configured then the bulk of this loop gets
834 	 * optimized out.
835 	 */
836 	do {
837 		size_t len = left;
838 		void *vaddr;
839 
840 		page = pfn_to_page(pfn);
841 
842 		if (PageHighMem(page)) {
843 			if (len + offset > PAGE_SIZE)
844 				len = PAGE_SIZE - offset;
845 
846 			if (cache_is_vipt_nonaliasing()) {
847 				vaddr = kmap_atomic(page);
848 				op(vaddr + offset, len, dir);
849 				kunmap_atomic(vaddr);
850 			} else {
851 				vaddr = kmap_high_get(page);
852 				if (vaddr) {
853 					op(vaddr + offset, len, dir);
854 					kunmap_high(page);
855 				}
856 			}
857 		} else {
858 			vaddr = page_address(page) + offset;
859 			op(vaddr, len, dir);
860 		}
861 		offset = 0;
862 		pfn++;
863 		left -= len;
864 	} while (left);
865 }
866 
867 /*
868  * Make an area consistent for devices.
869  * Note: Drivers should NOT use this function directly, as it will break
870  * platforms with CONFIG_DMABOUNCE.
871  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
872  */
873 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
874 	size_t size, enum dma_data_direction dir)
875 {
876 	unsigned long paddr;
877 
878 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
879 
880 	paddr = page_to_phys(page) + off;
881 	if (dir == DMA_FROM_DEVICE) {
882 		outer_inv_range(paddr, paddr + size);
883 	} else {
884 		outer_clean_range(paddr, paddr + size);
885 	}
886 	/* FIXME: non-speculating: flush on bidirectional mappings? */
887 }
888 
889 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
890 	size_t size, enum dma_data_direction dir)
891 {
892 	unsigned long paddr = page_to_phys(page) + off;
893 
894 	/* FIXME: non-speculating: not required */
895 	/* don't bother invalidating if DMA to device */
896 	if (dir != DMA_TO_DEVICE)
897 		outer_inv_range(paddr, paddr + size);
898 
899 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
900 
901 	/*
902 	 * Mark the D-cache clean for these pages to avoid extra flushing.
903 	 */
904 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
905 		unsigned long pfn;
906 		size_t left = size;
907 
908 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
909 		off %= PAGE_SIZE;
910 		if (off) {
911 			pfn++;
912 			left -= PAGE_SIZE - off;
913 		}
914 		while (left >= PAGE_SIZE) {
915 			page = pfn_to_page(pfn++);
916 			set_bit(PG_dcache_clean, &page->flags);
917 			left -= PAGE_SIZE;
918 		}
919 	}
920 }
921 
922 /**
923  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
924  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
925  * @sg: list of buffers
926  * @nents: number of buffers to map
927  * @dir: DMA transfer direction
928  *
929  * Map a set of buffers described by scatterlist in streaming mode for DMA.
930  * This is the scatter-gather version of the dma_map_single interface.
931  * Here the scatter gather list elements are each tagged with the
932  * appropriate dma address and length.  They are obtained via
933  * sg_dma_{address,length}.
934  *
935  * Device ownership issues as mentioned for dma_map_single are the same
936  * here.
937  */
938 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
939 		enum dma_data_direction dir, struct dma_attrs *attrs)
940 {
941 	struct dma_map_ops *ops = get_dma_ops(dev);
942 	struct scatterlist *s;
943 	int i, j;
944 
945 	for_each_sg(sg, s, nents, i) {
946 #ifdef CONFIG_NEED_SG_DMA_LENGTH
947 		s->dma_length = s->length;
948 #endif
949 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
950 						s->length, dir, attrs);
951 		if (dma_mapping_error(dev, s->dma_address))
952 			goto bad_mapping;
953 	}
954 	return nents;
955 
956  bad_mapping:
957 	for_each_sg(sg, s, i, j)
958 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
959 	return 0;
960 }
961 
962 /**
963  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
964  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
965  * @sg: list of buffers
966  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
967  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
968  *
969  * Unmap a set of streaming mode DMA translations.  Again, CPU access
970  * rules concerning calls here are the same as for dma_unmap_single().
