xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 77a87824)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31 
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41 
42 #include "dma.h"
43 #include "mm.h"
44 
45 struct arm_dma_alloc_args {
46 	struct device *dev;
47 	size_t size;
48 	gfp_t gfp;
49 	pgprot_t prot;
50 	const void *caller;
51 	bool want_vaddr;
52 	int coherent_flag;
53 };
54 
55 struct arm_dma_free_args {
56 	struct device *dev;
57 	size_t size;
58 	void *cpu_addr;
59 	struct page *page;
60 	bool want_vaddr;
61 };
62 
63 #define NORMAL	    0
64 #define COHERENT    1
65 
66 struct arm_dma_allocator {
67 	void *(*alloc)(struct arm_dma_alloc_args *args,
68 		       struct page **ret_page);
69 	void (*free)(struct arm_dma_free_args *args);
70 };
71 
72 struct arm_dma_buffer {
73 	struct list_head list;
74 	void *virt;
75 	struct arm_dma_allocator *allocator;
76 };
77 
78 static LIST_HEAD(arm_dma_bufs);
79 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
80 
81 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
82 {
83 	struct arm_dma_buffer *buf, *found = NULL;
84 	unsigned long flags;
85 
86 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
87 	list_for_each_entry(buf, &arm_dma_bufs, list) {
88 		if (buf->virt == virt) {
89 			list_del(&buf->list);
90 			found = buf;
91 			break;
92 		}
93 	}
94 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
95 	return found;
96 }
97 
98 /*
99  * The DMA API is built upon the notion of "buffer ownership".  A buffer
100  * is either exclusively owned by the CPU (and therefore may be accessed
101  * by it) or exclusively owned by the DMA device.  These helper functions
102  * represent the transitions between these two ownership states.
103  *
104  * Note, however, that on later ARMs, this notion does not work due to
105  * speculative prefetches.  We model our approach on the assumption that
106  * the CPU does do speculative prefetches, which means we clean caches
107  * before transfers and delay cache invalidation until transfer completion.
108  *
109  */
110 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
111 		size_t, enum dma_data_direction);
112 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
113 		size_t, enum dma_data_direction);
114 
115 /**
116  * arm_dma_map_page - map a portion of a page for streaming DMA
117  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
118  * @page: page that buffer resides in
119  * @offset: offset into page for start of buffer
120  * @size: size of buffer to map
121  * @dir: DMA transfer direction
122  *
123  * Ensure that any data held in the cache is appropriately discarded
124  * or written back.
125  *
126  * The device owns this memory once this call has completed.  The CPU
127  * can regain ownership by calling dma_unmap_page().
128  */
129 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
130 	     unsigned long offset, size_t size, enum dma_data_direction dir,
131 	     struct dma_attrs *attrs)
132 {
133 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
134 		__dma_page_cpu_to_dev(page, offset, size, dir);
135 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
136 }
137 
138 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
139 	     unsigned long offset, size_t size, enum dma_data_direction dir,
140 	     struct dma_attrs *attrs)
141 {
142 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
143 }
144 
145 /**
146  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
147  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
148  * @handle: DMA address of buffer
149  * @size: size of buffer (same as passed to dma_map_page)
150  * @dir: DMA transfer direction (same as passed to dma_map_page)
151  *
152  * Unmap a page streaming mode DMA translation.  The handle and size
153  * must match what was provided in the previous dma_map_page() call.
154  * All other usages are undefined.
155  *
156  * After this call, reads by the CPU to the buffer are guaranteed to see
157  * whatever the device wrote there.
158  */
159 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
160 		size_t size, enum dma_data_direction dir,
161 		struct dma_attrs *attrs)
162 {
163 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
164 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
165 				      handle & ~PAGE_MASK, size, dir);
166 }
167 
168 static void arm_dma_sync_single_for_cpu(struct device *dev,
169 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
170 {
171 	unsigned int offset = handle & (PAGE_SIZE - 1);
172 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
173 	__dma_page_dev_to_cpu(page, offset, size, dir);
174 }
175 
176 static void arm_dma_sync_single_for_device(struct device *dev,
177 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
178 {
179 	unsigned int offset = handle & (PAGE_SIZE - 1);
180 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
181 	__dma_page_cpu_to_dev(page, offset, size, dir);
182 }
183 
184 struct dma_map_ops arm_dma_ops = {
185 	.alloc			= arm_dma_alloc,
186 	.free			= arm_dma_free,
187 	.mmap			= arm_dma_mmap,
188 	.get_sgtable		= arm_dma_get_sgtable,
189 	.map_page		= arm_dma_map_page,
190 	.unmap_page		= arm_dma_unmap_page,
191 	.map_sg			= arm_dma_map_sg,
192 	.unmap_sg		= arm_dma_unmap_sg,
193 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
194 	.sync_single_for_device	= arm_dma_sync_single_for_device,
195 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
196 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
197 };
198 EXPORT_SYMBOL(arm_dma_ops);
199 
200 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
201 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
202 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
203 				  dma_addr_t handle, struct dma_attrs *attrs);
204 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
205 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
206 		 struct dma_attrs *attrs);
207 
208 struct dma_map_ops arm_coherent_dma_ops = {
209 	.alloc			= arm_coherent_dma_alloc,
210 	.free			= arm_coherent_dma_free,
211 	.mmap			= arm_coherent_dma_mmap,
212 	.get_sgtable		= arm_dma_get_sgtable,
213 	.map_page		= arm_coherent_dma_map_page,
214 	.map_sg			= arm_dma_map_sg,
215 };
216 EXPORT_SYMBOL(arm_coherent_dma_ops);
217 
218 static int __dma_supported(struct device *dev, u64 mask, bool warn)
219 {
220 	unsigned long max_dma_pfn;
221 
222 	/*
223 	 * If the mask allows for more memory than we can address,
224 	 * and we actually have that much memory, then we must
225 	 * indicate that DMA to this device is not supported.
226 	 */
227 	if (sizeof(mask) != sizeof(dma_addr_t) &&
228 	    mask > (dma_addr_t)~0 &&
229 	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
230 		if (warn) {
231 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
232 				 mask);
233 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
234 		}
235 		return 0;
236 	}
237 
238 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
239 
240 	/*
241 	 * Translate the device's DMA mask to a PFN limit.  This
242 	 * PFN number includes the page which we can DMA to.
243 	 */
244 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
245 		if (warn)
246 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
247 				 mask,
248 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
249 				 max_dma_pfn + 1);
250 		return 0;
251 	}
252 
253 	return 1;
254 }
255 
256 static u64 get_coherent_dma_mask(struct device *dev)
257 {
258 	u64 mask = (u64)DMA_BIT_MASK(32);
259 
260 	if (dev) {
261 		mask = dev->coherent_dma_mask;
262 
263 		/*
264 		 * Sanity check the DMA mask - it must be non-zero, and
265 		 * must be able to be satisfied by a DMA allocation.
266 		 */
267 		if (mask == 0) {
268 			dev_warn(dev, "coherent DMA mask is unset\n");
269 			return 0;
270 		}
271 
272 		if (!__dma_supported(dev, mask, true))
273 			return 0;
274 	}
275 
276 	return mask;
277 }
278 
279 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
280 {
281 	/*
282 	 * Ensure that the allocated pages are zeroed, and that any data
283 	 * lurking in the kernel direct-mapped region is invalidated.
284 	 */
285 	if (PageHighMem(page)) {
286 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
287 		phys_addr_t end = base + size;
288 		while (size > 0) {
289 			void *ptr = kmap_atomic(page);
290 			memset(ptr, 0, PAGE_SIZE);
291 			if (coherent_flag != COHERENT)
292 				dmac_flush_range(ptr, ptr + PAGE_SIZE);
293 			kunmap_atomic(ptr);
294 			page++;
295 			size -= PAGE_SIZE;
296 		}
297 		if (coherent_flag != COHERENT)
298 			outer_flush_range(base, end);
299 	} else {
300 		void *ptr = page_address(page);
301 		memset(ptr, 0, size);
302 		if (coherent_flag != COHERENT) {
303 			dmac_flush_range(ptr, ptr + size);
304 			outer_flush_range(__pa(ptr), __pa(ptr) + size);
305 		}
306 	}
307 }
308 
309 /*
310  * Allocate a DMA buffer for 'dev' of size 'size' using the
311  * specified gfp mask.  Note that 'size' must be page aligned.
