xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 53c92d79)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31 
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41 
42 #include "dma.h"
43 #include "mm.h"
44 
45 struct arm_dma_alloc_args {
46 	struct device *dev;
47 	size_t size;
48 	gfp_t gfp;
49 	pgprot_t prot;
50 	const void *caller;
51 	bool want_vaddr;
52 };
53 
54 struct arm_dma_free_args {
55 	struct device *dev;
56 	size_t size;
57 	void *cpu_addr;
58 	struct page *page;
59 	bool want_vaddr;
60 };
61 
62 struct arm_dma_allocator {
63 	void *(*alloc)(struct arm_dma_alloc_args *args,
64 		       struct page **ret_page);
65 	void (*free)(struct arm_dma_free_args *args);
66 };
67 
68 struct arm_dma_buffer {
69 	struct list_head list;
70 	void *virt;
71 	struct arm_dma_allocator *allocator;
72 };
73 
74 static LIST_HEAD(arm_dma_bufs);
75 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76 
77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78 {
79 	struct arm_dma_buffer *buf, *found = NULL;
80 	unsigned long flags;
81 
82 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 	list_for_each_entry(buf, &arm_dma_bufs, list) {
84 		if (buf->virt == virt) {
85 			list_del(&buf->list);
86 			found = buf;
87 			break;
88 		}
89 	}
90 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 	return found;
92 }
93 
94 /*
95  * The DMA API is built upon the notion of "buffer ownership".  A buffer
96  * is either exclusively owned by the CPU (and therefore may be accessed
97  * by it) or exclusively owned by the DMA device.  These helper functions
98  * represent the transitions between these two ownership states.
99  *
100  * Note, however, that on later ARMs, this notion does not work due to
101  * speculative prefetches.  We model our approach on the assumption that
102  * the CPU does do speculative prefetches, which means we clean caches
103  * before transfers and delay cache invalidation until transfer completion.
104  *
105  */
106 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
107 		size_t, enum dma_data_direction);
108 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
109 		size_t, enum dma_data_direction);
110 
111 /**
112  * arm_dma_map_page - map a portion of a page for streaming DMA
113  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
114  * @page: page that buffer resides in
115  * @offset: offset into page for start of buffer
116  * @size: size of buffer to map
117  * @dir: DMA transfer direction
118  *
119  * Ensure that any data held in the cache is appropriately discarded
120  * or written back.
121  *
122  * The device owns this memory once this call has completed.  The CPU
123  * can regain ownership by calling dma_unmap_page().
124  */
125 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
126 	     unsigned long offset, size_t size, enum dma_data_direction dir,
127 	     struct dma_attrs *attrs)
128 {
129 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
130 		__dma_page_cpu_to_dev(page, offset, size, dir);
131 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
132 }
133 
134 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
135 	     unsigned long offset, size_t size, enum dma_data_direction dir,
136 	     struct dma_attrs *attrs)
137 {
138 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
139 }
140 
141 /**
142  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
143  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
144  * @handle: DMA address of buffer
145  * @size: size of buffer (same as passed to dma_map_page)
146  * @dir: DMA transfer direction (same as passed to dma_map_page)
147  *
148  * Unmap a page streaming mode DMA translation.  The handle and size
149  * must match what was provided in the previous dma_map_page() call.
150  * All other usages are undefined.
151  *
152  * After this call, reads by the CPU to the buffer are guaranteed to see
153  * whatever the device wrote there.
154  */
155 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
156 		size_t size, enum dma_data_direction dir,
157 		struct dma_attrs *attrs)
158 {
159 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
160 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
161 				      handle & ~PAGE_MASK, size, dir);
162 }
163 
164 static void arm_dma_sync_single_for_cpu(struct device *dev,
165 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
166 {
167 	unsigned int offset = handle & (PAGE_SIZE - 1);
168 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
169 	__dma_page_dev_to_cpu(page, offset, size, dir);
170 }
171 
172 static void arm_dma_sync_single_for_device(struct device *dev,
173 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
174 {
175 	unsigned int offset = handle & (PAGE_SIZE - 1);
176 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
177 	__dma_page_cpu_to_dev(page, offset, size, dir);
178 }
179 
180 struct dma_map_ops arm_dma_ops = {
181 	.alloc			= arm_dma_alloc,
182 	.free			= arm_dma_free,
183 	.mmap			= arm_dma_mmap,
184 	.get_sgtable		= arm_dma_get_sgtable,
185 	.map_page		= arm_dma_map_page,
186 	.unmap_page		= arm_dma_unmap_page,
187 	.map_sg			= arm_dma_map_sg,
188 	.unmap_sg		= arm_dma_unmap_sg,
189 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
190 	.sync_single_for_device	= arm_dma_sync_single_for_device,
191 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
192 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
193 	.set_dma_mask		= arm_dma_set_mask,
194 };
195 EXPORT_SYMBOL(arm_dma_ops);
196 
197 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
198 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
199 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
200 				  dma_addr_t handle, struct dma_attrs *attrs);
201 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
202 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
203 		 struct dma_attrs *attrs);
204 
205 struct dma_map_ops arm_coherent_dma_ops = {
206 	.alloc			= arm_coherent_dma_alloc,
207 	.free			= arm_coherent_dma_free,
208 	.mmap			= arm_coherent_dma_mmap,
209 	.get_sgtable		= arm_dma_get_sgtable,
210 	.map_page		= arm_coherent_dma_map_page,
211 	.map_sg			= arm_dma_map_sg,
212 	.set_dma_mask		= arm_dma_set_mask,
213 };
214 EXPORT_SYMBOL(arm_coherent_dma_ops);
215 
216 static int __dma_supported(struct device *dev, u64 mask, bool warn)
217 {
218 	unsigned long max_dma_pfn;
219 
220 	/*
221 	 * If the mask allows for more memory than we can address,
222 	 * and we actually have that much memory, then we must
223 	 * indicate that DMA to this device is not supported.
224 	 */
225 	if (sizeof(mask) != sizeof(dma_addr_t) &&
226 	    mask > (dma_addr_t)~0 &&
227 	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
228 		if (warn) {
229 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
230 				 mask);
231 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
232 		}
233 		return 0;
234 	}
235 
236 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
237 
238 	/*
239 	 * Translate the device's DMA mask to a PFN limit.  This
240 	 * PFN number includes the page which we can DMA to.
241 	 */
242 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
243 		if (warn)
244 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
245 				 mask,
246 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
247 				 max_dma_pfn + 1);
248 		return 0;
249 	}
250 
251 	return 1;
252 }
253 
254 static u64 get_coherent_dma_mask(struct device *dev)
255 {
256 	u64 mask = (u64)DMA_BIT_MASK(32);
257 
258 	if (dev) {
259 		mask = dev->coherent_dma_mask;
260 
261 		/*
262 		 * Sanity check the DMA mask - it must be non-zero, and
263 		 * must be able to be satisfied by a DMA allocation.
264 		 */
265 		if (mask == 0) {
266 			dev_warn(dev, "coherent DMA mask is unset\n");
267 			return 0;
268 		}
269 
270 		if (!__dma_supported(dev, mask, true))
271 			return 0;
272 	}
273 
274 	return mask;
275 }
276 
277 static void __dma_clear_buffer(struct page *page, size_t size)
278 {
279 	/*
280 	 * Ensure that the allocated pages are zeroed, and that any data
281 	 * lurking in the kernel direct-mapped region is invalidated.
282 	 */
283 	if (PageHighMem(page)) {
284 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
285 		phys_addr_t end = base + size;
286 		while (size > 0) {
287 			void *ptr = kmap_atomic(page);
288 			memset(ptr, 0, PAGE_SIZE);
289 			dmac_flush_range(ptr, ptr + PAGE_SIZE);
290 			kunmap_atomic(ptr);
291 			page++;
292 			size -= PAGE_SIZE;
293 		}
294 		outer_flush_range(base, end);
295 	} else {
296 		void *ptr = page_address(page);
297 		memset(ptr, 0, size);
298 		dmac_flush_range(ptr, ptr + size);
299 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
300 	}
301 }
302 
303 /*
304  * Allocate a DMA buffer for 'dev' of size 'size' using the
305  * specified gfp mask.  Note that 'size' must be page aligned.
