xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 609e478b)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31 
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41 
42 #include "mm.h"
43 
44 /*
45  * The DMA API is built upon the notion of "buffer ownership".  A buffer
46  * is either exclusively owned by the CPU (and therefore may be accessed
47  * by it) or exclusively owned by the DMA device.  These helper functions
48  * represent the transitions between these two ownership states.
49  *
50  * Note, however, that on later ARMs, this notion does not work due to
51  * speculative prefetches.  We model our approach on the assumption that
52  * the CPU does do speculative prefetches, which means we clean caches
53  * before transfers and delay cache invalidation until transfer completion.
54  *
55  */
56 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
57 		size_t, enum dma_data_direction);
58 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
59 		size_t, enum dma_data_direction);
60 
61 /**
62  * arm_dma_map_page - map a portion of a page for streaming DMA
63  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
64  * @page: page that buffer resides in
65  * @offset: offset into page for start of buffer
66  * @size: size of buffer to map
67  * @dir: DMA transfer direction
68  *
69  * Ensure that any data held in the cache is appropriately discarded
70  * or written back.
71  *
72  * The device owns this memory once this call has completed.  The CPU
73  * can regain ownership by calling dma_unmap_page().
74  */
75 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
76 	     unsigned long offset, size_t size, enum dma_data_direction dir,
77 	     struct dma_attrs *attrs)
78 {
79 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
80 		__dma_page_cpu_to_dev(page, offset, size, dir);
81 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
82 }
83 
84 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
85 	     unsigned long offset, size_t size, enum dma_data_direction dir,
86 	     struct dma_attrs *attrs)
87 {
88 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
89 }
90 
91 /**
92  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
93  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
94  * @handle: DMA address of buffer
95  * @size: size of buffer (same as passed to dma_map_page)
96  * @dir: DMA transfer direction (same as passed to dma_map_page)
97  *
98  * Unmap a page streaming mode DMA translation.  The handle and size
99  * must match what was provided in the previous dma_map_page() call.
100  * All other usages are undefined.
101  *
102  * After this call, reads by the CPU to the buffer are guaranteed to see
103  * whatever the device wrote there.
104  */
105 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
106 		size_t size, enum dma_data_direction dir,
107 		struct dma_attrs *attrs)
108 {
109 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
110 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
111 				      handle & ~PAGE_MASK, size, dir);
112 }
113 
114 static void arm_dma_sync_single_for_cpu(struct device *dev,
115 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
116 {
117 	unsigned int offset = handle & (PAGE_SIZE - 1);
118 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
119 	__dma_page_dev_to_cpu(page, offset, size, dir);
120 }
121 
122 static void arm_dma_sync_single_for_device(struct device *dev,
123 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
124 {
125 	unsigned int offset = handle & (PAGE_SIZE - 1);
126 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
127 	__dma_page_cpu_to_dev(page, offset, size, dir);
128 }
129 
130 struct dma_map_ops arm_dma_ops = {
131 	.alloc			= arm_dma_alloc,
132 	.free			= arm_dma_free,
133 	.mmap			= arm_dma_mmap,
134 	.get_sgtable		= arm_dma_get_sgtable,
135 	.map_page		= arm_dma_map_page,
136 	.unmap_page		= arm_dma_unmap_page,
137 	.map_sg			= arm_dma_map_sg,
138 	.unmap_sg		= arm_dma_unmap_sg,
139 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
140 	.sync_single_for_device	= arm_dma_sync_single_for_device,
141 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
142 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
143 	.set_dma_mask		= arm_dma_set_mask,
144 };
145 EXPORT_SYMBOL(arm_dma_ops);
146 
147 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
148 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
149 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
150 				  dma_addr_t handle, struct dma_attrs *attrs);
151 
152 struct dma_map_ops arm_coherent_dma_ops = {
153 	.alloc			= arm_coherent_dma_alloc,
154 	.free			= arm_coherent_dma_free,
155 	.mmap			= arm_dma_mmap,
156 	.get_sgtable		= arm_dma_get_sgtable,
157 	.map_page		= arm_coherent_dma_map_page,
158 	.map_sg			= arm_dma_map_sg,
159 	.set_dma_mask		= arm_dma_set_mask,
160 };
161 EXPORT_SYMBOL(arm_coherent_dma_ops);
162 
163 static int __dma_supported(struct device *dev, u64 mask, bool warn)
164 {
165 	unsigned long max_dma_pfn;
166 
167 	/*
168 	 * If the mask allows for more memory than we can address,
169 	 * and we actually have that much memory, then we must
170 	 * indicate that DMA to this device is not supported.
171 	 */
172 	if (sizeof(mask) != sizeof(dma_addr_t) &&
173 	    mask > (dma_addr_t)~0 &&
174 	    dma_to_pfn(dev, ~0) < max_pfn) {
175 		if (warn) {
176 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
177 				 mask);
178 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
179 		}
180 		return 0;
181 	}
182 
183 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
184 
185 	/*
186 	 * Translate the device's DMA mask to a PFN limit.  This
187 	 * PFN number includes the page which we can DMA to.
188 	 */
189 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
190 		if (warn)
191 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
192 				 mask,
193 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
194 				 max_dma_pfn + 1);
195 		return 0;
196 	}
197 
198 	return 1;
199 }
200 
201 static u64 get_coherent_dma_mask(struct device *dev)
202 {
203 	u64 mask = (u64)DMA_BIT_MASK(32);
204 
205 	if (dev) {
206 		mask = dev->coherent_dma_mask;
207 
208 		/*
209 		 * Sanity check the DMA mask - it must be non-zero, and
210 		 * must be able to be satisfied by a DMA allocation.
211 		 */
212 		if (mask == 0) {
213 			dev_warn(dev, "coherent DMA mask is unset\n");
214 			return 0;
215 		}
216 
217 		if (!__dma_supported(dev, mask, true))
218 			return 0;
219 	}
220 
221 	return mask;
222 }
223 
224 static void __dma_clear_buffer(struct page *page, size_t size)
225 {
226 	/*
227 	 * Ensure that the allocated pages are zeroed, and that any data
228 	 * lurking in the kernel direct-mapped region is invalidated.
229 	 */
230 	if (PageHighMem(page)) {
231 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
232 		phys_addr_t end = base + size;
233 		while (size > 0) {
234 			void *ptr = kmap_atomic(page);
235 			memset(ptr, 0, PAGE_SIZE);
236 			dmac_flush_range(ptr, ptr + PAGE_SIZE);
237 			kunmap_atomic(ptr);
238 			page++;
239 			size -= PAGE_SIZE;
240 		}
241 		outer_flush_range(base, end);
242 	} else {
243 		void *ptr = page_address(page);
244 		memset(ptr, 0, size);
245 		dmac_flush_range(ptr, ptr + size);
246 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
247 	}
248 }
249 
250 /*
251  * Allocate a DMA buffer for 'dev' of size 'size' using the
252  * specified gfp mask.  Note that 'size' must be page aligned.