971  */
972 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
973 		enum dma_data_direction dir, struct dma_attrs *attrs)
974 {
975 	struct dma_map_ops *ops = get_dma_ops(dev);
976 	struct scatterlist *s;
977 
978 	int i;
979 
980 	for_each_sg(sg, s, nents, i)
981 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
982 }
983 
984 /**
985  * arm_dma_sync_sg_for_cpu
986  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
987  * @sg: list of buffers
988  * @nents: number of buffers to map (returned from dma_map_sg)
989  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
990  */
991 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
992 			int nents, enum dma_data_direction dir)
993 {
994 	struct dma_map_ops *ops = get_dma_ops(dev);
995 	struct scatterlist *s;
996 	int i;
997 
998 	for_each_sg(sg, s, nents, i)
999 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1000 					 dir);
1001 }
1002 
1003 /**
1004  * arm_dma_sync_sg_for_device
1005  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1006  * @sg: list of buffers
1007  * @nents: number of buffers to map (returned from dma_map_sg)
1008  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1009  */
1010 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1011 			int nents, enum dma_data_direction dir)
1012 {
1013 	struct dma_map_ops *ops = get_dma_ops(dev);
1014 	struct scatterlist *s;
1015 	int i;
1016 
1017 	for_each_sg(sg, s, nents, i)
1018 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1019 					    dir);
1020 }
1021 
1022 /*
1023  * Return whether the given device DMA address mask can be supported
1024  * properly.  For example, if your device can only drive the low 24-bits
1025  * during bus mastering, then you would pass 0x00ffffff as the mask
1026  * to this function.
1027  */
1028 int dma_supported(struct device *dev, u64 mask)
1029 {
1030 	unsigned long limit;
1031 
1032 	/*
1033 	 * If the mask allows for more memory than we can address,
1034 	 * and we actually have that much memory, then we must
1035 	 * indicate that DMA to this device is not supported.
1036 	 */
1037 	if (sizeof(mask) != sizeof(dma_addr_t) &&
1038 	    mask > (dma_addr_t)~0 &&
1039 	    dma_to_pfn(dev, ~0) > arm_dma_pfn_limit)
1040 		return 0;
1041 
1042 	/*
1043 	 * Translate the device's DMA mask to a PFN limit.  This
1044 	 * PFN number includes the page which we can DMA to.
1045 	 */
1046 	limit = dma_to_pfn(dev, mask);
1047 
1048 	if (limit < arm_dma_pfn_limit)
1049 		return 0;
1050 
1051 	return 1;
1052 }
1053 EXPORT_SYMBOL(dma_supported);
1054 
1055 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1056 {
1057 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1058 		return -EIO;
1059 
1060 	*dev->dma_mask = dma_mask;
1061 
1062 	return 0;
1063 }
1064 
1065 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1066 
1067 static int __init dma_debug_do_init(void)
1068 {
1069 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1070 	return 0;
1071 }
1072 fs_initcall(dma_debug_do_init);
1073 
1074 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1075 
1076 /* IOMMU */
1077 
1078 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1079 				      size_t size)
1080 {
1081 	unsigned int order = get_order(size);
1082 	unsigned int align = 0;
1083 	unsigned int count, start;
1084 	unsigned long flags;
1085 
1086 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1087 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1088 
1089 	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1090 		 (1 << mapping->order) - 1) >> mapping->order;
1091 
1092 	if (order > mapping->order)
1093 		align = (1 << (order - mapping->order)) - 1;
1094 
1095 	spin_lock_irqsave(&mapping->lock, flags);
1096 	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1097 					   count, align);
1098 	if (start > mapping->bits) {
1099 		spin_unlock_irqrestore(&mapping->lock, flags);
1100 		return DMA_ERROR_CODE;
1101 	}
1102 
1103 	bitmap_set(mapping->bitmap, start, count);
1104 	spin_unlock_irqrestore(&mapping->lock, flags);
1105 
1106 	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1107 }
1108 
1109 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1110 			       dma_addr_t addr, size_t size)
1111 {
1112 	unsigned int start = (addr - mapping->base) >>
1113 			     (mapping->order + PAGE_SHIFT);