312  */
313 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
314 				       gfp_t gfp, int coherent_flag)
315 {
316 	unsigned long order = get_order(size);
317 	struct page *page, *p, *e;
318 
319 	page = alloc_pages(gfp, order);
320 	if (!page)
321 		return NULL;
322 
323 	/*
324 	 * Now split the huge page and free the excess pages
325 	 */
326 	split_page(page, order);
327 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
328 		__free_page(p);
329 
330 	__dma_clear_buffer(page, size, coherent_flag);
331 
332 	return page;
333 }
334 
335 /*
336  * Free a DMA buffer.  'size' must be page aligned.
337  */
338 static void __dma_free_buffer(struct page *page, size_t size)
339 {
340 	struct page *e = page + (size >> PAGE_SHIFT);
341 
342 	while (page < e) {
343 		__free_page(page);
344 		page++;
345 	}
346 }
347 
348 #ifdef CONFIG_MMU
349 
350 static void *__alloc_from_contiguous(struct device *dev, size_t size,
351 				     pgprot_t prot, struct page **ret_page,
352 				     const void *caller, bool want_vaddr,
353 				     int coherent_flag);
354 
355 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
356 				 pgprot_t prot, struct page **ret_page,
357 				 const void *caller, bool want_vaddr);
358 
359 static void *
360 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
361 	const void *caller)
362 {
363 	/*
364 	 * DMA allocation can be mapped to user space, so lets
365 	 * set VM_USERMAP flags too.
366 	 */
367 	return dma_common_contiguous_remap(page, size,
368 			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
369 			prot, caller);
370 }
371 
372 static void __dma_free_remap(void *cpu_addr, size_t size)
373 {
374 	dma_common_free_remap(cpu_addr, size,
375 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
376 }
377 
378 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
379 static struct gen_pool *atomic_pool;
380 
381 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
382 
383 static int __init early_coherent_pool(char *p)
384 {
385 	atomic_pool_size = memparse(p, &p);
386 	return 0;
387 }
388 early_param("coherent_pool", early_coherent_pool);
389 
390 void __init init_dma_coherent_pool_size(unsigned long size)
391 {
392 	/*
393 	 * Catch any attempt to set the pool size too late.
394 	 */
395 	BUG_ON(atomic_pool);
396 
397 	/*
398 	 * Set architecture specific coherent pool size only if
399 	 * it has not been changed by kernel command line parameter.
400 	 */
401 	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
402 		atomic_pool_size = size;
403 }
404 
405 /*
406  * Initialise the coherent pool for atomic allocations.
407  */
408 static int __init atomic_pool_init(void)
409 {
410 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
411 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
412 	struct page *page;
413 	void *ptr;
414 
415 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
416 	if (!atomic_pool)
417 		goto out;
418 	/*
419 	 * The atomic pool is only used for non-coherent allocations
420 	 * so we must pass NORMAL for coherent_flag.
421 	 */
422 	if (dev_get_cma_area(NULL))
423 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
424 				      &page, atomic_pool_init, true, NORMAL);
425 	else
426 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
427 					   &page, atomic_pool_init, true);
428 	if (ptr) {
429 		int ret;
430 
431 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
432 					page_to_phys(page),
433 					atomic_pool_size, -1);
434 		if (ret)
435 			goto destroy_genpool;
436 
437 		gen_pool_set_algo(atomic_pool,
438 				gen_pool_first_fit_order_align,
439 				(void *)PAGE_SHIFT);
440 		pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
441 		       atomic_pool_size / 1024);
442 		return 0;
443 	}
444 
445 destroy_genpool:
446 	gen_pool_destroy(atomic_pool);
447 	atomic_pool = NULL;
448 out:
449 	pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
450 	       atomic_pool_size / 1024);
451 	return -ENOMEM;
452 }
453 /*
454  * CMA is activated by core_initcall, so we must be called after it.
455  */
456 postcore_initcall(atomic_pool_init);
457 
458 struct dma_contig_early_reserve {
459 	phys_addr_t base;
460 	unsigned long size;
461 };
462 
463 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
464 
465 static int dma_mmu_remap_num __initdata;
466 
467 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
468 {
469 	dma_mmu_remap[dma_mmu_remap_num].base = base;
470 	dma_mmu_remap[dma_mmu_remap_num].size = size;
471 	dma_mmu_remap_num++;
472 }
473 
474 void __init dma_contiguous_remap(void)
475 {
476 	int i;
477 	for (i = 0; i < dma_mmu_remap_num; i++) {
478 		phys_addr_t start = dma_mmu_remap[i].base;
479 		phys_addr_t end = start + dma_mmu_remap[i].size;
480 		struct map_desc map;
481 		unsigned long addr;
482 
483 		if (end > arm_lowmem_limit)
484 			end = arm_lowmem_limit;
485 		if (start >= end)
486 			continue;
487 
488 		map.pfn = __phys_to_pfn(start);
489 		map.virtual = __phys_to_virt(start);
490 		map.length = end - start;
491 		map.type = MT_MEMORY_DMA_READY;
492 
493 		/*
494 		 * Clear previous low-memory mapping to ensure that the
495 		 * TLB does not see any conflicting entries, then flush
496 		 * the TLB of the old entries before creating new mappings.
497 		 *
498 		 * This ensures that any speculatively loaded TLB entries
499 		 * (even though they may be rare) can not cause any problems,
500 		 * and ensures that this code is architecturally compliant.
501 		 */
502 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
503 		     addr += PMD_SIZE)
504 			pmd_clear(pmd_off_k(addr));
505 
506 		flush_tlb_kernel_range(__phys_to_virt(start),
507 				       __phys_to_virt(end));
508 
509 		iotable_init(&map, 1);
510 	}
511 }
512 
513 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
514 			    void *data)
515 {
516 	struct page *page = virt_to_page(addr);
517 	pgprot_t prot = *(pgprot_t *)data;
518 
519 	set_pte_ext(pte, mk_pte(page, prot), 0);
520 	return 0;
521 }
522 
523 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
524 {
525 	unsigned long start = (unsigned long) page_address(page);
526 	unsigned end = start + size;
527 
528 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
529 	flush_tlb_kernel_range(start, end);
530 }
531 
532 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
533 				 pgprot_t prot, struct page **ret_page,
534 				 const void *caller, bool want_vaddr)
535 {
536 	struct page *page;
537 	void *ptr = NULL;
538 	/*
539 	 * __alloc_remap_buffer is only called when the device is
540 	 * non-coherent
541 	 */
542 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
543 	if (!page)
544 		return NULL;
545 	if (!want_vaddr)
546 		goto out;
547 
548 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
549 	if (!ptr) {
550 		__dma_free_buffer(page, size);
551 		return NULL;
552 	}
553 
554  out:
555 	*ret_page = page;
556 	return ptr;
557 }
558 
559 static void *__alloc_from_pool(size_t size, struct page **ret_page)
560 {
561 	unsigned long val;
562 	void *ptr = NULL;
563 
564 	if (!atomic_pool) {
565 		WARN(1, "coherent pool not initialised!\n");
566 		return NULL;
567 	}
568 
569 	val = gen_pool_alloc(atomic_pool, size);
570 	if (val) {
571 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
572 
573 		*ret_page = phys_to_page(phys);
574 		ptr = (void *)val;
575 	}
576 
577 	return ptr;
578 }
579 
580 static bool __in_atomic_pool(void *start, size_t size)
581 {
582 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
583 }
584 
585 static int __free_from_pool(void *start, size_t size)
586 {
587 	if (!__in_atomic_pool(start, size))
588 		return 0;
589 
590 	gen_pool_free(atomic_pool, (unsigned long)start, size);
591 
592 	return 1;
593 }
594 
595 static void *__alloc_from_contiguous(struct device *dev, size_t size,
596 				     pgprot_t prot, struct page **ret_page,
597 				     const void *caller, bool want_vaddr,
598 				     int coherent_flag)
599 {
600 	unsigned long order = get_order(size);
601 	size_t count = size >> PAGE_SHIFT;
602 	struct page *page;
603 	void *ptr = NULL;
604 
605 	page = dma_alloc_from_contiguous(dev, count, order);
606 	if (!page)
607 		return NULL;
608 
609 	__dma_clear_buffer(page, size, coherent_flag);
610 
611 	if (!want_vaddr)
612 		goto out;
613 
614 	if (PageHighMem(page)) {