306  */
307 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
308 {
309 	unsigned long order = get_order(size);
310 	struct page *page, *p, *e;
311 
312 	page = alloc_pages(gfp, order);
313 	if (!page)
314 		return NULL;
315 
316 	/*
317 	 * Now split the huge page and free the excess pages
318 	 */
319 	split_page(page, order);
320 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
321 		__free_page(p);
322 
323 	__dma_clear_buffer(page, size);
324 
325 	return page;
326 }
327 
328 /*
329  * Free a DMA buffer.  'size' must be page aligned.
330  */
331 static void __dma_free_buffer(struct page *page, size_t size)
332 {
333 	struct page *e = page + (size >> PAGE_SHIFT);
334 
335 	while (page < e) {
336 		__free_page(page);
337 		page++;
338 	}
339 }
340 
341 #ifdef CONFIG_MMU
342 
343 static void *__alloc_from_contiguous(struct device *dev, size_t size,
344 				     pgprot_t prot, struct page **ret_page,
345 				     const void *caller, bool want_vaddr);
346 
347 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
348 				 pgprot_t prot, struct page **ret_page,
349 				 const void *caller, bool want_vaddr);
350 
351 static void *
352 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
353 	const void *caller)
354 {
355 	/*
356 	 * DMA allocation can be mapped to user space, so lets
357 	 * set VM_USERMAP flags too.
358 	 */
359 	return dma_common_contiguous_remap(page, size,
360 			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
361 			prot, caller);
362 }
363 
364 static void __dma_free_remap(void *cpu_addr, size_t size)
365 {
366 	dma_common_free_remap(cpu_addr, size,
367 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
368 }
369 
370 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
371 static struct gen_pool *atomic_pool;
372 
373 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
374 
375 static int __init early_coherent_pool(char *p)
376 {
377 	atomic_pool_size = memparse(p, &p);
378 	return 0;
379 }
380 early_param("coherent_pool", early_coherent_pool);
381 
382 void __init init_dma_coherent_pool_size(unsigned long size)
383 {
384 	/*
385 	 * Catch any attempt to set the pool size too late.
386 	 */
387 	BUG_ON(atomic_pool);
388 
389 	/*
390 	 * Set architecture specific coherent pool size only if
391 	 * it has not been changed by kernel command line parameter.
392 	 */
393 	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
394 		atomic_pool_size = size;
395 }
396 
397 /*
398  * Initialise the coherent pool for atomic allocations.
399  */
400 static int __init atomic_pool_init(void)
401 {
402 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
403 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
404 	struct page *page;
405 	void *ptr;
406 
407 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
408 	if (!atomic_pool)
409 		goto out;
410 
411 	if (dev_get_cma_area(NULL))
412 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
413 					      &page, atomic_pool_init, true);
414 	else
415 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
416 					   &page, atomic_pool_init, true);
417 	if (ptr) {
418 		int ret;
419 
420 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
421 					page_to_phys(page),
422 					atomic_pool_size, -1);
423 		if (ret)
424 			goto destroy_genpool;
425 
426 		gen_pool_set_algo(atomic_pool,
427 				gen_pool_first_fit_order_align,
428 				(void *)PAGE_SHIFT);
429 		pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
430 		       atomic_pool_size / 1024);
431 		return 0;
432 	}
433 
434 destroy_genpool:
435 	gen_pool_destroy(atomic_pool);
436 	atomic_pool = NULL;
437 out:
438 	pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
439 	       atomic_pool_size / 1024);
440 	return -ENOMEM;
441 }
442 /*
443  * CMA is activated by core_initcall, so we must be called after it.
444  */
445 postcore_initcall(atomic_pool_init);
446 
447 struct dma_contig_early_reserve {
448 	phys_addr_t base;
449 	unsigned long size;
450 };
451 
452 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
453 
454 static int dma_mmu_remap_num __initdata;
455 
456 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
457 {
458 	dma_mmu_remap[dma_mmu_remap_num].base = base;
459 	dma_mmu_remap[dma_mmu_remap_num].size = size;
460 	dma_mmu_remap_num++;
461 }
462 
463 void __init dma_contiguous_remap(void)
464 {
465 	int i;
466 	for (i = 0; i < dma_mmu_remap_num; i++) {
467 		phys_addr_t start = dma_mmu_remap[i].base;
468 		phys_addr_t end = start + dma_mmu_remap[i].size;
469 		struct map_desc map;
470 		unsigned long addr;
471 
472 		if (end > arm_lowmem_limit)
473 			end = arm_lowmem_limit;
474 		if (start >= end)
475 			continue;
476 
477 		map.pfn = __phys_to_pfn(start);
478 		map.virtual = __phys_to_virt(start);
479 		map.length = end - start;
480 		map.type = MT_MEMORY_DMA_READY;
481 
482 		/*
483 		 * Clear previous low-memory mapping to ensure that the
484 		 * TLB does not see any conflicting entries, then flush
485 		 * the TLB of the old entries before creating new mappings.
486 		 *
487 		 * This ensures that any speculatively loaded TLB entries
488 		 * (even though they may be rare) can not cause any problems,
489 		 * and ensures that this code is architecturally compliant.
490 		 */
491 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
492 		     addr += PMD_SIZE)
493 			pmd_clear(pmd_off_k(addr));
494 
495 		flush_tlb_kernel_range(__phys_to_virt(start),
496 				       __phys_to_virt(end));
497 
498 		iotable_init(&map, 1);
499 	}
500 }
501 
502 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
503 			    void *data)
504 {
505 	struct page *page = virt_to_page(addr);
506 	pgprot_t prot = *(pgprot_t *)data;
507 
508 	set_pte_ext(pte, mk_pte(page, prot), 0);
509 	return 0;
510 }
511 
512 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
513 {
514 	unsigned long start = (unsigned long) page_address(page);
515 	unsigned end = start + size;
516 
517 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
518 	flush_tlb_kernel_range(start, end);
519 }
520 
521 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
522 				 pgprot_t prot, struct page **ret_page,
523 				 const void *caller, bool want_vaddr)
524 {
525 	struct page *page;
526 	void *ptr = NULL;
527 	page = __dma_alloc_buffer(dev, size, gfp);
528 	if (!page)
529 		return NULL;
530 	if (!want_vaddr)
531 		goto out;
532 
533 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
534 	if (!ptr) {
535 		__dma_free_buffer(page, size);
536 		return NULL;
537 	}
538 
539  out:
540 	*ret_page = page;
541 	return ptr;
542 }
543 
544 static void *__alloc_from_pool(size_t size, struct page **ret_page)
545 {
546 	unsigned long val;
547 	void *ptr = NULL;
548 
549 	if (!atomic_pool) {
550 		WARN(1, "coherent pool not initialised!\n");
551 		return NULL;
552 	}
553 
554 	val = gen_pool_alloc(atomic_pool, size);
555 	if (val) {
556 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
557 
558 		*ret_page = phys_to_page(phys);
559 		ptr = (void *)val;
560 	}
561 
562 	return ptr;
563 }
564 
565 static bool __in_atomic_pool(void *start, size_t size)
566 {
567 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
568 }
569 
570 static int __free_from_pool(void *start, size_t size)
571 {
572 	if (!__in_atomic_pool(start, size))
573 		return 0;
574 
575 	gen_pool_free(atomic_pool, (unsigned long)start, size);
576 
577 	return 1;
578 }
579 
580 static void *__alloc_from_contiguous(struct device *dev, size_t size,
581 				     pgprot_t prot, struct page **ret_page,
582 				     const void *caller, bool want_vaddr)
583 {
584 	unsigned long order = get_order(size);
585 	size_t count = size >> PAGE_SHIFT;
586 	struct page *page;
587 	void *ptr = NULL;
588 
589 	page = dma_alloc_from_contiguous(dev, count, order);
590 	if (!page)
591 		return NULL;
592 
593 	__dma_clear_buffer(page, size);
594 
595 	if (!want_vaddr)
596 		goto out;
597 
598 	if (PageHighMem(page)) {
599 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
600 		if (!ptr) {
601 			dma_release_from_contiguous(dev, page, count);