253  */
254 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
255 {
256 	unsigned long order = get_order(size);
257 	struct page *page, *p, *e;
258 
259 	page = alloc_pages(gfp, order);
260 	if (!page)
261 		return NULL;
262 
263 	/*
264 	 * Now split the huge page and free the excess pages
265 	 */
266 	split_page(page, order);
267 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
268 		__free_page(p);
269 
270 	__dma_clear_buffer(page, size);
271 
272 	return page;
273 }
274 
275 /*
276  * Free a DMA buffer.  'size' must be page aligned.
277  */
278 static void __dma_free_buffer(struct page *page, size_t size)
279 {
280 	struct page *e = page + (size >> PAGE_SHIFT);
281 
282 	while (page < e) {
283 		__free_page(page);
284 		page++;
285 	}
286 }
287 
288 #ifdef CONFIG_MMU
289 
290 static void *__alloc_from_contiguous(struct device *dev, size_t size,
291 				     pgprot_t prot, struct page **ret_page,
292 				     const void *caller);
293 
294 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
295 				 pgprot_t prot, struct page **ret_page,
296 				 const void *caller);
297 
298 static void *
299 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
300 	const void *caller)
301 {
302 	/*
303 	 * DMA allocation can be mapped to user space, so lets
304 	 * set VM_USERMAP flags too.
305 	 */
306 	return dma_common_contiguous_remap(page, size,
307 			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
308 			prot, caller);
309 }
310 
311 static void __dma_free_remap(void *cpu_addr, size_t size)
312 {
313 	dma_common_free_remap(cpu_addr, size,
314 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
315 }
316 
317 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
318 static struct gen_pool *atomic_pool;
319 
320 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
321 
322 static int __init early_coherent_pool(char *p)
323 {
324 	atomic_pool_size = memparse(p, &p);
325 	return 0;
326 }
327 early_param("coherent_pool", early_coherent_pool);
328 
329 void __init init_dma_coherent_pool_size(unsigned long size)
330 {
331 	/*
332 	 * Catch any attempt to set the pool size too late.
333 	 */
334 	BUG_ON(atomic_pool);
335 
336 	/*
337 	 * Set architecture specific coherent pool size only if
338 	 * it has not been changed by kernel command line parameter.
339 	 */
340 	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
341 		atomic_pool_size = size;
342 }
343 
344 /*
345  * Initialise the coherent pool for atomic allocations.
346  */
347 static int __init atomic_pool_init(void)
348 {
349 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
350 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
351 	struct page *page;
352 	void *ptr;
353 
354 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
355 	if (!atomic_pool)
356 		goto out;
357 
358 	if (dev_get_cma_area(NULL))
359 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
360 					      &page, atomic_pool_init);
361 	else
362 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
363 					   &page, atomic_pool_init);
364 	if (ptr) {
365 		int ret;
366 
367 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
368 					page_to_phys(page),
369 					atomic_pool_size, -1);
370 		if (ret)
371 			goto destroy_genpool;
372 
373 		gen_pool_set_algo(atomic_pool,
374 				gen_pool_first_fit_order_align,
375 				(void *)PAGE_SHIFT);
376 		pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
377 		       atomic_pool_size / 1024);
378 		return 0;
379 	}
380 
381 destroy_genpool:
382 	gen_pool_destroy(atomic_pool);
383 	atomic_pool = NULL;
384 out:
385 	pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
386 	       atomic_pool_size / 1024);
387 	return -ENOMEM;
388 }
389 /*
390  * CMA is activated by core_initcall, so we must be called after it.
391  */
392 postcore_initcall(atomic_pool_init);
393 
394 struct dma_contig_early_reserve {
395 	phys_addr_t base;
396 	unsigned long size;
397 };
398 
399 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
400 
401 static int dma_mmu_remap_num __initdata;
402 
403 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
404 {
405 	dma_mmu_remap[dma_mmu_remap_num].base = base;
406 	dma_mmu_remap[dma_mmu_remap_num].size = size;
407 	dma_mmu_remap_num++;
408 }
409 
410 void __init dma_contiguous_remap(void)
411 {
412 	int i;
413 	for (i = 0; i < dma_mmu_remap_num; i++) {
414 		phys_addr_t start = dma_mmu_remap[i].base;
415 		phys_addr_t end = start + dma_mmu_remap[i].size;
416 		struct map_desc map;
417 		unsigned long addr;
418 
419 		if (end > arm_lowmem_limit)
420 			end = arm_lowmem_limit;
421 		if (start >= end)
422 			continue;
423 
424 		map.pfn = __phys_to_pfn(start);
425 		map.virtual = __phys_to_virt(start);
426 		map.length = end - start;
427 		map.type = MT_MEMORY_DMA_READY;
428 
429 		/*
430 		 * Clear previous low-memory mapping to ensure that the
431 		 * TLB does not see any conflicting entries, then flush
432 		 * the TLB of the old entries before creating new mappings.
433 		 *
434 		 * This ensures that any speculatively loaded TLB entries
435 		 * (even though they may be rare) can not cause any problems,
436 		 * and ensures that this code is architecturally compliant.
