xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 5bc23d32)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 
21 #include <asm/memory.h>
22 #include <asm/highmem.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/sizes.h>
26 
27 static u64 get_coherent_dma_mask(struct device *dev)
28 {
29 	u64 mask = ISA_DMA_THRESHOLD;
30 
31 	if (dev) {
32 		mask = dev->coherent_dma_mask;
33 
34 		/*
35 		 * Sanity check the DMA mask - it must be non-zero, and
36 		 * must be able to be satisfied by a DMA allocation.
37 		 */
38 		if (mask == 0) {
39 			dev_warn(dev, "coherent DMA mask is unset\n");
40 			return 0;
41 		}
42 
43 		if ((~mask) & ISA_DMA_THRESHOLD) {
44 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
45 				 "than system GFP_DMA mask %#llx\n",
46 				 mask, (unsigned long long)ISA_DMA_THRESHOLD);
47 			return 0;
48 		}
49 	}
50 
51 	return mask;
52 }
53 
54 /*
55  * Allocate a DMA buffer for 'dev' of size 'size' using the
56  * specified gfp mask.  Note that 'size' must be page aligned.
57  */
58 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
59 {
60 	unsigned long order = get_order(size);
61 	struct page *page, *p, *e;
62 	void *ptr;
63 	u64 mask = get_coherent_dma_mask(dev);
64 
65 #ifdef CONFIG_DMA_API_DEBUG
66 	u64 limit = (mask + 1) & ~mask;
67 	if (limit && size >= limit) {
68 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
69 			size, mask);
70 		return NULL;
71 	}
72 #endif
73 
74 	if (!mask)
75 		return NULL;
76 
77 	if (mask < 0xffffffffULL)
78 		gfp |= GFP_DMA;
79 
80 	page = alloc_pages(gfp, order);
81 	if (!page)
82 		return NULL;
83 
84 	/*
85 	 * Now split the huge page and free the excess pages
86 	 */
87 	split_page(page, order);
88 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
89 		__free_page(p);
90 
91 	/*
92 	 * Ensure that the allocated pages are zeroed, and that any data
93 	 * lurking in the kernel direct-mapped region is invalidated.
94 	 */
95 	ptr = page_address(page);
96 	memset(ptr, 0, size);
97 	dmac_flush_range(ptr, ptr + size);
98 	outer_flush_range(__pa(ptr), __pa(ptr) + size);
99 
100 	return page;
101 }
102 
103 /*
104  * Free a DMA buffer.  'size' must be page aligned.
105  */
106 static void __dma_free_buffer(struct page *page, size_t size)
107 {
108 	struct page *e = page + (size >> PAGE_SHIFT);
109 
110 	while (page < e) {
111 		__free_page(page);
112 		page++;
113 	}
114 }
115 
116 #ifdef CONFIG_MMU
117 /* Sanity check size */
118 #if (CONSISTENT_DMA_SIZE % SZ_2M)
119 #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
120 #endif
121 
122 #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
123 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
124 #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
125 
126 /*
127  * These are the page tables (2MB each) covering uncached, DMA consistent allocations
128  */
129 static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
130 
131 #include "vmregion.h"
132 
133 static struct arm_vmregion_head consistent_head = {
134 	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
135 	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
136 	.vm_start	= CONSISTENT_BASE,
137 	.vm_end		= CONSISTENT_END,
138 };
139 
140 #ifdef CONFIG_HUGETLB_PAGE
141 #error ARM Coherent DMA allocator does not (yet) support huge TLB
142 #endif
143 
144 /*
145  * Initialise the consistent memory allocation.
146  */
147 static int __init consistent_init(void)
148 {
149 	int ret = 0;
150 	pgd_t *pgd;
151 	pmd_t *pmd;
152 	pte_t *pte;
153 	int i = 0;
154 	u32 base = CONSISTENT_BASE;
155 
156 	do {
157 		pgd = pgd_offset(&init_mm, base);
158 		pmd = pmd_alloc(&init_mm, pgd, base);
159 		if (!pmd) {
160 			printk(KERN_ERR "%s: no pmd tables\n", __func__);
161 			ret = -ENOMEM;
162 			break;
163 		}
164 		WARN_ON(!pmd_none(*pmd));
165 
166 		pte = pte_alloc_kernel(pmd, base);
167 		if (!pte) {
168 			printk(KERN_ERR "%s: no pte tables\n", __func__);
169 			ret = -ENOMEM;
170 			break;
171 		}
172 
173 		consistent_pte[i++] = pte;
174 		base += (1 << PGDIR_SHIFT);
175 	} while (base < CONSISTENT_END);
176 
177 	return ret;
178 }
179 
180 core_initcall(consistent_init);
181 
182 static void *
183 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
184 {
185 	struct arm_vmregion *c;
186 	size_t align;
187 	int bit;
188 
189 	if (!consistent_pte[0]) {
190 		printk(KERN_ERR "%s: not initialised\n", __func__);
191 		dump_stack();
192 		return NULL;
193 	}
194 
195 	/*
196 	 * Align the virtual region allocation - maximum alignment is
197 	 * a section size, minimum is a page size.  This helps reduce
198 	 * fragmentation of the DMA space, and also prevents allocations
199 	 * smaller than a section from crossing a section boundary.