602 			return NULL;
603 		}
604 	} else {
605 		__dma_remap(page, size, prot);
606 		ptr = page_address(page);
607 	}
608 
609  out:
610 	*ret_page = page;
611 	return ptr;
612 }
613 
614 static void __free_from_contiguous(struct device *dev, struct page *page,
615 				   void *cpu_addr, size_t size, bool want_vaddr)
616 {
617 	if (want_vaddr) {
618 		if (PageHighMem(page))
619 			__dma_free_remap(cpu_addr, size);
620 		else
621 			__dma_remap(page, size, PAGE_KERNEL);
622 	}
623 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
624 }
625 
626 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
627 {
628 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
629 			    pgprot_writecombine(prot) :
630 			    pgprot_dmacoherent(prot);
631 	return prot;
632 }
633 
634 #define nommu() 0
635 
636 #else	/* !CONFIG_MMU */
637 
638 #define nommu() 1
639 
640 #define __get_dma_pgprot(attrs, prot)				__pgprot(0)
641 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
642 #define __alloc_from_pool(size, ret_page)			NULL
643 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv)	NULL
644 #define __free_from_pool(cpu_addr, size)			do { } while (0)
645 #define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
646 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
647 
648 #endif	/* CONFIG_MMU */
649 
650 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
651 				   struct page **ret_page)
652 {
653 	struct page *page;
654 	page = __dma_alloc_buffer(dev, size, gfp);
655 	if (!page)
656 		return NULL;
657 
658 	*ret_page = page;
659 	return page_address(page);
660 }
661 
662 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
663 				    struct page **ret_page)
664 {
665 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
666 				     ret_page);
667 }
668 
669 static void simple_allocator_free(struct arm_dma_free_args *args)
670 {
671 	__dma_free_buffer(args->page, args->size);
672 }
673 
674 static struct arm_dma_allocator simple_allocator = {
675 	.alloc = simple_allocator_alloc,
676 	.free = simple_allocator_free,
677 };
678 
679 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
680 				 struct page **ret_page)
681 {
682 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
683 				       ret_page, args->caller,
684 				       args->want_vaddr);
685 }
686 
687 static void cma_allocator_free(struct arm_dma_free_args *args)
688 {
689 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
690 			       args->size, args->want_vaddr);
691 }
692 
693 static struct arm_dma_allocator cma_allocator = {
694 	.alloc = cma_allocator_alloc,
695 	.free = cma_allocator_free,
696 };
697 
698 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
699 				  struct page **ret_page)
700 {
701 	return __alloc_from_pool(args->size, ret_page);
702 }
703 
704 static void pool_allocator_free(struct arm_dma_free_args *args)
705 {
706 	__free_from_pool(args->cpu_addr, args->size);
707 }
708 
709 static struct arm_dma_allocator pool_allocator = {
710 	.alloc = pool_allocator_alloc,
711 	.free = pool_allocator_free,
712 };
713 
714 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
715 				   struct page **ret_page)
716 {
717 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
718 				    args->prot, ret_page, args->caller,
719 				    args->want_vaddr);
720 }
721 
722 static void remap_allocator_free(struct arm_dma_free_args *args)
723 {
724 	if (args->want_vaddr)
725 		__dma_free_remap(args->cpu_addr, args->size);
726 
727 	__dma_free_buffer(args->page, args->size);
728 }
729 
730 static struct arm_dma_allocator remap_allocator = {
731 	.alloc = remap_allocator_alloc,
732 	.free = remap_allocator_free,
733 };
734 
735 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
736 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
737 			 struct dma_attrs *attrs, const void *caller)
738 {
739 	u64 mask = get_coherent_dma_mask(dev);
740 	struct page *page = NULL;
741 	void *addr;
742 	bool allowblock, cma;
743 	struct arm_dma_buffer *buf;
744 	struct arm_dma_alloc_args args = {
745 		.dev = dev,
746 		.size = PAGE_ALIGN(size),
747 		.gfp = gfp,
748 		.prot = prot,
749 		.caller = caller,
750 		.want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
751 	};
752 
753 #ifdef CONFIG_DMA_API_DEBUG
754 	u64 limit = (mask + 1) & ~mask;
755 	if (limit && size >= limit) {
756 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
757 			size, mask);
758 		return NULL;
759 	}
760 #endif
761 
762 	if (!mask)
763 		return NULL;
764 
765 	buf = kzalloc(sizeof(*buf),
766 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
767 	if (!buf)
768 		return NULL;
769 
770 	if (mask < 0xffffffffULL)
771 		gfp |= GFP_DMA;
772 
773 	/*
774 	 * Following is a work-around (a.k.a. hack) to prevent pages
775 	 * with __GFP_COMP being passed to split_page() which cannot
776 	 * handle them.  The real problem is that this flag probably
777 	 * should be 0 on ARM as it is not supported on this
778 	 * platform; see CONFIG_HUGETLBFS.
779 	 */
780 	gfp &= ~(__GFP_COMP);
781 	args.gfp = gfp;
782 
783 	*handle = DMA_ERROR_CODE;
784 	allowblock = gfpflags_allow_blocking(gfp);
785 	cma = allowblock ? dev_get_cma_area(dev) : false;
786 
787 	if (cma)
788 		buf->allocator = &cma_allocator;
789 	else if (nommu() || is_coherent)
790 		buf->allocator = &simple_allocator;
791 	else if (allowblock)
792 		buf->allocator = &remap_allocator;
793 	else
794 		buf->allocator = &pool_allocator;
795 
796 	addr = buf->allocator->alloc(&args, &page);
797 
798 	if (page) {
799 		unsigned long flags;
800 
801 		*handle = pfn_to_dma(dev, page_to_pfn(page));
802 		buf->virt = args.want_vaddr ? addr : page;
803 
804 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
805 		list_add(&buf->list, &arm_dma_bufs);
806 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
807 	} else {
808 		kfree(buf);
809 	}
810 
811 	return args.want_vaddr ? addr : page;
812 }
813 
814 /*
815  * Allocate DMA-coherent memory space and return both the kernel remapped
816  * virtual and bus address for that space.
817  */
818 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
819 		    gfp_t gfp, struct dma_attrs *attrs)
820 {
821 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
822 
823 	return __dma_alloc(dev, size, handle, gfp, prot, false,
824 			   attrs, __builtin_return_address(0));
825 }
826 
827 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
828 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
829 {
830 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
831 			   attrs, __builtin_return_address(0));
832 }
833 
834 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
835 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
836 		 struct dma_attrs *attrs)
837 {
838 	int ret = -ENXIO;
839 #ifdef CONFIG_MMU
840 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
841 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
842 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
843 	unsigned long off = vma->vm_pgoff;
844 
845 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
846 		return ret;
847 
848 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
849 		ret = remap_pfn_range(vma, vma->vm_start,
850 				      pfn + off,
851 				      vma->vm_end - vma->vm_start,
852 				      vma->vm_page_prot);
853 	}
854 #endif	/* CONFIG_MMU */
855 
856 	return ret;
857 }
858 
859 /*
860  * Create userspace mapping for the DMA-coherent memory.
861  */
862 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
863 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
864 		 struct dma_attrs *attrs)
865 {
866 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
867 }
868 
869 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
870 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
871 		 struct dma_attrs *attrs)
872 {
873 #ifdef CONFIG_MMU
874 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
875 #endif	/* CONFIG_MMU */
876 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
877 }
878 
879 /*
880  * Free a buffer as defined by the above mapping.
