1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/dma-mapping.c 4 * 5 * Copyright (C) 2000-2004 Russell King 6 * 7 * DMA uncached mapping support. 8 */ 9 #include <linux/module.h> 10 #include <linux/mm.h> 11 #include <linux/genalloc.h> 12 #include <linux/gfp.h> 13 #include <linux/errno.h> 14 #include <linux/list.h> 15 #include <linux/init.h> 16 #include <linux/device.h> 17 #include <linux/dma-direct.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/dma-noncoherent.h> 20 #include <linux/dma-contiguous.h> 21 #include <linux/highmem.h> 22 #include <linux/memblock.h> 23 #include <linux/slab.h> 24 #include <linux/iommu.h> 25 #include <linux/io.h> 26 #include <linux/vmalloc.h> 27 #include <linux/sizes.h> 28 #include <linux/cma.h> 29 30 #include <asm/memory.h> 31 #include <asm/highmem.h> 32 #include <asm/cacheflush.h> 33 #include <asm/tlbflush.h> 34 #include <asm/mach/arch.h> 35 #include <asm/dma-iommu.h> 36 #include <asm/mach/map.h> 37 #include <asm/system_info.h> 38 #include <asm/dma-contiguous.h> 39 #include <xen/swiotlb-xen.h> 40 41 #include "dma.h" 42 #include "mm.h" 43 44 struct arm_dma_alloc_args { 45 struct device *dev; 46 size_t size; 47 gfp_t gfp; 48 pgprot_t prot; 49 const void *caller; 50 bool want_vaddr; 51 int coherent_flag; 52 }; 53 54 struct arm_dma_free_args { 55 struct device *dev; 56 size_t size; 57 void *cpu_addr; 58 struct page *page; 59 bool want_vaddr; 60 }; 61 62 #define NORMAL 0 63 #define COHERENT 1 64 65 struct arm_dma_allocator { 66 void *(*alloc)(struct arm_dma_alloc_args *args, 67 struct page **ret_page); 68 void (*free)(struct arm_dma_free_args *args); 69 }; 70 71 struct arm_dma_buffer { 72 struct list_head list; 73 void *virt; 74 struct arm_dma_allocator *allocator; 75 }; 76 77 static LIST_HEAD(arm_dma_bufs); 78 static DEFINE_SPINLOCK(arm_dma_bufs_lock); 79 80 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) 81 { 82 struct arm_dma_buffer *buf, *found = NULL; 83 unsigned long flags; 84 85 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 86 list_for_each_entry(buf, &arm_dma_bufs, list) { 87 if (buf->virt == virt) { 88 list_del(&buf->list); 89 found = buf; 90 break; 91 } 92 } 93 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 94 return found; 95 } 96 97 /* 98 * The DMA API is built upon the notion of "buffer ownership". A buffer 99 * is either exclusively owned by the CPU (and therefore may be accessed 100 * by it) or exclusively owned by the DMA device. These helper functions 101 * represent the transitions between these two ownership states. 102 * 103 * Note, however, that on later ARMs, this notion does not work due to 104 * speculative prefetches. We model our approach on the assumption that 105 * the CPU does do speculative prefetches, which means we clean caches 106 * before transfers and delay cache invalidation until transfer completion. 107 * 108 */ 109 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 110 size_t, enum dma_data_direction); 111 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 112 size_t, enum dma_data_direction); 113 114 /** 115 * arm_dma_map_page - map a portion of a page for streaming DMA 116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 117 * @page: page that buffer resides in 118 * @offset: offset into page for start of buffer 119 * @size: size of buffer to map 120 * @dir: DMA transfer direction 121 * 122 * Ensure that any data held in the cache is appropriately discarded 123 * or written back. 124 * 125 * The device owns this memory once this call has completed. The CPU 126 * can regain ownership by calling dma_unmap_page(). 127 */ 128 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 129 unsigned long offset, size_t size, enum dma_data_direction dir, 130 unsigned long attrs) 131 { 132 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 133 __dma_page_cpu_to_dev(page, offset, size, dir); 134 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 135 } 136 137 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 138 unsigned long offset, size_t size, enum dma_data_direction dir, 139 unsigned long attrs) 140 { 141 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 142 } 143 144 /** 145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 147 * @handle: DMA address of buffer 148 * @size: size of buffer (same as passed to dma_map_page) 149 * @dir: DMA transfer direction (same as passed to dma_map_page) 150 * 151 * Unmap a page streaming mode DMA translation. The handle and size 152 * must match what was provided in the previous dma_map_page() call. 153 * All other usages are undefined. 154 * 155 * After this call, reads by the CPU to the buffer are guaranteed to see 156 * whatever the device wrote there. 157 */ 158 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 159 size_t size, enum dma_data_direction dir, unsigned long attrs) 160 { 161 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 162 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 163 handle & ~PAGE_MASK, size, dir); 164 } 165 166 static void arm_dma_sync_single_for_cpu(struct device *dev, 167 dma_addr_t handle, size_t size, enum dma_data_direction dir) 168 { 169 unsigned int offset = handle & (PAGE_SIZE - 1); 170 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 171 __dma_page_dev_to_cpu(page, offset, size, dir); 172 } 173 174 static void arm_dma_sync_single_for_device(struct device *dev, 175 dma_addr_t handle, size_t size, enum dma_data_direction dir) 176 { 177 unsigned int offset = handle & (PAGE_SIZE - 1); 178 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 179 __dma_page_cpu_to_dev(page, offset, size, dir); 180 } 181 182 const struct dma_map_ops arm_dma_ops = { 183 .alloc = arm_dma_alloc, 