xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 5bc7f990)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/dma-mapping.c
4  *
5  *  Copyright (C) 2000-2004 Russell King
6  *
7  *  DMA uncached mapping support.
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dma-contiguous.h>
19 #include <linux/highmem.h>
20 #include <linux/memblock.h>
21 #include <linux/slab.h>
22 #include <linux/iommu.h>
23 #include <linux/io.h>
24 #include <linux/vmalloc.h>
25 #include <linux/sizes.h>
26 #include <linux/cma.h>
27 
28 #include <asm/memory.h>
29 #include <asm/highmem.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mach/arch.h>
33 #include <asm/dma-iommu.h>
34 #include <asm/mach/map.h>
35 #include <asm/system_info.h>
36 #include <asm/dma-contiguous.h>
37 
38 #include "dma.h"
39 #include "mm.h"
40 
41 struct arm_dma_alloc_args {
42 	struct device *dev;
43 	size_t size;
44 	gfp_t gfp;
45 	pgprot_t prot;
46 	const void *caller;
47 	bool want_vaddr;
48 	int coherent_flag;
49 };
50 
51 struct arm_dma_free_args {
52 	struct device *dev;
53 	size_t size;
54 	void *cpu_addr;
55 	struct page *page;
56 	bool want_vaddr;
57 };
58 
59 #define NORMAL	    0
60 #define COHERENT    1
61 
62 struct arm_dma_allocator {
63 	void *(*alloc)(struct arm_dma_alloc_args *args,
64 		       struct page **ret_page);
65 	void (*free)(struct arm_dma_free_args *args);
66 };
67 
68 struct arm_dma_buffer {
69 	struct list_head list;
70 	void *virt;
71 	struct arm_dma_allocator *allocator;
72 };
73 
74 static LIST_HEAD(arm_dma_bufs);
75 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76 
77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78 {
79 	struct arm_dma_buffer *buf, *found = NULL;
80 	unsigned long flags;
81 
82 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 	list_for_each_entry(buf, &arm_dma_bufs, list) {
84 		if (buf->virt == virt) {
85 			list_del(&buf->list);
86 			found = buf;
87 			break;
88 		}
89 	}
90 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 	return found;
92 }
93 
94 /*
95  * The DMA API is built upon the notion of "buffer ownership".  A buffer
96  * is either exclusively owned by the CPU (and therefore may be accessed
97  * by it) or exclusively owned by the DMA device.  These helper functions
98  * represent the transitions between these two ownership states.
99  *
100  * Note, however, that on later ARMs, this notion does not work due to
101  * speculative prefetches.  We model our approach on the assumption that
102  * the CPU does do speculative prefetches, which means we clean caches
103  * before transfers and delay cache invalidation until transfer completion.
104  *
105  */
106 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
107 		size_t, enum dma_data_direction);
108 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
109 		size_t, enum dma_data_direction);
110 
111 /**
112  * arm_dma_map_page - map a portion of a page for streaming DMA
113  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
114  * @page: page that buffer resides in
115  * @offset: offset into page for start of buffer
116  * @size: size of buffer to map
117  * @dir: DMA transfer direction
118  *
119  * Ensure that any data held in the cache is appropriately discarded
120  * or written back.
121  *
122  * The device owns this memory once this call has completed.  The CPU
123  * can regain ownership by calling dma_unmap_page().
124  */
125 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
126 	     unsigned long offset, size_t size, enum dma_data_direction dir,
127 	     unsigned long attrs)
128 {
129 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
130 		__dma_page_cpu_to_dev(page, offset, size, dir);
131 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
132 }
133 
134 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
135 	     unsigned long offset, size_t size, enum dma_data_direction dir,
136 	     unsigned long attrs)
137 {
138 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
139 }
140 
141 /**
142  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
143  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
144  * @handle: DMA address of buffer
145  * @size: size of buffer (same as passed to dma_map_page)
146  * @dir: DMA transfer direction (same as passed to dma_map_page)
147  *
148  * Unmap a page streaming mode DMA translation.  The handle and size
149  * must match what was provided in the previous dma_map_page() call.
150  * All other usages are undefined.
151  *
152  * After this call, reads by the CPU to the buffer are guaranteed to see
153  * whatever the device wrote there.
154  */
155 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
156 		size_t size, enum dma_data_direction dir, unsigned long attrs)
157 {
158 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
159 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
160 				      handle & ~PAGE_MASK, size, dir);
161 }
162 
163 static void arm_dma_sync_single_for_cpu(struct device *dev,
164 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
165 {
166 	unsigned int offset = handle & (PAGE_SIZE - 1);
167 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
168 	__dma_page_dev_to_cpu(page, offset, size, dir);
169 }
170 
171 static void arm_dma_sync_single_for_device(struct device *dev,
172 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
173 {
174 	unsigned int offset = handle & (PAGE_SIZE - 1);
175 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
176 	__dma_page_cpu_to_dev(page, offset, size, dir);
177 }
178 
179 const struct dma_map_ops arm_dma_ops = {
180 	.alloc			= arm_dma_alloc,
181 	.free			= arm_dma_free,
182 	.mmap			= arm_dma_mmap,
183 	.get_sgtable		= arm_dma_get_sgtable,
184 	.map_page		= arm_dma_map_page,
185 	.unmap_page		= arm_dma_unmap_page,
186 	.map_sg			= arm_dma_map_sg,
187 	.unmap_sg		= arm_dma_unmap_sg,
188 	.map_resource		= dma_direct_map_resource,
189 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
190 	.sync_single_for_device	= arm_dma_sync_single_for_device,
191 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
192 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
193 	.dma_supported		= arm_dma_supported,
194 };
195 EXPORT_SYMBOL(arm_dma_ops);
196 
197 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
198 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
199 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
200 				  dma_addr_t handle, unsigned long attrs);
201 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
202 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
203 		 unsigned long attrs);
204 
205 const struct dma_map_ops arm_coherent_dma_ops = {
206 	.alloc			= arm_coherent_dma_alloc,
207 	.free			= arm_coherent_dma_free,
208 	.mmap			= arm_coherent_dma_mmap,
209 	.get_sgtable		= arm_dma_get_sgtable,
210 	.map_page		= arm_coherent_dma_map_page,
211 	.map_sg			= arm_dma_map_sg,
212 	.map_resource		= dma_direct_map_resource,
213 	.dma_supported		= arm_dma_supported,
214 };
215 EXPORT_SYMBOL(arm_coherent_dma_ops);
216 
217 static int __dma_supported(struct device *dev, u64 mask, bool warn)
218 {
219 	unsigned long max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
220 
221 	/*
222 	 * Translate the device's DMA mask to a PFN limit.  This
223 	 * PFN number includes the page which we can DMA to.
224 	 */
225 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
226 		if (warn)
227 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
228 				 mask,
229 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
230 				 max_dma_pfn + 1);
231 		return 0;
232 	}
233 
234 	return 1;
235 }
236 
237 static u64 get_coherent_dma_mask(struct device *dev)
238 {
239 	u64 mask = (u64)DMA_BIT_MASK(32);
240 
241 	if (dev) {
242 		mask = dev->coherent_dma_mask;
243 
244 		/*
245 		 * Sanity check the DMA mask - it must be non-zero, and
246 		 * must be able to be satisfied by a DMA allocation.
247 		 */
248 		if (mask == 0) {
249 			dev_warn(dev, "coherent DMA mask is unset\n");
250 			return 0;
251 		}
252 
253 		if (!__dma_supported(dev, mask, true))
254 			return 0;
255 	}
256 
257 	return mask;
258 }
259 
260 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
261 {
262 	/*
263 	 * Ensure that the allocated pages are zeroed, and that any data
264 	 * lurking in the kernel direct-mapped region is invalidated.
265 	 */
266 	if (PageHighMem(page)) {
267 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
268 		phys_addr_t end = base + size;
269 		while (size > 0) {
270 			void *ptr = kmap_atomic(page);
271 			memset(ptr, 0, PAGE_SIZE);
272 			if (coherent_flag != COHERENT)
273 				dmac_flush_range(ptr, ptr + PAGE_SIZE);
274 			kunmap_atomic(ptr);
275 			page++;
276 			size -= PAGE_SIZE;
277 		}
278 		if (coherent_flag != COHERENT)
279 			outer_flush_range(base, end);
280 	} else {
281 		void *ptr = page_address(page);
282 		memset(ptr, 0, size);
283 		if (coherent_flag != COHERENT) {
284 			dmac_flush_range(ptr, ptr + size);
285 			outer_flush_range(__pa(ptr), __pa(ptr) + size);
286 		}
287 	}
288 }
289 
290 /*
291  * Allocate a DMA buffer for 'dev' of size 'size' using the
292  * specified gfp mask.  Note that 'size' must be page aligned.