615 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
616 		if (!ptr) {
617 			dma_release_from_contiguous(dev, page, count);
618 			return NULL;
619 		}
620 	} else {
621 		__dma_remap(page, size, prot);
622 		ptr = page_address(page);
623 	}
624 
625  out:
626 	*ret_page = page;
627 	return ptr;
628 }
629 
630 static void __free_from_contiguous(struct device *dev, struct page *page,
631 				   void *cpu_addr, size_t size, bool want_vaddr)
632 {
633 	if (want_vaddr) {
634 		if (PageHighMem(page))
635 			__dma_free_remap(cpu_addr, size);
636 		else
637 			__dma_remap(page, size, PAGE_KERNEL);
638 	}
639 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
640 }
641 
642 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
643 {
644 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
645 			    pgprot_writecombine(prot) :
646 			    pgprot_dmacoherent(prot);
647 	return prot;
648 }
649 
650 #define nommu() 0
651 
652 #else	/* !CONFIG_MMU */
653 
654 #define nommu() 1
655 
656 #define __get_dma_pgprot(attrs, prot)				__pgprot(0)
657 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
658 #define __alloc_from_pool(size, ret_page)			NULL
659 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv, coherent_flag)	NULL
660 #define __free_from_pool(cpu_addr, size)			do { } while (0)
661 #define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
662 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
663 
664 #endif	/* CONFIG_MMU */
665 
666 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
667 				   struct page **ret_page)
668 {
669 	struct page *page;
670 	/* __alloc_simple_buffer is only called when the device is coherent */
671 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
672 	if (!page)
673 		return NULL;
674 
675 	*ret_page = page;
676 	return page_address(page);
677 }
678 
679 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
680 				    struct page **ret_page)
681 {
682 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
683 				     ret_page);
684 }
685 
686 static void simple_allocator_free(struct arm_dma_free_args *args)
687 {
688 	__dma_free_buffer(args->page, args->size);
689 }
690 
691 static struct arm_dma_allocator simple_allocator = {
692 	.alloc = simple_allocator_alloc,
693 	.free = simple_allocator_free,
694 };
695 
696 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
697 				 struct page **ret_page)
698 {
699 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
700 				       ret_page, args->caller,
701 				       args->want_vaddr, args->coherent_flag);
702 }
703 
704 static void cma_allocator_free(struct arm_dma_free_args *args)
705 {
706 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
707 			       args->size, args->want_vaddr);
708 }
709 
710 static struct arm_dma_allocator cma_allocator = {
711 	.alloc = cma_allocator_alloc,
712 	.free = cma_allocator_free,
713 };
714 
715 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
716 				  struct page **ret_page)
717 {
718 	return __alloc_from_pool(args->size, ret_page);
719 }
720 
721 static void pool_allocator_free(struct arm_dma_free_args *args)
722 {
723 	__free_from_pool(args->cpu_addr, args->size);
724 }
725 
726 static struct arm_dma_allocator pool_allocator = {
727 	.alloc = pool_allocator_alloc,
728 	.free = pool_allocator_free,
729 };
730 
731 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
732 				   struct page **ret_page)
733 {
734 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
735 				    args->prot, ret_page, args->caller,
736 				    args->want_vaddr);
737 }
738 
739 static void remap_allocator_free(struct arm_dma_free_args *args)
740 {
741 	if (args->want_vaddr)
742 		__dma_free_remap(args->cpu_addr, args->size);
743 
744 	__dma_free_buffer(args->page, args->size);
745 }
746 
747 static struct arm_dma_allocator remap_allocator = {
748 	.alloc = remap_allocator_alloc,
749 	.free = remap_allocator_free,
750 };
751 
752 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
753 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
754 			 struct dma_attrs *attrs, const void *caller)
755 {
756 	u64 mask = get_coherent_dma_mask(dev);
757 	struct page *page = NULL;
758 	void *addr;
759 	bool allowblock, cma;
760 	struct arm_dma_buffer *buf;
761 	struct arm_dma_alloc_args args = {
762 		.dev = dev,
763 		.size = PAGE_ALIGN(size),
764 		.gfp = gfp,
765 		.prot = prot,
766 		.caller = caller,
767 		.want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
768 		.coherent_flag = is_coherent ? COHERENT : NORMAL,
769 	};
770 
771 #ifdef CONFIG_DMA_API_DEBUG
772 	u64 limit = (mask + 1) & ~mask;
773 	if (limit && size >= limit) {
774 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
775 			size, mask);
776 		return NULL;
777 	}
778 #endif
779 
780 	if (!mask)
781 		return NULL;
782 
783 	buf = kzalloc(sizeof(*buf),
784 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
785 	if (!buf)
786 		return NULL;
787 
788 	if (mask < 0xffffffffULL)
789 		gfp |= GFP_DMA;
790 
791 	/*
792 	 * Following is a work-around (a.k.a. hack) to prevent pages
793 	 * with __GFP_COMP being passed to split_page() which cannot
794 	 * handle them.  The real problem is that this flag probably
795 	 * should be 0 on ARM as it is not supported on this
796 	 * platform; see CONFIG_HUGETLBFS.
797 	 */
798 	gfp &= ~(__GFP_COMP);
799 	args.gfp = gfp;
800 
801 	*handle = DMA_ERROR_CODE;
802 	allowblock = gfpflags_allow_blocking(gfp);
803 	cma = allowblock ? dev_get_cma_area(dev) : false;
804 
805 	if (cma)
806 		buf->allocator = &cma_allocator;
807 	else if (nommu() || is_coherent)
808 		buf->allocator = &simple_allocator;
809 	else if (allowblock)
810 		buf->allocator = &remap_allocator;
811 	else
812 		buf->allocator = &pool_allocator;
813 
814 	addr = buf->allocator->alloc(&args, &page);
815 
816 	if (page) {
817 		unsigned long flags;
818 
819 		*handle = pfn_to_dma(dev, page_to_pfn(page));
820 		buf->virt = args.want_vaddr ? addr : page;
821 
822 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
823 		list_add(&buf->list, &arm_dma_bufs);
824 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
825 	} else {
826 		kfree(buf);
827 	}
828 
829 	return args.want_vaddr ? addr : page;
830 }
831 
832 /*
833  * Allocate DMA-coherent memory space and return both the kernel remapped
834  * virtual and bus address for that space.
835  */
836 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
837 		    gfp_t gfp, struct dma_attrs *attrs)
838 {
839 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
840 
841 	return __dma_alloc(dev, size, handle, gfp, prot, false,
842 			   attrs, __builtin_return_address(0));
843 }
844 
845 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
846 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
847 {
848 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
849 			   attrs, __builtin_return_address(0));
850 }
851 
852 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
853 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
854 		 struct dma_attrs *attrs)
855 {
856 	int ret = -ENXIO;
857 #ifdef CONFIG_MMU
858 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
859 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
860 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
861 	unsigned long off = vma->vm_pgoff;
862 
863 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
864 		return ret;
865 
866 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
867 		ret = remap_pfn_range(vma, vma->vm_start,
868 				      pfn + off,
869 				      vma->vm_end - vma->vm_start,
870 				      vma->vm_page_prot);
871 	}
872 #endif	/* CONFIG_MMU */
873 
874 	return ret;
875 }
876 
877 /*
878  * Create userspace mapping for the DMA-coherent memory.
879  */
880 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
881 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
882 		 struct dma_attrs *attrs)
883 {
884 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
885 }
886 
887 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
888 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
889 		 struct dma_attrs *attrs)
890 {
891 #ifdef CONFIG_MMU
892 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
893 #endif	/* CONFIG_MMU */
894 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
895 }
896 
897 /*
898  * Free a buffer as defined by the above mapping.