184 .free = arm_dma_free, 185 .mmap = arm_dma_mmap, 186 .get_sgtable = arm_dma_get_sgtable, 187 .map_page = arm_dma_map_page, 188 .unmap_page = arm_dma_unmap_page, 189 .map_sg = arm_dma_map_sg, 190 .unmap_sg = arm_dma_unmap_sg, 191 .map_resource = dma_direct_map_resource, 192 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 193 .sync_single_for_device = arm_dma_sync_single_for_device, 194 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 195 .sync_sg_for_device = arm_dma_sync_sg_for_device, 196 .dma_supported = arm_dma_supported, 197 .get_required_mask = dma_direct_get_required_mask, 198 }; 199 EXPORT_SYMBOL(arm_dma_ops); 200 201 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 202 dma_addr_t *handle, gfp_t gfp, unsigned long attrs); 203 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 204 dma_addr_t handle, unsigned long attrs); 205 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 206 void *cpu_addr, dma_addr_t dma_addr, size_t size, 207 unsigned long attrs); 208 209 const struct dma_map_ops arm_coherent_dma_ops = { 210 .alloc = arm_coherent_dma_alloc, 211 .free = arm_coherent_dma_free, 212 .mmap = arm_coherent_dma_mmap, 213 .get_sgtable = arm_dma_get_sgtable, 214 .map_page = arm_coherent_dma_map_page, 215 .map_sg = arm_dma_map_sg, 216 .map_resource = dma_direct_map_resource, 217 .dma_supported = arm_dma_supported, 218 .get_required_mask = dma_direct_get_required_mask, 219 }; 220 EXPORT_SYMBOL(arm_coherent_dma_ops); 221 222 static int __dma_supported(struct device *dev, u64 mask, bool warn) 223 { 224 unsigned long max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); 225 226 /* 227 * Translate the device's DMA mask to a PFN limit. This 228 * PFN number includes the page which we can DMA to. 229 */ 230 if (dma_to_pfn(dev, mask) < max_dma_pfn) { 231 if (warn) 232 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", 233 mask, 234 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, 235 max_dma_pfn + 1); 236 return 0; 237 } 238 239 return 1; 240 } 241 242 static u64 get_coherent_dma_mask(struct device *dev) 243 { 244 u64 mask = (u64)DMA_BIT_MASK(32); 245 246 if (dev) { 247 mask = dev->coherent_dma_mask; 248 249 /* 250 * Sanity check the DMA mask - it must be non-zero, and 251 * must be able to be satisfied by a DMA allocation. 252 */ 253 if (mask == 0) { 254 dev_warn(dev, "coherent DMA mask is unset\n"); 255 return 0; 256 } 257 258 if (!__dma_supported(dev, mask, true)) 259 return 0; 260 } 261 262 return mask; 263 } 264 265 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) 266 { 267 /* 268 * Ensure that the allocated pages are zeroed, and that any data 269 * lurking in the kernel direct-mapped region is invalidated. 270 */ 271 if (PageHighMem(page)) { 272 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 273 phys_addr_t end = base + size; 274 while (size > 0) { 275 void *ptr = kmap_atomic(page); 276 memset(ptr, 0, PAGE_SIZE); 277 if (coherent_flag != COHERENT) 278 dmac_flush_range(ptr, ptr + PAGE_SIZE); 279 kunmap_atomic(ptr); 280 page++; 281 size -= PAGE_SIZE; 282 } 283 if (coherent_flag != COHERENT) 284 outer_flush_range(base, end); 285 } else { 286 void *ptr = page_address(page); 287 memset(ptr, 0, size); 288 if (coherent_flag != COHERENT) { 289 dmac_flush_range(ptr, ptr + size); 290 outer_flush_range(__pa(ptr), __pa(ptr) + size); 291 } 292 } 293 } 294 295 /* 296 * Allocate a DMA buffer for 'dev' of size 'size' using the 297 * specified gfp mask. Note that 'size' must be page aligned. 298 */ 299 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, 300 gfp_t gfp, int coherent_flag) 301 { 302 unsigned long order = get_order(size); 303 struct page *page, *p, *e; 304 305 page = alloc_pages(gfp, order); 306 if (!page) 307 return NULL; 308 309 /* 310 * Now split the huge page and free the excess pages 311 */ 312 split_page(page, order); 313 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 314 __free_page(p); 315 316 __dma_clear_buffer(page, size, coherent_flag); 317 318 return page; 319 } 320 321 /* 322 * Free a DMA buffer. 'size' must be page aligned. 323 */ 324 static void __dma_free_buffer(struct page *page, size_t size) 325 { 326 struct page *e = page + (size >> PAGE_SHIFT); 327 328 while (page < e) { 329 __free_page(page); 330 page++; 331 } 332 } 333 334 static void *__alloc_from_contiguous(struct device *dev, size_t size, 335 pgprot_t prot, struct page **ret_page, 336 const void *caller, bool want_vaddr, 337 int coherent_flag, gfp_t gfp); 338 339 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 340 pgprot_t prot, struct page **ret_page, 341 const void *caller, bool want_vaddr); 342 343 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 344 static struct gen_pool *atomic_pool __ro_after_init; 345 346 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 347 348 static int __init early_coherent_pool(char *p) 349 { 350 atomic_pool_size = memparse(p, &p); 351 return 0; 352 } 353 early_param("coherent_pool", early_coherent_pool); 354 355 /* 356 * Initialise the coherent pool for atomic allocations. 