293  */
294 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
295 				       gfp_t gfp, int coherent_flag)
296 {
297 	unsigned long order = get_order(size);
298 	struct page *page, *p, *e;
299 
300 	page = alloc_pages(gfp, order);
301 	if (!page)
302 		return NULL;
303 
304 	/*
305 	 * Now split the huge page and free the excess pages
306 	 */
307 	split_page(page, order);
308 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
309 		__free_page(p);
310 
311 	__dma_clear_buffer(page, size, coherent_flag);
312 
313 	return page;
314 }
315 
316 /*
317  * Free a DMA buffer.  'size' must be page aligned.
318  */
319 static void __dma_free_buffer(struct page *page, size_t size)
320 {
321 	struct page *e = page + (size >> PAGE_SHIFT);
322 
323 	while (page < e) {
324 		__free_page(page);
325 		page++;
326 	}
327 }
328 
329 static void *__alloc_from_contiguous(struct device *dev, size_t size,
330 				     pgprot_t prot, struct page **ret_page,
331 				     const void *caller, bool want_vaddr,
332 				     int coherent_flag, gfp_t gfp);
333 
334 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
335 				 pgprot_t prot, struct page **ret_page,
336 				 const void *caller, bool want_vaddr);
337 
338 static void *
339 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
340 	const void *caller)
341 {
342 	/*
343 	 * DMA allocation can be mapped to user space, so lets
344 	 * set VM_USERMAP flags too.
345 	 */
346 	return dma_common_contiguous_remap(page, size,
347 			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
348 			prot, caller);
349 }
350 
351 static void __dma_free_remap(void *cpu_addr, size_t size)
352 {
353 	dma_common_free_remap(cpu_addr, size,
354 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
355 }
356 
357 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
358 static struct gen_pool *atomic_pool __ro_after_init;
359 
360 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
361 
362 static int __init early_coherent_pool(char *p)
363 {
364 	atomic_pool_size = memparse(p, &p);
365 	return 0;
366 }
367 early_param("coherent_pool", early_coherent_pool);
368 
369 /*
370  * Initialise the coherent pool for atomic allocations.
371  */
372 static int __init atomic_pool_init(void)
373 {
374 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
375 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
376 	struct page *page;
377 	void *ptr;
378 
379 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
380 	if (!atomic_pool)
381 		goto out;
382 	/*
383 	 * The atomic pool is only used for non-coherent allocations
384 	 * so we must pass NORMAL for coherent_flag.
385 	 */
386 	if (dev_get_cma_area(NULL))
387 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
388 				      &page, atomic_pool_init, true, NORMAL,
389 				      GFP_KERNEL);
390 	else
391 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
392 					   &page, atomic_pool_init, true);
393 	if (ptr) {
394 		int ret;
395 
396 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
397 					page_to_phys(page),
398 					atomic_pool_size, -1);
399 		if (ret)
400 			goto destroy_genpool;
401 
402 		gen_pool_set_algo(atomic_pool,
403 				gen_pool_first_fit_order_align,
404 				NULL);
405 		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
406 		       atomic_pool_size / 1024);
407 		return 0;
408 	}
409 
410 destroy_genpool:
411 	gen_pool_destroy(atomic_pool);
412 	atomic_pool = NULL;
413 out:
414 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
415 	       atomic_pool_size / 1024);
416 	return -ENOMEM;
417 }
418 /*
419  * CMA is activated by core_initcall, so we must be called after it.
420  */
421 postcore_initcall(atomic_pool_init);
422 
423 struct dma_contig_early_reserve {
424 	phys_addr_t base;
425 	unsigned long size;
426 };
427 
428 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
429 
430 static int dma_mmu_remap_num __initdata;
431 
432 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
433 {
434 	dma_mmu_remap[dma_mmu_remap_num].base = base;
435 	dma_mmu_remap[dma_mmu_remap_num].size = size;
436 	dma_mmu_remap_num++;
437 }
438 
439 void __init dma_contiguous_remap(void)
440 {
441 	int i;
442 	for (i = 0; i < dma_mmu_remap_num; i++) {
443 		phys_addr_t start = dma_mmu_remap[i].base;
444 		phys_addr_t end = start + dma_mmu_remap[i].size;
445 		struct map_desc map;
446 		unsigned long addr;
447 
448 		if (end > arm_lowmem_limit)
449 			end = arm_lowmem_limit;
450 		if (start >= end)
451 			continue;
452 
453 		map.pfn = __phys_to_pfn(start);
454 		map.virtual = __phys_to_virt(start);
455 		map.length = end - start;
456 		map.type = MT_MEMORY_DMA_READY;
457 
458 		/*
459 		 * Clear previous low-memory mapping to ensure that the
460 		 * TLB does not see any conflicting entries, then flush
461 		 * the TLB of the old entries before creating new mappings.
462 		 *
463 		 * This ensures that any speculatively loaded TLB entries
464 		 * (even though they may be rare) can not cause any problems,
465 		 * and ensures that this code is architecturally compliant.
466 		 */
467 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
468 		     addr += PMD_SIZE)
469 			pmd_clear(pmd_off_k(addr));
470 
471 		flush_tlb_kernel_range(__phys_to_virt(start),
472 				       __phys_to_virt(end));
473 
474 		iotable_init(&map, 1);
475 	}
476 }
477 
478 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
479 {
480 	struct page *page = virt_to_page(addr);
481 	pgprot_t prot = *(pgprot_t *)data;
482 
483 	set_pte_ext(pte, mk_pte(page, prot), 0);
484 	return 0;
485 }
486 
487 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
488 {
489 	unsigned long start = (unsigned long) page_address(page);
490 	unsigned end = start + size;
491 
492 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
493 	flush_tlb_kernel_range(start, end);
494 }
495 
496 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
497 				 pgprot_t prot, struct page **ret_page,
498 				 const void *caller, bool want_vaddr)
499 {
500 	struct page *page;
501 	void *ptr = NULL;
502 	/*
503 	 * __alloc_remap_buffer is only called when the device is
504 	 * non-coherent
505 	 */
506 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
507 	if (!page)
508 		return NULL;
509 	if (!want_vaddr)
510 		goto out;
511 
512 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
513 	if (!ptr) {
514 		__dma_free_buffer(page, size);
515 		return NULL;
516 	}
517 
518  out:
519 	*ret_page = page;
520 	return ptr;
521 }
522 
523 static void *__alloc_from_pool(size_t size, struct page **ret_page)
524 {
525 	unsigned long val;
526 	void *ptr = NULL;
527 
528 	if (!atomic_pool) {
529 		WARN(1, "coherent pool not initialised!\n");
530 		return NULL;
531 	}
532 
533 	val = gen_pool_alloc(atomic_pool, size);
534 	if (val) {
535 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
536 
537 		*ret_page = phys_to_page(phys);
538 		ptr = (void *)val;
539 	}
540 
541 	return ptr;
542 }
543 
544 static bool __in_atomic_pool(void *start, size_t size)
545 {
546 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
547 }
548 
549 static int __free_from_pool(void *start, size_t size)
550 {
551 	if (!__in_atomic_pool(start, size))
552 		return 0;
553 
554 	gen_pool_free(atomic_pool, (unsigned long)start, size);
555 
556 	return 1;
557 }
558 
559 static void *__alloc_from_contiguous(struct device *dev, size_t size,
560 				     pgprot_t prot, struct page **ret_page,
561 				     const void *caller, bool want_vaddr,
562 				     int coherent_flag, gfp_t gfp)
563 {
564 	unsigned long order = get_order(size);
565 	size_t count = size >> PAGE_SHIFT;
566 	struct page *page;
567 	void *ptr = NULL;
568 
569 	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
570 	if (!page)
571 		return NULL;
572 
573 	__dma_clear_buffer(page, size, coherent_flag);
574 
575 	if (!want_vaddr)
576 		goto out;
577 
578 	if (PageHighMem(page)) {
579 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
580 		if (!ptr) {
581 			dma_release_from_contiguous(dev, page, count);
582 			return NULL;
583 		}
584 	} else {
585 		__dma_remap(page, size, prot);
586 		ptr = page_address(page);
587 	}
588 
589  out:
590 	*ret_page = page;
591 	return ptr;
592 }
593 
594 static void __free_from_contiguous(struct device *dev, struct page *page,
595 				   void *cpu_addr, size_t size, bool want_vaddr)
596 {
597 	if (want_vaddr) {
598 		if (PageHighMem(page))
599 			__dma_free_remap(cpu_addr, size);
600 		else
601 			__dma_remap(page, size, PAGE_KERNEL);
602 	}
603 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
604 }
