xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 75f25bd3)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/highmem.h>
21 
22 #include <asm/memory.h>
23 #include <asm/highmem.h>
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 #include <asm/sizes.h>
27 
28 #include "mm.h"
29 
30 static u64 get_coherent_dma_mask(struct device *dev)
31 {
32 	u64 mask = (u64)arm_dma_limit;
33 
34 	if (dev) {
35 		mask = dev->coherent_dma_mask;
36 
37 		/*
38 		 * Sanity check the DMA mask - it must be non-zero, and
39 		 * must be able to be satisfied by a DMA allocation.
40 		 */
41 		if (mask == 0) {
42 			dev_warn(dev, "coherent DMA mask is unset\n");
43 			return 0;
44 		}
45 
46 		if ((~mask) & (u64)arm_dma_limit) {
47 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
48 				 "than system GFP_DMA mask %#llx\n",
49 				 mask, (u64)arm_dma_limit);
50 			return 0;
51 		}
52 	}
53 
54 	return mask;
55 }
56 
57 /*
58  * Allocate a DMA buffer for 'dev' of size 'size' using the
59  * specified gfp mask.  Note that 'size' must be page aligned.
60  */
61 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
62 {
63 	unsigned long order = get_order(size);
64 	struct page *page, *p, *e;
65 	void *ptr;
66 	u64 mask = get_coherent_dma_mask(dev);
67 
68 #ifdef CONFIG_DMA_API_DEBUG
69 	u64 limit = (mask + 1) & ~mask;
70 	if (limit && size >= limit) {
71 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
72 			size, mask);
73 		return NULL;
74 	}
75 #endif
76 
77 	if (!mask)
78 		return NULL;
79 
80 	if (mask < 0xffffffffULL)
81 		gfp |= GFP_DMA;
82 
83 	page = alloc_pages(gfp, order);
84 	if (!page)
85 		return NULL;
86 
87 	/*
88 	 * Now split the huge page and free the excess pages
89 	 */
90 	split_page(page, order);
91 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
92 		__free_page(p);
93 
94 	/*
95 	 * Ensure that the allocated pages are zeroed, and that any data
96 	 * lurking in the kernel direct-mapped region is invalidated.
97 	 */
98 	ptr = page_address(page);
99 	memset(ptr, 0, size);
100 	dmac_flush_range(ptr, ptr + size);
101 	outer_flush_range(__pa(ptr), __pa(ptr) + size);
102 
103 	return page;
104 }
105 
106 /*
107  * Free a DMA buffer.  'size' must be page aligned.
108  */
109 static void __dma_free_buffer(struct page *page, size_t size)
110 {
111 	struct page *e = page + (size >> PAGE_SHIFT);
112 
113 	while (page < e) {
114 		__free_page(page);
115 		page++;
116 	}
117 }
118 
119 #ifdef CONFIG_MMU
120 /* Sanity check size */
121 #if (CONSISTENT_DMA_SIZE % SZ_2M)
122 #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
123 #endif
124 
125 #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
126 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
127 #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
128 
129 /*
130  * These are the page tables (2MB each) covering uncached, DMA consistent allocations
131  */
132 static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
133 
134 #include "vmregion.h"
135 
136 static struct arm_vmregion_head consistent_head = {
137 	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
138 	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
139 	.vm_start	= CONSISTENT_BASE,
140 	.vm_end		= CONSISTENT_END,
141 };
142 
143 #ifdef CONFIG_HUGETLB_PAGE
144 #error ARM Coherent DMA allocator does not (yet) support huge TLB
145 #endif
146 
147 /*
148  * Initialise the consistent memory allocation.