881  */
882 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
883 			   dma_addr_t handle, struct dma_attrs *attrs,
884 			   bool is_coherent)
885 {
886 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
887 	struct arm_dma_buffer *buf;
888 	struct arm_dma_free_args args = {
889 		.dev = dev,
890 		.size = PAGE_ALIGN(size),
891 		.cpu_addr = cpu_addr,
892 		.page = page,
893 		.want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
894 	};
895 
896 	buf = arm_dma_buffer_find(cpu_addr);
897 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
898 		return;
899 
900 	buf->allocator->free(&args);
901 	kfree(buf);
902 }
903 
904 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
905 		  dma_addr_t handle, struct dma_attrs *attrs)
906 {
907 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
908 }
909 
910 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
911 				  dma_addr_t handle, struct dma_attrs *attrs)
912 {
913 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
914 }
915 
916 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
917 		 void *cpu_addr, dma_addr_t handle, size_t size,
918 		 struct dma_attrs *attrs)
919 {
920 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
921 	int ret;
922 
923 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
924 	if (unlikely(ret))
925 		return ret;
926 
927 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
928 	return 0;
929 }
930 
931 static void dma_cache_maint_page(struct page *page, unsigned long offset,
932 	size_t size, enum dma_data_direction dir,
933 	void (*op)(const void *, size_t, int))
934 {
935 	unsigned long pfn;
936 	size_t left = size;
937 
938 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
939 	offset %= PAGE_SIZE;
940 
941 	/*
942 	 * A single sg entry may refer to multiple physically contiguous
943 	 * pages.  But we still need to process highmem pages individually.
944 	 * If highmem is not configured then the bulk of this loop gets
945 	 * optimized out.
946 	 */
947 	do {
948 		size_t len = left;
949 		void *vaddr;
950 
951 		page = pfn_to_page(pfn);
952 
953 		if (PageHighMem(page)) {
954 			if (len + offset > PAGE_SIZE)
955 				len = PAGE_SIZE - offset;
956 
957 			if (cache_is_vipt_nonaliasing()) {
958 				vaddr = kmap_atomic(page);
959 				op(vaddr + offset, len, dir);
960 				kunmap_atomic(vaddr);
961 			} else {
962 				vaddr = kmap_high_get(page);
963 				if (vaddr) {
964 					op(vaddr + offset, len, dir);
965 					kunmap_high(page);
966 				}
967 			}
968 		} else {
969 			vaddr = page_address(page) + offset;
970 			op(vaddr, len, dir);
971 		}
972 		offset = 0;
973 		pfn++;
974 		left -= len;
975 	} while (left);
976 }
977 
978 /*
979  * Make an area consistent for devices.
980  * Note: Drivers should NOT use this function directly, as it will break
981  * platforms with CONFIG_DMABOUNCE.
982  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
983  */
984 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
985 	size_t size, enum dma_data_direction dir)
986 {
987 	phys_addr_t paddr;
988 
989 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
990 
991 	paddr = page_to_phys(page) + off;
992 	if (dir == DMA_FROM_DEVICE) {
993 		outer_inv_range(paddr, paddr + size);
994 	} else {
995 		outer_clean_range(paddr, paddr + size);
996 	}
997 	/* FIXME: non-speculating: flush on bidirectional mappings? */
998 }
999 
1000 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1001 	size_t size, enum dma_data_direction dir)
1002 {
1003 	phys_addr_t paddr = page_to_phys(page) + off;
1004 
1005 	/* FIXME: non-speculating: not required */
1006 	/* in any case, don't bother invalidating if DMA to device */
1007 	if (dir != DMA_TO_DEVICE) {
1008 		outer_inv_range(paddr, paddr + size);
1009 
1010 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1011 	}
1012 
1013 	/*
1014 	 * Mark the D-cache clean for these pages to avoid extra flushing.
1015 	 */
1016 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1017 		unsigned long pfn;
1018 		size_t left = size;
1019 
1020 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
1021 		off %= PAGE_SIZE;
1022 		if (off) {
1023 			pfn++;
1024 			left -= PAGE_SIZE - off;
1025 		}
1026 		while (left >= PAGE_SIZE) {
1027 			page = pfn_to_page(pfn++);
1028 			set_bit(PG_dcache_clean, &page->flags);
1029 			left -= PAGE_SIZE;
1030 		}
1031 	}
1032 }
1033 
1034 /**
1035  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1036  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1037  * @sg: list of buffers
1038  * @nents: number of buffers to map
1039  * @dir: DMA transfer direction
1040  *
1041  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1042  * This is the scatter-gather version of the dma_map_single interface.
1043  * Here the scatter gather list elements are each tagged with the
1044  * appropriate dma address and length.  They are obtained via
1045  * sg_dma_{address,length}.
1046  *
1047  * Device ownership issues as mentioned for dma_map_single are the same
1048  * here.
1049  */
1050 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1051 		enum dma_data_direction dir, struct dma_attrs *attrs)
1052 {
1053 	struct dma_map_ops *ops = get_dma_ops(dev);
1054 	struct scatterlist *s;
1055 	int i, j;
1056 
1057 	for_each_sg(sg, s, nents, i) {
1058 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1059 		s->dma_length = s->length;
1060 #endif
1061 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1062 						s->length, dir, attrs);
1063 		if (dma_mapping_error(dev, s->dma_address))
1064 			goto bad_mapping;
1065 	}
1066 	return nents;
1067 
1068  bad_mapping:
1069 	for_each_sg(sg, s, i, j)
1070 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1071 	return 0;
1072 }
1073 
1074 /**
1075  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1076  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1077  * @sg: list of buffers
1078  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1079  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1080  *
1081  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1082  * rules concerning calls here are the same as for dma_unmap_single().
1083  */
1084 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1085 		enum dma_data_direction dir, struct dma_attrs *attrs)
1086 {
1087 	struct dma_map_ops *ops = get_dma_ops(dev);
1088 	struct scatterlist *s;
1089 
1090 	int i;
1091 
1092 	for_each_sg(sg, s, nents, i)
1093 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1094 }
1095 
1096 /**
1097  * arm_dma_sync_sg_for_cpu
1098  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1099  * @sg: list of buffers
1100  * @nents: number of buffers to map (returned from dma_map_sg)
1101  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1102  */
1103 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1104 			int nents, enum dma_data_direction dir)
1105 {
1106 	struct dma_map_ops *ops = get_dma_ops(dev);
1107 	struct scatterlist *s;
1108 	int i;
1109 
1110 	for_each_sg(sg, s, nents, i)
1111 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1112 					 dir);
1113 }
1114 
1115 /**
1116  * arm_dma_sync_sg_for_device
1117  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1118  * @sg: list of buffers
1119  * @nents: number of buffers to map (returned from dma_map_sg)
1120  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1121  */
1122 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1123 			int nents, enum dma_data_direction dir)
1124 {
1125 	struct dma_map_ops *ops = get_dma_ops(dev);
1126 	struct scatterlist *s;
1127 	int i;
1128 
1129 	for_each_sg(sg, s, nents, i)
1130 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1131 					    dir);
1132 }
1133 
1134 /*
1135  * Return whether the given device DMA address mask can be supported
1136  * properly.  For example, if your device can only drive the low 24-bits
1137  * during bus mastering, then you would pass 0x00ffffff as the mask
1138  * to this function.