605 
606 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
607 {
608 	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
609 			pgprot_writecombine(prot) :
610 			pgprot_dmacoherent(prot);
611 	return prot;
612 }
613 
614 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
615 				   struct page **ret_page)
616 {
617 	struct page *page;
618 	/* __alloc_simple_buffer is only called when the device is coherent */
619 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
620 	if (!page)
621 		return NULL;
622 
623 	*ret_page = page;
624 	return page_address(page);
625 }
626 
627 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
628 				    struct page **ret_page)
629 {
630 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
631 				     ret_page);
632 }
633 
634 static void simple_allocator_free(struct arm_dma_free_args *args)
635 {
636 	__dma_free_buffer(args->page, args->size);
637 }
638 
639 static struct arm_dma_allocator simple_allocator = {
640 	.alloc = simple_allocator_alloc,
641 	.free = simple_allocator_free,
642 };
643 
644 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
645 				 struct page **ret_page)
646 {
647 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
648 				       ret_page, args->caller,
649 				       args->want_vaddr, args->coherent_flag,
650 				       args->gfp);
651 }
652 
653 static void cma_allocator_free(struct arm_dma_free_args *args)
654 {
655 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
656 			       args->size, args->want_vaddr);
657 }
658 
659 static struct arm_dma_allocator cma_allocator = {
660 	.alloc = cma_allocator_alloc,
661 	.free = cma_allocator_free,
662 };
663 
664 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
665 				  struct page **ret_page)
666 {
667 	return __alloc_from_pool(args->size, ret_page);
668 }
669 
670 static void pool_allocator_free(struct arm_dma_free_args *args)
671 {
672 	__free_from_pool(args->cpu_addr, args->size);
673 }
674 
675 static struct arm_dma_allocator pool_allocator = {
676 	.alloc = pool_allocator_alloc,
677 	.free = pool_allocator_free,
678 };
679 
680 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
681 				   struct page **ret_page)
682 {
683 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
684 				    args->prot, ret_page, args->caller,
685 				    args->want_vaddr);
686 }
687 
688 static void remap_allocator_free(struct arm_dma_free_args *args)
689 {
690 	if (args->want_vaddr)
691 		__dma_free_remap(args->cpu_addr, args->size);
692 
693 	__dma_free_buffer(args->page, args->size);
694 }
695 
696 static struct arm_dma_allocator remap_allocator = {
697 	.alloc = remap_allocator_alloc,
698 	.free = remap_allocator_free,
699 };
700 
701 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
702 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
703 			 unsigned long attrs, const void *caller)
704 {
705 	u64 mask = get_coherent_dma_mask(dev);
706 	struct page *page = NULL;
707 	void *addr;
708 	bool allowblock, cma;
709 	struct arm_dma_buffer *buf;
710 	struct arm_dma_alloc_args args = {
711 		.dev = dev,
712 		.size = PAGE_ALIGN(size),
713 		.gfp = gfp,
714 		.prot = prot,
715 		.caller = caller,
716 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
717 		.coherent_flag = is_coherent ? COHERENT : NORMAL,
718 	};
719 
720 #ifdef CONFIG_DMA_API_DEBUG
721 	u64 limit = (mask + 1) & ~mask;
722 	if (limit && size >= limit) {
723 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
724 			size, mask);
725 		return NULL;
726 	}
727 #endif
728 
729 	if (!mask)
730 		return NULL;
731 
732 	buf = kzalloc(sizeof(*buf),
733 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
734 	if (!buf)
735 		return NULL;
736 
737 	if (mask < 0xffffffffULL)
738 		gfp |= GFP_DMA;
739 
740 	/*
741 	 * Following is a work-around (a.k.a. hack) to prevent pages
742 	 * with __GFP_COMP being passed to split_page() which cannot
743 	 * handle them.  The real problem is that this flag probably
744 	 * should be 0 on ARM as it is not supported on this
745 	 * platform; see CONFIG_HUGETLBFS.
746 	 */
747 	gfp &= ~(__GFP_COMP);
748 	args.gfp = gfp;
749 
750 	*handle = DMA_MAPPING_ERROR;
751 	allowblock = gfpflags_allow_blocking(gfp);
752 	cma = allowblock ? dev_get_cma_area(dev) : false;
753 
754 	if (cma)
755 		buf->allocator = &cma_allocator;
756 	else if (is_coherent)
757 		buf->allocator = &simple_allocator;
758 	else if (allowblock)
759 		buf->allocator = &remap_allocator;
760 	else
761 		buf->allocator = &pool_allocator;
762 
763 	addr = buf->allocator->alloc(&args, &page);
764 
765 	if (page) {
766 		unsigned long flags;
767 
768 		*handle = pfn_to_dma(dev, page_to_pfn(page));
769 		buf->virt = args.want_vaddr ? addr : page;
770 
771 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
772 		list_add(&buf->list, &arm_dma_bufs);
773 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
774 	} else {
775 		kfree(buf);
776 	}
777 
778 	return args.want_vaddr ? addr : page;
779 }
780 
781 /*
782  * Allocate DMA-coherent memory space and return both the kernel remapped
783  * virtual and bus address for that space.
784  */
785 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
786 		    gfp_t gfp, unsigned long attrs)
787 {
788 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
789 
790 	return __dma_alloc(dev, size, handle, gfp, prot, false,
791 			   attrs, __builtin_return_address(0));
792 }
793 
794 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
795 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
796 {
797 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
798 			   attrs, __builtin_return_address(0));
799 }
800 
801 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
802 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
803 		 unsigned long attrs)
804 {
805 	int ret = -ENXIO;
806 	unsigned long nr_vma_pages = vma_pages(vma);
807 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
808 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
809 	unsigned long off = vma->vm_pgoff;
810 
811 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
812 		return ret;
813 
814 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
815 		ret = remap_pfn_range(vma, vma->vm_start,
816 				      pfn + off,
817 				      vma->vm_end - vma->vm_start,
818 				      vma->vm_page_prot);
819 	}
820 
821 	return ret;
822 }
823 
824 /*
825  * Create userspace mapping for the DMA-coherent memory.
826  */
827 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
828 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
829 		 unsigned long attrs)
830 {
831 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
832 }
833 
834 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
835 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
836 		 unsigned long attrs)
837 {
838 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
839 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
840 }
841 
842 /*
843  * Free a buffer as defined by the above mapping.
844  */
845 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
846 			   dma_addr_t handle, unsigned long attrs,
847 			   bool is_coherent)
848 {
849 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
850 	struct arm_dma_buffer *buf;
851 	struct arm_dma_free_args args = {
852 		.dev = dev,
853 		.size = PAGE_ALIGN(size),
854 		.cpu_addr = cpu_addr,
855 		.page = page,
856 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
857 	};
858 
859 	buf = arm_dma_buffer_find(cpu_addr);
860 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
861 		return;
862 
863 	buf->allocator->free(&args);
864 	kfree(buf);
865 }
866 
867 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
868 		  dma_addr_t handle, unsigned long attrs)
869 {
870 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
871 }
872 
873 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
874 				  dma_addr_t handle, unsigned long attrs)
875 {
876 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
877 }
878 
879 /*
880  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
881  * that the intention is to allow exporting memory allocated via the
882  * coherent DMA APIs through the dma_buf API, which only accepts a
883  * scattertable.  This presents a couple of problems:
884  * 1. Not all memory allocated via the coherent DMA APIs is backed by
885  *    a struct page
886  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
887  *    as we will try to flush the memory through a different alias to that
888  *    actually being used (and the flushes are redundant.)