357 */ 358 static int __init atomic_pool_init(void) 359 { 360 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 361 gfp_t gfp = GFP_KERNEL | GFP_DMA; 362 struct page *page; 363 void *ptr; 364 365 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 366 if (!atomic_pool) 367 goto out; 368 /* 369 * The atomic pool is only used for non-coherent allocations 370 * so we must pass NORMAL for coherent_flag. 371 */ 372 if (dev_get_cma_area(NULL)) 373 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, 374 &page, atomic_pool_init, true, NORMAL, 375 GFP_KERNEL); 376 else 377 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, 378 &page, atomic_pool_init, true); 379 if (ptr) { 380 int ret; 381 382 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, 383 page_to_phys(page), 384 atomic_pool_size, -1); 385 if (ret) 386 goto destroy_genpool; 387 388 gen_pool_set_algo(atomic_pool, 389 gen_pool_first_fit_order_align, 390 NULL); 391 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", 392 atomic_pool_size / 1024); 393 return 0; 394 } 395 396 destroy_genpool: 397 gen_pool_destroy(atomic_pool); 398 atomic_pool = NULL; 399 out: 400 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 401 atomic_pool_size / 1024); 402 return -ENOMEM; 403 } 404 /* 405 * CMA is activated by core_initcall, so we must be called after it. 406 */ 407 postcore_initcall(atomic_pool_init); 408 409 struct dma_contig_early_reserve { 410 phys_addr_t base; 411 unsigned long size; 412 }; 413 414 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 415 416 static int dma_mmu_remap_num __initdata; 417 418 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 419 { 420 dma_mmu_remap[dma_mmu_remap_num].base = base; 421 dma_mmu_remap[dma_mmu_remap_num].size = size; 422 dma_mmu_remap_num++; 423 } 424 425 void __init dma_contiguous_remap(void) 426 { 427 int i; 428 for (i = 0; i < dma_mmu_remap_num; i++) { 429 phys_addr_t start = dma_mmu_remap[i].base; 430 phys_addr_t end = start + dma_mmu_remap[i].size; 431 struct map_desc map; 432 unsigned long addr; 433 434 if (end > arm_lowmem_limit) 435 end = arm_lowmem_limit; 436 if (start >= end) 437 continue; 438 439 map.pfn = __phys_to_pfn(start); 440 map.virtual = __phys_to_virt(start); 441 map.length = end - start; 442 map.type = MT_MEMORY_DMA_READY; 443 444 /* 445 * Clear previous low-memory mapping to ensure that the 446 * TLB does not see any conflicting entries, then flush 447 * the TLB of the old entries before creating new mappings. 448 * 449 * This ensures that any speculatively loaded TLB entries 450 * (even though they may be rare) can not cause any problems, 451 * and ensures that this code is architecturally compliant. 452 */ 453 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 454 addr += PMD_SIZE) 455 pmd_clear(pmd_off_k(addr)); 456 457 flush_tlb_kernel_range(__phys_to_virt(start), 458 __phys_to_virt(end)); 459 460 iotable_init(&map, 1); 461 } 462 } 463 464 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data) 465 { 466 struct page *page = virt_to_page(addr); 467 pgprot_t prot = *(pgprot_t *)data; 468 469 set_pte_ext(pte, mk_pte(page, prot), 0); 470 return 0; 471 } 472 473 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 474 { 475 unsigned long start = (unsigned long) page_address(page); 476 unsigned end = start + size; 477 478 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 479 flush_tlb_kernel_range(start, end); 480 } 481 482 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 483 pgprot_t prot, struct page **ret_page, 484 const void *caller, bool want_vaddr) 485 { 486 struct page *page; 487 void *ptr = NULL; 488 /* 489 * __alloc_remap_buffer is only called when the device is 490 * non-coherent 491 */ 492 page = __dma_alloc_buffer(dev, size, gfp, NORMAL); 493 if (!page) 494 return NULL; 495 if (!want_vaddr) 496 goto out; 497 498 ptr = dma_common_contiguous_remap(page, size, prot, caller); 499 if (!ptr) { 500 __dma_free_buffer(page, size); 501 return NULL; 502 } 503 504 out: 505 *ret_page = page; 506 return ptr; 507 } 508 509 static void *__alloc_from_pool(size_t size, struct page **ret_page) 510 { 511 unsigned long val; 512 void *ptr = NULL; 513 514 if (!atomic_pool) { 515 WARN(1, "coherent pool not initialised!\n"); 516 return NULL; 517 } 518 519 val = gen_pool_alloc(atomic_pool, size); 520 if (val) { 521 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 522 523 *ret_page = phys_to_page(phys); 524 ptr = (void *)val; 525 } 526 527 return ptr; 528 } 529 530 static bool __in_atomic_pool(void *start, size_t size) 531 { 532 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 533 } 534 535 static int __free_from_pool(void *start, size_t size) 536 { 537 if (!__in_atomic_pool(start, size)) 538 return 0; 539 540 gen_pool_free(atomic_pool, (unsigned long)start, size); 541 542 return 1; 543 } 544 545 static void *__alloc_from_contiguous(struct device *dev, size_t size, 546 pgprot_t prot, struct page **ret_page, 547 const void *caller, bool want_vaddr, 548 int coherent_flag, gfp_t gfp) 549 { 550 unsigned long order = get_order(size); 551 size_t count = size >> PAGE_SHIFT; 552 struct page *page; 553 void *ptr = NULL; 554 555 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN); 556 if (!page) 557 return NULL; 558 559 __dma_clear_buffer(page, size, coherent_flag); 560 561 if (!want_vaddr) 562 goto out; 563 564 if (PageHighMem(page)) { 565 ptr = dma_common_contiguous_remap(page, size, prot, caller); 566 if (!ptr) { 567 dma_release_from_contiguous(dev, page, count); 568 return NULL; 569 } 570 } else { 571 __dma_remap(page, size, prot); 572 ptr = page_address(page); 573 } 574 575 out: 576 *ret_page = page; 577 return ptr; 578 } 579 580 static void __free_from_contiguous(struct device *dev, struct page *page, 581 void *cpu_addr, size_t size, bool want_vaddr) 582 { 583 if (want_vaddr) { 584 if (PageHighMem(page)) 585 dma_common_free_remap(cpu_addr, size); 586 else 587 __dma_remap(page, size, PAGE_KERNEL); 588 } 589 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 590 } 591 592 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) 593 { 594 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? 