1114 	unsigned int count = ((size >> PAGE_SHIFT) +
1115 			      (1 << mapping->order) - 1) >> mapping->order;
1116 	unsigned long flags;
1117 
1118 	spin_lock_irqsave(&mapping->lock, flags);
1119 	bitmap_clear(mapping->bitmap, start, count);
1120 	spin_unlock_irqrestore(&mapping->lock, flags);
1121 }
1122 
1123 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1124 					  gfp_t gfp, struct dma_attrs *attrs)
1125 {
1126 	struct page **pages;
1127 	int count = size >> PAGE_SHIFT;
1128 	int array_size = count * sizeof(struct page *);
1129 	int i = 0;
1130 
1131 	if (array_size <= PAGE_SIZE)
1132 		pages = kzalloc(array_size, gfp);
1133 	else
1134 		pages = vzalloc(array_size);
1135 	if (!pages)
1136 		return NULL;
1137 
1138 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1139 	{
1140 		unsigned long order = get_order(size);
1141 		struct page *page;
1142 
1143 		page = dma_alloc_from_contiguous(dev, count, order);
1144 		if (!page)
1145 			goto error;
1146 
1147 		__dma_clear_buffer(page, size);
1148 
1149 		for (i = 0; i < count; i++)
1150 			pages[i] = page + i;
1151 
1152 		return pages;
1153 	}
1154 
1155 	/*
1156 	 * IOMMU can map any pages, so himem can also be used here
1157 	 */
1158 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1159 
1160 	while (count) {
1161 		int j, order = __fls(count);
1162 
1163 		pages[i] = alloc_pages(gfp, order);
1164 		while (!pages[i] && order)
1165 			pages[i] = alloc_pages(gfp, --order);
1166 		if (!pages[i])
1167 			goto error;
1168 
1169 		if (order) {
1170 			split_page(pages[i], order);
1171 			j = 1 << order;
1172 			while (--j)
1173 				pages[i + j] = pages[i] + j;
1174 		}
1175 
1176 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1177 		i += 1 << order;
1178 		count -= 1 << order;
1179 	}
1180 
1181 	return pages;
1182 error:
1183 	while (i--)
1184 		if (pages[i])
1185 			__free_pages(pages[i], 0);
1186 	if (array_size <= PAGE_SIZE)
1187 		kfree(pages);
1188 	else
1189 		vfree(pages);
1190 	return NULL;
1191 }
1192 
1193 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1194 			       size_t size, struct dma_attrs *attrs)
1195 {
1196 	int count = size >> PAGE_SHIFT;
1197 	int array_size = count * sizeof(struct page *);
1198 	int i;
1199 
1200 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1201 		dma_release_from_contiguous(dev, pages[0], count);
1202 	} else {
1203 		for (i = 0; i < count; i++)
1204 			if (pages[i])
1205 				__free_pages(pages[i], 0);
1206 	}
1207 
1208 	if (array_size <= PAGE_SIZE)
1209 		kfree(pages);
1210 	else
1211 		vfree(pages);
1212 	return 0;
1213 }
1214 
1215 /*
1216  * Create a CPU mapping for a specified pages
1217  */
1218 static void *
1219 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1220 		    const void *caller)
1221 {
1222 	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1223 	struct vm_struct *area;
1224 	unsigned long p;
1225 
1226 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1227 				  caller);
1228 	if (!area)
1229 		return NULL;
1230 
1231 	area->pages = pages;
1232 	area->nr_pages = nr_pages;
1233 	p = (unsigned long)area->addr;
1234 
1235 	for (i = 0; i < nr_pages; i++) {
1236 		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1237 		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1238 			goto err;
1239 		p += PAGE_SIZE;
1240 	}
1241 	return area->addr;
1242 err:
1243 	unmap_kernel_range((unsigned long)area->addr, size);
1244 	vunmap(area->addr);
1245 	return NULL;
1246 }
1247 
1248 /*
1249  * Create a mapping in device IO address space for specified pages
1250  */
1251 static dma_addr_t
1252 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1253 {
1254 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1255 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1256 	dma_addr_t dma_addr, iova;
1257 	int i, ret = DMA_ERROR_CODE;
1258 
1259 	dma_addr = __alloc_iova(mapping, size);
1260 	if (dma_addr == DMA_ERROR_CODE)
1261 		return dma_addr;
1262 
1263 	iova = dma_addr;
1264 	for (i = 0; i < count; ) {
1265 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1266 		phys_addr_t phys = page_to_phys(pages[i]);
1267 		unsigned int len, j;
1268 
1269 		for (j = i + 1; j < count; j++, next_pfn++)
1270 			if (page_to_pfn(pages[j]) != next_pfn)
1271 				break;
1272 
1273 		len = (j - i) << PAGE_SHIFT;