1139  */
1140 int dma_supported(struct device *dev, u64 mask)
1141 {
1142 	return __dma_supported(dev, mask, false);
1143 }
1144 EXPORT_SYMBOL(dma_supported);
1145 
1146 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1147 {
1148 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1149 		return -EIO;
1150 
1151 	*dev->dma_mask = dma_mask;
1152 
1153 	return 0;
1154 }
1155 
1156 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1157 
1158 static int __init dma_debug_do_init(void)
1159 {
1160 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1161 	return 0;
1162 }
1163 fs_initcall(dma_debug_do_init);
1164 
1165 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1166 
1167 /* IOMMU */
1168 
1169 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1170 
1171 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1172 				      size_t size)
1173 {
1174 	unsigned int order = get_order(size);
1175 	unsigned int align = 0;
1176 	unsigned int count, start;
1177 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1178 	unsigned long flags;
1179 	dma_addr_t iova;
1180 	int i;
1181 
1182 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1183 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1184 
1185 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1186 	align = (1 << order) - 1;
1187 
1188 	spin_lock_irqsave(&mapping->lock, flags);
1189 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1190 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1191 				mapping->bits, 0, count, align);
1192 
1193 		if (start > mapping->bits)
1194 			continue;
1195 
1196 		bitmap_set(mapping->bitmaps[i], start, count);
1197 		break;
1198 	}
1199 
1200 	/*
1201 	 * No unused range found. Try to extend the existing mapping
1202 	 * and perform a second attempt to reserve an IO virtual
1203 	 * address range of size bytes.
1204 	 */
1205 	if (i == mapping->nr_bitmaps) {
1206 		if (extend_iommu_mapping(mapping)) {
1207 			spin_unlock_irqrestore(&mapping->lock, flags);
1208 			return DMA_ERROR_CODE;
1209 		}
1210 
1211 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1212 				mapping->bits, 0, count, align);
1213 
1214 		if (start > mapping->bits) {
1215 			spin_unlock_irqrestore(&mapping->lock, flags);
1216 			return DMA_ERROR_CODE;
1217 		}
1218 
1219 		bitmap_set(mapping->bitmaps[i], start, count);
1220 	}
1221 	spin_unlock_irqrestore(&mapping->lock, flags);
1222 
1223 	iova = mapping->base + (mapping_size * i);
1224 	iova += start << PAGE_SHIFT;
1225 
1226 	return iova;
1227 }
1228 
1229 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1230 			       dma_addr_t addr, size_t size)
1231 {
1232 	unsigned int start, count;
1233 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1234 	unsigned long flags;
1235 	dma_addr_t bitmap_base;
1236 	u32 bitmap_index;
1237 
1238 	if (!size)
1239 		return;
1240 
1241 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1242 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1243 
1244 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1245 
1246 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1247 
1248 	if (addr + size > bitmap_base + mapping_size) {
1249 		/*
1250 		 * The address range to be freed reaches into the iova
1251 		 * range of the next bitmap. This should not happen as
1252 		 * we don't allow this in __alloc_iova (at the
1253 		 * moment).
1254 		 */
1255 		BUG();
1256 	} else
1257 		count = size >> PAGE_SHIFT;
1258 
1259 	spin_lock_irqsave(&mapping->lock, flags);
1260 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1261 	spin_unlock_irqrestore(&mapping->lock, flags);
1262 }
1263 
1264 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1265 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1266 
1267 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1268 					  gfp_t gfp, struct dma_attrs *attrs)
1269 {
1270 	struct page **pages;
1271 	int count = size >> PAGE_SHIFT;
1272 	int array_size = count * sizeof(struct page *);
1273 	int i = 0;
1274 	int order_idx = 0;
1275 
1276 	if (array_size <= PAGE_SIZE)
1277 		pages = kzalloc(array_size, GFP_KERNEL);
1278 	else
1279 		pages = vzalloc(array_size);
1280 	if (!pages)
1281 		return NULL;
1282 
1283 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1284 	{
1285 		unsigned long order = get_order(size);
1286 		struct page *page;
1287 
1288 		page = dma_alloc_from_contiguous(dev, count, order);
1289 		if (!page)
1290 			goto error;
1291 
1292 		__dma_clear_buffer(page, size);
1293 
1294 		for (i = 0; i < count; i++)
1295 			pages[i] = page + i;
1296 
1297 		return pages;
1298 	}
1299 
1300 	/* Go straight to 4K chunks if caller says it's OK. */
1301 	if (dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs))
1302 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1303 
1304 	/*
1305 	 * IOMMU can map any pages, so himem can also be used here
1306 	 */
1307 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1308 
1309 	while (count) {
1310 		int j, order;
1311 
1312 		order = iommu_order_array[order_idx];
1313 
1314 		/* Drop down when we get small */
1315 		if (__fls(count) < order) {
1316 			order_idx++;
1317 			continue;
1318 		}
1319 
1320 		if (order) {
1321 			/* See if it's easy to allocate a high-order chunk */
1322 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1323 
1324 			/* Go down a notch at first sign of pressure */
1325 			if (!pages[i]) {
1326 				order_idx++;
1327 				continue;
1328 			}
1329 		} else {
1330 			pages[i] = alloc_pages(gfp, 0);
1331 			if (!pages[i])
1332 				goto error;
1333 		}
1334 
1335 		if (order) {
1336 			split_page(pages[i], order);
1337 			j = 1 << order;
1338 			while (--j)
1339 				pages[i + j] = pages[i] + j;
1340 		}
1341 
1342 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1343 		i += 1 << order;
1344 		count -= 1 << order;
1345 	}
1346 
1347 	return pages;
1348 error:
1349 	while (i--)
1350 		if (pages[i])
1351 			__free_pages(pages[i], 0);
1352 	kvfree(pages);
1353 	return NULL;
1354 }
1355 
1356 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1357 			       size_t size, struct dma_attrs *attrs)
1358 {
1359 	int count = size >> PAGE_SHIFT;
1360 	int i;
1361 
1362 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1363 		dma_release_from_contiguous(dev, pages[0], count);
1364 	} else {
1365 		for (i = 0; i < count; i++)
1366 			if (pages[i])
1367 				__free_pages(pages[i], 0);
1368 	}
1369 
1370 	kvfree(pages);
1371 	return 0;
1372 }
1373 
1374 /*
1375  * Create a CPU mapping for a specified pages
1376  */
1377 static void *
1378 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1379 		    const void *caller)
1380 {
1381 	return dma_common_pages_remap(pages, size,
1382 			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1383 }
1384 
1385 /*
1386  * Create a mapping in device IO address space for specified pages
1387  */
1388 static dma_addr_t
1389 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1390 {
1391 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1392 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1393 	dma_addr_t dma_addr, iova;
1394 	int i;
1395 
1396 	dma_addr = __alloc_iova(mapping, size);
1397 	if (dma_addr == DMA_ERROR_CODE)
1398 		return dma_addr;
1399 
1400 	iova = dma_addr;
1401 	for (i = 0; i < count; ) {
1402 		int ret;
1403 
1404 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1405 		phys_addr_t phys = page_to_phys(pages[i]);
1406 		unsigned int len, j;
1407 
1408 		for (j = i + 1; j < count; j++, next_pfn++)
1409 			if (page_to_pfn(pages[j]) != next_pfn)
1410 				break;
1411 
1412 		len = (j - i) << PAGE_SHIFT;
1413 		ret = iommu_map(mapping->domain, iova, phys, len,
1414 				IOMMU_READ|IOMMU_WRITE);
1415 		if (ret < 0)
1416 			goto fail;
1417 		iova += len;
1418 		i = j;
1419 	}
1420 	return dma_addr;
1421 fail:
1422 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1423 	__free_iova(mapping, dma_addr, size);
1424 	return DMA_ERROR_CODE;
1425 }
1426 
1427 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1428 {
1429 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1430 
1431 	/*
1432 	 * add optional in-page offset from iova to size and align
1433 	 * result to page size
1434 	 */
1435 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1436 	iova &= PAGE_MASK;
1437 
1438 	iommu_unmap(mapping->domain, iova, size);
1439 	__free_iova(mapping, iova, size);
1440 	return 0;
1441 }
1442 
1443 static struct page **__atomic_get_pages(void *addr)
1444 {
1445 	struct page *page;
1446 	phys_addr_t phys;
1447 
1448 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1449 	page = phys_to_page(phys);
1450 
1451 	return (struct page **)page;
1452 }
1453 
1454 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1455 {
1456 	struct vm_struct *area;
1457 
1458 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1459 		return __atomic_get_pages(cpu_addr);
1460 
1461 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1462 		return cpu_addr;
1463 
1464 	area = find_vm_area(cpu_addr);
1465 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1466 		return area->pages;
1467 	return NULL;
1468 }
1469 
1470 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1471 				  dma_addr_t *handle)
1472 {
1473 	struct page *page;
1474 	void *addr;
1475 
1476 	addr = __alloc_from_pool(size, &page);
1477 	if (!addr)
1478 		return NULL;
1479 
1480 	*handle = __iommu_create_mapping(dev, &page, size);
1481 	if (*handle == DMA_ERROR_CODE)
1482 		goto err_mapping;
1483 
1484 	return addr;
1485 
1486 err_mapping:
1487 	__free_from_pool(addr, size);
1488 	return NULL;
1489 }
1490 
1491 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1492 				dma_addr_t handle, size_t size)
1493 {
1494 	__iommu_remove_mapping(dev, handle, size);
1495 	__free_from_pool(cpu_addr, size);
1496 }
1497 
1498 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1499 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1500 {
1501 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1502 	struct page **pages;
1503 	void *addr = NULL;
1504 
1505 	*handle = DMA_ERROR_CODE;
1506 	size = PAGE_ALIGN(size);
1507 
1508 	if (!gfpflags_allow_blocking(gfp))
1509 		return __iommu_alloc_atomic(dev, size, handle);
1510 
1511 	/*
1512 	 * Following is a work-around (a.k.a. hack) to prevent pages
1513 	 * with __GFP_COMP being passed to split_page() which cannot
1514 	 * handle them.  The real problem is that this flag probably
1515 	 * should be 0 on ARM as it is not supported on this
1516 	 * platform; see CONFIG_HUGETLBFS.