595 pgprot_writecombine(prot) : 596 pgprot_dmacoherent(prot); 597 return prot; 598 } 599 600 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 601 struct page **ret_page) 602 { 603 struct page *page; 604 /* __alloc_simple_buffer is only called when the device is coherent */ 605 page = __dma_alloc_buffer(dev, size, gfp, COHERENT); 606 if (!page) 607 return NULL; 608 609 *ret_page = page; 610 return page_address(page); 611 } 612 613 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, 614 struct page **ret_page) 615 { 616 return __alloc_simple_buffer(args->dev, args->size, args->gfp, 617 ret_page); 618 } 619 620 static void simple_allocator_free(struct arm_dma_free_args *args) 621 { 622 __dma_free_buffer(args->page, args->size); 623 } 624 625 static struct arm_dma_allocator simple_allocator = { 626 .alloc = simple_allocator_alloc, 627 .free = simple_allocator_free, 628 }; 629 630 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, 631 struct page **ret_page) 632 { 633 return __alloc_from_contiguous(args->dev, args->size, args->prot, 634 ret_page, args->caller, 635 args->want_vaddr, args->coherent_flag, 636 args->gfp); 637 } 638 639 static void cma_allocator_free(struct arm_dma_free_args *args) 640 { 641 __free_from_contiguous(args->dev, args->page, args->cpu_addr, 642 args->size, args->want_vaddr); 643 } 644 645 static struct arm_dma_allocator cma_allocator = { 646 .alloc = cma_allocator_alloc, 647 .free = cma_allocator_free, 648 }; 649 650 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, 651 struct page **ret_page) 652 { 653 return __alloc_from_pool(args->size, ret_page); 654 } 655 656 static void pool_allocator_free(struct arm_dma_free_args *args) 657 { 658 __free_from_pool(args->cpu_addr, args->size); 659 } 660 661 static struct arm_dma_allocator pool_allocator = { 662 .alloc = pool_allocator_alloc, 663 .free = pool_allocator_free, 664 }; 665 666 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, 667 struct page **ret_page) 668 { 669 return __alloc_remap_buffer(args->dev, args->size, args->gfp, 670 args->prot, ret_page, args->caller, 671 args->want_vaddr); 672 } 673 674 static void remap_allocator_free(struct arm_dma_free_args *args) 675 { 676 if (args->want_vaddr) 677 dma_common_free_remap(args->cpu_addr, args->size); 678 679 __dma_free_buffer(args->page, args->size); 680 } 681 682 static struct arm_dma_allocator remap_allocator = { 683 .alloc = remap_allocator_alloc, 684 .free = remap_allocator_free, 685 }; 686 687 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 688 gfp_t gfp, pgprot_t prot, bool is_coherent, 689 unsigned long attrs, const void *caller) 690 { 691 u64 mask = get_coherent_dma_mask(dev); 692 struct page *page = NULL; 693 void *addr; 694 bool allowblock, cma; 695 struct arm_dma_buffer *buf; 696 struct arm_dma_alloc_args args = { 697 .dev = dev, 698 .size = PAGE_ALIGN(size), 699 .gfp = gfp, 700 .prot = prot, 701 .caller = caller, 702 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 703 .coherent_flag = is_coherent ? COHERENT : NORMAL, 704 }; 705 706 #ifdef CONFIG_DMA_API_DEBUG 707 u64 limit = (mask + 1) & ~mask; 708 if (limit && size >= limit) { 709 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 710 size, mask); 711 return NULL; 712 } 713 #endif 714 715 if (!mask) 716 return NULL; 717 718 buf = kzalloc(sizeof(*buf), 719 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); 720 if (!buf) 721 return NULL; 722 723 if (mask < 0xffffffffULL) 724 gfp |= GFP_DMA; 725 726 /* 727 * Following is a work-around (a.k.a. hack) to prevent pages 728 * with __GFP_COMP being passed to split_page() which cannot 729 * handle them. The real problem is that this flag probably 730 * should be 0 on ARM as it is not supported on this 731 * platform; see CONFIG_HUGETLBFS. 732 */ 733 gfp &= ~(__GFP_COMP); 734 args.gfp = gfp; 735 736 *handle = DMA_MAPPING_ERROR; 737 allowblock = gfpflags_allow_blocking(gfp); 738 cma = allowblock ? dev_get_cma_area(dev) : false; 739 740 if (cma) 741 buf->allocator = &cma_allocator; 742 else if (is_coherent) 743 buf->allocator = &simple_allocator; 744 else if (allowblock) 745 buf->allocator = &remap_allocator; 746 else 747 buf->allocator = &pool_allocator; 748 749 addr = buf->allocator->alloc(&args, &page); 750 751 if (page) { 752 unsigned long flags; 753 754 *handle = pfn_to_dma(dev, page_to_pfn(page)); 755 buf->virt = args.want_vaddr ? addr : page; 756 757 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 758 list_add(&buf->list, &arm_dma_bufs); 759 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 760 } else { 761 kfree(buf); 762 } 763 764 return args.want_vaddr ? addr : page; 765 } 766 767 /* 768 * Allocate DMA-coherent memory space and return both the kernel remapped 769 * virtual and bus address for that space. 770 */ 771 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 772 gfp_t gfp, unsigned long attrs) 773 { 774 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 775 776 return __dma_alloc(dev, size, handle, gfp, prot, false, 777 attrs, __builtin_return_address(0)); 778 } 779 780 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 781 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 782 { 783 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true, 784 attrs, __builtin_return_address(0)); 785 } 786 787 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 788 void *cpu_addr, dma_addr_t dma_addr, size_t size, 789 unsigned long attrs) 790 { 791 int ret = -ENXIO; 792 unsigned long nr_vma_pages = vma_pages(vma); 793 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 794 unsigned long pfn = dma_to_pfn(dev, dma_addr); 795 unsigned long off = vma->vm_pgoff; 796 797 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 798 return ret; 799 800 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 801 ret = remap_pfn_range(vma, vma->vm_start, 802 pfn + off, 803 vma->vm_end - vma->vm_start, 804 vma->vm_page_prot); 805 } 806 807 return ret; 808 } 809 810 /* 811 * Create userspace mapping for the DMA-coherent memory. 