1274 		ret = iommu_map(mapping->domain, iova, phys, len,
1275 				IOMMU_READ|IOMMU_WRITE);
1276 		if (ret < 0)
1277 			goto fail;
1278 		iova += len;
1279 		i = j;
1280 	}
1281 	return dma_addr;
1282 fail:
1283 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1284 	__free_iova(mapping, dma_addr, size);
1285 	return DMA_ERROR_CODE;
1286 }
1287 
1288 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1289 {
1290 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1291 
1292 	/*
1293 	 * add optional in-page offset from iova to size and align
1294 	 * result to page size
1295 	 */
1296 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1297 	iova &= PAGE_MASK;
1298 
1299 	iommu_unmap(mapping->domain, iova, size);
1300 	__free_iova(mapping, iova, size);
1301 	return 0;
1302 }
1303 
1304 static struct page **__atomic_get_pages(void *addr)
1305 {
1306 	struct dma_pool *pool = &atomic_pool;
1307 	struct page **pages = pool->pages;
1308 	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1309 
1310 	return pages + offs;
1311 }
1312 
1313 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1314 {
1315 	struct vm_struct *area;
1316 
1317 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1318 		return __atomic_get_pages(cpu_addr);
1319 
1320 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1321 		return cpu_addr;
1322 
1323 	area = find_vm_area(cpu_addr);
1324 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1325 		return area->pages;
1326 	return NULL;
1327 }
1328 
1329 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1330 				  dma_addr_t *handle)
1331 {
1332 	struct page *page;
1333 	void *addr;
1334 
1335 	addr = __alloc_from_pool(size, &page);
1336 	if (!addr)
1337 		return NULL;
1338 
1339 	*handle = __iommu_create_mapping(dev, &page, size);
1340 	if (*handle == DMA_ERROR_CODE)
1341 		goto err_mapping;
1342 
1343 	return addr;
1344 
1345 err_mapping:
1346 	__free_from_pool(addr, size);
1347 	return NULL;
1348 }
1349 
1350 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1351 				dma_addr_t handle, size_t size)
1352 {
1353 	__iommu_remove_mapping(dev, handle, size);
1354 	__free_from_pool(cpu_addr, size);
1355 }
1356 
1357 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1358 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1359 {
1360 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1361 	struct page **pages;
1362 	void *addr = NULL;
1363 
1364 	*handle = DMA_ERROR_CODE;
1365 	size = PAGE_ALIGN(size);
1366 
1367 	if (gfp & GFP_ATOMIC)
1368 		return __iommu_alloc_atomic(dev, size, handle);
1369 
1370 	/*
1371 	 * Following is a work-around (a.k.a. hack) to prevent pages
1372 	 * with __GFP_COMP being passed to split_page() which cannot
1373 	 * handle them.  The real problem is that this flag probably
1374 	 * should be 0 on ARM as it is not supported on this
1375 	 * platform; see CONFIG_HUGETLBFS.
1376 	 */
1377 	gfp &= ~(__GFP_COMP);
1378 
1379 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1380 	if (!pages)
1381 		return NULL;
1382 
1383 	*handle = __iommu_create_mapping(dev, pages, size);
1384 	if (*handle == DMA_ERROR_CODE)
1385 		goto err_buffer;
1386 
1387 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1388 		return pages;
1389 
1390 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1391 				   __builtin_return_address(0));
1392 	if (!addr)
1393 		goto err_mapping;
1394 
1395 	return addr;
1396 
1397 err_mapping:
1398 	__iommu_remove_mapping(dev, *handle, size);
1399 err_buffer:
1400 	__iommu_free_buffer(dev, pages, size, attrs);
1401 	return NULL;
1402 }
1403 
1404 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1405 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1406 		    struct dma_attrs *attrs)
1407 {
1408 	unsigned long uaddr = vma->vm_start;
1409 	unsigned long usize = vma->vm_end - vma->vm_start;
1410 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1411 
1412 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1413 
1414 	if (!pages)
1415 		return -ENXIO;
1416 
1417 	do {
1418 		int ret = vm_insert_page(vma, uaddr, *pages++);
1419 		if (ret) {
1420 			pr_err("Remapping memory failed: %d\n", ret);
1421 			return ret;
1422 		}
1423 		uaddr += PAGE_SIZE;
1424 		usize -= PAGE_SIZE;
1425 	} while (usize > 0);
1426 
1427 	return 0;
1428 }
1429 
1430 /*
1431  * free a page as defined by the above mapping.