437 		 */
438 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
439 		     addr += PMD_SIZE)
440 			pmd_clear(pmd_off_k(addr));
441 
442 		flush_tlb_kernel_range(__phys_to_virt(start),
443 				       __phys_to_virt(end));
444 
445 		iotable_init(&map, 1);
446 	}
447 }
448 
449 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
450 			    void *data)
451 {
452 	struct page *page = virt_to_page(addr);
453 	pgprot_t prot = *(pgprot_t *)data;
454 
455 	set_pte_ext(pte, mk_pte(page, prot), 0);
456 	return 0;
457 }
458 
459 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
460 {
461 	unsigned long start = (unsigned long) page_address(page);
462 	unsigned end = start + size;
463 
464 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
465 	flush_tlb_kernel_range(start, end);
466 }
467 
468 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
469 				 pgprot_t prot, struct page **ret_page,
470 				 const void *caller)
471 {
472 	struct page *page;
473 	void *ptr;
474 	page = __dma_alloc_buffer(dev, size, gfp);
475 	if (!page)
476 		return NULL;
477 
478 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
479 	if (!ptr) {
480 		__dma_free_buffer(page, size);
481 		return NULL;
482 	}
483 
484 	*ret_page = page;
485 	return ptr;
486 }
487 
488 static void *__alloc_from_pool(size_t size, struct page **ret_page)
489 {
490 	unsigned long val;
491 	void *ptr = NULL;
492 
493 	if (!atomic_pool) {
494 		WARN(1, "coherent pool not initialised!\n");
495 		return NULL;
496 	}
497 
498 	val = gen_pool_alloc(atomic_pool, size);
499 	if (val) {
500 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
501 
502 		*ret_page = phys_to_page(phys);
503 		ptr = (void *)val;
504 	}
505 
506 	return ptr;
507 }
508 
509 static bool __in_atomic_pool(void *start, size_t size)
510 {
511 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
512 }
513 
514 static int __free_from_pool(void *start, size_t size)
515 {
516 	if (!__in_atomic_pool(start, size))
517 		return 0;
518 
519 	gen_pool_free(atomic_pool, (unsigned long)start, size);
520 
521 	return 1;
522 }
523 
524 static void *__alloc_from_contiguous(struct device *dev, size_t size,
525 				     pgprot_t prot, struct page **ret_page,
526 				     const void *caller)
527 {
528 	unsigned long order = get_order(size);
529 	size_t count = size >> PAGE_SHIFT;
530 	struct page *page;
531 	void *ptr;
532 
533 	page = dma_alloc_from_contiguous(dev, count, order);
534 	if (!page)
535 		return NULL;
536 
537 	__dma_clear_buffer(page, size);
538 
539 	if (PageHighMem(page)) {
540 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
541 		if (!ptr) {
542 			dma_release_from_contiguous(dev, page, count);
543 			return NULL;
544 		}
545 	} else {
546 		__dma_remap(page, size, prot);
547 		ptr = page_address(page);
548 	}
549 	*ret_page = page;
550 	return ptr;
551 }
552 
553 static void __free_from_contiguous(struct device *dev, struct page *page,
554 				   void *cpu_addr, size_t size)
555 {
556 	if (PageHighMem(page))
557 		__dma_free_remap(cpu_addr, size);
558 	else
559 		__dma_remap(page, size, PAGE_KERNEL);
560 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
561 }
562 
563 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
564 {
565 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
566 			    pgprot_writecombine(prot) :
567 			    pgprot_dmacoherent(prot);
568 	return prot;
569 }
570 
571 #define nommu() 0
572 
573 #else	/* !CONFIG_MMU */
574 
575 #define nommu() 1
576 
577 #define __get_dma_pgprot(attrs, prot)	__pgprot(0)
578 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
579 #define __alloc_from_pool(size, ret_page)			NULL
580 #define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
581 #define __free_from_pool(cpu_addr, size)			0
582 #define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
583 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
584 
585 #endif	/* CONFIG_MMU */
586 
587 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
588 				   struct page **ret_page)
589 {
590 	struct page *page;
591 	page = __dma_alloc_buffer(dev, size, gfp);
592 	if (!page)
593 		return NULL;
594 
595 	*ret_page = page;
596 	return page_address(page);
597 }
598 
599 
600 
601 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
602 			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
603 {
604 	u64 mask = get_coherent_dma_mask(dev);
605 	struct page *page = NULL;
606 	void *addr;
607 
608 #ifdef CONFIG_DMA_API_DEBUG
609 	u64 limit = (mask + 1) & ~mask;
610 	if (limit && size >= limit) {
611 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
612 			size, mask);
613 		return NULL;
614 	}
615 #endif
616 
617 	if (!mask)
618 		return NULL;
619 
620 	if (mask < 0xffffffffULL)
621 		gfp |= GFP_DMA;
622 
623 	/*
624 	 * Following is a work-around (a.k.a. hack) to prevent pages
625 	 * with __GFP_COMP being passed to split_page() which cannot
626 	 * handle them.  The real problem is that this flag probably
627 	 * should be 0 on ARM as it is not supported on this
628 	 * platform; see CONFIG_HUGETLBFS.
629 	 */
630 	gfp &= ~(__GFP_COMP);
631 
632 	*handle = DMA_ERROR_CODE;
633 	size = PAGE_ALIGN(size);
634 
635 	if (is_coherent || nommu())
636 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
637 	else if (!(gfp & __GFP_WAIT))
638 		addr = __alloc_from_pool(size, &page);
639 	else if (!dev_get_cma_area(dev))
640 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
641 	else
642 		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
643 
644 	if (addr)
645 		*handle = pfn_to_dma(dev, page_to_pfn(page));
646 
647 	return addr;
648 }
649 
650 /*
651  * Allocate DMA-coherent memory space and return both the kernel remapped
652  * virtual and bus address for that space.
653  */
654 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
655 		    gfp_t gfp, struct dma_attrs *attrs)
656 {
657 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
658 	void *memory;
659 
660 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
661 		return memory;
662 
663 	return __dma_alloc(dev, size, handle, gfp, prot, false,
664 			   __builtin_return_address(0));
665 }
666 
667 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
668 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
669 {
670 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
671 	void *memory;
672 
673 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
674 		return memory;
675 
676 	return __dma_alloc(dev, size, handle, gfp, prot, true,
677 			   __builtin_return_address(0));
678 }
679 
680 /*
681  * Create userspace mapping for the DMA-coherent memory.
682  */
683 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
684 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
685 		 struct dma_attrs *attrs)
686 {
687 	int ret = -ENXIO;
688 #ifdef CONFIG_MMU
689 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
690 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
691 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
692 	unsigned long off = vma->vm_pgoff;
693 
694 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
695 
696 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
697 		return ret;
698 
699 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
700 		ret = remap_pfn_range(vma, vma->vm_start,
701 				      pfn + off,
702 				      vma->vm_end - vma->vm_start,
703 				      vma->vm_page_prot);
704 	}
705 #endif	/* CONFIG_MMU */
706 
707 	return ret;
708 }
709 
710 /*
711  * Free a buffer as defined by the above mapping.
712  */
713 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
714 			   dma_addr_t handle, struct dma_attrs *attrs,
715 			   bool is_coherent)
716 {
717 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
718 
719 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
720 		return;
721 
722 	size = PAGE_ALIGN(size);
723 
724 	if (is_coherent || nommu()) {
725 		__dma_free_buffer(page, size);
726 	} else if (__free_from_pool(cpu_addr, size)) {
727 		return;
728 	} else if (!dev_get_cma_area(dev)) {
729 		__dma_free_remap(cpu_addr, size);
730 		__dma_free_buffer(page, size);
731 	} else {
732 		/*
733 		 * Non-atomic allocations cannot be freed with IRQs disabled
734 		 */
735 		WARN_ON(irqs_disabled());
736 		__free_from_contiguous(dev, page, cpu_addr, size);
737 	}
738 }
739 
740 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
741 		  dma_addr_t handle, struct dma_attrs *attrs)
742 {
743 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
744 }
745 
746 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
747 				  dma_addr_t handle, struct dma_attrs *attrs)
748 {
749 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
750 }
751 
752 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
753 		 void *cpu_addr, dma_addr_t handle, size_t size,
754 		 struct dma_attrs *attrs)
755 {
756 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
757 	int ret;
758 
759 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
760 	if (unlikely(ret))
761 		return ret;
762 
763 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
764 	return 0;
765 }
766 
767 static void dma_cache_maint_page(struct page *page, unsigned long offset,
768 	size_t size, enum dma_data_direction dir,
769 	void (*op)(const void *, size_t, int))
770 {
771 	unsigned long pfn;
772 	size_t left = size;
773 
774 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
775 	offset %= PAGE_SIZE;
776 
777 	/*
778 	 * A single sg entry may refer to multiple physically contiguous
779 	 * pages.  But we still need to process highmem pages individually.
780 	 * If highmem is not configured then the bulk of this loop gets
781 	 * optimized out.