899  */
900 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
901 			   dma_addr_t handle, struct dma_attrs *attrs,
902 			   bool is_coherent)
903 {
904 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
905 	struct arm_dma_buffer *buf;
906 	struct arm_dma_free_args args = {
907 		.dev = dev,
908 		.size = PAGE_ALIGN(size),
909 		.cpu_addr = cpu_addr,
910 		.page = page,
911 		.want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
912 	};
913 
914 	buf = arm_dma_buffer_find(cpu_addr);
915 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
916 		return;
917 
918 	buf->allocator->free(&args);
919 	kfree(buf);
920 }
921 
922 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
923 		  dma_addr_t handle, struct dma_attrs *attrs)
924 {
925 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
926 }
927 
928 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
929 				  dma_addr_t handle, struct dma_attrs *attrs)
930 {
931 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
932 }
933 
934 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
935 		 void *cpu_addr, dma_addr_t handle, size_t size,
936 		 struct dma_attrs *attrs)
937 {
938 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
939 	int ret;
940 
941 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
942 	if (unlikely(ret))
943 		return ret;
944 
945 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
946 	return 0;
947 }
948 
949 static void dma_cache_maint_page(struct page *page, unsigned long offset,
950 	size_t size, enum dma_data_direction dir,
951 	void (*op)(const void *, size_t, int))
952 {
953 	unsigned long pfn;
954 	size_t left = size;
955 
956 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
957 	offset %= PAGE_SIZE;
958 
959 	/*
960 	 * A single sg entry may refer to multiple physically contiguous
961 	 * pages.  But we still need to process highmem pages individually.
962 	 * If highmem is not configured then the bulk of this loop gets
963 	 * optimized out.
964 	 */
965 	do {
966 		size_t len = left;
967 		void *vaddr;
968 
969 		page = pfn_to_page(pfn);
970 
971 		if (PageHighMem(page)) {
972 			if (len + offset > PAGE_SIZE)
973 				len = PAGE_SIZE - offset;
974 
975 			if (cache_is_vipt_nonaliasing()) {
976 				vaddr = kmap_atomic(page);
977 				op(vaddr + offset, len, dir);
978 				kunmap_atomic(vaddr);
979 			} else {
980 				vaddr = kmap_high_get(page);
981 				if (vaddr) {
982 					op(vaddr + offset, len, dir);
983 					kunmap_high(page);
984 				}
985 			}
986 		} else {
987 			vaddr = page_address(page) + offset;
988 			op(vaddr, len, dir);
989 		}
990 		offset = 0;
991 		pfn++;
992 		left -= len;
993 	} while (left);
994 }
995 
996 /*
997  * Make an area consistent for devices.
998  * Note: Drivers should NOT use this function directly, as it will break
999  * platforms with CONFIG_DMABOUNCE.
1000  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1001  */
1002 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
1003 	size_t size, enum dma_data_direction dir)
1004 {
1005 	phys_addr_t paddr;
1006 
1007 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
1008 
1009 	paddr = page_to_phys(page) + off;
1010 	if (dir == DMA_FROM_DEVICE) {
1011 		outer_inv_range(paddr, paddr + size);
1012 	} else {
1013 		outer_clean_range(paddr, paddr + size);
1014 	}
1015 	/* FIXME: non-speculating: flush on bidirectional mappings? */
1016 }
1017 
1018 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1019 	size_t size, enum dma_data_direction dir)
1020 {
1021 	phys_addr_t paddr = page_to_phys(page) + off;
1022 
1023 	/* FIXME: non-speculating: not required */
1024 	/* in any case, don't bother invalidating if DMA to device */
1025 	if (dir != DMA_TO_DEVICE) {
1026 		outer_inv_range(paddr, paddr + size);
1027 
1028 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1029 	}
1030 
1031 	/*
1032 	 * Mark the D-cache clean for these pages to avoid extra flushing.
1033 	 */
1034 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1035 		unsigned long pfn;
1036 		size_t left = size;
1037 
1038 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
1039 		off %= PAGE_SIZE;
1040 		if (off) {
1041 			pfn++;
1042 			left -= PAGE_SIZE - off;
1043 		}
1044 		while (left >= PAGE_SIZE) {
1045 			page = pfn_to_page(pfn++);
1046 			set_bit(PG_dcache_clean, &page->flags);
1047 			left -= PAGE_SIZE;
1048 		}
1049 	}
1050 }
1051 
1052 /**
1053  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1054  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1055  * @sg: list of buffers
1056  * @nents: number of buffers to map
1057  * @dir: DMA transfer direction
1058  *
1059  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1060  * This is the scatter-gather version of the dma_map_single interface.
1061  * Here the scatter gather list elements are each tagged with the
1062  * appropriate dma address and length.  They are obtained via
1063  * sg_dma_{address,length}.
1064  *
1065  * Device ownership issues as mentioned for dma_map_single are the same
1066  * here.
1067  */
1068 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1069 		enum dma_data_direction dir, struct dma_attrs *attrs)
1070 {
1071 	struct dma_map_ops *ops = get_dma_ops(dev);
1072 	struct scatterlist *s;
1073 	int i, j;
1074 
1075 	for_each_sg(sg, s, nents, i) {
1076 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1077 		s->dma_length = s->length;
1078 #endif
1079 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1080 						s->length, dir, attrs);
1081 		if (dma_mapping_error(dev, s->dma_address))
1082 			goto bad_mapping;
1083 	}
1084 	return nents;
1085 
1086  bad_mapping:
1087 	for_each_sg(sg, s, i, j)
1088 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1089 	return 0;
1090 }
1091 
1092 /**
1093  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1094  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1095  * @sg: list of buffers
1096  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1097  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1098  *
1099  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1100  * rules concerning calls here are the same as for dma_unmap_single().
1101  */
1102 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1103 		enum dma_data_direction dir, struct dma_attrs *attrs)
1104 {
1105 	struct dma_map_ops *ops = get_dma_ops(dev);
1106 	struct scatterlist *s;
1107 
1108 	int i;
1109 
1110 	for_each_sg(sg, s, nents, i)
1111 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1112 }
1113 
1114 /**
1115  * arm_dma_sync_sg_for_cpu
1116  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1117  * @sg: list of buffers
1118  * @nents: number of buffers to map (returned from dma_map_sg)
1119  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1120  */
1121 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1122 			int nents, enum dma_data_direction dir)
1123 {
1124 	struct dma_map_ops *ops = get_dma_ops(dev);
1125 	struct scatterlist *s;
1126 	int i;
1127 
1128 	for_each_sg(sg, s, nents, i)
1129 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1130 					 dir);
1131 }
1132 
1133 /**
1134  * arm_dma_sync_sg_for_device
1135  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1136  * @sg: list of buffers
1137  * @nents: number of buffers to map (returned from dma_map_sg)
1138  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1139  */
1140 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1141 			int nents, enum dma_data_direction dir)
1142 {
1143 	struct dma_map_ops *ops = get_dma_ops(dev);
1144 	struct scatterlist *s;
1145 	int i;
1146 
1147 	for_each_sg(sg, s, nents, i)
1148 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1149 					    dir);
1150 }
1151 
1152 /*
1153  * Return whether the given device DMA address mask can be supported
1154  * properly.  For example, if your device can only drive the low 24-bits
1155  * during bus mastering, then you would pass 0x00ffffff as the mask
1156  * to this function.
1157  */
1158 int dma_supported(struct device *dev, u64 mask)
1159 {
1160 	return __dma_supported(dev, mask, false);
1161 }
1162 EXPORT_SYMBOL(dma_supported);
1163 
1164 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1165 
1166 static int __init dma_debug_do_init(void)
1167 {
1168 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1169 	return 0;
1170 }
1171 fs_initcall(dma_debug_do_init);
1172 
1173 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1174 
1175 /* IOMMU */
1176 
1177 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1178 
1179 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1180 				      size_t size)
1181 {
1182 	unsigned int order = get_order(size);
1183 	unsigned int align = 0;
1184 	unsigned int count, start;
1185 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1186 	unsigned long flags;
1187 	dma_addr_t iova;
1188 	int i;
1189 
1190 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1191 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1192 
1193 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1194 	align = (1 << order) - 1;
1195 
1196 	spin_lock_irqsave(&mapping->lock, flags);
1197 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1198 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1199 				mapping->bits, 0, count, align);
1200 
1201 		if (start > mapping->bits)
1202 			continue;
1203 
1204 		bitmap_set(mapping->bitmaps[i], start, count);
1205 		break;
1206 	}
1207 
1208 	/*
1209 	 * No unused range found. Try to extend the existing mapping
1210 	 * and perform a second attempt to reserve an IO virtual
1211 	 * address range of size bytes.