1432  * Must not be called with IRQs disabled.
1433  */
1434 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1435 			  dma_addr_t handle, struct dma_attrs *attrs)
1436 {
1437 	struct page **pages;
1438 	size = PAGE_ALIGN(size);
1439 
1440 	if (__in_atomic_pool(cpu_addr, size)) {
1441 		__iommu_free_atomic(dev, cpu_addr, handle, size);
1442 		return;
1443 	}
1444 
1445 	pages = __iommu_get_pages(cpu_addr, attrs);
1446 	if (!pages) {
1447 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1448 		return;
1449 	}
1450 
1451 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1452 		unmap_kernel_range((unsigned long)cpu_addr, size);
1453 		vunmap(cpu_addr);
1454 	}
1455 
1456 	__iommu_remove_mapping(dev, handle, size);
1457 	__iommu_free_buffer(dev, pages, size, attrs);
1458 }
1459 
1460 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1461 				 void *cpu_addr, dma_addr_t dma_addr,
1462 				 size_t size, struct dma_attrs *attrs)
1463 {
1464 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1465 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1466 
1467 	if (!pages)
1468 		return -ENXIO;
1469 
1470 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1471 					 GFP_KERNEL);
1472 }
1473 
1474 static int __dma_direction_to_prot(enum dma_data_direction dir)
1475 {
1476 	int prot;
1477 
1478 	switch (dir) {
1479 	case DMA_BIDIRECTIONAL:
1480 		prot = IOMMU_READ | IOMMU_WRITE;
1481 		break;
1482 	case DMA_TO_DEVICE:
1483 		prot = IOMMU_READ;
1484 		break;
1485 	case DMA_FROM_DEVICE:
1486 		prot = IOMMU_WRITE;
1487 		break;
1488 	default:
1489 		prot = 0;
1490 	}
1491 
1492 	return prot;
1493 }
1494 
1495 /*
1496  * Map a part of the scatter-gather list into contiguous io address space
1497  */
1498 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1499 			  size_t size, dma_addr_t *handle,
1500 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1501 			  bool is_coherent)
1502 {
1503 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1504 	dma_addr_t iova, iova_base;
1505 	int ret = 0;
1506 	unsigned int count;
1507 	struct scatterlist *s;
1508 	int prot;
1509 
1510 	size = PAGE_ALIGN(size);
1511 	*handle = DMA_ERROR_CODE;
1512 
1513 	iova_base = iova = __alloc_iova(mapping, size);
1514 	if (iova == DMA_ERROR_CODE)
1515 		return -ENOMEM;
1516 
1517 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1518 		phys_addr_t phys = page_to_phys(sg_page(s));
1519 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1520 
1521 		if (!is_coherent &&
1522 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1523 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1524 
1525 		prot = __dma_direction_to_prot(dir);
1526 
1527 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1528 		if (ret < 0)
1529 			goto fail;
1530 		count += len >> PAGE_SHIFT;
1531 		iova += len;
1532 	}
1533 	*handle = iova_base;
1534 
1535 	return 0;
1536 fail:
1537 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1538 	__free_iova(mapping, iova_base, size);
1539 	return ret;
1540 }
1541 
1542 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1543 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1544 		     bool is_coherent)
1545 {
1546 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1547 	int i, count = 0;
1548 	unsigned int offset = s->offset;
1549 	unsigned int size = s->offset + s->length;
1550 	unsigned int max = dma_get_max_seg_size(dev);
1551 
1552 	for (i = 1; i < nents; i++) {
1553 		s = sg_next(s);
1554 
1555 		s->dma_address = DMA_ERROR_CODE;
1556 		s->dma_length = 0;
1557 
1558 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1559 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1560 			    dir, attrs, is_coherent) < 0)
1561 				goto bad_mapping;
1562 
1563 			dma->dma_address += offset;
1564 			dma->dma_length = size - offset;
1565 
1566 			size = offset = s->offset;
1567 			start = s;
1568 			dma = sg_next(dma);
1569 			count += 1;
1570 		}
1571 		size += s->length;
1572 	}
1573 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1574 		is_coherent) < 0)
1575 		goto bad_mapping;
1576 
1577 	dma->dma_address += offset;
1578 	dma->dma_length = size - offset;
1579 
1580 	return count+1;
1581 
1582 bad_mapping:
1583 	for_each_sg(sg, s, count, i)
1584 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1585 	return 0;
1586 }
1587 
1588 /**
1589  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1590  * @dev: valid struct device pointer
1591  * @sg: list of buffers
1592  * @nents: number of buffers to map
1593  * @dir: DMA transfer direction
1594  *
1595  * Map a set of i/o coherent buffers described by scatterlist in streaming
1596  * mode for DMA. The scatter gather list elements are merged together (if
1597  * possible) and tagged with the appropriate dma address and length. They are
1598  * obtained via sg_dma_{address,length}.