889  */
890 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
891 		 void *cpu_addr, dma_addr_t handle, size_t size,
892 		 unsigned long attrs)
893 {
894 	unsigned long pfn = dma_to_pfn(dev, handle);
895 	struct page *page;
896 	int ret;
897 
898 	/* If the PFN is not valid, we do not have a struct page */
899 	if (!pfn_valid(pfn))
900 		return -ENXIO;
901 
902 	page = pfn_to_page(pfn);
903 
904 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
905 	if (unlikely(ret))
906 		return ret;
907 
908 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
909 	return 0;
910 }
911 
912 static void dma_cache_maint_page(struct page *page, unsigned long offset,
913 	size_t size, enum dma_data_direction dir,
914 	void (*op)(const void *, size_t, int))
915 {
916 	unsigned long pfn;
917 	size_t left = size;
918 
919 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
920 	offset %= PAGE_SIZE;
921 
922 	/*
923 	 * A single sg entry may refer to multiple physically contiguous
924 	 * pages.  But we still need to process highmem pages individually.
925 	 * If highmem is not configured then the bulk of this loop gets
926 	 * optimized out.
927 	 */
928 	do {
929 		size_t len = left;
930 		void *vaddr;
931 
932 		page = pfn_to_page(pfn);
933 
934 		if (PageHighMem(page)) {
935 			if (len + offset > PAGE_SIZE)
936 				len = PAGE_SIZE - offset;
937 
938 			if (cache_is_vipt_nonaliasing()) {
939 				vaddr = kmap_atomic(page);
940 				op(vaddr + offset, len, dir);
941 				kunmap_atomic(vaddr);
942 			} else {
943 				vaddr = kmap_high_get(page);
944 				if (vaddr) {
945 					op(vaddr + offset, len, dir);
946 					kunmap_high(page);
947 				}
948 			}
949 		} else {
950 			vaddr = page_address(page) + offset;
951 			op(vaddr, len, dir);
952 		}
953 		offset = 0;
954 		pfn++;
955 		left -= len;
956 	} while (left);
957 }
958 
959 /*
960  * Make an area consistent for devices.
961  * Note: Drivers should NOT use this function directly, as it will break
962  * platforms with CONFIG_DMABOUNCE.
963  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
964  */
965 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
966 	size_t size, enum dma_data_direction dir)
967 {
968 	phys_addr_t paddr;
969 
970 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
971 
972 	paddr = page_to_phys(page) + off;
973 	if (dir == DMA_FROM_DEVICE) {
974 		outer_inv_range(paddr, paddr + size);
975 	} else {
976 		outer_clean_range(paddr, paddr + size);
977 	}
978 	/* FIXME: non-speculating: flush on bidirectional mappings? */
979 }
980 
981 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
982 	size_t size, enum dma_data_direction dir)
983 {
984 	phys_addr_t paddr = page_to_phys(page) + off;
985 
986 	/* FIXME: non-speculating: not required */
987 	/* in any case, don't bother invalidating if DMA to device */
988 	if (dir != DMA_TO_DEVICE) {
989 		outer_inv_range(paddr, paddr + size);
990 
991 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
992 	}
993 
994 	/*
995 	 * Mark the D-cache clean for these pages to avoid extra flushing.
996 	 */
997 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
998 		unsigned long pfn;
999 		size_t left = size;
1000 
1001 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
1002 		off %= PAGE_SIZE;
1003 		if (off) {
1004 			pfn++;
1005 			left -= PAGE_SIZE - off;
1006 		}
1007 		while (left >= PAGE_SIZE) {
1008 			page = pfn_to_page(pfn++);
1009 			set_bit(PG_dcache_clean, &page->flags);
1010 			left -= PAGE_SIZE;
1011 		}
1012 	}
1013 }
1014 
1015 /**
1016  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1017  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1018  * @sg: list of buffers
1019  * @nents: number of buffers to map
1020  * @dir: DMA transfer direction
1021  *
1022  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1023  * This is the scatter-gather version of the dma_map_single interface.
1024  * Here the scatter gather list elements are each tagged with the
1025  * appropriate dma address and length.  They are obtained via
1026  * sg_dma_{address,length}.
1027  *
1028  * Device ownership issues as mentioned for dma_map_single are the same
1029  * here.
1030  */
1031 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1032 		enum dma_data_direction dir, unsigned long attrs)
1033 {
1034 	const struct dma_map_ops *ops = get_dma_ops(dev);
1035 	struct scatterlist *s;
1036 	int i, j;
1037 
1038 	for_each_sg(sg, s, nents, i) {
1039 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1040 		s->dma_length = s->length;
1041 #endif
1042 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1043 						s->length, dir, attrs);
1044 		if (dma_mapping_error(dev, s->dma_address))
1045 			goto bad_mapping;
1046 	}
1047 	return nents;
1048 
1049  bad_mapping:
1050 	for_each_sg(sg, s, i, j)
1051 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1052 	return 0;
1053 }
1054 
1055 /**
1056  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1057  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1058  * @sg: list of buffers
1059  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1060  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1061  *
1062  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1063  * rules concerning calls here are the same as for dma_unmap_single().
1064  */
1065 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1066 		enum dma_data_direction dir, unsigned long attrs)
1067 {
1068 	const struct dma_map_ops *ops = get_dma_ops(dev);
1069 	struct scatterlist *s;
1070 
1071 	int i;
1072 
1073 	for_each_sg(sg, s, nents, i)
1074 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1075 }
1076 
1077 /**
1078  * arm_dma_sync_sg_for_cpu
1079  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1080  * @sg: list of buffers
1081  * @nents: number of buffers to map (returned from dma_map_sg)
1082  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1083  */
1084 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1085 			int nents, enum dma_data_direction dir)
1086 {
1087 	const struct dma_map_ops *ops = get_dma_ops(dev);
1088 	struct scatterlist *s;
1089 	int i;
1090 
1091 	for_each_sg(sg, s, nents, i)
1092 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1093 					 dir);
1094 }
1095 
1096 /**
1097  * arm_dma_sync_sg_for_device
1098  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1099  * @sg: list of buffers
1100  * @nents: number of buffers to map (returned from dma_map_sg)
1101  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1102  */
1103 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1104 			int nents, enum dma_data_direction dir)
1105 {
1106 	const struct dma_map_ops *ops = get_dma_ops(dev);
1107 	struct scatterlist *s;
1108 	int i;
1109 
1110 	for_each_sg(sg, s, nents, i)
1111 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1112 					    dir);
1113 }
1114 
1115 /*
1116  * Return whether the given device DMA address mask can be supported
1117  * properly.  For example, if your device can only drive the low 24-bits
1118  * during bus mastering, then you would pass 0x00ffffff as the mask
1119  * to this function.
1120  */
1121 int arm_dma_supported(struct device *dev, u64 mask)
1122 {
1123 	return __dma_supported(dev, mask, false);
1124 }
1125 
1126 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1127 {
1128 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1129 }
1130 
1131 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1132 
1133 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1134 {
1135 	int prot = 0;
1136 
1137 	if (attrs & DMA_ATTR_PRIVILEGED)
1138 		prot |= IOMMU_PRIV;
1139 
1140 	switch (dir) {
1141 	case DMA_BIDIRECTIONAL:
1142 		return prot | IOMMU_READ | IOMMU_WRITE;
1143 	case DMA_TO_DEVICE:
1144 		return prot | IOMMU_READ;
1145 	case DMA_FROM_DEVICE:
1146 		return prot | IOMMU_WRITE;
1147 	default:
1148 		return prot;
1149 	}
1150 }
1151 
1152 /* IOMMU */
1153 
1154 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1155 
1156 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1157 				      size_t size)
1158 {
1159 	unsigned int order = get_order(size);
1160 	unsigned int align = 0;
1161 	unsigned int count, start;
1162 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1163 	unsigned long flags;
1164 	dma_addr_t iova;
1165 	int i;
1166 
1167 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1168 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1169 
1170 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1171 	align = (1 << order) - 1;
1172 
1173 	spin_lock_irqsave(&mapping->lock, flags);
1174 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1175 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1176 				mapping->bits, 0, count, align);
1177 
1178 		if (start > mapping->bits)
1179 			continue;
1180 
1181 		bitmap_set(mapping->bitmaps[i], start, count);
1182 		break;
1183 	}
1184 
1185 	/*
1186 	 * No unused range found. Try to extend the existing mapping
1187 	 * and perform a second attempt to reserve an IO virtual
1188 	 * address range of size bytes.