812 */ 813 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 814 void *cpu_addr, dma_addr_t dma_addr, size_t size, 815 unsigned long attrs) 816 { 817 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 818 } 819 820 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 821 void *cpu_addr, dma_addr_t dma_addr, size_t size, 822 unsigned long attrs) 823 { 824 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 825 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 826 } 827 828 /* 829 * Free a buffer as defined by the above mapping. 830 */ 831 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 832 dma_addr_t handle, unsigned long attrs, 833 bool is_coherent) 834 { 835 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 836 struct arm_dma_buffer *buf; 837 struct arm_dma_free_args args = { 838 .dev = dev, 839 .size = PAGE_ALIGN(size), 840 .cpu_addr = cpu_addr, 841 .page = page, 842 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 843 }; 844 845 buf = arm_dma_buffer_find(cpu_addr); 846 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) 847 return; 848 849 buf->allocator->free(&args); 850 kfree(buf); 851 } 852 853 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 854 dma_addr_t handle, unsigned long attrs) 855 { 856 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 857 } 858 859 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 860 dma_addr_t handle, unsigned long attrs) 861 { 862 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 863 } 864 865 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 866 void *cpu_addr, dma_addr_t handle, size_t size, 867 unsigned long attrs) 868 { 869 unsigned long pfn = dma_to_pfn(dev, handle); 870 struct page *page; 871 int ret; 872 873 /* If the PFN is not valid, we do not have a struct page */ 874 if (!pfn_valid(pfn)) 875 return -ENXIO; 876 877 page = pfn_to_page(pfn); 878 879 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 880 if (unlikely(ret)) 881 return ret; 882 883 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 884 return 0; 885 } 886 887 static void dma_cache_maint_page(struct page *page, unsigned long offset, 888 size_t size, enum dma_data_direction dir, 889 void (*op)(const void *, size_t, int)) 890 { 891 unsigned long pfn; 892 size_t left = size; 893 894 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 895 offset %= PAGE_SIZE; 896 897 /* 898 * A single sg entry may refer to multiple physically contiguous 899 * pages. But we still need to process highmem pages individually. 900 * If highmem is not configured then the bulk of this loop gets 901 * optimized out. 902 */ 903 do { 904 size_t len = left; 905 void *vaddr; 906 907 page = pfn_to_page(pfn); 908 909 if (PageHighMem(page)) { 910 if (len + offset > PAGE_SIZE) 911 len = PAGE_SIZE - offset; 912 913 if (cache_is_vipt_nonaliasing()) { 914 vaddr = kmap_atomic(page); 915 op(vaddr + offset, len, dir); 916 kunmap_atomic(vaddr); 917 } else { 918 vaddr = kmap_high_get(page); 919 if (vaddr) { 920 op(vaddr + offset, len, dir); 921 kunmap_high(page); 922 } 923 } 924 } else { 925 vaddr = page_address(page) + offset; 926 op(vaddr, len, dir); 927 } 928 offset = 0; 929 pfn++; 930 left -= len; 931 } while (left); 932 } 933 934 /* 935 * Make an area consistent for devices. 936 * Note: Drivers should NOT use this function directly, as it will break 937 * platforms with CONFIG_DMABOUNCE. 938 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 939 */ 940 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 941 size_t size, enum dma_data_direction dir) 942 { 943 phys_addr_t paddr; 944 945 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 946 947 paddr = page_to_phys(page) + off; 948 if (dir == DMA_FROM_DEVICE) { 949 outer_inv_range(paddr, paddr + size); 950 } else { 951 outer_clean_range(paddr, paddr + size); 952 } 953 /* FIXME: non-speculating: flush on bidirectional mappings? */ 954 } 955 956 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 957 size_t size, enum dma_data_direction dir) 958 { 959 phys_addr_t paddr = page_to_phys(page) + off; 960 961 /* FIXME: non-speculating: not required */ 962 /* in any case, don't bother invalidating if DMA to device */ 963 if (dir != DMA_TO_DEVICE) { 964 outer_inv_range(paddr, paddr + size); 965 966 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 967 } 968 969 /* 970 * Mark the D-cache clean for these pages to avoid extra flushing. 971 */ 972 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 973 unsigned long pfn; 974 size_t left = size; 975 976 pfn = page_to_pfn(page) + off / PAGE_SIZE; 977 off %= PAGE_SIZE; 978 if (off) { 979 pfn++; 980 left -= PAGE_SIZE - off; 981 } 982 while (left >= PAGE_SIZE) { 983 page = pfn_to_page(pfn++); 984 set_bit(PG_dcache_clean, &page->flags); 985 left -= PAGE_SIZE; 986 } 987 } 988 } 989 990 /** 991 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 992 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 993 * @sg: list of buffers 994 * @nents: number of buffers to map 995 * @dir: DMA transfer direction 996 * 997 * Map a set of buffers described by scatterlist in streaming mode for DMA. 998 * This is the scatter-gather version of the dma_map_single interface. 999 * Here the scatter gather list elements are each tagged with the 1000 * appropriate dma address and length. They are obtained via 1001 * sg_dma_{address,length}. 