1599  */
1600 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1601 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1602 {
1603 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1604 }
1605 
1606 /**
1607  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1608  * @dev: valid struct device pointer
1609  * @sg: list of buffers
1610  * @nents: number of buffers to map
1611  * @dir: DMA transfer direction
1612  *
1613  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1614  * The scatter gather list elements are merged together (if possible) and
1615  * tagged with the appropriate dma address and length. They are obtained via
1616  * sg_dma_{address,length}.
1617  */
1618 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1619 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1620 {
1621 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1622 }
1623 
1624 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1625 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1626 		bool is_coherent)
1627 {
1628 	struct scatterlist *s;
1629 	int i;
1630 
1631 	for_each_sg(sg, s, nents, i) {
1632 		if (sg_dma_len(s))
1633 			__iommu_remove_mapping(dev, sg_dma_address(s),
1634 					       sg_dma_len(s));
1635 		if (!is_coherent &&
1636 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1637 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1638 					      s->length, dir);
1639 	}
1640 }
1641 
1642 /**
1643  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1644  * @dev: valid struct device pointer
1645  * @sg: list of buffers
1646  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1647  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1648  *
1649  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1650  * rules concerning calls here are the same as for dma_unmap_single().
1651  */
1652 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1653 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1654 {
1655 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1656 }
1657 
1658 /**
1659  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1660  * @dev: valid struct device pointer
1661  * @sg: list of buffers
1662  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1663  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1664  *
1665  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1666  * rules concerning calls here are the same as for dma_unmap_single().
1667  */
1668 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1669 			enum dma_data_direction dir, struct dma_attrs *attrs)
1670 {
1671 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1672 }
1673 
1674 /**
1675  * arm_iommu_sync_sg_for_cpu
1676  * @dev: valid struct device pointer
1677  * @sg: list of buffers
1678  * @nents: number of buffers to map (returned from dma_map_sg)
1679  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1680  */
1681 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1682 			int nents, enum dma_data_direction dir)
1683 {
1684 	struct scatterlist *s;
1685 	int i;
1686 
1687 	for_each_sg(sg, s, nents, i)
1688 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1689 
1690 }
1691 
1692 /**
1693  * arm_iommu_sync_sg_for_device
1694  * @dev: valid struct device pointer
1695  * @sg: list of buffers
1696  * @nents: number of buffers to map (returned from dma_map_sg)
1697  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1698  */
1699 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1700 			int nents, enum dma_data_direction dir)
1701 {
1702 	struct scatterlist *s;
1703 	int i;
1704 
1705 	for_each_sg(sg, s, nents, i)
1706 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1707 }
1708 
1709 
1710 /**
1711  * arm_coherent_iommu_map_page
1712  * @dev: valid struct device pointer
1713  * @page: page that buffer resides in
1714  * @offset: offset into page for start of buffer
1715  * @size: size of buffer to map
1716  * @dir: DMA transfer direction
1717  *
1718  * Coherent IOMMU aware version of arm_dma_map_page()
1719  */
1720 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1721 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1722 	     struct dma_attrs *attrs)
1723 {
1724 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1725 	dma_addr_t dma_addr;
1726 	int ret, prot, len = PAGE_ALIGN(size + offset);
1727 
1728 	dma_addr = __alloc_iova(mapping, len);
1729 	if (dma_addr == DMA_ERROR_CODE)
1730 		return dma_addr;
1731 
1732 	prot = __dma_direction_to_prot(dir);
1733 
1734 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1735 	if (ret < 0)
1736 		goto fail;
1737 
1738 	return dma_addr + offset;
1739 fail:
1740 	__free_iova(mapping, dma_addr, len);
1741 	return DMA_ERROR_CODE;
1742 }
1743 
1744 /**
1745  * arm_iommu_map_page
1746  * @dev: valid struct device pointer
1747  * @page: page that buffer resides in