1189 	 */
1190 	if (i == mapping->nr_bitmaps) {
1191 		if (extend_iommu_mapping(mapping)) {
1192 			spin_unlock_irqrestore(&mapping->lock, flags);
1193 			return DMA_MAPPING_ERROR;
1194 		}
1195 
1196 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1197 				mapping->bits, 0, count, align);
1198 
1199 		if (start > mapping->bits) {
1200 			spin_unlock_irqrestore(&mapping->lock, flags);
1201 			return DMA_MAPPING_ERROR;
1202 		}
1203 
1204 		bitmap_set(mapping->bitmaps[i], start, count);
1205 	}
1206 	spin_unlock_irqrestore(&mapping->lock, flags);
1207 
1208 	iova = mapping->base + (mapping_size * i);
1209 	iova += start << PAGE_SHIFT;
1210 
1211 	return iova;
1212 }
1213 
1214 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1215 			       dma_addr_t addr, size_t size)
1216 {
1217 	unsigned int start, count;
1218 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1219 	unsigned long flags;
1220 	dma_addr_t bitmap_base;
1221 	u32 bitmap_index;
1222 
1223 	if (!size)
1224 		return;
1225 
1226 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1227 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1228 
1229 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1230 
1231 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1232 
1233 	if (addr + size > bitmap_base + mapping_size) {
1234 		/*
1235 		 * The address range to be freed reaches into the iova
1236 		 * range of the next bitmap. This should not happen as
1237 		 * we don't allow this in __alloc_iova (at the
1238 		 * moment).
1239 		 */
1240 		BUG();
1241 	} else
1242 		count = size >> PAGE_SHIFT;
1243 
1244 	spin_lock_irqsave(&mapping->lock, flags);
1245 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1246 	spin_unlock_irqrestore(&mapping->lock, flags);
1247 }
1248 
1249 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1250 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1251 
1252 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1253 					  gfp_t gfp, unsigned long attrs,
1254 					  int coherent_flag)
1255 {
1256 	struct page **pages;
1257 	int count = size >> PAGE_SHIFT;
1258 	int array_size = count * sizeof(struct page *);
1259 	int i = 0;
1260 	int order_idx = 0;
1261 
1262 	if (array_size <= PAGE_SIZE)
1263 		pages = kzalloc(array_size, GFP_KERNEL);
1264 	else
1265 		pages = vzalloc(array_size);
1266 	if (!pages)
1267 		return NULL;
1268 
1269 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1270 	{
1271 		unsigned long order = get_order(size);
1272 		struct page *page;
1273 
1274 		page = dma_alloc_from_contiguous(dev, count, order,
1275 						 gfp & __GFP_NOWARN);
1276 		if (!page)
1277 			goto error;
1278 
1279 		__dma_clear_buffer(page, size, coherent_flag);
1280 
1281 		for (i = 0; i < count; i++)
1282 			pages[i] = page + i;
1283 
1284 		return pages;
1285 	}
1286 
1287 	/* Go straight to 4K chunks if caller says it's OK. */
1288 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1289 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1290 
1291 	/*
1292 	 * IOMMU can map any pages, so himem can also be used here
1293 	 */
1294 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1295 
1296 	while (count) {
1297 		int j, order;
1298 
1299 		order = iommu_order_array[order_idx];
1300 
1301 		/* Drop down when we get small */
1302 		if (__fls(count) < order) {
1303 			order_idx++;
1304 			continue;
1305 		}
1306 
1307 		if (order) {
1308 			/* See if it's easy to allocate a high-order chunk */
1309 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1310 
1311 			/* Go down a notch at first sign of pressure */
1312 			if (!pages[i]) {
1313 				order_idx++;
1314 				continue;
1315 			}
1316 		} else {
1317 			pages[i] = alloc_pages(gfp, 0);
1318 			if (!pages[i])
1319 				goto error;
1320 		}
1321 
1322 		if (order) {
1323 			split_page(pages[i], order);
1324 			j = 1 << order;
1325 			while (--j)
1326 				pages[i + j] = pages[i] + j;
1327 		}
1328 
1329 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1330 		i += 1 << order;
1331 		count -= 1 << order;
1332 	}
1333 
1334 	return pages;
1335 error:
1336 	while (i--)
1337 		if (pages[i])
1338 			__free_pages(pages[i], 0);
1339 	kvfree(pages);
1340 	return NULL;
1341 }
1342 
1343 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1344 			       size_t size, unsigned long attrs)
1345 {
1346 	int count = size >> PAGE_SHIFT;
1347 	int i;
1348 
1349 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1350 		dma_release_from_contiguous(dev, pages[0], count);
1351 	} else {
1352 		for (i = 0; i < count; i++)
1353 			if (pages[i])
1354 				__free_pages(pages[i], 0);
1355 	}
1356 
1357 	kvfree(pages);
1358 	return 0;
1359 }
1360 
1361 /*
1362  * Create a CPU mapping for a specified pages
1363  */
1364 static void *
1365 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1366 		    const void *caller)
1367 {
1368 	return dma_common_pages_remap(pages, size,
1369 			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1370 }
1371 
1372 /*
1373  * Create a mapping in device IO address space for specified pages
1374  */
1375 static dma_addr_t
1376 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1377 		       unsigned long attrs)
1378 {
1379 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1380 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1381 	dma_addr_t dma_addr, iova;
1382 	int i;
1383 
1384 	dma_addr = __alloc_iova(mapping, size);
1385 	if (dma_addr == DMA_MAPPING_ERROR)
1386 		return dma_addr;
1387 
1388 	iova = dma_addr;
1389 	for (i = 0; i < count; ) {
1390 		int ret;
1391 
1392 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1393 		phys_addr_t phys = page_to_phys(pages[i]);
1394 		unsigned int len, j;
1395 
1396 		for (j = i + 1; j < count; j++, next_pfn++)
1397 			if (page_to_pfn(pages[j]) != next_pfn)
1398 				break;
1399 
1400 		len = (j - i) << PAGE_SHIFT;
1401 		ret = iommu_map(mapping->domain, iova, phys, len,
1402 				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1403 		if (ret < 0)
1404 			goto fail;
1405 		iova += len;
1406 		i = j;
1407 	}
1408 	return dma_addr;
1409 fail:
1410 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1411 	__free_iova(mapping, dma_addr, size);
1412 	return DMA_MAPPING_ERROR;
1413 }
1414 
1415 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1416 {
1417 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1418 
1419 	/*
1420 	 * add optional in-page offset from iova to size and align
1421 	 * result to page size
1422 	 */
1423 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1424 	iova &= PAGE_MASK;
1425 
1426 	iommu_unmap(mapping->domain, iova, size);
1427 	__free_iova(mapping, iova, size);
1428 	return 0;
1429 }
1430 
1431 static struct page **__atomic_get_pages(void *addr)
1432 {
1433 	struct page *page;
1434 	phys_addr_t phys;
1435 
1436 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1437 	page = phys_to_page(phys);
1438 
1439 	return (struct page **)page;
1440 }
1441 
1442 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1443 {
1444 	struct vm_struct *area;
1445 
1446 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1447 		return __atomic_get_pages(cpu_addr);
1448 
1449 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1450 		return cpu_addr;
1451 
1452 	area = find_vm_area(cpu_addr);
1453 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1454 		return area->pages;
1455 	return NULL;
1456 }
1457 
1458 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1459 				  dma_addr_t *handle, int coherent_flag,
1460 				  unsigned long attrs)
1461 {
1462 	struct page *page;
1463 	void *addr;
1464 
1465 	if (coherent_flag  == COHERENT)
1466 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1467 	else
1468 		addr = __alloc_from_pool(size, &page);
1469 	if (!addr)
1470 		return NULL;
1471 
1472 	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1473 	if (*handle == DMA_MAPPING_ERROR)
1474 		goto err_mapping;
1475 
1476 	return addr;
1477 
1478 err_mapping:
1479 	__free_from_pool(addr, size);
1480 	return NULL;
1481 }
1482 
1483 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1484 			dma_addr_t handle, size_t size, int coherent_flag)
1485 {
1486 	__iommu_remove_mapping(dev, handle, size);
1487 	if (coherent_flag == COHERENT)
1488 		__dma_free_buffer(virt_to_page(cpu_addr), size);
1489 	else
1490 		__free_from_pool(cpu_addr, size);
1491 }
1492 
1493 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1494 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1495 	    int coherent_flag)
1496 {
1497 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1498 	struct page **pages;
1499 	void *addr = NULL;
1500 
1501 	*handle = DMA_MAPPING_ERROR;
1502 	size = PAGE_ALIGN(size);
1503 
1504 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1505 		return __iommu_alloc_simple(dev, size, gfp, handle,
1506 					    coherent_flag, attrs);
1507 
1508 	/*
1509 	 * Following is a work-around (a.k.a. hack) to prevent pages
1510 	 * with __GFP_COMP being passed to split_page() which cannot
1511 	 * handle them.  The real problem is that this flag probably
1512 	 * should be 0 on ARM as it is not supported on this
1513 	 * platform; see CONFIG_HUGETLBFS.