1002 * 1003 * Device ownership issues as mentioned for dma_map_single are the same 1004 * here. 1005 */ 1006 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1007 enum dma_data_direction dir, unsigned long attrs) 1008 { 1009 const struct dma_map_ops *ops = get_dma_ops(dev); 1010 struct scatterlist *s; 1011 int i, j; 1012 1013 for_each_sg(sg, s, nents, i) { 1014 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1015 s->dma_length = s->length; 1016 #endif 1017 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 1018 s->length, dir, attrs); 1019 if (dma_mapping_error(dev, s->dma_address)) 1020 goto bad_mapping; 1021 } 1022 return nents; 1023 1024 bad_mapping: 1025 for_each_sg(sg, s, i, j) 1026 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1027 return 0; 1028 } 1029 1030 /** 1031 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1032 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1033 * @sg: list of buffers 1034 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1035 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1036 * 1037 * Unmap a set of streaming mode DMA translations. Again, CPU access 1038 * rules concerning calls here are the same as for dma_unmap_single(). 1039 */ 1040 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1041 enum dma_data_direction dir, unsigned long attrs) 1042 { 1043 const struct dma_map_ops *ops = get_dma_ops(dev); 1044 struct scatterlist *s; 1045 1046 int i; 1047 1048 for_each_sg(sg, s, nents, i) 1049 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1050 } 1051 1052 /** 1053 * arm_dma_sync_sg_for_cpu 1054 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1055 * @sg: list of buffers 1056 * @nents: number of buffers to map (returned from dma_map_sg) 1057 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1058 */ 1059 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1060 int nents, enum dma_data_direction dir) 1061 { 1062 const struct dma_map_ops *ops = get_dma_ops(dev); 1063 struct scatterlist *s; 1064 int i; 1065 1066 for_each_sg(sg, s, nents, i) 1067 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 1068 dir); 1069 } 1070 1071 /** 1072 * arm_dma_sync_sg_for_device 1073 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1074 * @sg: list of buffers 1075 * @nents: number of buffers to map (returned from dma_map_sg) 1076 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1077 */ 1078 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1079 int nents, enum dma_data_direction dir) 1080 { 1081 const struct dma_map_ops *ops = get_dma_ops(dev); 1082 struct scatterlist *s; 1083 int i; 1084 1085 for_each_sg(sg, s, nents, i) 1086 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 1087 dir); 1088 } 1089 1090 /* 1091 * Return whether the given device DMA address mask can be supported 1092 * properly. For example, if your device can only drive the low 24-bits 1093 * during bus mastering, then you would pass 0x00ffffff as the mask 1094 * to this function. 1095 */ 1096 int arm_dma_supported(struct device *dev, u64 mask) 1097 { 1098 return __dma_supported(dev, mask, false); 1099 } 1100 1101 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent) 1102 { 1103 /* 1104 * When CONFIG_ARM_LPAE is set, physical address can extend above 1105 * 32-bits, which then can't be addressed by devices that only support 1106 * 32-bit DMA. 1107 * Use the generic dma-direct / swiotlb ops code in that case, as that 1108 * handles bounce buffering for us. 1109 */ 1110 if (IS_ENABLED(CONFIG_ARM_LPAE)) 1111 return NULL; 1112 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; 1113 } 1114 1115 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1116 1117 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) 1118 { 1119 int prot = 0; 1120 1121 if (attrs & DMA_ATTR_PRIVILEGED) 1122 prot |= IOMMU_PRIV; 1123 1124 switch (dir) { 1125 case DMA_BIDIRECTIONAL: 1126 return prot | IOMMU_READ | IOMMU_WRITE; 1127 case DMA_TO_DEVICE: 1128 return prot | IOMMU_READ; 1129 case DMA_FROM_DEVICE: 1130 return prot | IOMMU_WRITE; 1131 default: 1132 return prot; 1133 } 1134 } 1135 1136 /* IOMMU */ 1137 1138 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 1139 1140 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1141 size_t size) 1142 { 1143 unsigned int order = get_order(size); 1144 unsigned int align = 0; 1145 unsigned int count, start; 1146 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1147 unsigned long flags; 1148 dma_addr_t iova; 1149 int i; 1150 1151 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1152 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1153 1154 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1155 align = (1 << order) - 1; 1156 1157 spin_lock_irqsave(&mapping->lock, flags); 1158 for (i = 0; i < mapping->nr_bitmaps; i++) { 1159 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1160 mapping->bits, 0, count, align); 1161 1162 if (start > mapping->bits) 1163 continue; 1164 1165 bitmap_set(mapping->bitmaps[i], start, count); 1166 break; 1167 } 1168 1169 /* 1170 * No unused range found. Try to extend the existing mapping 1171 * and perform a second attempt to reserve an IO virtual 1172 * address range of size bytes. 