1748  * @offset: offset into page for start of buffer
1749  * @size: size of buffer to map
1750  * @dir: DMA transfer direction
1751  *
1752  * IOMMU aware version of arm_dma_map_page()
1753  */
1754 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1755 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1756 	     struct dma_attrs *attrs)
1757 {
1758 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1759 		__dma_page_cpu_to_dev(page, offset, size, dir);
1760 
1761 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1762 }
1763 
1764 /**
1765  * arm_coherent_iommu_unmap_page
1766  * @dev: valid struct device pointer
1767  * @handle: DMA address of buffer
1768  * @size: size of buffer (same as passed to dma_map_page)
1769  * @dir: DMA transfer direction (same as passed to dma_map_page)
1770  *
1771  * Coherent IOMMU aware version of arm_dma_unmap_page()
1772  */
1773 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1774 		size_t size, enum dma_data_direction dir,
1775 		struct dma_attrs *attrs)
1776 {
1777 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1778 	dma_addr_t iova = handle & PAGE_MASK;
1779 	int offset = handle & ~PAGE_MASK;
1780 	int len = PAGE_ALIGN(size + offset);
1781 
1782 	if (!iova)
1783 		return;
1784 
1785 	iommu_unmap(mapping->domain, iova, len);
1786 	__free_iova(mapping, iova, len);
1787 }
1788 
1789 /**
1790  * arm_iommu_unmap_page
1791  * @dev: valid struct device pointer
1792  * @handle: DMA address of buffer
1793  * @size: size of buffer (same as passed to dma_map_page)
1794  * @dir: DMA transfer direction (same as passed to dma_map_page)
1795  *
1796  * IOMMU aware version of arm_dma_unmap_page()
1797  */
1798 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1799 		size_t size, enum dma_data_direction dir,
1800 		struct dma_attrs *attrs)
1801 {
1802 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1803 	dma_addr_t iova = handle & PAGE_MASK;
1804 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1805 	int offset = handle & ~PAGE_MASK;
1806 	int len = PAGE_ALIGN(size + offset);
1807 
1808 	if (!iova)
1809 		return;
1810 
1811 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1812 		__dma_page_dev_to_cpu(page, offset, size, dir);
1813 
1814 	iommu_unmap(mapping->domain, iova, len);
1815 	__free_iova(mapping, iova, len);
1816 }
1817 
1818 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1819 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1820 {
1821 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1822 	dma_addr_t iova = handle & PAGE_MASK;
1823 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1824 	unsigned int offset = handle & ~PAGE_MASK;
1825 
1826 	if (!iova)
1827 		return;
1828 
1829 	__dma_page_dev_to_cpu(page, offset, size, dir);
1830 }
1831 
1832 static void arm_iommu_sync_single_for_device(struct device *dev,
1833 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1834 {
1835 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1836 	dma_addr_t iova = handle & PAGE_MASK;
1837 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1838 	unsigned int offset = handle & ~PAGE_MASK;
1839 
1840 	if (!iova)
1841 		return;
1842 
1843 	__dma_page_cpu_to_dev(page, offset, size, dir);
1844 }
1845 
1846 struct dma_map_ops iommu_ops = {
1847 	.alloc		= arm_iommu_alloc_attrs,
1848 	.free		= arm_iommu_free_attrs,
1849 	.mmap		= arm_iommu_mmap_attrs,
1850 	.get_sgtable	= arm_iommu_get_sgtable,
1851 
1852 	.map_page		= arm_iommu_map_page,
1853 	.unmap_page		= arm_iommu_unmap_page,
1854 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1855 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1856 
1857 	.map_sg			= arm_iommu_map_sg,
1858 	.unmap_sg		= arm_iommu_unmap_sg,
1859 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1860 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1861 
1862 	.set_dma_mask		= arm_dma_set_mask,
1863 };
1864 
1865 struct dma_map_ops iommu_coherent_ops = {
1866 	.alloc		= arm_iommu_alloc_attrs,
1867 	.free		= arm_iommu_free_attrs,
1868 	.mmap		= arm_iommu_mmap_attrs,
1869 	.get_sgtable	= arm_iommu_get_sgtable,
1870 
1871 	.map_page	= arm_coherent_iommu_map_page,
1872 	.unmap_page	= arm_coherent_iommu_unmap_page,
1873 
1874 	.map_sg		= arm_coherent_iommu_map_sg,
1875 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1876 
1877 	.set_dma_mask	= arm_dma_set_mask,
1878 };
1879 
1880 /**
1881  * arm_iommu_create_mapping
1882  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1883  * @base: start address of the valid IO address space
1884  * @size: size of the valid IO address space
1885  * @order: accuracy of the IO addresses allocations
1886  *
1887  * Creates a mapping structure which holds information about used/unused
1888  * IO address ranges, which is required to perform memory allocation and
1889  * mapping with IOMMU aware functions.