1514 	 */
1515 	gfp &= ~(__GFP_COMP);
1516 
1517 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1518 	if (!pages)
1519 		return NULL;
1520 
1521 	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1522 	if (*handle == DMA_MAPPING_ERROR)
1523 		goto err_buffer;
1524 
1525 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1526 		return pages;
1527 
1528 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1529 				   __builtin_return_address(0));
1530 	if (!addr)
1531 		goto err_mapping;
1532 
1533 	return addr;
1534 
1535 err_mapping:
1536 	__iommu_remove_mapping(dev, *handle, size);
1537 err_buffer:
1538 	__iommu_free_buffer(dev, pages, size, attrs);
1539 	return NULL;
1540 }
1541 
1542 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1543 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1544 {
1545 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1546 }
1547 
1548 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1549 		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1550 {
1551 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1552 }
1553 
1554 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1555 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1556 		    unsigned long attrs)
1557 {
1558 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1559 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1560 	int err;
1561 
1562 	if (!pages)
1563 		return -ENXIO;
1564 
1565 	if (vma->vm_pgoff >= nr_pages)
1566 		return -ENXIO;
1567 
1568 	err = vm_map_pages(vma, pages, nr_pages);
1569 	if (err)
1570 		pr_err("Remapping memory failed: %d\n", err);
1571 
1572 	return err;
1573 }
1574 static int arm_iommu_mmap_attrs(struct device *dev,
1575 		struct vm_area_struct *vma, void *cpu_addr,
1576 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1577 {
1578 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1579 
1580 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1581 }
1582 
1583 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1584 		struct vm_area_struct *vma, void *cpu_addr,
1585 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1586 {
1587 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1588 }
1589 
1590 /*
1591  * free a page as defined by the above mapping.
1592  * Must not be called with IRQs disabled.
1593  */
1594 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1595 	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1596 {
1597 	struct page **pages;
1598 	size = PAGE_ALIGN(size);
1599 
1600 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1601 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1602 		return;
1603 	}
1604 
1605 	pages = __iommu_get_pages(cpu_addr, attrs);
1606 	if (!pages) {
1607 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1608 		return;
1609 	}
1610 
1611 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1612 		dma_common_free_remap(cpu_addr, size,
1613 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1614 	}
1615 
1616 	__iommu_remove_mapping(dev, handle, size);
1617 	__iommu_free_buffer(dev, pages, size, attrs);
1618 }
1619 
1620 void arm_iommu_free_attrs(struct device *dev, size_t size,
1621 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1622 {
1623 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1624 }
1625 
1626 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1627 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1628 {
1629 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1630 }
1631 
1632 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1633 				 void *cpu_addr, dma_addr_t dma_addr,
1634 				 size_t size, unsigned long attrs)
1635 {
1636 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1637 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1638 
1639 	if (!pages)
1640 		return -ENXIO;
1641 
1642 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1643 					 GFP_KERNEL);
1644 }
1645 
1646 /*
1647  * Map a part of the scatter-gather list into contiguous io address space
1648  */
1649 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1650 			  size_t size, dma_addr_t *handle,
1651 			  enum dma_data_direction dir, unsigned long attrs,
1652 			  bool is_coherent)
1653 {
1654 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1655 	dma_addr_t iova, iova_base;
1656 	int ret = 0;
1657 	unsigned int count;
1658 	struct scatterlist *s;
1659 	int prot;
1660 
1661 	size = PAGE_ALIGN(size);
1662 	*handle = DMA_MAPPING_ERROR;
1663 
1664 	iova_base = iova = __alloc_iova(mapping, size);
1665 	if (iova == DMA_MAPPING_ERROR)
1666 		return -ENOMEM;
1667 
1668 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1669 		phys_addr_t phys = page_to_phys(sg_page(s));
1670 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1671 
1672 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1673 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1674 
1675 		prot = __dma_info_to_prot(dir, attrs);
1676 
1677 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1678 		if (ret < 0)
1679 			goto fail;
1680 		count += len >> PAGE_SHIFT;
1681 		iova += len;
1682 	}
1683 	*handle = iova_base;
1684 
1685 	return 0;
1686 fail:
1687 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1688 	__free_iova(mapping, iova_base, size);
1689 	return ret;
1690 }
1691 
1692 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1693 		     enum dma_data_direction dir, unsigned long attrs,
1694 		     bool is_coherent)
1695 {
1696 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1697 	int i, count = 0;
1698 	unsigned int offset = s->offset;
1699 	unsigned int size = s->offset + s->length;
1700 	unsigned int max = dma_get_max_seg_size(dev);
1701 
1702 	for (i = 1; i < nents; i++) {
1703 		s = sg_next(s);
1704 
1705 		s->dma_address = DMA_MAPPING_ERROR;
1706 		s->dma_length = 0;
1707 
1708 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1709 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1710 			    dir, attrs, is_coherent) < 0)
1711 				goto bad_mapping;
1712 
1713 			dma->dma_address += offset;
1714 			dma->dma_length = size - offset;
1715 
1716 			size = offset = s->offset;
1717 			start = s;
1718 			dma = sg_next(dma);
1719 			count += 1;
1720 		}
1721 		size += s->length;
1722 	}
1723 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1724 		is_coherent) < 0)
1725 		goto bad_mapping;
1726 
1727 	dma->dma_address += offset;
1728 	dma->dma_length = size - offset;
1729 
1730 	return count+1;
1731 
1732 bad_mapping:
1733 	for_each_sg(sg, s, count, i)
1734 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1735 	return 0;
1736 }
1737 
1738 /**
1739  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1740  * @dev: valid struct device pointer
1741  * @sg: list of buffers
1742  * @nents: number of buffers to map
1743  * @dir: DMA transfer direction
1744  *
1745  * Map a set of i/o coherent buffers described by scatterlist in streaming
1746  * mode for DMA. The scatter gather list elements are merged together (if
1747  * possible) and tagged with the appropriate dma address and length. They are
1748  * obtained via sg_dma_{address,length}.
1749  */
1750 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1751 		int nents, enum dma_data_direction dir, unsigned long attrs)
1752 {
1753 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1754 }
1755 
1756 /**
1757  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1758  * @dev: valid struct device pointer
1759  * @sg: list of buffers
1760  * @nents: number of buffers to map
1761  * @dir: DMA transfer direction
1762  *
1763  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1764  * The scatter gather list elements are merged together (if possible) and
1765  * tagged with the appropriate dma address and length. They are obtained via
1766  * sg_dma_{address,length}.
1767  */
1768 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1769 		int nents, enum dma_data_direction dir, unsigned long attrs)
1770 {
1771 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1772 }
1773 
1774 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1775 		int nents, enum dma_data_direction dir,
1776 		unsigned long attrs, bool is_coherent)
1777 {
1778 	struct scatterlist *s;
1779 	int i;
1780 
1781 	for_each_sg(sg, s, nents, i) {
1782 		if (sg_dma_len(s))
1783 			__iommu_remove_mapping(dev, sg_dma_address(s),
1784 					       sg_dma_len(s));
1785 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1786 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1787 					      s->length, dir);
1788 	}
1789 }
1790 
1791 /**
1792  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1793  * @dev: valid struct device pointer
1794  * @sg: list of buffers
1795  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1796  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1797  *
1798  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1799  * rules concerning calls here are the same as for dma_unmap_single().
1800  */
1801 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1802 		int nents, enum dma_data_direction dir,
1803 		unsigned long attrs)
1804 {
1805 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1806 }
1807 
1808 /**
1809  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1810  * @dev: valid struct device pointer
1811  * @sg: list of buffers
1812  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1813  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1814  *
1815  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1816  * rules concerning calls here are the same as for dma_unmap_single().