1173 */ 1174 if (i == mapping->nr_bitmaps) { 1175 if (extend_iommu_mapping(mapping)) { 1176 spin_unlock_irqrestore(&mapping->lock, flags); 1177 return DMA_MAPPING_ERROR; 1178 } 1179 1180 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1181 mapping->bits, 0, count, align); 1182 1183 if (start > mapping->bits) { 1184 spin_unlock_irqrestore(&mapping->lock, flags); 1185 return DMA_MAPPING_ERROR; 1186 } 1187 1188 bitmap_set(mapping->bitmaps[i], start, count); 1189 } 1190 spin_unlock_irqrestore(&mapping->lock, flags); 1191 1192 iova = mapping->base + (mapping_size * i); 1193 iova += start << PAGE_SHIFT; 1194 1195 return iova; 1196 } 1197 1198 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1199 dma_addr_t addr, size_t size) 1200 { 1201 unsigned int start, count; 1202 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1203 unsigned long flags; 1204 dma_addr_t bitmap_base; 1205 u32 bitmap_index; 1206 1207 if (!size) 1208 return; 1209 1210 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; 1211 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 1212 1213 bitmap_base = mapping->base + mapping_size * bitmap_index; 1214 1215 start = (addr - bitmap_base) >> PAGE_SHIFT; 1216 1217 if (addr + size > bitmap_base + mapping_size) { 1218 /* 1219 * The address range to be freed reaches into the iova 1220 * range of the next bitmap. This should not happen as 1221 * we don't allow this in __alloc_iova (at the 1222 * moment). 1223 */ 1224 BUG(); 1225 } else 1226 count = size >> PAGE_SHIFT; 1227 1228 spin_lock_irqsave(&mapping->lock, flags); 1229 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 1230 spin_unlock_irqrestore(&mapping->lock, flags); 1231 } 1232 1233 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ 1234 static const int iommu_order_array[] = { 9, 8, 4, 0 }; 1235 1236 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1237 gfp_t gfp, unsigned long attrs, 1238 int coherent_flag) 1239 { 1240 struct page **pages; 1241 int count = size >> PAGE_SHIFT; 1242 int array_size = count * sizeof(struct page *); 1243 int i = 0; 1244 int order_idx = 0; 1245 1246 if (array_size <= PAGE_SIZE) 1247 pages = kzalloc(array_size, GFP_KERNEL); 1248 else 1249 pages = vzalloc(array_size); 1250 if (!pages) 1251 return NULL; 1252 1253 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) 1254 { 1255 unsigned long order = get_order(size); 1256 struct page *page; 1257 1258 page = dma_alloc_from_contiguous(dev, count, order, 1259 gfp & __GFP_NOWARN); 1260 if (!page) 1261 goto error; 1262 1263 __dma_clear_buffer(page, size, coherent_flag); 1264 1265 for (i = 0; i < count; i++) 1266 pages[i] = page + i; 1267 1268 return pages; 1269 } 1270 1271 /* Go straight to 4K chunks if caller says it's OK. */ 1272 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 1273 order_idx = ARRAY_SIZE(iommu_order_array) - 1; 1274 1275 /* 1276 * IOMMU can map any pages, so himem can also be used here 1277 */ 1278 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1279 1280 while (count) { 1281 int j, order; 1282 1283 order = iommu_order_array[order_idx]; 1284 1285 /* Drop down when we get small */ 1286 if (__fls(count) < order) { 1287 order_idx++; 1288 continue; 1289 } 1290 1291 if (order) { 1292 /* See if it's easy to allocate a high-order chunk */ 1293 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); 1294 1295 /* Go down a notch at first sign of pressure */ 1296 if (!pages[i]) { 1297 order_idx++; 1298 continue; 1299 } 1300 } else { 1301 pages[i] = alloc_pages(gfp, 0); 1302 if (!pages[i]) 1303 goto error; 1304 } 1305 1306 if (order) { 1307 split_page(pages[i], order); 1308 j = 1 << order; 1309 while (--j) 1310 pages[i + j] = pages[i] + j; 1311 } 1312 1313 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); 1314 i += 1 << order; 1315 count -= 1 << order; 1316 } 1317 1318 return pages; 1319 error: 1320 while (i--) 1321 if (pages[i]) 1322 __free_pages(pages[i], 0); 1323 kvfree(pages); 1324 return NULL; 1325 } 1326 1327 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1328 size_t size, unsigned long attrs) 1329 { 1330 int count = size >> PAGE_SHIFT; 1331 int i; 1332 1333 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 1334 dma_release_from_contiguous(dev, pages[0], count); 1335 } else { 1336 for (i = 0; i < count; i++) 1337 if (pages[i]) 1338 __free_pages(pages[i], 0); 1339 } 1340 1341 kvfree(pages); 1342 return 0; 1343 } 1344 1345 /* 1346 * Create a mapping in device IO address space for specified pages 1347 */ 1348 static dma_addr_t 1349 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, 1350 unsigned long attrs) 1351 { 1352 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1353 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1354 dma_addr_t dma_addr, iova; 1355 int i; 1356 1357 dma_addr = __alloc_iova(mapping, size); 1358 if (dma_addr == DMA_MAPPING_ERROR) 1359 return dma_addr; 1360 1361 iova = dma_addr; 1362 for (i = 0; i < count; ) { 1363 int ret; 1364 1365 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1366 phys_addr_t phys = page_to_phys(pages[i]); 1367 unsigned int len, j; 1368 1369 for (j = i + 1; j < count; j++, next_pfn++) 1370 if (page_to_pfn(pages[j]) != next_pfn) 1371 break; 1372 1373 len = (j - i) << PAGE_SHIFT; 1374 ret = iommu_map(mapping->domain, iova, phys, len, 1375 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs)); 1376 if (ret < 0) 1377 goto fail; 1378 iova += len; 1379 i = j; 1380 } 1381 return dma_addr; 1382 fail: 1383 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1384 __free_iova(mapping, dma_addr, size); 1385 return DMA_MAPPING_ERROR; 1386 } 1387 1388 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1389 { 1390 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1391 1392 /* 1393 * add optional in-page offset from iova to size and align 1394 * result to page size 1395 */ 1396 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1397 iova &= PAGE_MASK; 1398 1399 iommu_unmap(mapping->domain, iova, size); 1400 __free_iova(mapping, iova, size); 1401 return 0; 1402 } 1403 1404 static struct page **__atomic_get_pages(void *addr) 1405 { 1406 struct page *page; 1407 phys_addr_t phys; 1408 1409 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); 1410 page = phys_to_page(phys); 1411 1412 return (struct page **)page; 1413 } 1414 1415 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) 