1517 	 */
1518 	gfp &= ~(__GFP_COMP);
1519 
1520 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1521 	if (!pages)
1522 		return NULL;
1523 
1524 	*handle = __iommu_create_mapping(dev, pages, size);
1525 	if (*handle == DMA_ERROR_CODE)
1526 		goto err_buffer;
1527 
1528 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1529 		return pages;
1530 
1531 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1532 				   __builtin_return_address(0));
1533 	if (!addr)
1534 		goto err_mapping;
1535 
1536 	return addr;
1537 
1538 err_mapping:
1539 	__iommu_remove_mapping(dev, *handle, size);
1540 err_buffer:
1541 	__iommu_free_buffer(dev, pages, size, attrs);
1542 	return NULL;
1543 }
1544 
1545 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1546 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1547 		    struct dma_attrs *attrs)
1548 {
1549 	unsigned long uaddr = vma->vm_start;
1550 	unsigned long usize = vma->vm_end - vma->vm_start;
1551 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1552 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1553 	unsigned long off = vma->vm_pgoff;
1554 
1555 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1556 
1557 	if (!pages)
1558 		return -ENXIO;
1559 
1560 	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1561 		return -ENXIO;
1562 
1563 	pages += off;
1564 
1565 	do {
1566 		int ret = vm_insert_page(vma, uaddr, *pages++);
1567 		if (ret) {
1568 			pr_err("Remapping memory failed: %d\n", ret);
1569 			return ret;
1570 		}
1571 		uaddr += PAGE_SIZE;
1572 		usize -= PAGE_SIZE;
1573 	} while (usize > 0);
1574 
1575 	return 0;
1576 }
1577 
1578 /*
1579  * free a page as defined by the above mapping.
1580  * Must not be called with IRQs disabled.
1581  */
1582 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1583 			  dma_addr_t handle, struct dma_attrs *attrs)
1584 {
1585 	struct page **pages;
1586 	size = PAGE_ALIGN(size);
1587 
1588 	if (__in_atomic_pool(cpu_addr, size)) {
1589 		__iommu_free_atomic(dev, cpu_addr, handle, size);
1590 		return;
1591 	}
1592 
1593 	pages = __iommu_get_pages(cpu_addr, attrs);
1594 	if (!pages) {
1595 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1596 		return;
1597 	}
1598 
1599 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1600 		dma_common_free_remap(cpu_addr, size,
1601 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1602 	}
1603 
1604 	__iommu_remove_mapping(dev, handle, size);
1605 	__iommu_free_buffer(dev, pages, size, attrs);
1606 }
1607 
1608 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1609 				 void *cpu_addr, dma_addr_t dma_addr,
1610 				 size_t size, struct dma_attrs *attrs)
1611 {
1612 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1613 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1614 
1615 	if (!pages)
1616 		return -ENXIO;
1617 
1618 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1619 					 GFP_KERNEL);
1620 }
1621 
1622 static int __dma_direction_to_prot(enum dma_data_direction dir)
1623 {
1624 	int prot;
1625 
1626 	switch (dir) {
1627 	case DMA_BIDIRECTIONAL:
1628 		prot = IOMMU_READ | IOMMU_WRITE;
1629 		break;
1630 	case DMA_TO_DEVICE:
1631 		prot = IOMMU_READ;
1632 		break;
1633 	case DMA_FROM_DEVICE:
1634 		prot = IOMMU_WRITE;
1635 		break;
1636 	default:
1637 		prot = 0;
1638 	}
1639 
1640 	return prot;
1641 }
1642 
1643 /*
1644  * Map a part of the scatter-gather list into contiguous io address space
1645  */
1646 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1647 			  size_t size, dma_addr_t *handle,
1648 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1649 			  bool is_coherent)
1650 {
1651 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1652 	dma_addr_t iova, iova_base;
1653 	int ret = 0;
1654 	unsigned int count;
1655 	struct scatterlist *s;
1656 	int prot;
1657 
1658 	size = PAGE_ALIGN(size);
1659 	*handle = DMA_ERROR_CODE;
1660 
1661 	iova_base = iova = __alloc_iova(mapping, size);
1662 	if (iova == DMA_ERROR_CODE)
1663 		return -ENOMEM;
1664 
1665 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1666 		phys_addr_t phys = page_to_phys(sg_page(s));
1667 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1668 
1669 		if (!is_coherent &&
1670 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1671 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1672 
1673 		prot = __dma_direction_to_prot(dir);
1674 
1675 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1676 		if (ret < 0)
1677 			goto fail;
1678 		count += len >> PAGE_SHIFT;
1679 		iova += len;
1680 	}
1681 	*handle = iova_base;
1682 
1683 	return 0;
1684 fail:
1685 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1686 	__free_iova(mapping, iova_base, size);
1687 	return ret;
1688 }
1689 
1690 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1691 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1692 		     bool is_coherent)
1693 {
1694 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1695 	int i, count = 0;
1696 	unsigned int offset = s->offset;
1697 	unsigned int size = s->offset + s->length;
1698 	unsigned int max = dma_get_max_seg_size(dev);
1699 
1700 	for (i = 1; i < nents; i++) {
1701 		s = sg_next(s);
1702 
1703 		s->dma_address = DMA_ERROR_CODE;
1704 		s->dma_length = 0;
1705 
1706 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1707 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1708 			    dir, attrs, is_coherent) < 0)
1709 				goto bad_mapping;
1710 
1711 			dma->dma_address += offset;
1712 			dma->dma_length = size - offset;
1713 
1714 			size = offset = s->offset;
1715 			start = s;
1716 			dma = sg_next(dma);
1717 			count += 1;
1718 		}
1719 		size += s->length;
1720 	}
1721 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1722 		is_coherent) < 0)
1723 		goto bad_mapping;
1724 
1725 	dma->dma_address += offset;
1726 	dma->dma_length = size - offset;
1727 
1728 	return count+1;
1729 
1730 bad_mapping:
1731 	for_each_sg(sg, s, count, i)
1732 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1733 	return 0;
1734 }
1735 
1736 /**
1737  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1738  * @dev: valid struct device pointer
1739  * @sg: list of buffers
1740  * @nents: number of buffers to map
1741  * @dir: DMA transfer direction
1742  *
1743  * Map a set of i/o coherent buffers described by scatterlist in streaming
1744  * mode for DMA. The scatter gather list elements are merged together (if
1745  * possible) and tagged with the appropriate dma address and length. They are
1746  * obtained via sg_dma_{address,length}.