149  */
150 static int __init consistent_init(void)
151 {
152 	int ret = 0;
153 	pgd_t *pgd;
154 	pud_t *pud;
155 	pmd_t *pmd;
156 	pte_t *pte;
157 	int i = 0;
158 	u32 base = CONSISTENT_BASE;
159 
160 	do {
161 		pgd = pgd_offset(&init_mm, base);
162 
163 		pud = pud_alloc(&init_mm, pgd, base);
164 		if (!pud) {
165 			printk(KERN_ERR "%s: no pud tables\n", __func__);
166 			ret = -ENOMEM;
167 			break;
168 		}
169 
170 		pmd = pmd_alloc(&init_mm, pud, base);
171 		if (!pmd) {
172 			printk(KERN_ERR "%s: no pmd tables\n", __func__);
173 			ret = -ENOMEM;
174 			break;
175 		}
176 		WARN_ON(!pmd_none(*pmd));
177 
178 		pte = pte_alloc_kernel(pmd, base);
179 		if (!pte) {
180 			printk(KERN_ERR "%s: no pte tables\n", __func__);
181 			ret = -ENOMEM;
182 			break;
183 		}
184 
185 		consistent_pte[i++] = pte;
186 		base += (1 << PGDIR_SHIFT);
187 	} while (base < CONSISTENT_END);
188 
189 	return ret;
190 }
191 
192 core_initcall(consistent_init);
193 
194 static void *
195 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
196 {
197 	struct arm_vmregion *c;
198 	size_t align;
199 	int bit;
200 
201 	if (!consistent_pte[0]) {
202 		printk(KERN_ERR "%s: not initialised\n", __func__);
203 		dump_stack();
204 		return NULL;
205 	}
206 
207 	/*
208 	 * Align the virtual region allocation - maximum alignment is
209 	 * a section size, minimum is a page size.  This helps reduce
210 	 * fragmentation of the DMA space, and also prevents allocations
211 	 * smaller than a section from crossing a section boundary.
212 	 */
213 	bit = fls(size - 1);
214 	if (bit > SECTION_SHIFT)
215 		bit = SECTION_SHIFT;
216 	align = 1 << bit;
217 
218 	/*
219 	 * Allocate a virtual address in the consistent mapping region.
220 	 */
221 	c = arm_vmregion_alloc(&consistent_head, align, size,
222 			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
223 	if (c) {
224 		pte_t *pte;
225 		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
226 		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
227 
228 		pte = consistent_pte[idx] + off;
229 		c->vm_pages = page;
230 
231 		do {
232 			BUG_ON(!pte_none(*pte));
233 
234 			set_pte_ext(pte, mk_pte(page, prot), 0);
235 			page++;
236 			pte++;
237 			off++;
238 			if (off >= PTRS_PER_PTE) {
239 				off = 0;
240 				pte = consistent_pte[++idx];
241 			}
242 		} while (size -= PAGE_SIZE);
243 
244 		dsb();
245 
246 		return (void *)c->vm_start;
247 	}
248 	return NULL;
249 }
250 
251 static void __dma_free_remap(void *cpu_addr, size_t size)
252 {
253 	struct arm_vmregion *c;
254 	unsigned long addr;
255 	pte_t *ptep;
256 	int idx;
257 	u32 off;
258 
259 	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
260 	if (!c) {
261 		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
262 		       __func__, cpu_addr);
263 		dump_stack();
264 		return;
265 	}
266 
267 	if ((c->vm_end - c->vm_start) != size) {
268 		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
269 		       __func__, c->vm_end - c->vm_start, size);
270 		dump_stack();
271 		size = c->vm_end - c->vm_start;
272 	}
273 
274 	idx = CONSISTENT_PTE_INDEX(c->vm_start);
275 	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
276 	ptep = consistent_pte[idx] + off;
277 	addr = c->vm_start;
278 	do {
279 		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
280 
281 		ptep++;
282 		addr += PAGE_SIZE;
283 		off++;
284 		if (off >= PTRS_PER_PTE) {
285 			off = 0;
286 			ptep = consistent_pte[++idx];
287 		}
288 
289 		if (pte_none(pte) || !pte_present(pte))
290 			printk(KERN_CRIT "%s: bad page in kernel page table\n",
291 			       __func__);
292 	} while (size -= PAGE_SIZE);
293 
294 	flush_tlb_kernel_range(c->vm_start, c->vm_end);