1817  */
1818 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1819 			enum dma_data_direction dir,
1820 			unsigned long attrs)
1821 {
1822 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1823 }
1824 
1825 /**
1826  * arm_iommu_sync_sg_for_cpu
1827  * @dev: valid struct device pointer
1828  * @sg: list of buffers
1829  * @nents: number of buffers to map (returned from dma_map_sg)
1830  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1831  */
1832 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1833 			int nents, enum dma_data_direction dir)
1834 {
1835 	struct scatterlist *s;
1836 	int i;
1837 
1838 	for_each_sg(sg, s, nents, i)
1839 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1840 
1841 }
1842 
1843 /**
1844  * arm_iommu_sync_sg_for_device
1845  * @dev: valid struct device pointer
1846  * @sg: list of buffers
1847  * @nents: number of buffers to map (returned from dma_map_sg)
1848  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1849  */
1850 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1851 			int nents, enum dma_data_direction dir)
1852 {
1853 	struct scatterlist *s;
1854 	int i;
1855 
1856 	for_each_sg(sg, s, nents, i)
1857 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1858 }
1859 
1860 
1861 /**
1862  * arm_coherent_iommu_map_page
1863  * @dev: valid struct device pointer
1864  * @page: page that buffer resides in
1865  * @offset: offset into page for start of buffer
1866  * @size: size of buffer to map
1867  * @dir: DMA transfer direction
1868  *
1869  * Coherent IOMMU aware version of arm_dma_map_page()
1870  */
1871 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1872 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1873 	     unsigned long attrs)
1874 {
1875 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1876 	dma_addr_t dma_addr;
1877 	int ret, prot, len = PAGE_ALIGN(size + offset);
1878 
1879 	dma_addr = __alloc_iova(mapping, len);
1880 	if (dma_addr == DMA_MAPPING_ERROR)
1881 		return dma_addr;
1882 
1883 	prot = __dma_info_to_prot(dir, attrs);
1884 
1885 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1886 	if (ret < 0)
1887 		goto fail;
1888 
1889 	return dma_addr + offset;
1890 fail:
1891 	__free_iova(mapping, dma_addr, len);
1892 	return DMA_MAPPING_ERROR;
1893 }
1894 
1895 /**
1896  * arm_iommu_map_page
1897  * @dev: valid struct device pointer
1898  * @page: page that buffer resides in
1899  * @offset: offset into page for start of buffer
1900  * @size: size of buffer to map
1901  * @dir: DMA transfer direction
1902  *
1903  * IOMMU aware version of arm_dma_map_page()
1904  */
1905 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1906 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1907 	     unsigned long attrs)
1908 {
1909 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1910 		__dma_page_cpu_to_dev(page, offset, size, dir);
1911 
1912 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1913 }
1914 
1915 /**
1916  * arm_coherent_iommu_unmap_page
1917  * @dev: valid struct device pointer
1918  * @handle: DMA address of buffer
1919  * @size: size of buffer (same as passed to dma_map_page)
1920  * @dir: DMA transfer direction (same as passed to dma_map_page)
1921  *
1922  * Coherent IOMMU aware version of arm_dma_unmap_page()
1923  */
1924 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1925 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1926 {
1927 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1928 	dma_addr_t iova = handle & PAGE_MASK;
1929 	int offset = handle & ~PAGE_MASK;
1930 	int len = PAGE_ALIGN(size + offset);
1931 
1932 	if (!iova)
1933 		return;
1934 
1935 	iommu_unmap(mapping->domain, iova, len);
1936 	__free_iova(mapping, iova, len);
1937 }
1938 
1939 /**
1940  * arm_iommu_unmap_page
1941  * @dev: valid struct device pointer
1942  * @handle: DMA address of buffer
1943  * @size: size of buffer (same as passed to dma_map_page)
1944  * @dir: DMA transfer direction (same as passed to dma_map_page)
1945  *
1946  * IOMMU aware version of arm_dma_unmap_page()
1947  */
1948 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1949 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1950 {
1951 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1952 	dma_addr_t iova = handle & PAGE_MASK;
1953 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1954 	int offset = handle & ~PAGE_MASK;
1955 	int len = PAGE_ALIGN(size + offset);
1956 
1957 	if (!iova)
1958 		return;
1959 
1960 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1961 		__dma_page_dev_to_cpu(page, offset, size, dir);
1962 
1963 	iommu_unmap(mapping->domain, iova, len);
1964 	__free_iova(mapping, iova, len);
1965 }
1966 
1967 /**
1968  * arm_iommu_map_resource - map a device resource for DMA
1969  * @dev: valid struct device pointer
1970  * @phys_addr: physical address of resource
1971  * @size: size of resource to map
1972  * @dir: DMA transfer direction
1973  */
1974 static dma_addr_t arm_iommu_map_resource(struct device *dev,
1975 		phys_addr_t phys_addr, size_t size,
1976 		enum dma_data_direction dir, unsigned long attrs)
1977 {
1978 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1979 	dma_addr_t dma_addr;
1980 	int ret, prot;
1981 	phys_addr_t addr = phys_addr & PAGE_MASK;
1982 	unsigned int offset = phys_addr & ~PAGE_MASK;
1983 	size_t len = PAGE_ALIGN(size + offset);
1984 
1985 	dma_addr = __alloc_iova(mapping, len);
1986 	if (dma_addr == DMA_MAPPING_ERROR)
1987 		return dma_addr;
1988 
1989 	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1990 
1991 	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1992 	if (ret < 0)
1993 		goto fail;
1994 
1995 	return dma_addr + offset;
1996 fail:
1997 	__free_iova(mapping, dma_addr, len);
1998 	return DMA_MAPPING_ERROR;
1999 }
2000 
2001 /**
2002  * arm_iommu_unmap_resource - unmap a device DMA resource
2003  * @dev: valid struct device pointer
2004  * @dma_handle: DMA address to resource
2005  * @size: size of resource to map
2006  * @dir: DMA transfer direction
2007  */
2008 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2009 		size_t size, enum dma_data_direction dir,
2010 		unsigned long attrs)
2011 {
2012 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2013 	dma_addr_t iova = dma_handle & PAGE_MASK;
2014 	unsigned int offset = dma_handle & ~PAGE_MASK;
2015 	size_t len = PAGE_ALIGN(size + offset);
2016 
2017 	if (!iova)
2018 		return;
2019 
2020 	iommu_unmap(mapping->domain, iova, len);
2021 	__free_iova(mapping, iova, len);
2022 }
2023 
2024 static void arm_iommu_sync_single_for_cpu(struct device *dev,
2025 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2026 {
2027 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2028 	dma_addr_t iova = handle & PAGE_MASK;
2029 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2030 	unsigned int offset = handle & ~PAGE_MASK;
2031 
2032 	if (!iova)
2033 		return;
2034 
2035 	__dma_page_dev_to_cpu(page, offset, size, dir);
2036 }
2037 
2038 static void arm_iommu_sync_single_for_device(struct device *dev,
2039 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2040 {
2041 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2042 	dma_addr_t iova = handle & PAGE_MASK;
2043 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2044 	unsigned int offset = handle & ~PAGE_MASK;
2045 
2046 	if (!iova)
2047 		return;
2048 
2049 	__dma_page_cpu_to_dev(page, offset, size, dir);
2050 }
2051 
2052 const struct dma_map_ops iommu_ops = {
2053 	.alloc		= arm_iommu_alloc_attrs,
2054 	.free		= arm_iommu_free_attrs,
2055 	.mmap		= arm_iommu_mmap_attrs,
2056 	.get_sgtable	= arm_iommu_get_sgtable,
2057 
2058 	.map_page		= arm_iommu_map_page,
2059 	.unmap_page		= arm_iommu_unmap_page,
2060 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2061 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2062 
2063 	.map_sg			= arm_iommu_map_sg,
2064 	.unmap_sg		= arm_iommu_unmap_sg,
2065 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2066 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2067 
2068 	.map_resource		= arm_iommu_map_resource,
2069 	.unmap_resource		= arm_iommu_unmap_resource,
2070 
2071 	.dma_supported		= arm_dma_supported,
2072 };
2073 
2074 const struct dma_map_ops iommu_coherent_ops = {
2075 	.alloc		= arm_coherent_iommu_alloc_attrs,
2076 	.free		= arm_coherent_iommu_free_attrs,
2077 	.mmap		= arm_coherent_iommu_mmap_attrs,
2078 	.get_sgtable	= arm_iommu_get_sgtable,
2079 
2080 	.map_page	= arm_coherent_iommu_map_page,
2081 	.unmap_page	= arm_coherent_iommu_unmap_page,
2082 
2083 	.map_sg		= arm_coherent_iommu_map_sg,
2084 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2085 
2086 	.map_resource	= arm_iommu_map_resource,
2087 	.unmap_resource	= arm_iommu_unmap_resource,
2088 
2089 	.dma_supported		= arm_dma_supported,
2090 };
2091 
2092 /**
2093  * arm_iommu_create_mapping
2094  * @bus: pointer to the bus holding the client device (for IOMMU calls)
2095  * @base: start address of the valid IO address space
2096  * @size: maximum size of the valid IO address space
2097  *
2098  * Creates a mapping structure which holds information about used/unused
2099  * IO address ranges, which is required to perform memory allocation and
2100  * mapping with IOMMU aware functions.