1212 	 */
1213 	if (i == mapping->nr_bitmaps) {
1214 		if (extend_iommu_mapping(mapping)) {
1215 			spin_unlock_irqrestore(&mapping->lock, flags);
1216 			return DMA_ERROR_CODE;
1217 		}
1218 
1219 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1220 				mapping->bits, 0, count, align);
1221 
1222 		if (start > mapping->bits) {
1223 			spin_unlock_irqrestore(&mapping->lock, flags);
1224 			return DMA_ERROR_CODE;
1225 		}
1226 
1227 		bitmap_set(mapping->bitmaps[i], start, count);
1228 	}
1229 	spin_unlock_irqrestore(&mapping->lock, flags);
1230 
1231 	iova = mapping->base + (mapping_size * i);
1232 	iova += start << PAGE_SHIFT;
1233 
1234 	return iova;
1235 }
1236 
1237 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1238 			       dma_addr_t addr, size_t size)
1239 {
1240 	unsigned int start, count;
1241 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1242 	unsigned long flags;
1243 	dma_addr_t bitmap_base;
1244 	u32 bitmap_index;
1245 
1246 	if (!size)
1247 		return;
1248 
1249 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1250 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1251 
1252 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1253 
1254 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1255 
1256 	if (addr + size > bitmap_base + mapping_size) {
1257 		/*
1258 		 * The address range to be freed reaches into the iova
1259 		 * range of the next bitmap. This should not happen as
1260 		 * we don't allow this in __alloc_iova (at the
1261 		 * moment).
1262 		 */
1263 		BUG();
1264 	} else
1265 		count = size >> PAGE_SHIFT;
1266 
1267 	spin_lock_irqsave(&mapping->lock, flags);
1268 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1269 	spin_unlock_irqrestore(&mapping->lock, flags);
1270 }
1271 
1272 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1273 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1274 
1275 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1276 					  gfp_t gfp, struct dma_attrs *attrs,
1277 					  int coherent_flag)
1278 {
1279 	struct page **pages;
1280 	int count = size >> PAGE_SHIFT;
1281 	int array_size = count * sizeof(struct page *);
1282 	int i = 0;
1283 	int order_idx = 0;
1284 
1285 	if (array_size <= PAGE_SIZE)
1286 		pages = kzalloc(array_size, GFP_KERNEL);
1287 	else
1288 		pages = vzalloc(array_size);
1289 	if (!pages)
1290 		return NULL;
1291 
1292 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1293 	{
1294 		unsigned long order = get_order(size);
1295 		struct page *page;
1296 
1297 		page = dma_alloc_from_contiguous(dev, count, order);
1298 		if (!page)
1299 			goto error;
1300 
1301 		__dma_clear_buffer(page, size, coherent_flag);
1302 
1303 		for (i = 0; i < count; i++)
1304 			pages[i] = page + i;
1305 
1306 		return pages;
1307 	}
1308 
1309 	/* Go straight to 4K chunks if caller says it's OK. */
1310 	if (dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs))
1311 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1312 
1313 	/*
1314 	 * IOMMU can map any pages, so himem can also be used here
1315 	 */
1316 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1317 
1318 	while (count) {
1319 		int j, order;
1320 
1321 		order = iommu_order_array[order_idx];
1322 
1323 		/* Drop down when we get small */
1324 		if (__fls(count) < order) {
1325 			order_idx++;
1326 			continue;
1327 		}
1328 
1329 		if (order) {
1330 			/* See if it's easy to allocate a high-order chunk */
1331 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1332 
1333 			/* Go down a notch at first sign of pressure */
1334 			if (!pages[i]) {
1335 				order_idx++;
1336 				continue;
1337 			}
1338 		} else {
1339 			pages[i] = alloc_pages(gfp, 0);
1340 			if (!pages[i])
1341 				goto error;
1342 		}
1343 
1344 		if (order) {
1345 			split_page(pages[i], order);
1346 			j = 1 << order;
1347 			while (--j)
1348 				pages[i + j] = pages[i] + j;
1349 		}
1350 
1351 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1352 		i += 1 << order;
1353 		count -= 1 << order;
1354 	}
1355 
1356 	return pages;
1357 error:
1358 	while (i--)
1359 		if (pages[i])
1360 			__free_pages(pages[i], 0);
1361 	kvfree(pages);
1362 	return NULL;
1363 }
1364 
1365 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1366 			       size_t size, struct dma_attrs *attrs)
1367 {
1368 	int count = size >> PAGE_SHIFT;
1369 	int i;
1370 
1371 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1372 		dma_release_from_contiguous(dev, pages[0], count);
1373 	} else {
1374 		for (i = 0; i < count; i++)
1375 			if (pages[i])
1376 				__free_pages(pages[i], 0);
1377 	}
1378 
1379 	kvfree(pages);
1380 	return 0;
1381 }
1382 
1383 /*
1384  * Create a CPU mapping for a specified pages
1385  */
1386 static void *
1387 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1388 		    const void *caller)
1389 {
1390 	return dma_common_pages_remap(pages, size,
1391 			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1392 }
1393 
1394 /*
1395  * Create a mapping in device IO address space for specified pages
1396  */
1397 static dma_addr_t
1398 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1399 {
1400 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1401 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1402 	dma_addr_t dma_addr, iova;
1403 	int i;
1404 
1405 	dma_addr = __alloc_iova(mapping, size);
1406 	if (dma_addr == DMA_ERROR_CODE)
1407 		return dma_addr;
1408 
1409 	iova = dma_addr;
1410 	for (i = 0; i < count; ) {
1411 		int ret;
1412 
1413 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1414 		phys_addr_t phys = page_to_phys(pages[i]);
1415 		unsigned int len, j;
1416 
1417 		for (j = i + 1; j < count; j++, next_pfn++)
1418 			if (page_to_pfn(pages[j]) != next_pfn)
1419 				break;
1420 
1421 		len = (j - i) << PAGE_SHIFT;
1422 		ret = iommu_map(mapping->domain, iova, phys, len,
1423 				IOMMU_READ|IOMMU_WRITE);
1424 		if (ret < 0)
1425 			goto fail;
1426 		iova += len;
1427 		i = j;
1428 	}
1429 	return dma_addr;
1430 fail:
1431 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1432 	__free_iova(mapping, dma_addr, size);
1433 	return DMA_ERROR_CODE;
1434 }
1435 
1436 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1437 {
1438 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1439 
1440 	/*
1441 	 * add optional in-page offset from iova to size and align
1442 	 * result to page size
1443 	 */
1444 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1445 	iova &= PAGE_MASK;
1446 
1447 	iommu_unmap(mapping->domain, iova, size);
1448 	__free_iova(mapping, iova, size);
1449 	return 0;
1450 }
1451 
1452 static struct page **__atomic_get_pages(void *addr)
1453 {
1454 	struct page *page;
1455 	phys_addr_t phys;
1456 
1457 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1458 	page = phys_to_page(phys);
1459 
1460 	return (struct page **)page;
1461 }
1462 
1463 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1464 {
1465 	struct vm_struct *area;
1466 
1467 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1468 		return __atomic_get_pages(cpu_addr);
1469 
1470 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1471 		return cpu_addr;
1472 
1473 	area = find_vm_area(cpu_addr);
1474 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1475 		return area->pages;
1476 	return NULL;
1477 }
1478 
1479 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1480 				  dma_addr_t *handle, int coherent_flag)
1481 {
1482 	struct page *page;
1483 	void *addr;
1484 
1485 	if (coherent_flag  == COHERENT)
1486 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1487 	else
1488 		addr = __alloc_from_pool(size, &page);
1489 	if (!addr)
1490 		return NULL;
1491 
1492 	*handle = __iommu_create_mapping(dev, &page, size);
1493 	if (*handle == DMA_ERROR_CODE)
1494 		goto err_mapping;
1495 
1496 	return addr;
1497 
1498 err_mapping:
1499 	__free_from_pool(addr, size);
1500 	return NULL;
1501 }
1502 
1503 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1504 			dma_addr_t handle, size_t size, int coherent_flag)
1505 {
1506 	__iommu_remove_mapping(dev, handle, size);
1507 	if (coherent_flag == COHERENT)
1508 		__dma_free_buffer(virt_to_page(cpu_addr), size);
1509 	else
1510 		__free_from_pool(cpu_addr, size);
1511 }
1512 
1513 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1514 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs,
1515 	    int coherent_flag)
1516 {
1517 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1518 	struct page **pages;
1519 	void *addr = NULL;
1520 
1521 	*handle = DMA_ERROR_CODE;
1522 	size = PAGE_ALIGN(size);
1523 
1524 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1525 		return __iommu_alloc_simple(dev, size, gfp, handle,
1526 					    coherent_flag);
1527 
1528 	/*
1529 	 * Following is a work-around (a.k.a. hack) to prevent pages
1530 	 * with __GFP_COMP being passed to split_page() which cannot
1531 	 * handle them.  The real problem is that this flag probably
1532 	 * should be 0 on ARM as it is not supported on this
1533 	 * platform; see CONFIG_HUGETLBFS.