782 	 */
783 	do {
784 		size_t len = left;
785 		void *vaddr;
786 
787 		page = pfn_to_page(pfn);
788 
789 		if (PageHighMem(page)) {
790 			if (len + offset > PAGE_SIZE)
791 				len = PAGE_SIZE - offset;
792 
793 			if (cache_is_vipt_nonaliasing()) {
794 				vaddr = kmap_atomic(page);
795 				op(vaddr + offset, len, dir);
796 				kunmap_atomic(vaddr);
797 			} else {
798 				vaddr = kmap_high_get(page);
799 				if (vaddr) {
800 					op(vaddr + offset, len, dir);
801 					kunmap_high(page);
802 				}
803 			}
804 		} else {
805 			vaddr = page_address(page) + offset;
806 			op(vaddr, len, dir);
807 		}
808 		offset = 0;
809 		pfn++;
810 		left -= len;
811 	} while (left);
812 }
813 
814 /*
815  * Make an area consistent for devices.
816  * Note: Drivers should NOT use this function directly, as it will break
817  * platforms with CONFIG_DMABOUNCE.
818  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
819  */
820 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
821 	size_t size, enum dma_data_direction dir)
822 {
823 	phys_addr_t paddr;
824 
825 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
826 
827 	paddr = page_to_phys(page) + off;
828 	if (dir == DMA_FROM_DEVICE) {
829 		outer_inv_range(paddr, paddr + size);
830 	} else {
831 		outer_clean_range(paddr, paddr + size);
832 	}
833 	/* FIXME: non-speculating: flush on bidirectional mappings? */
834 }
835 
836 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
837 	size_t size, enum dma_data_direction dir)
838 {
839 	phys_addr_t paddr = page_to_phys(page) + off;
840 
841 	/* FIXME: non-speculating: not required */
842 	/* in any case, don't bother invalidating if DMA to device */
843 	if (dir != DMA_TO_DEVICE) {
844 		outer_inv_range(paddr, paddr + size);
845 
846 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
847 	}
848 
849 	/*
850 	 * Mark the D-cache clean for these pages to avoid extra flushing.
851 	 */
852 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
853 		unsigned long pfn;
854 		size_t left = size;
855 
856 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
857 		off %= PAGE_SIZE;
858 		if (off) {
859 			pfn++;
860 			left -= PAGE_SIZE - off;
861 		}
862 		while (left >= PAGE_SIZE) {
863 			page = pfn_to_page(pfn++);
864 			set_bit(PG_dcache_clean, &page->flags);
865 			left -= PAGE_SIZE;
866 		}
867 	}
868 }
869 
870 /**
871  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
872  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
873  * @sg: list of buffers
874  * @nents: number of buffers to map
875  * @dir: DMA transfer direction
876  *
877  * Map a set of buffers described by scatterlist in streaming mode for DMA.
878  * This is the scatter-gather version of the dma_map_single interface.
879  * Here the scatter gather list elements are each tagged with the
880  * appropriate dma address and length.  They are obtained via
881  * sg_dma_{address,length}.
882  *
883  * Device ownership issues as mentioned for dma_map_single are the same
884  * here.
885  */
886 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
887 		enum dma_data_direction dir, struct dma_attrs *attrs)
888 {
889 	struct dma_map_ops *ops = get_dma_ops(dev);
890 	struct scatterlist *s;
891 	int i, j;
892 
893 	for_each_sg(sg, s, nents, i) {
894 #ifdef CONFIG_NEED_SG_DMA_LENGTH
895 		s->dma_length = s->length;
896 #endif
897 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
898 						s->length, dir, attrs);
899 		if (dma_mapping_error(dev, s->dma_address))
900 			goto bad_mapping;
901 	}
902 	return nents;
903 
904  bad_mapping:
905 	for_each_sg(sg, s, i, j)
906 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
907 	return 0;
908 }
909 
910 /**
911  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
912  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
913  * @sg: list of buffers
914  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
915  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
916  *
917  * Unmap a set of streaming mode DMA translations.  Again, CPU access
918  * rules concerning calls here are the same as for dma_unmap_single().
919  */
920 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
921 		enum dma_data_direction dir, struct dma_attrs *attrs)
922 {
923 	struct dma_map_ops *ops = get_dma_ops(dev);
924 	struct scatterlist *s;
925 
926 	int i;
927 
928 	for_each_sg(sg, s, nents, i)
929 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
930 }
931 
932 /**
933  * arm_dma_sync_sg_for_cpu
934  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
935  * @sg: list of buffers
936  * @nents: number of buffers to map (returned from dma_map_sg)
937  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
938  */
939 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
940 			int nents, enum dma_data_direction dir)
941 {
942 	struct dma_map_ops *ops = get_dma_ops(dev);
943 	struct scatterlist *s;
944 	int i;
945 
946 	for_each_sg(sg, s, nents, i)
947 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
948 					 dir);
949 }
950 
951 /**
952  * arm_dma_sync_sg_for_device
953  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
954  * @sg: list of buffers
955  * @nents: number of buffers to map (returned from dma_map_sg)
956  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
957  */
958 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
959 			int nents, enum dma_data_direction dir)
960 {
961 	struct dma_map_ops *ops = get_dma_ops(dev);
962 	struct scatterlist *s;
963 	int i;
964 
965 	for_each_sg(sg, s, nents, i)
966 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
967 					    dir);
968 }
969 
970 /*
971  * Return whether the given device DMA address mask can be supported
972  * properly.  For example, if your device can only drive the low 24-bits
973  * during bus mastering, then you would pass 0x00ffffff as the mask
974  * to this function.
975  */
976 int dma_supported(struct device *dev, u64 mask)
977 {
978 	return __dma_supported(dev, mask, false);
979 }
980 EXPORT_SYMBOL(dma_supported);
981 
982 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
983 {
984 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
985 		return -EIO;
986 
987 	*dev->dma_mask = dma_mask;
988 
989 	return 0;
990 }
991 
992 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
993 
994 static int __init dma_debug_do_init(void)
995 {
996 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
997 	return 0;
998 }
999 fs_initcall(dma_debug_do_init);
1000 
1001 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1002 
1003 /* IOMMU */
1004 
1005 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1006 
1007 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1008 				      size_t size)
1009 {
1010 	unsigned int order = get_order(size);
1011 	unsigned int align = 0;
1012 	unsigned int count, start;
1013 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1014 	unsigned long flags;
1015 	dma_addr_t iova;
1016 	int i;
1017 
1018 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1019 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1020 
1021 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1022 	align = (1 << order) - 1;
1023 
1024 	spin_lock_irqsave(&mapping->lock, flags);
1025 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1026 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1027 				mapping->bits, 0, count, align);
1028 
1029 		if (start > mapping->bits)
1030 			continue;
1031 
1032 		bitmap_set(mapping->bitmaps[i], start, count);
1033 		break;
1034 	}
1035 
1036 	/*
1037 	 * No unused range found. Try to extend the existing mapping
1038 	 * and perform a second attempt to reserve an IO virtual
1039 	 * address range of size bytes.