200 	 */
201 	bit = fls(size - 1) + 1;
202 	if (bit > SECTION_SHIFT)
203 		bit = SECTION_SHIFT;
204 	align = 1 << bit;
205 
206 	/*
207 	 * Allocate a virtual address in the consistent mapping region.
208 	 */
209 	c = arm_vmregion_alloc(&consistent_head, align, size,
210 			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
211 	if (c) {
212 		pte_t *pte;
213 		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
214 		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
215 
216 		pte = consistent_pte[idx] + off;
217 		c->vm_pages = page;
218 
219 		do {
220 			BUG_ON(!pte_none(*pte));
221 
222 			set_pte_ext(pte, mk_pte(page, prot), 0);
223 			page++;
224 			pte++;
225 			off++;
226 			if (off >= PTRS_PER_PTE) {
227 				off = 0;
228 				pte = consistent_pte[++idx];
229 			}
230 		} while (size -= PAGE_SIZE);
231 
232 		return (void *)c->vm_start;
233 	}
234 	return NULL;
235 }
236 
237 static void __dma_free_remap(void *cpu_addr, size_t size)
238 {
239 	struct arm_vmregion *c;
240 	unsigned long addr;
241 	pte_t *ptep;
242 	int idx;
243 	u32 off;
244 
245 	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
246 	if (!c) {
247 		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
248 		       __func__, cpu_addr);
249 		dump_stack();
250 		return;
251 	}
252 
253 	if ((c->vm_end - c->vm_start) != size) {
254 		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
255 		       __func__, c->vm_end - c->vm_start, size);
256 		dump_stack();
257 		size = c->vm_end - c->vm_start;
258 	}
259 
260 	idx = CONSISTENT_PTE_INDEX(c->vm_start);
261 	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
262 	ptep = consistent_pte[idx] + off;
263 	addr = c->vm_start;
264 	do {
265 		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
266 
267 		ptep++;
268 		addr += PAGE_SIZE;
269 		off++;
270 		if (off >= PTRS_PER_PTE) {
271 			off = 0;
272 			ptep = consistent_pte[++idx];
273 		}
274 
275 		if (pte_none(pte) || !pte_present(pte))
276 			printk(KERN_CRIT "%s: bad page in kernel page table\n",
277 			       __func__);
278 	} while (size -= PAGE_SIZE);
279 
280 	flush_tlb_kernel_range(c->vm_start, c->vm_end);
281 
282 	arm_vmregion_free(&consistent_head, c);
283 }
284 
285 #else	/* !CONFIG_MMU */
286 
287 #define __dma_alloc_remap(page, size, gfp, prot)	page_address(page)
288 #define __dma_free_remap(addr, size)			do { } while (0)
289 
290 #endif	/* CONFIG_MMU */
291 
292 static void *
293 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
294 	    pgprot_t prot)
295 {
296 	struct page *page;
297 	void *addr;
298 
299 	*handle = ~0;
300 	size = PAGE_ALIGN(size);
301 
302 	page = __dma_alloc_buffer(dev, size, gfp);
303 	if (!page)
304 		return NULL;
305 
306 	if (!arch_is_coherent())
307 		addr = __dma_alloc_remap(page, size, gfp, prot);
308 	else
309 		addr = page_address(page);
310 
311 	if (addr)
312 		*handle = page_to_dma(dev, page);
313 
314 	return addr;
315 }
316 
317 /*
318  * Allocate DMA-coherent memory space and return both the kernel remapped
319  * virtual and bus address for that space.