1534 	 */
1535 	gfp &= ~(__GFP_COMP);
1536 
1537 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1538 	if (!pages)
1539 		return NULL;
1540 
1541 	*handle = __iommu_create_mapping(dev, pages, size);
1542 	if (*handle == DMA_ERROR_CODE)
1543 		goto err_buffer;
1544 
1545 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1546 		return pages;
1547 
1548 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1549 				   __builtin_return_address(0));
1550 	if (!addr)
1551 		goto err_mapping;
1552 
1553 	return addr;
1554 
1555 err_mapping:
1556 	__iommu_remove_mapping(dev, *handle, size);
1557 err_buffer:
1558 	__iommu_free_buffer(dev, pages, size, attrs);
1559 	return NULL;
1560 }
1561 
1562 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1563 		    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1564 {
1565 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1566 }
1567 
1568 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1569 		    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1570 {
1571 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1572 }
1573 
1574 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1575 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1576 		    struct dma_attrs *attrs)
1577 {
1578 	unsigned long uaddr = vma->vm_start;
1579 	unsigned long usize = vma->vm_end - vma->vm_start;
1580 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1581 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1582 	unsigned long off = vma->vm_pgoff;
1583 
1584 	if (!pages)
1585 		return -ENXIO;
1586 
1587 	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1588 		return -ENXIO;
1589 
1590 	pages += off;
1591 
1592 	do {
1593 		int ret = vm_insert_page(vma, uaddr, *pages++);
1594 		if (ret) {
1595 			pr_err("Remapping memory failed: %d\n", ret);
1596 			return ret;
1597 		}
1598 		uaddr += PAGE_SIZE;
1599 		usize -= PAGE_SIZE;
1600 	} while (usize > 0);
1601 
1602 	return 0;
1603 }
1604 static int arm_iommu_mmap_attrs(struct device *dev,
1605 		struct vm_area_struct *vma, void *cpu_addr,
1606 		dma_addr_t dma_addr, size_t size, struct dma_attrs *attrs)
1607 {
1608 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1609 
1610 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1611 }
1612 
1613 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1614 		struct vm_area_struct *vma, void *cpu_addr,
1615 		dma_addr_t dma_addr, size_t size, struct dma_attrs *attrs)
1616 {
1617 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1618 }
1619 
1620 /*
1621  * free a page as defined by the above mapping.
1622  * Must not be called with IRQs disabled.
1623  */
1624 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1625 	dma_addr_t handle, struct dma_attrs *attrs, int coherent_flag)
1626 {
1627 	struct page **pages;
1628 	size = PAGE_ALIGN(size);
1629 
1630 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1631 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1632 		return;
1633 	}
1634 
1635 	pages = __iommu_get_pages(cpu_addr, attrs);
1636 	if (!pages) {
1637 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1638 		return;
1639 	}
1640 
1641 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1642 		dma_common_free_remap(cpu_addr, size,
1643 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1644 	}
1645 
1646 	__iommu_remove_mapping(dev, handle, size);
1647 	__iommu_free_buffer(dev, pages, size, attrs);
1648 }
1649 
1650 void arm_iommu_free_attrs(struct device *dev, size_t size,
1651 		    void *cpu_addr, dma_addr_t handle, struct dma_attrs *attrs)
1652 {
1653 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1654 }
1655 
1656 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1657 		    void *cpu_addr, dma_addr_t handle, struct dma_attrs *attrs)
1658 {
1659 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1660 }
1661 
1662 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1663 				 void *cpu_addr, dma_addr_t dma_addr,
1664 				 size_t size, struct dma_attrs *attrs)
1665 {
1666 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1667 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1668 
1669 	if (!pages)
1670 		return -ENXIO;
1671 
1672 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1673 					 GFP_KERNEL);
1674 }
1675 
1676 static int __dma_direction_to_prot(enum dma_data_direction dir)
1677 {
1678 	int prot;
1679 
1680 	switch (dir) {
1681 	case DMA_BIDIRECTIONAL:
1682 		prot = IOMMU_READ | IOMMU_WRITE;
1683 		break;
1684 	case DMA_TO_DEVICE:
1685 		prot = IOMMU_READ;
1686 		break;
1687 	case DMA_FROM_DEVICE:
1688 		prot = IOMMU_WRITE;
1689 		break;
1690 	default:
1691 		prot = 0;
1692 	}
1693 
1694 	return prot;
1695 }
1696 
1697 /*
1698  * Map a part of the scatter-gather list into contiguous io address space
1699  */
1700 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1701 			  size_t size, dma_addr_t *handle,
1702 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1703 			  bool is_coherent)
1704 {
1705 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1706 	dma_addr_t iova, iova_base;
1707 	int ret = 0;
1708 	unsigned int count;
1709 	struct scatterlist *s;
1710 	int prot;
1711 
1712 	size = PAGE_ALIGN(size);
1713 	*handle = DMA_ERROR_CODE;
1714 
1715 	iova_base = iova = __alloc_iova(mapping, size);
1716 	if (iova == DMA_ERROR_CODE)
1717 		return -ENOMEM;
1718 
1719 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1720 		phys_addr_t phys = page_to_phys(sg_page(s));
1721 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1722 
1723 		if (!is_coherent &&
1724 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1725 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1726 
1727 		prot = __dma_direction_to_prot(dir);
1728 
1729 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1730 		if (ret < 0)
1731 			goto fail;
1732 		count += len >> PAGE_SHIFT;
1733 		iova += len;
1734 	}
1735 	*handle = iova_base;
1736 
1737 	return 0;
1738 fail:
1739 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1740 	__free_iova(mapping, iova_base, size);
1741 	return ret;
1742 }
1743 
1744 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1745 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1746 		     bool is_coherent)
1747 {
1748 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1749 	int i, count = 0;
1750 	unsigned int offset = s->offset;
1751 	unsigned int size = s->offset + s->length;
1752 	unsigned int max = dma_get_max_seg_size(dev);
1753 
1754 	for (i = 1; i < nents; i++) {
1755 		s = sg_next(s);
1756 
1757 		s->dma_address = DMA_ERROR_CODE;
1758 		s->dma_length = 0;
1759 
1760 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1761 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1762 			    dir, attrs, is_coherent) < 0)
1763 				goto bad_mapping;
1764 
1765 			dma->dma_address += offset;
1766 			dma->dma_length = size - offset;
1767 
1768 			size = offset = s->offset;
1769 			start = s;
1770 			dma = sg_next(dma);
1771 			count += 1;
1772 		}
1773 		size += s->length;
1774 	}
1775 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1776 		is_coherent) < 0)
1777 		goto bad_mapping;
1778 
1779 	dma->dma_address += offset;
1780 	dma->dma_length = size - offset;
1781 
1782 	return count+1;
1783 
1784 bad_mapping:
1785 	for_each_sg(sg, s, count, i)
1786 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1787 	return 0;
1788 }
1789 
1790 /**
1791  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1792  * @dev: valid struct device pointer
1793  * @sg: list of buffers
1794  * @nents: number of buffers to map
1795  * @dir: DMA transfer direction
1796  *
1797  * Map a set of i/o coherent buffers described by scatterlist in streaming
1798  * mode for DMA. The scatter gather list elements are merged together (if
1799  * possible) and tagged with the appropriate dma address and length. They are
1800  * obtained via sg_dma_{address,length}.