1040 	 */
1041 	if (i == mapping->nr_bitmaps) {
1042 		if (extend_iommu_mapping(mapping)) {
1043 			spin_unlock_irqrestore(&mapping->lock, flags);
1044 			return DMA_ERROR_CODE;
1045 		}
1046 
1047 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1048 				mapping->bits, 0, count, align);
1049 
1050 		if (start > mapping->bits) {
1051 			spin_unlock_irqrestore(&mapping->lock, flags);
1052 			return DMA_ERROR_CODE;
1053 		}
1054 
1055 		bitmap_set(mapping->bitmaps[i], start, count);
1056 	}
1057 	spin_unlock_irqrestore(&mapping->lock, flags);
1058 
1059 	iova = mapping->base + (mapping_size * i);
1060 	iova += start << PAGE_SHIFT;
1061 
1062 	return iova;
1063 }
1064 
1065 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1066 			       dma_addr_t addr, size_t size)
1067 {
1068 	unsigned int start, count;
1069 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1070 	unsigned long flags;
1071 	dma_addr_t bitmap_base;
1072 	u32 bitmap_index;
1073 
1074 	if (!size)
1075 		return;
1076 
1077 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1078 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1079 
1080 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1081 
1082 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1083 
1084 	if (addr + size > bitmap_base + mapping_size) {
1085 		/*
1086 		 * The address range to be freed reaches into the iova
1087 		 * range of the next bitmap. This should not happen as
1088 		 * we don't allow this in __alloc_iova (at the
1089 		 * moment).
1090 		 */
1091 		BUG();
1092 	} else
1093 		count = size >> PAGE_SHIFT;
1094 
1095 	spin_lock_irqsave(&mapping->lock, flags);
1096 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1097 	spin_unlock_irqrestore(&mapping->lock, flags);
1098 }
1099 
1100 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1101 					  gfp_t gfp, struct dma_attrs *attrs)
1102 {
1103 	struct page **pages;
1104 	int count = size >> PAGE_SHIFT;
1105 	int array_size = count * sizeof(struct page *);
1106 	int i = 0;
1107 
1108 	if (array_size <= PAGE_SIZE)
1109 		pages = kzalloc(array_size, gfp);
1110 	else
1111 		pages = vzalloc(array_size);
1112 	if (!pages)
1113 		return NULL;
1114 
1115 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1116 	{
1117 		unsigned long order = get_order(size);
1118 		struct page *page;
1119 
1120 		page = dma_alloc_from_contiguous(dev, count, order);
1121 		if (!page)
1122 			goto error;
1123 
1124 		__dma_clear_buffer(page, size);
1125 
1126 		for (i = 0; i < count; i++)
1127 			pages[i] = page + i;
1128 
1129 		return pages;
1130 	}
1131 
1132 	/*
1133 	 * IOMMU can map any pages, so himem can also be used here
1134 	 */
1135 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1136 
1137 	while (count) {
1138 		int j, order = __fls(count);
1139 
1140 		pages[i] = alloc_pages(gfp, order);
1141 		while (!pages[i] && order)
1142 			pages[i] = alloc_pages(gfp, --order);
1143 		if (!pages[i])
1144 			goto error;
1145 
1146 		if (order) {
1147 			split_page(pages[i], order);
1148 			j = 1 << order;
1149 			while (--j)
1150 				pages[i + j] = pages[i] + j;
1151 		}
1152 
1153 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1154 		i += 1 << order;
1155 		count -= 1 << order;
1156 	}
1157 
1158 	return pages;
1159 error:
1160 	while (i--)
1161 		if (pages[i])
1162 			__free_pages(pages[i], 0);
1163 	if (array_size <= PAGE_SIZE)
1164 		kfree(pages);
1165 	else
1166 		vfree(pages);
1167 	return NULL;
1168 }
1169 
1170 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1171 			       size_t size, struct dma_attrs *attrs)
1172 {
1173 	int count = size >> PAGE_SHIFT;
1174 	int array_size = count * sizeof(struct page *);
1175 	int i;
1176 
1177 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1178 		dma_release_from_contiguous(dev, pages[0], count);
1179 	} else {
1180 		for (i = 0; i < count; i++)
1181 			if (pages[i])
1182 				__free_pages(pages[i], 0);
1183 	}
1184 
1185 	if (array_size <= PAGE_SIZE)
1186 		kfree(pages);
1187 	else
1188 		vfree(pages);
1189 	return 0;
1190 }
1191 
1192 /*
1193  * Create a CPU mapping for a specified pages
1194  */
1195 static void *
1196 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1197 		    const void *caller)
1198 {
1199 	return dma_common_pages_remap(pages, size,
1200 			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1201 	return NULL;
1202 }
1203 
1204 /*
1205  * Create a mapping in device IO address space for specified pages
1206  */
1207 static dma_addr_t
1208 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1209 {
1210 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1211 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1212 	dma_addr_t dma_addr, iova;
1213 	int i, ret = DMA_ERROR_CODE;
1214 
1215 	dma_addr = __alloc_iova(mapping, size);
1216 	if (dma_addr == DMA_ERROR_CODE)
1217 		return dma_addr;
1218 
1219 	iova = dma_addr;
1220 	for (i = 0; i < count; ) {
1221 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1222 		phys_addr_t phys = page_to_phys(pages[i]);
1223 		unsigned int len, j;
1224 
1225 		for (j = i + 1; j < count; j++, next_pfn++)
1226 			if (page_to_pfn(pages[j]) != next_pfn)
1227 				break;
1228 
1229 		len = (j - i) << PAGE_SHIFT;
1230 		ret = iommu_map(mapping->domain, iova, phys, len,
1231 				IOMMU_READ|IOMMU_WRITE);
1232 		if (ret < 0)
1233 			goto fail;
1234 		iova += len;
1235 		i = j;
1236 	}
1237 	return dma_addr;
1238 fail:
1239 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1240 	__free_iova(mapping, dma_addr, size);
1241 	return DMA_ERROR_CODE;
1242 }
1243 
1244 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1245 {
1246 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1247 
1248 	/*
1249 	 * add optional in-page offset from iova to size and align
1250 	 * result to page size
1251 	 */
1252 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1253 	iova &= PAGE_MASK;
1254 
1255 	iommu_unmap(mapping->domain, iova, size);
1256 	__free_iova(mapping, iova, size);
1257 	return 0;
1258 }
1259 
1260 static struct page **__atomic_get_pages(void *addr)
1261 {
1262 	struct page *page;
1263 	phys_addr_t phys;
1264 
1265 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1266 	page = phys_to_page(phys);
1267 
1268 	return (struct page **)page;
1269 }
1270 
1271 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1272 {
1273 	struct vm_struct *area;
1274 
1275 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1276 		return __atomic_get_pages(cpu_addr);
1277 
1278 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1279 		return cpu_addr;
1280 
1281 	area = find_vm_area(cpu_addr);
1282 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1283 		return area->pages;
1284 	return NULL;
1285 }
1286 
1287 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1288 				  dma_addr_t *handle)
1289 {
1290 	struct page *page;
1291 	void *addr;
1292 
1293 	addr = __alloc_from_pool(size, &page);
1294 	if (!addr)
1295 		return NULL;
1296 
1297 	*handle = __iommu_create_mapping(dev, &page, size);
1298 	if (*handle == DMA_ERROR_CODE)
1299 		goto err_mapping;
1300 
1301 	return addr;
1302 
1303 err_mapping:
1304 	__free_from_pool(addr, size);
1305 	return NULL;
1306 }
1307 
1308 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1309 				dma_addr_t handle, size_t size)
1310 {
1311 	__iommu_remove_mapping(dev, handle, size);
1312 	__free_from_pool(cpu_addr, size);
1313 }
1314 
1315 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1316 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1317 {
1318 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1319 	struct page **pages;
1320 	void *addr = NULL;
1321 
1322 	*handle = DMA_ERROR_CODE;
1323 	size = PAGE_ALIGN(size);
1324 
1325 	if (!(gfp & __GFP_WAIT))
1326 		return __iommu_alloc_atomic(dev, size, handle);
1327 
1328 	/*
1329 	 * Following is a work-around (a.k.a. hack) to prevent pages
1330 	 * with __GFP_COMP being passed to split_page() which cannot
1331 	 * handle them.  The real problem is that this flag probably
1332 	 * should be 0 on ARM as it is not supported on this
1333 	 * platform; see CONFIG_HUGETLBFS.