1890  *
1891  * The client device need to be attached to the mapping with
1892  * arm_iommu_attach_device function.
1893  */
1894 struct dma_iommu_mapping *
1895 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1896 			 int order)
1897 {
1898 	unsigned int count = size >> (PAGE_SHIFT + order);
1899 	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1900 	struct dma_iommu_mapping *mapping;
1901 	int err = -ENOMEM;
1902 
1903 	if (!count)
1904 		return ERR_PTR(-EINVAL);
1905 
1906 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1907 	if (!mapping)
1908 		goto err;
1909 
1910 	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1911 	if (!mapping->bitmap)
1912 		goto err2;
1913 
1914 	mapping->base = base;
1915 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1916 	mapping->order = order;
1917 	spin_lock_init(&mapping->lock);
1918 
1919 	mapping->domain = iommu_domain_alloc(bus);
1920 	if (!mapping->domain)
1921 		goto err3;
1922 
1923 	kref_init(&mapping->kref);
1924 	return mapping;
1925 err3:
1926 	kfree(mapping->bitmap);
1927 err2:
1928 	kfree(mapping);
1929 err:
1930 	return ERR_PTR(err);
1931 }
1932 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1933 
1934 static void release_iommu_mapping(struct kref *kref)
1935 {
1936 	struct dma_iommu_mapping *mapping =
1937 		container_of(kref, struct dma_iommu_mapping, kref);
1938 
1939 	iommu_domain_free(mapping->domain);
1940 	kfree(mapping->bitmap);
1941 	kfree(mapping);
1942 }
1943 
1944 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1945 {
1946 	if (mapping)
1947 		kref_put(&mapping->kref, release_iommu_mapping);
1948 }
1949 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1950 
1951 /**
1952  * arm_iommu_attach_device
1953  * @dev: valid struct device pointer
1954  * @mapping: io address space mapping structure (returned from
1955  *	arm_iommu_create_mapping)
1956  *
1957  * Attaches specified io address space mapping to the provided device,
1958  * this replaces the dma operations (dma_map_ops pointer) with the
1959  * IOMMU aware version. More than one client might be attached to
1960  * the same io address space mapping.
1961  */
1962 int arm_iommu_attach_device(struct device *dev,
1963 			    struct dma_iommu_mapping *mapping)
1964 {
1965 	int err;
1966 
1967 	err = iommu_attach_device(mapping->domain, dev);
1968 	if (err)
1969 		return err;
1970 
1971 	kref_get(&mapping->kref);
1972 	dev->archdata.mapping = mapping;
1973 	set_dma_ops(dev, &iommu_ops);
1974 
1975 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1976 	return 0;
1977 }
1978 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1979 
1980 /**
1981  * arm_iommu_detach_device
1982  * @dev: valid struct device pointer
1983  *
1984  * Detaches the provided device from a previously attached map.
1985  * This voids the dma operations (dma_map_ops pointer)
1986  */
1987 void arm_iommu_detach_device(struct device *dev)
1988 {
1989 	struct dma_iommu_mapping *mapping;
1990 
1991 	mapping = to_dma_iommu_mapping(dev);
1992 	if (!mapping) {
1993 		dev_warn(dev, "Not attached\n");
1994 		return;
1995 	}
1996 
1997 	iommu_detach_device(mapping->domain, dev);
1998 	kref_put(&mapping->kref, release_iommu_mapping);
1999 	dev->archdata.mapping = NULL;
2000 	set_dma_ops(dev, NULL);
2001 
2002 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2003 }
2004 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2005 
2006 #endif
2007