1801  */
1802 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1803 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1804 {
1805 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1806 }
1807 
1808 /**
1809  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1810  * @dev: valid struct device pointer
1811  * @sg: list of buffers
1812  * @nents: number of buffers to map
1813  * @dir: DMA transfer direction
1814  *
1815  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1816  * The scatter gather list elements are merged together (if possible) and
1817  * tagged with the appropriate dma address and length. They are obtained via
1818  * sg_dma_{address,length}.
1819  */
1820 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1821 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1822 {
1823 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1824 }
1825 
1826 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1827 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1828 		bool is_coherent)
1829 {
1830 	struct scatterlist *s;
1831 	int i;
1832 
1833 	for_each_sg(sg, s, nents, i) {
1834 		if (sg_dma_len(s))
1835 			__iommu_remove_mapping(dev, sg_dma_address(s),
1836 					       sg_dma_len(s));
1837 		if (!is_coherent &&
1838 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1839 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1840 					      s->length, dir);
1841 	}
1842 }
1843 
1844 /**
1845  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1846  * @dev: valid struct device pointer
1847  * @sg: list of buffers
1848  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1849  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1850  *
1851  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1852  * rules concerning calls here are the same as for dma_unmap_single().
1853  */
1854 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1855 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1856 {
1857 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1858 }
1859 
1860 /**
1861  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1862  * @dev: valid struct device pointer
1863  * @sg: list of buffers
1864  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1865  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1866  *
1867  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1868  * rules concerning calls here are the same as for dma_unmap_single().
1869  */
1870 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1871 			enum dma_data_direction dir, struct dma_attrs *attrs)
1872 {
1873 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1874 }
1875 
1876 /**
1877  * arm_iommu_sync_sg_for_cpu
1878  * @dev: valid struct device pointer
1879  * @sg: list of buffers
1880  * @nents: number of buffers to map (returned from dma_map_sg)
1881  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1882  */
1883 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1884 			int nents, enum dma_data_direction dir)
1885 {
1886 	struct scatterlist *s;
1887 	int i;
1888 
1889 	for_each_sg(sg, s, nents, i)
1890 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1891 
1892 }
1893 
1894 /**
1895  * arm_iommu_sync_sg_for_device
1896  * @dev: valid struct device pointer
1897  * @sg: list of buffers
1898  * @nents: number of buffers to map (returned from dma_map_sg)
1899  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1900  */
1901 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1902 			int nents, enum dma_data_direction dir)
1903 {
1904 	struct scatterlist *s;
1905 	int i;
1906 
1907 	for_each_sg(sg, s, nents, i)
1908 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1909 }
1910 
1911 
1912 /**
1913  * arm_coherent_iommu_map_page
1914  * @dev: valid struct device pointer
1915  * @page: page that buffer resides in
1916  * @offset: offset into page for start of buffer
1917  * @size: size of buffer to map
1918  * @dir: DMA transfer direction
1919  *
1920  * Coherent IOMMU aware version of arm_dma_map_page()
1921  */
1922 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1923 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1924 	     struct dma_attrs *attrs)
1925 {
1926 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1927 	dma_addr_t dma_addr;
1928 	int ret, prot, len = PAGE_ALIGN(size + offset);
1929 
1930 	dma_addr = __alloc_iova(mapping, len);
1931 	if (dma_addr == DMA_ERROR_CODE)
1932 		return dma_addr;
1933 
1934 	prot = __dma_direction_to_prot(dir);
1935 
1936 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1937 	if (ret < 0)
1938 		goto fail;
1939 
1940 	return dma_addr + offset;
1941 fail:
1942 	__free_iova(mapping, dma_addr, len);
1943 	return DMA_ERROR_CODE;
1944 }
1945 
1946 /**
1947  * arm_iommu_map_page
1948  * @dev: valid struct device pointer
1949  * @page: page that buffer resides in
1950  * @offset: offset into page for start of buffer
1951  * @size: size of buffer to map
1952  * @dir: DMA transfer direction
1953  *
1954  * IOMMU aware version of arm_dma_map_page()
1955  */
1956 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1957 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1958 	     struct dma_attrs *attrs)
1959 {
1960 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1961 		__dma_page_cpu_to_dev(page, offset, size, dir);
1962 
1963 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1964 }
1965 
1966 /**
1967  * arm_coherent_iommu_unmap_page
1968  * @dev: valid struct device pointer
1969  * @handle: DMA address of buffer
1970  * @size: size of buffer (same as passed to dma_map_page)
1971  * @dir: DMA transfer direction (same as passed to dma_map_page)
1972  *
1973  * Coherent IOMMU aware version of arm_dma_unmap_page()
1974  */
1975 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1976 		size_t size, enum dma_data_direction dir,
1977 		struct dma_attrs *attrs)
1978 {
1979 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1980 	dma_addr_t iova = handle & PAGE_MASK;
1981 	int offset = handle & ~PAGE_MASK;
1982 	int len = PAGE_ALIGN(size + offset);
1983 
1984 	if (!iova)
1985 		return;
1986 
1987 	iommu_unmap(mapping->domain, iova, len);
1988 	__free_iova(mapping, iova, len);
1989 }
1990 
1991 /**
1992  * arm_iommu_unmap_page
1993  * @dev: valid struct device pointer
1994  * @handle: DMA address of buffer
1995  * @size: size of buffer (same as passed to dma_map_page)
1996  * @dir: DMA transfer direction (same as passed to dma_map_page)
1997  *
1998  * IOMMU aware version of arm_dma_unmap_page()
1999  */
2000 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
2001 		size_t size, enum dma_data_direction dir,
2002 		struct dma_attrs *attrs)
2003 {
2004 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2005 	dma_addr_t iova = handle & PAGE_MASK;
2006 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2007 	int offset = handle & ~PAGE_MASK;
2008 	int len = PAGE_ALIGN(size + offset);
2009 
2010 	if (!iova)
2011 		return;
2012 
2013 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
2014 		__dma_page_dev_to_cpu(page, offset, size, dir);
2015 
2016 	iommu_unmap(mapping->domain, iova, len);
2017 	__free_iova(mapping, iova, len);
2018 }
2019 
2020 static void arm_iommu_sync_single_for_cpu(struct device *dev,
2021 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2022 {
2023 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2024 	dma_addr_t iova = handle & PAGE_MASK;
2025 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2026 	unsigned int offset = handle & ~PAGE_MASK;
2027 
2028 	if (!iova)
2029 		return;
2030 
2031 	__dma_page_dev_to_cpu(page, offset, size, dir);
2032 }
2033 
2034 static void arm_iommu_sync_single_for_device(struct device *dev,
2035 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2036 {
2037 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2038 	dma_addr_t iova = handle & PAGE_MASK;
2039 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2040 	unsigned int offset = handle & ~PAGE_MASK;
2041 
2042 	if (!iova)
2043 		return;
2044 
2045 	__dma_page_cpu_to_dev(page, offset, size, dir);
2046 }
2047 
2048 struct dma_map_ops iommu_ops = {
2049 	.alloc		= arm_iommu_alloc_attrs,
2050 	.free		= arm_iommu_free_attrs,
2051 	.mmap		= arm_iommu_mmap_attrs,
2052 	.get_sgtable	= arm_iommu_get_sgtable,
2053 
2054 	.map_page		= arm_iommu_map_page,
2055 	.unmap_page		= arm_iommu_unmap_page,
2056 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2057 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2058 
2059 	.map_sg			= arm_iommu_map_sg,
2060 	.unmap_sg		= arm_iommu_unmap_sg,
2061 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2062 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2063 };
2064 
2065 struct dma_map_ops iommu_coherent_ops = {
2066 	.alloc		= arm_coherent_iommu_alloc_attrs,
2067 	.free		= arm_coherent_iommu_free_attrs,
2068 	.mmap		= arm_coherent_iommu_mmap_attrs,
2069 	.get_sgtable	= arm_iommu_get_sgtable,
2070 
2071 	.map_page	= arm_coherent_iommu_map_page,
2072 	.unmap_page	= arm_coherent_iommu_unmap_page,
2073 
2074 	.map_sg		= arm_coherent_iommu_map_sg,
2075 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2076 };
2077 
2078 /**
2079  * arm_iommu_create_mapping
2080  * @bus: pointer to the bus holding the client device (for IOMMU calls)
2081  * @base: start address of the valid IO address space
2082  * @size: maximum size of the valid IO address space
2083  *
2084  * Creates a mapping structure which holds information about used/unused
2085  * IO address ranges, which is required to perform memory allocation and
2086  * mapping with IOMMU aware functions.