1334 	 */
1335 	gfp &= ~(__GFP_COMP);
1336 
1337 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1338 	if (!pages)
1339 		return NULL;
1340 
1341 	*handle = __iommu_create_mapping(dev, pages, size);
1342 	if (*handle == DMA_ERROR_CODE)
1343 		goto err_buffer;
1344 
1345 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1346 		return pages;
1347 
1348 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1349 				   __builtin_return_address(0));
1350 	if (!addr)
1351 		goto err_mapping;
1352 
1353 	return addr;
1354 
1355 err_mapping:
1356 	__iommu_remove_mapping(dev, *handle, size);
1357 err_buffer:
1358 	__iommu_free_buffer(dev, pages, size, attrs);
1359 	return NULL;
1360 }
1361 
1362 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1363 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1364 		    struct dma_attrs *attrs)
1365 {
1366 	unsigned long uaddr = vma->vm_start;
1367 	unsigned long usize = vma->vm_end - vma->vm_start;
1368 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1369 
1370 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1371 
1372 	if (!pages)
1373 		return -ENXIO;
1374 
1375 	do {
1376 		int ret = vm_insert_page(vma, uaddr, *pages++);
1377 		if (ret) {
1378 			pr_err("Remapping memory failed: %d\n", ret);
1379 			return ret;
1380 		}
1381 		uaddr += PAGE_SIZE;
1382 		usize -= PAGE_SIZE;
1383 	} while (usize > 0);
1384 
1385 	return 0;
1386 }
1387 
1388 /*
1389  * free a page as defined by the above mapping.
1390  * Must not be called with IRQs disabled.
1391  */
1392 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1393 			  dma_addr_t handle, struct dma_attrs *attrs)
1394 {
1395 	struct page **pages;
1396 	size = PAGE_ALIGN(size);
1397 
1398 	if (__in_atomic_pool(cpu_addr, size)) {
1399 		__iommu_free_atomic(dev, cpu_addr, handle, size);
1400 		return;
1401 	}
1402 
1403 	pages = __iommu_get_pages(cpu_addr, attrs);
1404 	if (!pages) {
1405 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1406 		return;
1407 	}
1408 
1409 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1410 		dma_common_free_remap(cpu_addr, size,
1411 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1412 	}
1413 
1414 	__iommu_remove_mapping(dev, handle, size);
1415 	__iommu_free_buffer(dev, pages, size, attrs);
1416 }
1417 
1418 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1419 				 void *cpu_addr, dma_addr_t dma_addr,
1420 				 size_t size, struct dma_attrs *attrs)
1421 {
1422 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1423 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1424 
1425 	if (!pages)
1426 		return -ENXIO;
1427 
1428 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1429 					 GFP_KERNEL);
1430 }
1431 
1432 static int __dma_direction_to_prot(enum dma_data_direction dir)
1433 {
1434 	int prot;
1435 
1436 	switch (dir) {
1437 	case DMA_BIDIRECTIONAL:
1438 		prot = IOMMU_READ | IOMMU_WRITE;
1439 		break;
1440 	case DMA_TO_DEVICE:
1441 		prot = IOMMU_READ;
1442 		break;
1443 	case DMA_FROM_DEVICE:
1444 		prot = IOMMU_WRITE;
1445 		break;
1446 	default:
1447 		prot = 0;
1448 	}
1449 
1450 	return prot;
1451 }
1452 
1453 /*
1454  * Map a part of the scatter-gather list into contiguous io address space
1455  */
1456 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1457 			  size_t size, dma_addr_t *handle,
1458 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1459 			  bool is_coherent)
1460 {
1461 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1462 	dma_addr_t iova, iova_base;
1463 	int ret = 0;
1464 	unsigned int count;
1465 	struct scatterlist *s;
1466 	int prot;
1467 
1468 	size = PAGE_ALIGN(size);
1469 	*handle = DMA_ERROR_CODE;
1470 
1471 	iova_base = iova = __alloc_iova(mapping, size);
1472 	if (iova == DMA_ERROR_CODE)
1473 		return -ENOMEM;
1474 
1475 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1476 		phys_addr_t phys = page_to_phys(sg_page(s));
1477 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1478 
1479 		if (!is_coherent &&
1480 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1481 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1482 
1483 		prot = __dma_direction_to_prot(dir);
1484 
1485 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1486 		if (ret < 0)
1487 			goto fail;
1488 		count += len >> PAGE_SHIFT;
1489 		iova += len;
1490 	}
1491 	*handle = iova_base;
1492 
1493 	return 0;
1494 fail:
1495 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1496 	__free_iova(mapping, iova_base, size);
1497 	return ret;
1498 }
1499 
1500 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1501 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1502 		     bool is_coherent)
1503 {
1504 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1505 	int i, count = 0;
1506 	unsigned int offset = s->offset;
1507 	unsigned int size = s->offset + s->length;
1508 	unsigned int max = dma_get_max_seg_size(dev);
1509 
1510 	for (i = 1; i < nents; i++) {
1511 		s = sg_next(s);
1512 
1513 		s->dma_address = DMA_ERROR_CODE;
1514 		s->dma_length = 0;
1515 
1516 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1517 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1518 			    dir, attrs, is_coherent) < 0)
1519 				goto bad_mapping;
1520 
1521 			dma->dma_address += offset;
1522 			dma->dma_length = size - offset;
1523 
1524 			size = offset = s->offset;
1525 			start = s;
1526 			dma = sg_next(dma);
1527 			count += 1;
1528 		}
1529 		size += s->length;
1530 	}
1531 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1532 		is_coherent) < 0)
1533 		goto bad_mapping;
1534 
1535 	dma->dma_address += offset;
1536 	dma->dma_length = size - offset;
1537 
1538 	return count+1;
1539 
1540 bad_mapping:
1541 	for_each_sg(sg, s, count, i)
1542 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1543 	return 0;
1544 }
1545 
1546 /**
1547  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1548  * @dev: valid struct device pointer
1549  * @sg: list of buffers
1550  * @nents: number of buffers to map
1551  * @dir: DMA transfer direction
1552  *
1553  * Map a set of i/o coherent buffers described by scatterlist in streaming
1554  * mode for DMA. The scatter gather list elements are merged together (if
1555  * possible) and tagged with the appropriate dma address and length. They are
1556  * obtained via sg_dma_{address,length}.