295 
296 	arm_vmregion_free(&consistent_head, c);
297 }
298 
299 #else	/* !CONFIG_MMU */
300 
301 #define __dma_alloc_remap(page, size, gfp, prot)	page_address(page)
302 #define __dma_free_remap(addr, size)			do { } while (0)
303 
304 #endif	/* CONFIG_MMU */
305 
306 static void *
307 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
308 	    pgprot_t prot)
309 {
310 	struct page *page;
311 	void *addr;
312 
313 	*handle = ~0;
314 	size = PAGE_ALIGN(size);
315 
316 	page = __dma_alloc_buffer(dev, size, gfp);
317 	if (!page)
318 		return NULL;
319 
320 	if (!arch_is_coherent())
321 		addr = __dma_alloc_remap(page, size, gfp, prot);
322 	else
323 		addr = page_address(page);
324 
325 	if (addr)
326 		*handle = pfn_to_dma(dev, page_to_pfn(page));
327 
328 	return addr;
329 }
330 
331 /*
332  * Allocate DMA-coherent memory space and return both the kernel remapped
333  * virtual and bus address for that space.
334  */
335 void *
336 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
337 {
338 	void *memory;
339 
340 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
341 		return memory;
342 
343 	return __dma_alloc(dev, size, handle, gfp,
344 			   pgprot_dmacoherent(pgprot_kernel));
345 }
346 EXPORT_SYMBOL(dma_alloc_coherent);
347 
348 /*
349  * Allocate a writecombining region, in much the same way as
350  * dma_alloc_coherent above.
351  */
352 void *
353 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
354 {
355 	return __dma_alloc(dev, size, handle, gfp,
356 			   pgprot_writecombine(pgprot_kernel));
357 }
358 EXPORT_SYMBOL(dma_alloc_writecombine);
359 
360 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
361 		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
362 {
363 	int ret = -ENXIO;
364 #ifdef CONFIG_MMU
365 	unsigned long user_size, kern_size;
366 	struct arm_vmregion *c;
367 
368 	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
369 
370 	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
371 	if (c) {
372 		unsigned long off = vma->vm_pgoff;
373 
374 		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
375 
376 		if (off < kern_size &&
377 		    user_size <= (kern_size - off)) {
378 			ret = remap_pfn_range(vma, vma->vm_start,
379 					      page_to_pfn(c->vm_pages) + off,
380 					      user_size << PAGE_SHIFT,
381 					      vma->vm_page_prot);
382 		}
383 	}
384 #endif	/* CONFIG_MMU */
385 
386 	return ret;
387 }
388 
389 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
390 		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
391 {
392 	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
393 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
394 }
395 EXPORT_SYMBOL(dma_mmap_coherent);
396 
397 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
398 			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
399 {
400 	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
401 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
402 }
403 EXPORT_SYMBOL(dma_mmap_writecombine);
404 
405 /*
406  * free a page as defined by the above mapping.
407  * Must not be called with IRQs disabled.
408  */
409 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
410 {
411 	WARN_ON(irqs_disabled());
412 
413 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
414 		return;
415 
416 	size = PAGE_ALIGN(size);
417 
418 	if (!arch_is_coherent())
419 		__dma_free_remap(cpu_addr, size);
420 
421 	__dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
422 }
423 EXPORT_SYMBOL(dma_free_coherent);
424 
425 /*
426  * Make an area consistent for devices.
427  * Note: Drivers should NOT use this function directly, as it will break
428  * platforms with CONFIG_DMABOUNCE.