2087  *
2088  * The client device need to be attached to the mapping with
2089  * arm_iommu_attach_device function.
2090  */
2091 struct dma_iommu_mapping *
2092 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2093 {
2094 	unsigned int bits = size >> PAGE_SHIFT;
2095 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2096 	struct dma_iommu_mapping *mapping;
2097 	int extensions = 1;
2098 	int err = -ENOMEM;
2099 
2100 	/* currently only 32-bit DMA address space is supported */
2101 	if (size > DMA_BIT_MASK(32) + 1)
2102 		return ERR_PTR(-ERANGE);
2103 
2104 	if (!bitmap_size)
2105 		return ERR_PTR(-EINVAL);
2106 
2107 	if (bitmap_size > PAGE_SIZE) {
2108 		extensions = bitmap_size / PAGE_SIZE;
2109 		bitmap_size = PAGE_SIZE;
2110 	}
2111 
2112 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2113 	if (!mapping)
2114 		goto err;
2115 
2116 	mapping->bitmap_size = bitmap_size;
2117 	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2118 				GFP_KERNEL);
2119 	if (!mapping->bitmaps)
2120 		goto err2;
2121 
2122 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2123 	if (!mapping->bitmaps[0])
2124 		goto err3;
2125 
2126 	mapping->nr_bitmaps = 1;
2127 	mapping->extensions = extensions;
2128 	mapping->base = base;
2129 	mapping->bits = BITS_PER_BYTE * bitmap_size;
2130 
2131 	spin_lock_init(&mapping->lock);
2132 
2133 	mapping->domain = iommu_domain_alloc(bus);
2134 	if (!mapping->domain)
2135 		goto err4;
2136 
2137 	kref_init(&mapping->kref);
2138 	return mapping;
2139 err4:
2140 	kfree(mapping->bitmaps[0]);
2141 err3:
2142 	kfree(mapping->bitmaps);
2143 err2:
2144 	kfree(mapping);
2145 err:
2146 	return ERR_PTR(err);
2147 }
2148 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2149 
2150 static void release_iommu_mapping(struct kref *kref)
2151 {
2152 	int i;
2153 	struct dma_iommu_mapping *mapping =
2154 		container_of(kref, struct dma_iommu_mapping, kref);
2155 
2156 	iommu_domain_free(mapping->domain);
2157 	for (i = 0; i < mapping->nr_bitmaps; i++)
2158 		kfree(mapping->bitmaps[i]);
2159 	kfree(mapping->bitmaps);
2160 	kfree(mapping);
2161 }
2162 
2163 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2164 {
2165 	int next_bitmap;
2166 
2167 	if (mapping->nr_bitmaps >= mapping->extensions)
2168 		return -EINVAL;
2169 
2170 	next_bitmap = mapping->nr_bitmaps;
2171 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2172 						GFP_ATOMIC);
2173 	if (!mapping->bitmaps[next_bitmap])
2174 		return -ENOMEM;
2175 
2176 	mapping->nr_bitmaps++;
2177 
2178 	return 0;
2179 }
2180 
2181 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2182 {
2183 	if (mapping)
2184 		kref_put(&mapping->kref, release_iommu_mapping);
2185 }
2186 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2187 
2188 static int __arm_iommu_attach_device(struct device *dev,
2189 				     struct dma_iommu_mapping *mapping)
2190 {
2191 	int err;
2192 
2193 	err = iommu_attach_device(mapping->domain, dev);
2194 	if (err)
2195 		return err;
2196 
2197 	kref_get(&mapping->kref);
2198 	to_dma_iommu_mapping(dev) = mapping;
2199 
2200 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2201 	return 0;
2202 }
2203 
2204 /**
2205  * arm_iommu_attach_device
2206  * @dev: valid struct device pointer
2207  * @mapping: io address space mapping structure (returned from
2208  *	arm_iommu_create_mapping)
2209  *
2210  * Attaches specified io address space mapping to the provided device.
2211  * This replaces the dma operations (dma_map_ops pointer) with the
2212  * IOMMU aware version.
2213  *
2214  * More than one client might be attached to the same io address space
2215  * mapping.
2216  */
2217 int arm_iommu_attach_device(struct device *dev,
2218 			    struct dma_iommu_mapping *mapping)
2219 {
2220 	int err;
2221 
2222 	err = __arm_iommu_attach_device(dev, mapping);
2223 	if (err)
2224 		return err;
2225 
2226 	set_dma_ops(dev, &iommu_ops);
2227 	return 0;
2228 }
2229 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2230 
2231 static void __arm_iommu_detach_device(struct device *dev)
2232 {
2233 	struct dma_iommu_mapping *mapping;
2234 
2235 	mapping = to_dma_iommu_mapping(dev);
2236 	if (!mapping) {
2237 		dev_warn(dev, "Not attached\n");
2238 		return;
2239 	}
2240 
2241 	iommu_detach_device(mapping->domain, dev);
2242 	kref_put(&mapping->kref, release_iommu_mapping);
2243 	to_dma_iommu_mapping(dev) = NULL;
2244 
2245 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2246 }
2247 
2248 /**
2249  * arm_iommu_detach_device
2250  * @dev: valid struct device pointer
2251  *
2252  * Detaches the provided device from a previously attached map.
2253  * This voids the dma operations (dma_map_ops pointer)
2254  */
2255 void arm_iommu_detach_device(struct device *dev)
2256 {
2257 	__arm_iommu_detach_device(dev);
2258 	set_dma_ops(dev, NULL);
2259 }
2260 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2261 
2262 static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2263 {
2264 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2265 }
2266 
2267 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2268 				    const struct iommu_ops *iommu)
2269 {
2270 	struct dma_iommu_mapping *mapping;
2271 
2272 	if (!iommu)
2273 		return false;
2274 
2275 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2276 	if (IS_ERR(mapping)) {
2277 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2278 				size, dev_name(dev));
2279 		return false;
2280 	}
2281 
2282 	if (__arm_iommu_attach_device(dev, mapping)) {
2283 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2284 				dev_name(dev));
2285 		arm_iommu_release_mapping(mapping);
2286 		return false;
2287 	}
2288 
2289 	return true;
2290 }
2291 
2292 static void arm_teardown_iommu_dma_ops(struct device *dev)
2293 {
2294 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2295 
2296 	if (!mapping)
2297 		return;
2298 
2299 	__arm_iommu_detach_device(dev);
2300 	arm_iommu_release_mapping(mapping);
2301 }
2302 
2303 #else
2304 
2305 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2306 				    const struct iommu_ops *iommu)
2307 {
2308 	return false;
2309 }
2310 
2311 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2312 
2313 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2314 
2315 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2316 
2317 static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2318 {
2319 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2320 }
2321 
2322 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2323 			const struct iommu_ops *iommu, bool coherent)
2324 {
2325 	struct dma_map_ops *dma_ops;
2326 
2327 	dev->archdata.dma_coherent = coherent;
2328 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2329 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2330 	else
2331 		dma_ops = arm_get_dma_map_ops(coherent);
2332 
2333 	set_dma_ops(dev, dma_ops);
2334 }
2335 
2336 void arch_teardown_dma_ops(struct device *dev)
2337 {
2338 	arm_teardown_iommu_dma_ops(dev);
2339 }
2340