1747  */
1748 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1749 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1750 {
1751 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1752 }
1753 
1754 /**
1755  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1756  * @dev: valid struct device pointer
1757  * @sg: list of buffers
1758  * @nents: number of buffers to map
1759  * @dir: DMA transfer direction
1760  *
1761  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1762  * The scatter gather list elements are merged together (if possible) and
1763  * tagged with the appropriate dma address and length. They are obtained via
1764  * sg_dma_{address,length}.
1765  */
1766 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1767 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1768 {
1769 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1770 }
1771 
1772 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1773 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1774 		bool is_coherent)
1775 {
1776 	struct scatterlist *s;
1777 	int i;
1778 
1779 	for_each_sg(sg, s, nents, i) {
1780 		if (sg_dma_len(s))
1781 			__iommu_remove_mapping(dev, sg_dma_address(s),
1782 					       sg_dma_len(s));
1783 		if (!is_coherent &&
1784 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1785 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1786 					      s->length, dir);
1787 	}
1788 }
1789 
1790 /**
1791  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1792  * @dev: valid struct device pointer
1793  * @sg: list of buffers
1794  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1795  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1796  *
1797  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1798  * rules concerning calls here are the same as for dma_unmap_single().
1799  */
1800 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1801 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1802 {
1803 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1804 }
1805 
1806 /**
1807  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1808  * @dev: valid struct device pointer
1809  * @sg: list of buffers
1810  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1811  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1812  *
1813  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1814  * rules concerning calls here are the same as for dma_unmap_single().
1815  */
1816 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1817 			enum dma_data_direction dir, struct dma_attrs *attrs)
1818 {
1819 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1820 }
1821 
1822 /**
1823  * arm_iommu_sync_sg_for_cpu
1824  * @dev: valid struct device pointer
1825  * @sg: list of buffers
1826  * @nents: number of buffers to map (returned from dma_map_sg)
1827  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1828  */
1829 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1830 			int nents, enum dma_data_direction dir)
1831 {
1832 	struct scatterlist *s;
1833 	int i;
1834 
1835 	for_each_sg(sg, s, nents, i)
1836 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1837 
1838 }
1839 
1840 /**
1841  * arm_iommu_sync_sg_for_device
1842  * @dev: valid struct device pointer
1843  * @sg: list of buffers
1844  * @nents: number of buffers to map (returned from dma_map_sg)
1845  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1846  */
1847 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1848 			int nents, enum dma_data_direction dir)
1849 {
1850 	struct scatterlist *s;
1851 	int i;
1852 
1853 	for_each_sg(sg, s, nents, i)
1854 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1855 }
1856 
1857 
1858 /**
1859  * arm_coherent_iommu_map_page
1860  * @dev: valid struct device pointer
1861  * @page: page that buffer resides in
1862  * @offset: offset into page for start of buffer
1863  * @size: size of buffer to map
1864  * @dir: DMA transfer direction
1865  *
1866  * Coherent IOMMU aware version of arm_dma_map_page()
1867  */
1868 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1869 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1870 	     struct dma_attrs *attrs)
1871 {
1872 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1873 	dma_addr_t dma_addr;
1874 	int ret, prot, len = PAGE_ALIGN(size + offset);
1875 
1876 	dma_addr = __alloc_iova(mapping, len);
1877 	if (dma_addr == DMA_ERROR_CODE)
1878 		return dma_addr;
1879 
1880 	prot = __dma_direction_to_prot(dir);
1881 
1882 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1883 	if (ret < 0)
1884 		goto fail;
1885 
1886 	return dma_addr + offset;
1887 fail:
1888 	__free_iova(mapping, dma_addr, len);
1889 	return DMA_ERROR_CODE;
1890 }
1891 
1892 /**
1893  * arm_iommu_map_page
1894  * @dev: valid struct device pointer
1895  * @page: page that buffer resides in
1896  * @offset: offset into page for start of buffer
1897  * @size: size of buffer to map
1898  * @dir: DMA transfer direction
1899  *
1900  * IOMMU aware version of arm_dma_map_page()
1901  */
1902 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1903 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1904 	     struct dma_attrs *attrs)
1905 {
1906 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1907 		__dma_page_cpu_to_dev(page, offset, size, dir);
1908 
1909 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1910 }
1911 
1912 /**
1913  * arm_coherent_iommu_unmap_page
1914  * @dev: valid struct device pointer
1915  * @handle: DMA address of buffer
1916  * @size: size of buffer (same as passed to dma_map_page)
1917  * @dir: DMA transfer direction (same as passed to dma_map_page)
1918  *
1919  * Coherent IOMMU aware version of arm_dma_unmap_page()
1920  */
1921 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1922 		size_t size, enum dma_data_direction dir,
1923 		struct dma_attrs *attrs)
1924 {
1925 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1926 	dma_addr_t iova = handle & PAGE_MASK;
1927 	int offset = handle & ~PAGE_MASK;
1928 	int len = PAGE_ALIGN(size + offset);
1929 
1930 	if (!iova)
1931 		return;
1932 
1933 	iommu_unmap(mapping->domain, iova, len);
1934 	__free_iova(mapping, iova, len);
1935 }
1936 
1937 /**
1938  * arm_iommu_unmap_page
1939  * @dev: valid struct device pointer
1940  * @handle: DMA address of buffer
1941  * @size: size of buffer (same as passed to dma_map_page)
1942  * @dir: DMA transfer direction (same as passed to dma_map_page)
1943  *
1944  * IOMMU aware version of arm_dma_unmap_page()
1945  */
1946 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1947 		size_t size, enum dma_data_direction dir,
1948 		struct dma_attrs *attrs)
1949 {
1950 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1951 	dma_addr_t iova = handle & PAGE_MASK;
1952 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1953 	int offset = handle & ~PAGE_MASK;
1954 	int len = PAGE_ALIGN(size + offset);
1955 
1956 	if (!iova)
1957 		return;
1958 
1959 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1960 		__dma_page_dev_to_cpu(page, offset, size, dir);
1961 
1962 	iommu_unmap(mapping->domain, iova, len);
1963 	__free_iova(mapping, iova, len);
1964 }
1965 
1966 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1967 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1968 {
1969 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1970 	dma_addr_t iova = handle & PAGE_MASK;
1971 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1972 	unsigned int offset = handle & ~PAGE_MASK;
1973 
1974 	if (!iova)
1975 		return;
1976 
1977 	__dma_page_dev_to_cpu(page, offset, size, dir);
1978 }
1979 
1980 static void arm_iommu_sync_single_for_device(struct device *dev,
1981 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1982 {
1983 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1984 	dma_addr_t iova = handle & PAGE_MASK;
1985 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1986 	unsigned int offset = handle & ~PAGE_MASK;
1987 
1988 	if (!iova)
1989 		return;
1990 
1991 	__dma_page_cpu_to_dev(page, offset, size, dir);
1992 }
1993 
1994 struct dma_map_ops iommu_ops = {
1995 	.alloc		= arm_iommu_alloc_attrs,
1996 	.free		= arm_iommu_free_attrs,
1997 	.mmap		= arm_iommu_mmap_attrs,
1998 	.get_sgtable	= arm_iommu_get_sgtable,
1999 
2000 	.map_page		= arm_iommu_map_page,
2001 	.unmap_page		= arm_iommu_unmap_page,
2002 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2003 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2004 
2005 	.map_sg			= arm_iommu_map_sg,
2006 	.unmap_sg		= arm_iommu_unmap_sg,
2007 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2008 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2009 
2010 	.set_dma_mask		= arm_dma_set_mask,
2011 };
2012 
2013 struct dma_map_ops iommu_coherent_ops = {
2014 	.alloc		= arm_iommu_alloc_attrs,
2015 	.free		= arm_iommu_free_attrs,
2016 	.mmap		= arm_iommu_mmap_attrs,
2017 	.get_sgtable	= arm_iommu_get_sgtable,
2018 
2019 	.map_page	= arm_coherent_iommu_map_page,
2020 	.unmap_page	= arm_coherent_iommu_unmap_page,
2021 
2022 	.map_sg		= arm_coherent_iommu_map_sg,
2023 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2024 
2025 	.set_dma_mask	= arm_dma_set_mask,
2026 };
2027 
2028 /**
2029  * arm_iommu_create_mapping
2030  * @bus: pointer to the bus holding the client device (for IOMMU calls)
2031  * @base: start address of the valid IO address space
2032  * @size: maximum size of the valid IO address space
2033  *
2034  * Creates a mapping structure which holds information about used/unused
2035  * IO address ranges, which is required to perform memory allocation and
2036  * mapping with IOMMU aware functions.