1557  */
1558 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1559 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1560 {
1561 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1562 }
1563 
1564 /**
1565  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1566  * @dev: valid struct device pointer
1567  * @sg: list of buffers
1568  * @nents: number of buffers to map
1569  * @dir: DMA transfer direction
1570  *
1571  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1572  * The scatter gather list elements are merged together (if possible) and
1573  * tagged with the appropriate dma address and length. They are obtained via
1574  * sg_dma_{address,length}.
1575  */
1576 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1577 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1578 {
1579 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1580 }
1581 
1582 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1583 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1584 		bool is_coherent)
1585 {
1586 	struct scatterlist *s;
1587 	int i;
1588 
1589 	for_each_sg(sg, s, nents, i) {
1590 		if (sg_dma_len(s))
1591 			__iommu_remove_mapping(dev, sg_dma_address(s),
1592 					       sg_dma_len(s));
1593 		if (!is_coherent &&
1594 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1595 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1596 					      s->length, dir);
1597 	}
1598 }
1599 
1600 /**
1601  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1602  * @dev: valid struct device pointer
1603  * @sg: list of buffers
1604  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1605  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1606  *
1607  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1608  * rules concerning calls here are the same as for dma_unmap_single().
1609  */
1610 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1611 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1612 {
1613 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1614 }
1615 
1616 /**
1617  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1618  * @dev: valid struct device pointer
1619  * @sg: list of buffers
1620  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1621  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1622  *
1623  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1624  * rules concerning calls here are the same as for dma_unmap_single().
1625  */
1626 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1627 			enum dma_data_direction dir, struct dma_attrs *attrs)
1628 {
1629 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1630 }
1631 
1632 /**
1633  * arm_iommu_sync_sg_for_cpu
1634  * @dev: valid struct device pointer
1635  * @sg: list of buffers
1636  * @nents: number of buffers to map (returned from dma_map_sg)
1637  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1638  */
1639 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1640 			int nents, enum dma_data_direction dir)
1641 {
1642 	struct scatterlist *s;
1643 	int i;
1644 
1645 	for_each_sg(sg, s, nents, i)
1646 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1647 
1648 }
1649 
1650 /**
1651  * arm_iommu_sync_sg_for_device
1652  * @dev: valid struct device pointer
1653  * @sg: list of buffers
1654  * @nents: number of buffers to map (returned from dma_map_sg)
1655  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1656  */
1657 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1658 			int nents, enum dma_data_direction dir)
1659 {
1660 	struct scatterlist *s;
1661 	int i;
1662 
1663 	for_each_sg(sg, s, nents, i)
1664 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1665 }
1666 
1667 
1668 /**
1669  * arm_coherent_iommu_map_page
1670  * @dev: valid struct device pointer
1671  * @page: page that buffer resides in
1672  * @offset: offset into page for start of buffer
1673  * @size: size of buffer to map
1674  * @dir: DMA transfer direction
1675  *
1676  * Coherent IOMMU aware version of arm_dma_map_page()
1677  */
1678 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1679 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1680 	     struct dma_attrs *attrs)
1681 {
1682 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1683 	dma_addr_t dma_addr;
1684 	int ret, prot, len = PAGE_ALIGN(size + offset);
1685 
1686 	dma_addr = __alloc_iova(mapping, len);
1687 	if (dma_addr == DMA_ERROR_CODE)
1688 		return dma_addr;
1689 
1690 	prot = __dma_direction_to_prot(dir);
1691 
1692 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1693 	if (ret < 0)
1694 		goto fail;
1695 
1696 	return dma_addr + offset;
1697 fail:
1698 	__free_iova(mapping, dma_addr, len);
1699 	return DMA_ERROR_CODE;
1700 }
1701 
1702 /**
1703  * arm_iommu_map_page
1704  * @dev: valid struct device pointer
1705  * @page: page that buffer resides in
1706  * @offset: offset into page for start of buffer
1707  * @size: size of buffer to map
1708  * @dir: DMA transfer direction
1709  *
1710  * IOMMU aware version of arm_dma_map_page()
1711  */
1712 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1713 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1714 	     struct dma_attrs *attrs)
1715 {
1716 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1717 		__dma_page_cpu_to_dev(page, offset, size, dir);
1718 
1719 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1720 }
1721 
1722 /**
1723  * arm_coherent_iommu_unmap_page
1724  * @dev: valid struct device pointer
1725  * @handle: DMA address of buffer
1726  * @size: size of buffer (same as passed to dma_map_page)
1727  * @dir: DMA transfer direction (same as passed to dma_map_page)
1728  *
1729  * Coherent IOMMU aware version of arm_dma_unmap_page()
1730  */
1731 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1732 		size_t size, enum dma_data_direction dir,
1733 		struct dma_attrs *attrs)
1734 {
1735 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1736 	dma_addr_t iova = handle & PAGE_MASK;
1737 	int offset = handle & ~PAGE_MASK;
1738 	int len = PAGE_ALIGN(size + offset);
1739 
1740 	if (!iova)
1741 		return;
1742 
1743 	iommu_unmap(mapping->domain, iova, len);
1744 	__free_iova(mapping, iova, len);
1745 }
1746 
1747 /**
1748  * arm_iommu_unmap_page
1749  * @dev: valid struct device pointer
1750  * @handle: DMA address of buffer
1751  * @size: size of buffer (same as passed to dma_map_page)
1752  * @dir: DMA transfer direction (same as passed to dma_map_page)
1753  *
1754  * IOMMU aware version of arm_dma_unmap_page()
1755  */
1756 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1757 		size_t size, enum dma_data_direction dir,
1758 		struct dma_attrs *attrs)
1759 {
1760 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1761 	dma_addr_t iova = handle & PAGE_MASK;
1762 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1763 	int offset = handle & ~PAGE_MASK;
1764 	int len = PAGE_ALIGN(size + offset);
1765 
1766 	if (!iova)
1767 		return;
1768 