320  */
321 void *
322 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
323 {
324 	void *memory;
325 
326 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
327 		return memory;
328 
329 	return __dma_alloc(dev, size, handle, gfp,
330 			   pgprot_dmacoherent(pgprot_kernel));
331 }
332 EXPORT_SYMBOL(dma_alloc_coherent);
333 
334 /*
335  * Allocate a writecombining region, in much the same way as
336  * dma_alloc_coherent above.
337  */
338 void *
339 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
340 {
341 	return __dma_alloc(dev, size, handle, gfp,
342 			   pgprot_writecombine(pgprot_kernel));
343 }
344 EXPORT_SYMBOL(dma_alloc_writecombine);
345 
346 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
347 		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
348 {
349 	int ret = -ENXIO;
350 #ifdef CONFIG_MMU
351 	unsigned long user_size, kern_size;
352 	struct arm_vmregion *c;
353 
354 	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
355 
356 	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
357 	if (c) {
358 		unsigned long off = vma->vm_pgoff;
359 
360 		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
361 
362 		if (off < kern_size &&
363 		    user_size <= (kern_size - off)) {
364 			ret = remap_pfn_range(vma, vma->vm_start,
365 					      page_to_pfn(c->vm_pages) + off,
366 					      user_size << PAGE_SHIFT,
367 					      vma->vm_page_prot);
368 		}
369 	}
370 #endif	/* CONFIG_MMU */
371 
372 	return ret;
373 }
374 
375 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
376 		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
377 {
378 	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
379 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
380 }
381 EXPORT_SYMBOL(dma_mmap_coherent);
382 
383 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
384 			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
385 {
386 	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
387 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
388 }
389 EXPORT_SYMBOL(dma_mmap_writecombine);
390 
391 /*
392  * free a page as defined by the above mapping.
393  * Must not be called with IRQs disabled.
394  */
395 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
396 {
397 	WARN_ON(irqs_disabled());
398 
399 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
400 		return;
401 
402 	size = PAGE_ALIGN(size);
403 
404 	if (!arch_is_coherent())
405 		__dma_free_remap(cpu_addr, size);
406 
407 	__dma_free_buffer(dma_to_page(dev, handle), size);
408 }
409 EXPORT_SYMBOL(dma_free_coherent);
410 
411 /*
412  * Make an area consistent for devices.
413  * Note: Drivers should NOT use this function directly, as it will break
414  * platforms with CONFIG_DMABOUNCE.
415  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
416  */
417 void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
418 	enum dma_data_direction dir)
419 {
420 	unsigned long paddr;
421 
422 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
423 
424 	dmac_map_area(kaddr, size, dir);
425 
426 	paddr = __pa(kaddr);
427 	if (dir == DMA_FROM_DEVICE) {
428 		outer_inv_range(paddr, paddr + size);
429 	} else {
430 		outer_clean_range(paddr, paddr + size);
431 	}
432 	/* FIXME: non-speculating: flush on bidirectional mappings? */
433 }
434 EXPORT_SYMBOL(___dma_single_cpu_to_dev);
435 
436 void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
437 	enum dma_data_direction dir)
438 {
439 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
440 
441 	/* FIXME: non-speculating: not required */
442 	/* don't bother invalidating if DMA to device */
443 	if (dir != DMA_TO_DEVICE) {
444 		unsigned long paddr = __pa(kaddr);
445 		outer_inv_range(paddr, paddr + size);
446 	}
447 
448 	dmac_unmap_area(kaddr, size, dir);
449 }
450 EXPORT_SYMBOL(___dma_single_dev_to_cpu);
451 
452 static void dma_cache_maint_page(struct page *page, unsigned long offset,
453 	size_t size, enum dma_data_direction dir,
454 	void (*op)(const void *, size_t, int))
455 {
456 	/*
457 	 * A single sg entry may refer to multiple physically contiguous
458 	 * pages.  But we still need to process highmem pages individually.
459 	 * If highmem is not configured then the bulk of this loop gets
460 	 * optimized out.