2037  *
2038  * The client device need to be attached to the mapping with
2039  * arm_iommu_attach_device function.
2040  */
2041 struct dma_iommu_mapping *
2042 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2043 {
2044 	unsigned int bits = size >> PAGE_SHIFT;
2045 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2046 	struct dma_iommu_mapping *mapping;
2047 	int extensions = 1;
2048 	int err = -ENOMEM;
2049 
2050 	/* currently only 32-bit DMA address space is supported */
2051 	if (size > DMA_BIT_MASK(32) + 1)
2052 		return ERR_PTR(-ERANGE);
2053 
2054 	if (!bitmap_size)
2055 		return ERR_PTR(-EINVAL);
2056 
2057 	if (bitmap_size > PAGE_SIZE) {
2058 		extensions = bitmap_size / PAGE_SIZE;
2059 		bitmap_size = PAGE_SIZE;
2060 	}
2061 
2062 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2063 	if (!mapping)
2064 		goto err;
2065 
2066 	mapping->bitmap_size = bitmap_size;
2067 	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2068 				GFP_KERNEL);
2069 	if (!mapping->bitmaps)
2070 		goto err2;
2071 
2072 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2073 	if (!mapping->bitmaps[0])
2074 		goto err3;
2075 
2076 	mapping->nr_bitmaps = 1;
2077 	mapping->extensions = extensions;
2078 	mapping->base = base;
2079 	mapping->bits = BITS_PER_BYTE * bitmap_size;
2080 
2081 	spin_lock_init(&mapping->lock);
2082 
2083 	mapping->domain = iommu_domain_alloc(bus);
2084 	if (!mapping->domain)
2085 		goto err4;
2086 
2087 	kref_init(&mapping->kref);
2088 	return mapping;
2089 err4:
2090 	kfree(mapping->bitmaps[0]);
2091 err3:
2092 	kfree(mapping->bitmaps);
2093 err2:
2094 	kfree(mapping);
2095 err:
2096 	return ERR_PTR(err);
2097 }
2098 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2099 
2100 static void release_iommu_mapping(struct kref *kref)
2101 {
2102 	int i;
2103 	struct dma_iommu_mapping *mapping =
2104 		container_of(kref, struct dma_iommu_mapping, kref);
2105 
2106 	iommu_domain_free(mapping->domain);
2107 	for (i = 0; i < mapping->nr_bitmaps; i++)
2108 		kfree(mapping->bitmaps[i]);
2109 	kfree(mapping->bitmaps);
2110 	kfree(mapping);
2111 }
2112 
2113 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2114 {
2115 	int next_bitmap;
2116 
2117 	if (mapping->nr_bitmaps >= mapping->extensions)
2118 		return -EINVAL;
2119 
2120 	next_bitmap = mapping->nr_bitmaps;
2121 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2122 						GFP_ATOMIC);
2123 	if (!mapping->bitmaps[next_bitmap])
2124 		return -ENOMEM;
2125 
2126 	mapping->nr_bitmaps++;
2127 
2128 	return 0;
2129 }
2130 
2131 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2132 {
2133 	if (mapping)
2134 		kref_put(&mapping->kref, release_iommu_mapping);
2135 }
2136 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2137 
2138 static int __arm_iommu_attach_device(struct device *dev,
2139 				     struct dma_iommu_mapping *mapping)
2140 {
2141 	int err;
2142 
2143 	err = iommu_attach_device(mapping->domain, dev);
2144 	if (err)
2145 		return err;
2146 
2147 	kref_get(&mapping->kref);
2148 	to_dma_iommu_mapping(dev) = mapping;
2149 
2150 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2151 	return 0;
2152 }
2153 
2154 /**
2155  * arm_iommu_attach_device
2156  * @dev: valid struct device pointer
2157  * @mapping: io address space mapping structure (returned from
2158  *	arm_iommu_create_mapping)
2159  *
2160  * Attaches specified io address space mapping to the provided device.
2161  * This replaces the dma operations (dma_map_ops pointer) with the
2162  * IOMMU aware version.
2163  *
2164  * More than one client might be attached to the same io address space
2165  * mapping.
2166  */
2167 int arm_iommu_attach_device(struct device *dev,
2168 			    struct dma_iommu_mapping *mapping)
2169 {
2170 	int err;
2171 
2172 	err = __arm_iommu_attach_device(dev, mapping);
2173 	if (err)
2174 		return err;
2175 
2176 	set_dma_ops(dev, &iommu_ops);
2177 	return 0;
2178 }
2179 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2180 
2181 static void __arm_iommu_detach_device(struct device *dev)
2182 {
2183 	struct dma_iommu_mapping *mapping;
2184 
2185 	mapping = to_dma_iommu_mapping(dev);
2186 	if (!mapping) {
2187 		dev_warn(dev, "Not attached\n");
2188 		return;
2189 	}
2190 
2191 	iommu_detach_device(mapping->domain, dev);
2192 	kref_put(&mapping->kref, release_iommu_mapping);
2193 	to_dma_iommu_mapping(dev) = NULL;
2194 
2195 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2196 }
2197 
2198 /**
2199  * arm_iommu_detach_device
2200  * @dev: valid struct device pointer
2201  *
2202  * Detaches the provided device from a previously attached map.
2203  * This voids the dma operations (dma_map_ops pointer)
2204  */
2205 void arm_iommu_detach_device(struct device *dev)
2206 {
2207 	__arm_iommu_detach_device(dev);
2208 	set_dma_ops(dev, NULL);
2209 }
2210 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2211 
2212 static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2213 {
2214 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2215 }
2216 
2217 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2218 				    const struct iommu_ops *iommu)
2219 {
2220 	struct dma_iommu_mapping *mapping;
2221 
2222 	if (!iommu)
2223 		return false;
2224 
2225 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2226 	if (IS_ERR(mapping)) {
2227 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2228 				size, dev_name(dev));
2229 		return false;
2230 	}
2231 
2232 	if (__arm_iommu_attach_device(dev, mapping)) {
2233 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2234 				dev_name(dev));
2235 		arm_iommu_release_mapping(mapping);
2236 		return false;
2237 	}
2238 
2239 	return true;
2240 }
2241 
2242 static void arm_teardown_iommu_dma_ops(struct device *dev)
2243 {
2244 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2245 
2246 	if (!mapping)
2247 		return;
2248 
2249 	__arm_iommu_detach_device(dev);
2250 	arm_iommu_release_mapping(mapping);
2251 }
2252 
2253 #else
2254 
2255 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2256 				    const struct iommu_ops *iommu)
2257 {
2258 	return false;
2259 }
2260 
2261 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2262 
2263 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2264 
2265 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2266 
2267 static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2268 {
2269 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2270 }
2271 
2272 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2273 			const struct iommu_ops *iommu, bool coherent)
2274 {
2275 	struct dma_map_ops *dma_ops;
2276 
2277 	dev->archdata.dma_coherent = coherent;
2278 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2279 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2280 	else
2281 		dma_ops = arm_get_dma_map_ops(coherent);
2282 
2283 	set_dma_ops(dev, dma_ops);
2284 }
2285 
2286 void arch_teardown_dma_ops(struct device *dev)
2287 {
2288 	arm_teardown_iommu_dma_ops(dev);
2289 }
2290