1769 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1770 		__dma_page_dev_to_cpu(page, offset, size, dir);
1771 
1772 	iommu_unmap(mapping->domain, iova, len);
1773 	__free_iova(mapping, iova, len);
1774 }
1775 
1776 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1777 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1778 {
1779 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1780 	dma_addr_t iova = handle & PAGE_MASK;
1781 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1782 	unsigned int offset = handle & ~PAGE_MASK;
1783 
1784 	if (!iova)
1785 		return;
1786 
1787 	__dma_page_dev_to_cpu(page, offset, size, dir);
1788 }
1789 
1790 static void arm_iommu_sync_single_for_device(struct device *dev,
1791 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1792 {
1793 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1794 	dma_addr_t iova = handle & PAGE_MASK;
1795 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1796 	unsigned int offset = handle & ~PAGE_MASK;
1797 
1798 	if (!iova)
1799 		return;
1800 
1801 	__dma_page_cpu_to_dev(page, offset, size, dir);
1802 }
1803 
1804 struct dma_map_ops iommu_ops = {
1805 	.alloc		= arm_iommu_alloc_attrs,
1806 	.free		= arm_iommu_free_attrs,
1807 	.mmap		= arm_iommu_mmap_attrs,
1808 	.get_sgtable	= arm_iommu_get_sgtable,
1809 
1810 	.map_page		= arm_iommu_map_page,
1811 	.unmap_page		= arm_iommu_unmap_page,
1812 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1813 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1814 
1815 	.map_sg			= arm_iommu_map_sg,
1816 	.unmap_sg		= arm_iommu_unmap_sg,
1817 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1818 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1819 
1820 	.set_dma_mask		= arm_dma_set_mask,
1821 };
1822 
1823 struct dma_map_ops iommu_coherent_ops = {
1824 	.alloc		= arm_iommu_alloc_attrs,
1825 	.free		= arm_iommu_free_attrs,
1826 	.mmap		= arm_iommu_mmap_attrs,
1827 	.get_sgtable	= arm_iommu_get_sgtable,
1828 
1829 	.map_page	= arm_coherent_iommu_map_page,
1830 	.unmap_page	= arm_coherent_iommu_unmap_page,
1831 
1832 	.map_sg		= arm_coherent_iommu_map_sg,
1833 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1834 
1835 	.set_dma_mask	= arm_dma_set_mask,
1836 };
1837 
1838 /**
1839  * arm_iommu_create_mapping
1840  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1841  * @base: start address of the valid IO address space
1842  * @size: maximum size of the valid IO address space
1843  *
1844  * Creates a mapping structure which holds information about used/unused
1845  * IO address ranges, which is required to perform memory allocation and
1846  * mapping with IOMMU aware functions.
1847  *
1848  * The client device need to be attached to the mapping with
1849  * arm_iommu_attach_device function.
1850  */
1851 struct dma_iommu_mapping *
1852 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1853 {
1854 	unsigned int bits = size >> PAGE_SHIFT;
1855 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1856 	struct dma_iommu_mapping *mapping;
1857 	int extensions = 1;
1858 	int err = -ENOMEM;
1859 
1860 	if (!bitmap_size)
1861 		return ERR_PTR(-EINVAL);
1862 
1863 	if (bitmap_size > PAGE_SIZE) {
1864 		extensions = bitmap_size / PAGE_SIZE;
1865 		bitmap_size = PAGE_SIZE;
1866 	}
1867 
1868 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1869 	if (!mapping)
1870 		goto err;
1871 
1872 	mapping->bitmap_size = bitmap_size;
1873 	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1874 				GFP_KERNEL);
1875 	if (!mapping->bitmaps)
1876 		goto err2;
1877 
1878 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1879 	if (!mapping->bitmaps[0])
1880 		goto err3;
1881 
1882 	mapping->nr_bitmaps = 1;
1883 	mapping->extensions = extensions;
1884 	mapping->base = base;
1885 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1886 
1887 	spin_lock_init(&mapping->lock);
1888 
1889 	mapping->domain = iommu_domain_alloc(bus);
1890 	if (!mapping->domain)
1891 		goto err4;
1892 
1893 	kref_init(&mapping->kref);
1894 	return mapping;
1895 err4:
1896 	kfree(mapping->bitmaps[0]);
1897 err3:
1898 	kfree(mapping->bitmaps);
1899 err2:
1900 	kfree(mapping);
1901 err:
1902 	return ERR_PTR(err);
1903 }
1904 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1905 
1906 static void release_iommu_mapping(struct kref *kref)
1907 {
1908 	int i;
1909 	struct dma_iommu_mapping *mapping =
1910 		container_of(kref, struct dma_iommu_mapping, kref);
1911 
1912 	iommu_domain_free(mapping->domain);
1913 	for (i = 0; i < mapping->nr_bitmaps; i++)
1914 		kfree(mapping->bitmaps[i]);
1915 	kfree(mapping->bitmaps);
1916 	kfree(mapping);
1917 }
1918 
1919 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1920 {
1921 	int next_bitmap;
1922 
1923 	if (mapping->nr_bitmaps > mapping->extensions)
1924 		return -EINVAL;
1925 
1926 	next_bitmap = mapping->nr_bitmaps;
1927 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1928 						GFP_ATOMIC);
1929 	if (!mapping->bitmaps[next_bitmap])
1930 		return -ENOMEM;
1931 
1932 	mapping->nr_bitmaps++;
1933 
1934 	return 0;
1935 }
1936 
1937 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1938 {
1939 	if (mapping)
1940 		kref_put(&mapping->kref, release_iommu_mapping);
1941 }
1942 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1943 
1944 /**
1945  * arm_iommu_attach_device
1946  * @dev: valid struct device pointer
1947  * @mapping: io address space mapping structure (returned from
1948  *	arm_iommu_create_mapping)
1949  *
1950  * Attaches specified io address space mapping to the provided device,
1951  * this replaces the dma operations (dma_map_ops pointer) with the
1952  * IOMMU aware version. More than one client might be attached to
1953  * the same io address space mapping.
1954  */
1955 int arm_iommu_attach_device(struct device *dev,
1956 			    struct dma_iommu_mapping *mapping)
1957 {
1958 	int err;
1959 
1960 	err = iommu_attach_device(mapping->domain, dev);
1961 	if (err)
1962 		return err;
1963 
1964 	kref_get(&mapping->kref);
1965 	dev->archdata.mapping = mapping;
1966 	set_dma_ops(dev, &iommu_ops);
1967 
1968 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1969 	return 0;
1970 }
1971 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1972 
1973 /**
1974  * arm_iommu_detach_device
1975  * @dev: valid struct device pointer
1976  *
1977  * Detaches the provided device from a previously attached map.
1978  * This voids the dma operations (dma_map_ops pointer)
1979  */
1980 void arm_iommu_detach_device(struct device *dev)
1981 {
1982 	struct dma_iommu_mapping *mapping;
1983 
1984 	mapping = to_dma_iommu_mapping(dev);
1985 	if (!mapping) {
1986 		dev_warn(dev, "Not attached\n");
1987 		return;
1988 	}
1989 
1990 	iommu_detach_device(mapping->domain, dev);
1991 	kref_put(&mapping->kref, release_iommu_mapping);
1992 	dev->archdata.mapping = NULL;
1993 	set_dma_ops(dev, NULL);
1994 
1995 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1996 }
1997 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1998 
1999 #endif
2000