429  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
430  */
431 void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
432 	enum dma_data_direction dir)
433 {
434 	unsigned long paddr;
435 
436 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
437 
438 	dmac_map_area(kaddr, size, dir);
439 
440 	paddr = __pa(kaddr);
441 	if (dir == DMA_FROM_DEVICE) {
442 		outer_inv_range(paddr, paddr + size);
443 	} else {
444 		outer_clean_range(paddr, paddr + size);
445 	}
446 	/* FIXME: non-speculating: flush on bidirectional mappings? */
447 }
448 EXPORT_SYMBOL(___dma_single_cpu_to_dev);
449 
450 void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
451 	enum dma_data_direction dir)
452 {
453 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
454 
455 	/* FIXME: non-speculating: not required */
456 	/* don't bother invalidating if DMA to device */
457 	if (dir != DMA_TO_DEVICE) {
458 		unsigned long paddr = __pa(kaddr);
459 		outer_inv_range(paddr, paddr + size);
460 	}
461 
462 	dmac_unmap_area(kaddr, size, dir);
463 }
464 EXPORT_SYMBOL(___dma_single_dev_to_cpu);
465 
466 static void dma_cache_maint_page(struct page *page, unsigned long offset,
467 	size_t size, enum dma_data_direction dir,
468 	void (*op)(const void *, size_t, int))
469 {
470 	/*
471 	 * A single sg entry may refer to multiple physically contiguous
472 	 * pages.  But we still need to process highmem pages individually.
473 	 * If highmem is not configured then the bulk of this loop gets
474 	 * optimized out.
475 	 */
476 	size_t left = size;
477 	do {
478 		size_t len = left;
479 		void *vaddr;
480 
481 		if (PageHighMem(page)) {
482 			if (len + offset > PAGE_SIZE) {
483 				if (offset >= PAGE_SIZE) {
484 					page += offset / PAGE_SIZE;
485 					offset %= PAGE_SIZE;
486 				}
487 				len = PAGE_SIZE - offset;
488 			}
489 			vaddr = kmap_high_get(page);
490 			if (vaddr) {
491 				vaddr += offset;
492 				op(vaddr, len, dir);
493 				kunmap_high(page);
494 			} else if (cache_is_vipt()) {
495 				/* unmapped pages might still be cached */
496 				vaddr = kmap_atomic(page);
497 				op(vaddr + offset, len, dir);
498 				kunmap_atomic(vaddr);
499 			}
500 		} else {
501 			vaddr = page_address(page) + offset;
502 			op(vaddr, len, dir);
503 		}
504 		offset = 0;
505 		page++;
506 		left -= len;
507 	} while (left);
508 }
509 
510 void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
511 	size_t size, enum dma_data_direction dir)
512 {
513 	unsigned long paddr;
514 
515 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
516 
517 	paddr = page_to_phys(page) + off;
518 	if (dir == DMA_FROM_DEVICE) {
519 		outer_inv_range(paddr, paddr + size);
520 	} else {
521 		outer_clean_range(paddr, paddr + size);
522 	}
523 	/* FIXME: non-speculating: flush on bidirectional mappings? */
524 }
525 EXPORT_SYMBOL(___dma_page_cpu_to_dev);
526 
527 void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
528 	size_t size, enum dma_data_direction dir)
529 {
530 	unsigned long paddr = page_to_phys(page) + off;
531 
532 	/* FIXME: non-speculating: not required */
533 	/* don't bother invalidating if DMA to device */
534 	if (dir != DMA_TO_DEVICE)
535 		outer_inv_range(paddr, paddr + size);
536 
537 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
538 
539 	/*
540 	 * Mark the D-cache clean for this page to avoid extra flushing.
541 	 */
542 	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
543 		set_bit(PG_dcache_clean, &page->flags);
544 }
545 EXPORT_SYMBOL(___dma_page_dev_to_cpu);
546 
547 /**
548  * dma_map_sg - map a set of SG buffers for streaming mode DMA
549  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
550  * @sg: list of buffers
551  * @nents: number of buffers to map
552  * @dir: DMA transfer direction
553  *
554  * Map a set of buffers described by scatterlist in streaming mode for DMA.
555  * This is the scatter-gather version of the dma_map_single interface.