2101  *
2102  * The client device need to be attached to the mapping with
2103  * arm_iommu_attach_device function.
2104  */
2105 struct dma_iommu_mapping *
2106 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2107 {
2108 	unsigned int bits = size >> PAGE_SHIFT;
2109 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2110 	struct dma_iommu_mapping *mapping;
2111 	int extensions = 1;
2112 	int err = -ENOMEM;
2113 
2114 	/* currently only 32-bit DMA address space is supported */
2115 	if (size > DMA_BIT_MASK(32) + 1)
2116 		return ERR_PTR(-ERANGE);
2117 
2118 	if (!bitmap_size)
2119 		return ERR_PTR(-EINVAL);
2120 
2121 	if (bitmap_size > PAGE_SIZE) {
2122 		extensions = bitmap_size / PAGE_SIZE;
2123 		bitmap_size = PAGE_SIZE;
2124 	}
2125 
2126 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2127 	if (!mapping)
2128 		goto err;
2129 
2130 	mapping->bitmap_size = bitmap_size;
2131 	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2132 				   GFP_KERNEL);
2133 	if (!mapping->bitmaps)
2134 		goto err2;
2135 
2136 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2137 	if (!mapping->bitmaps[0])
2138 		goto err3;
2139 
2140 	mapping->nr_bitmaps = 1;
2141 	mapping->extensions = extensions;
2142 	mapping->base = base;
2143 	mapping->bits = BITS_PER_BYTE * bitmap_size;
2144 
2145 	spin_lock_init(&mapping->lock);
2146 
2147 	mapping->domain = iommu_domain_alloc(bus);
2148 	if (!mapping->domain)
2149 		goto err4;
2150 
2151 	kref_init(&mapping->kref);
2152 	return mapping;
2153 err4:
2154 	kfree(mapping->bitmaps[0]);
2155 err3:
2156 	kfree(mapping->bitmaps);
2157 err2:
2158 	kfree(mapping);
2159 err:
2160 	return ERR_PTR(err);
2161 }
2162 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2163 
2164 static void release_iommu_mapping(struct kref *kref)
2165 {
2166 	int i;
2167 	struct dma_iommu_mapping *mapping =
2168 		container_of(kref, struct dma_iommu_mapping, kref);
2169 
2170 	iommu_domain_free(mapping->domain);
2171 	for (i = 0; i < mapping->nr_bitmaps; i++)
2172 		kfree(mapping->bitmaps[i]);
2173 	kfree(mapping->bitmaps);
2174 	kfree(mapping);
2175 }
2176 
2177 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2178 {
2179 	int next_bitmap;
2180 
2181 	if (mapping->nr_bitmaps >= mapping->extensions)
2182 		return -EINVAL;
2183 
2184 	next_bitmap = mapping->nr_bitmaps;
2185 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2186 						GFP_ATOMIC);
2187 	if (!mapping->bitmaps[next_bitmap])
2188 		return -ENOMEM;
2189 
2190 	mapping->nr_bitmaps++;
2191 
2192 	return 0;
2193 }
2194 
2195 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2196 {
2197 	if (mapping)
2198 		kref_put(&mapping->kref, release_iommu_mapping);
2199 }
2200 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2201 
2202 static int __arm_iommu_attach_device(struct device *dev,
2203 				     struct dma_iommu_mapping *mapping)
2204 {
2205 	int err;
2206 
2207 	err = iommu_attach_device(mapping->domain, dev);
2208 	if (err)
2209 		return err;
2210 
2211 	kref_get(&mapping->kref);
2212 	to_dma_iommu_mapping(dev) = mapping;
2213 
2214 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2215 	return 0;
2216 }
2217 
2218 /**
2219  * arm_iommu_attach_device
2220  * @dev: valid struct device pointer
2221  * @mapping: io address space mapping structure (returned from
2222  *	arm_iommu_create_mapping)
2223  *
2224  * Attaches specified io address space mapping to the provided device.
2225  * This replaces the dma operations (dma_map_ops pointer) with the
2226  * IOMMU aware version.
2227  *
2228  * More than one client might be attached to the same io address space
2229  * mapping.
2230  */
2231 int arm_iommu_attach_device(struct device *dev,
2232 			    struct dma_iommu_mapping *mapping)
2233 {
2234 	int err;
2235 
2236 	err = __arm_iommu_attach_device(dev, mapping);
2237 	if (err)
2238 		return err;
2239 
2240 	set_dma_ops(dev, &iommu_ops);
2241 	return 0;
2242 }
2243 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2244 
2245 /**
2246  * arm_iommu_detach_device
2247  * @dev: valid struct device pointer
2248  *
2249  * Detaches the provided device from a previously attached map.
2250  * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2251  */
2252 void arm_iommu_detach_device(struct device *dev)
2253 {
2254 	struct dma_iommu_mapping *mapping;
2255 
2256 	mapping = to_dma_iommu_mapping(dev);
2257 	if (!mapping) {
2258 		dev_warn(dev, "Not attached\n");
2259 		return;
2260 	}
2261 
2262 	iommu_detach_device(mapping->domain, dev);
2263 	kref_put(&mapping->kref, release_iommu_mapping);
2264 	to_dma_iommu_mapping(dev) = NULL;
2265 	set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2266 
2267 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2268 }
2269 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2270 
2271 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2272 {
2273 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2274 }
2275 
2276 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2277 				    const struct iommu_ops *iommu)
2278 {
2279 	struct dma_iommu_mapping *mapping;
2280 
2281 	if (!iommu)
2282 		return false;
2283 
2284 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2285 	if (IS_ERR(mapping)) {
2286 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2287 				size, dev_name(dev));
2288 		return false;
2289 	}
2290 
2291 	if (__arm_iommu_attach_device(dev, mapping)) {
2292 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2293 				dev_name(dev));
2294 		arm_iommu_release_mapping(mapping);
2295 		return false;
2296 	}
2297 
2298 	return true;
2299 }
2300 
2301 static void arm_teardown_iommu_dma_ops(struct device *dev)
2302 {
2303 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2304 
2305 	if (!mapping)
2306 		return;
2307 
2308 	arm_iommu_detach_device(dev);
2309 	arm_iommu_release_mapping(mapping);
2310 }
2311 
2312 #else
2313 
2314 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2315 				    const struct iommu_ops *iommu)
2316 {
2317 	return false;
2318 }
2319 
2320 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2321 
2322 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2323 
2324 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2325 
2326 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2327 			const struct iommu_ops *iommu, bool coherent)
2328 {
2329 	const struct dma_map_ops *dma_ops;
2330 
2331 	dev->archdata.dma_coherent = coherent;
2332 
2333 	/*
2334 	 * Don't override the dma_ops if they have already been set. Ideally
2335 	 * this should be the only location where dma_ops are set, remove this
2336 	 * check when all other callers of set_dma_ops will have disappeared.
2337 	 */
2338 	if (dev->dma_ops)
2339 		return;
2340 
2341 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2342 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2343 	else
2344 		dma_ops = arm_get_dma_map_ops(coherent);
2345 
2346 	set_dma_ops(dev, dma_ops);
2347 
2348 #ifdef CONFIG_XEN
2349 	if (xen_initial_domain()) {
2350 		dev->archdata.dev_dma_ops = dev->dma_ops;
2351 		dev->dma_ops = xen_dma_ops;
2352 	}
2353 #endif
2354 	dev->archdata.dma_ops_setup = true;
2355 }
2356 
2357 void arch_teardown_dma_ops(struct device *dev)
2358 {
2359 	if (!dev->archdata.dma_ops_setup)
2360 		return;
2361 
2362 	arm_teardown_iommu_dma_ops(dev);
2363 	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2364 	set_dma_ops(dev, NULL);
2365 }
2366