461 	 */
462 	size_t left = size;
463 	do {
464 		size_t len = left;
465 		void *vaddr;
466 
467 		if (PageHighMem(page)) {
468 			if (len + offset > PAGE_SIZE) {
469 				if (offset >= PAGE_SIZE) {
470 					page += offset / PAGE_SIZE;
471 					offset %= PAGE_SIZE;
472 				}
473 				len = PAGE_SIZE - offset;
474 			}
475 			vaddr = kmap_high_get(page);
476 			if (vaddr) {
477 				vaddr += offset;
478 				op(vaddr, len, dir);
479 				kunmap_high(page);
480 			} else if (cache_is_vipt()) {
481 				pte_t saved_pte;
482 				vaddr = kmap_high_l1_vipt(page, &saved_pte);
483 				op(vaddr + offset, len, dir);
484 				kunmap_high_l1_vipt(page, saved_pte);
485 			}
486 		} else {
487 			vaddr = page_address(page) + offset;
488 			op(vaddr, len, dir);
489 		}
490 		offset = 0;
491 		page++;
492 		left -= len;
493 	} while (left);
494 }
495 
496 void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
497 	size_t size, enum dma_data_direction dir)
498 {
499 	unsigned long paddr;
500 
501 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
502 
503 	paddr = page_to_phys(page) + off;
504 	if (dir == DMA_FROM_DEVICE) {
505 		outer_inv_range(paddr, paddr + size);
506 	} else {
507 		outer_clean_range(paddr, paddr + size);
508 	}
509 	/* FIXME: non-speculating: flush on bidirectional mappings? */
510 }
511 EXPORT_SYMBOL(___dma_page_cpu_to_dev);
512 
513 void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
514 	size_t size, enum dma_data_direction dir)
515 {
516 	unsigned long paddr = page_to_phys(page) + off;
517 
518 	/* FIXME: non-speculating: not required */
519 	/* don't bother invalidating if DMA to device */
520 	if (dir != DMA_TO_DEVICE)
521 		outer_inv_range(paddr, paddr + size);
522 
523 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
524 }
525 EXPORT_SYMBOL(___dma_page_dev_to_cpu);
526 
527 /**
528  * dma_map_sg - map a set of SG buffers for streaming mode DMA
529  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
530  * @sg: list of buffers
531  * @nents: number of buffers to map
532  * @dir: DMA transfer direction
533  *
534  * Map a set of buffers described by scatterlist in streaming mode for DMA.
535  * This is the scatter-gather version of the dma_map_single interface.
536  * Here the scatter gather list elements are each tagged with the
537  * appropriate dma address and length.  They are obtained via
538  * sg_dma_{address,length}.
539  *
540  * Device ownership issues as mentioned for dma_map_single are the same
541  * here.
542  */
543 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
544 		enum dma_data_direction dir)
545 {
546 	struct scatterlist *s;
547 	int i, j;
548 
549 	for_each_sg(sg, s, nents, i) {
550 		s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
551 						s->length, dir);
552 		if (dma_mapping_error(dev, s->dma_address))
553 			goto bad_mapping;
554 	}
555 	return nents;
556 
557  bad_mapping:
558 	for_each_sg(sg, s, i, j)
559 		dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
560 	return 0;
561 }
562 EXPORT_SYMBOL(dma_map_sg);
563 
564 /**
565  * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
566  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
567  * @sg: list of buffers
568  * @nents: number of buffers to unmap (returned from dma_map_sg)
569  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
570  *
571  * Unmap a set of streaming mode DMA translations.  Again, CPU access
572  * rules concerning calls here are the same as for dma_unmap_single().
573  */
574 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
575 		enum dma_data_direction dir)
576 {
577 	struct scatterlist *s;
578 	int i;
579 
580 	for_each_sg(sg, s, nents, i)
581 		dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
582 }
583 EXPORT_SYMBOL(dma_unmap_sg);
584 
585 /**
586  * dma_sync_sg_for_cpu
587  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
588  * @sg: list of buffers
589  * @nents: number of buffers to map (returned from dma_map_sg)
590  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
591  */
592 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
593 			int nents, enum dma_data_direction dir)
594 {
595 	struct scatterlist *s;
596 	int i;
597 
598 	for_each_sg(sg, s, nents, i) {
599 		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
600 					    sg_dma_len(s), dir))
601 			continue;
602 
603 		__dma_page_dev_to_cpu(sg_page(s), s->offset,
604 				      s->length, dir);
605 	}
606 }
607 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
608 
609 /**
610  * dma_sync_sg_for_device
611  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
612  * @sg: list of buffers
613  * @nents: number of buffers to map (returned from dma_map_sg)
614  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
615  */
616 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
617 			int nents, enum dma_data_direction dir)
618 {
619 	struct scatterlist *s;
620 	int i;
621 
622 	for_each_sg(sg, s, nents, i) {
623 		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
624 					sg_dma_len(s), dir))
625 			continue;
626 
627 		__dma_page_cpu_to_dev(sg_page(s), s->offset,
628 				      s->length, dir);
629 	}
630 }
631 EXPORT_SYMBOL(dma_sync_sg_for_device);
632