556  * Here the scatter gather list elements are each tagged with the
557  * appropriate dma address and length.  They are obtained via
558  * sg_dma_{address,length}.
559  *
560  * Device ownership issues as mentioned for dma_map_single are the same
561  * here.
562  */
563 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
564 		enum dma_data_direction dir)
565 {
566 	struct scatterlist *s;
567 	int i, j;
568 
569 	BUG_ON(!valid_dma_direction(dir));
570 
571 	for_each_sg(sg, s, nents, i) {
572 		s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
573 						s->length, dir);
574 		if (dma_mapping_error(dev, s->dma_address))
575 			goto bad_mapping;
576 	}
577 	debug_dma_map_sg(dev, sg, nents, nents, dir);
578 	return nents;
579 
580  bad_mapping:
581 	for_each_sg(sg, s, i, j)
582 		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
583 	return 0;
584 }
585 EXPORT_SYMBOL(dma_map_sg);
586 
587 /**
588  * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
589  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
590  * @sg: list of buffers
591  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
592  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
593  *
594  * Unmap a set of streaming mode DMA translations.  Again, CPU access
595  * rules concerning calls here are the same as for dma_unmap_single().
596  */
597 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
598 		enum dma_data_direction dir)
599 {
600 	struct scatterlist *s;
601 	int i;
602 
603 	debug_dma_unmap_sg(dev, sg, nents, dir);
604 
605 	for_each_sg(sg, s, nents, i)
606 		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
607 }
608 EXPORT_SYMBOL(dma_unmap_sg);
609 
610 /**
611  * dma_sync_sg_for_cpu
612  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
613  * @sg: list of buffers
614  * @nents: number of buffers to map (returned from dma_map_sg)
615  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
616  */
617 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
618 			int nents, enum dma_data_direction dir)
619 {
620 	struct scatterlist *s;
621 	int i;
622 
623 	for_each_sg(sg, s, nents, i) {
624 		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
625 					    sg_dma_len(s), dir))
626 			continue;
627 
628 		__dma_page_dev_to_cpu(sg_page(s), s->offset,
629 				      s->length, dir);
630 	}
631 
632 	debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
633 }
634 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
635 
636 /**
637  * dma_sync_sg_for_device
638  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
639  * @sg: list of buffers
640  * @nents: number of buffers to map (returned from dma_map_sg)
641  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
642  */
643 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
644 			int nents, enum dma_data_direction dir)
645 {
646 	struct scatterlist *s;
647 	int i;
648 
649 	for_each_sg(sg, s, nents, i) {
650 		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
651 					sg_dma_len(s), dir))
652 			continue;
653 
654 		__dma_page_cpu_to_dev(sg_page(s), s->offset,
655 				      s->length, dir);
656 	}
657 
658 	debug_dma_sync_sg_for_device(dev, sg, nents, dir);
659 }
660 EXPORT_SYMBOL(dma_sync_sg_for_device);
661 
662 /*
663  * Return whether the given device DMA address mask can be supported
664  * properly.  For example, if your device can only drive the low 24-bits
665  * during bus mastering, then you would pass 0x00ffffff as the mask
666  * to this function.
667  */
668 int dma_supported(struct device *dev, u64 mask)
669 {
670 	if (mask < (u64)arm_dma_limit)
671 		return 0;
672 	return 1;
673 }
674 EXPORT_SYMBOL(dma_supported);
675 
676 int dma_set_mask(struct device *dev, u64 dma_mask)
677 {
678 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
679 		return -EIO;
680 
681 #ifndef CONFIG_DMABOUNCE
682 	*dev->dma_mask = dma_mask;
683 #endif
684 
685 	return 0;
686 }
687 EXPORT_SYMBOL(dma_set_mask);
688 
689 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
690 
691 static int __init dma_debug_do_init(void)
692 {
693 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
694 	return 0;
695 }
696 fs_initcall(dma_debug_do_init);
697