1416 { 1417 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1418 return __atomic_get_pages(cpu_addr); 1419 1420 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1421 return cpu_addr; 1422 1423 return dma_common_find_pages(cpu_addr); 1424 } 1425 1426 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, 1427 dma_addr_t *handle, int coherent_flag, 1428 unsigned long attrs) 1429 { 1430 struct page *page; 1431 void *addr; 1432 1433 if (coherent_flag == COHERENT) 1434 addr = __alloc_simple_buffer(dev, size, gfp, &page); 1435 else 1436 addr = __alloc_from_pool(size, &page); 1437 if (!addr) 1438 return NULL; 1439 1440 *handle = __iommu_create_mapping(dev, &page, size, attrs); 1441 if (*handle == DMA_MAPPING_ERROR) 1442 goto err_mapping; 1443 1444 return addr; 1445 1446 err_mapping: 1447 __free_from_pool(addr, size); 1448 return NULL; 1449 } 1450 1451 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1452 dma_addr_t handle, size_t size, int coherent_flag) 1453 { 1454 __iommu_remove_mapping(dev, handle, size); 1455 if (coherent_flag == COHERENT) 1456 __dma_free_buffer(virt_to_page(cpu_addr), size); 1457 else 1458 __free_from_pool(cpu_addr, size); 1459 } 1460 1461 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size, 1462 dma_addr_t *handle, gfp_t gfp, unsigned long attrs, 1463 int coherent_flag) 1464 { 1465 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1466 struct page **pages; 1467 void *addr = NULL; 1468 1469 *handle = DMA_MAPPING_ERROR; 1470 size = PAGE_ALIGN(size); 1471 1472 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp)) 1473 return __iommu_alloc_simple(dev, size, gfp, handle, 1474 coherent_flag, attrs); 1475 1476 /* 1477 * Following is a work-around (a.k.a. hack) to prevent pages 1478 * with __GFP_COMP being passed to split_page() which cannot 1479 * handle them. The real problem is that this flag probably 1480 * should be 0 on ARM as it is not supported on this 1481 * platform; see CONFIG_HUGETLBFS. 1482 */ 1483 gfp &= ~(__GFP_COMP); 1484 1485 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); 1486 if (!pages) 1487 return NULL; 1488 1489 *handle = __iommu_create_mapping(dev, pages, size, attrs); 1490 if (*handle == DMA_MAPPING_ERROR) 1491 goto err_buffer; 1492 1493 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1494 return pages; 1495 1496 addr = dma_common_pages_remap(pages, size, prot, 1497 __builtin_return_address(0)); 1498 if (!addr) 1499 goto err_mapping; 1500 1501 return addr; 1502 1503 err_mapping: 1504 __iommu_remove_mapping(dev, *handle, size); 1505 err_buffer: 1506 __iommu_free_buffer(dev, pages, size, attrs); 1507 return NULL; 1508 } 1509 1510 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1511 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1512 { 1513 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL); 1514 } 1515 1516 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size, 1517 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1518 { 1519 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT); 1520 } 1521 1522 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1523 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1524 unsigned long attrs) 1525 { 1526 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1527 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1528 int err; 1529 1530 if (!pages) 1531 return -ENXIO; 1532 1533 if (vma->vm_pgoff >= nr_pages) 1534 return -ENXIO; 1535 1536 err = vm_map_pages(vma, pages, nr_pages); 1537 if (err) 1538 pr_err("Remapping memory failed: %d\n", err); 1539 1540 return err; 1541 } 1542 static int arm_iommu_mmap_attrs(struct device *dev, 1543 struct vm_area_struct *vma, void *cpu_addr, 1544 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1545 { 1546 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1547 1548 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1549 } 1550 1551 static int arm_coherent_iommu_mmap_attrs(struct device *dev, 1552 struct vm_area_struct *vma, void *cpu_addr, 1553 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1554 { 1555 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1556 } 1557 1558 /* 1559 * free a page as defined by the above mapping. 1560 * Must not be called with IRQs disabled. 1561 */ 1562 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1563 dma_addr_t handle, unsigned long attrs, int coherent_flag) 1564 { 1565 struct page **pages; 1566 size = PAGE_ALIGN(size); 1567 1568 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { 1569 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); 1570 return; 1571 } 1572 1573 pages = __iommu_get_pages(cpu_addr, attrs); 1574 if (!pages) { 1575 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1576 return; 1577 } 1578 1579 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) 1580 dma_common_free_remap(cpu_addr, size); 1581 1582 __iommu_remove_mapping(dev, handle, size); 1583 __iommu_free_buffer(dev, pages, size, attrs); 1584 } 1585 1586 void arm_iommu_free_attrs(struct device *dev, size_t size, 1587 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1588 { 1589 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL); 1590 } 1591 1592 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size, 1593 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1594 { 1595 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT); 1596 } 1597 1598 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1599 void *cpu_addr, dma_addr_t dma_addr, 1600 size_t size, unsigned long attrs) 1601 { 1602 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1603 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1604 1605 if (!pages) 1606 return -ENXIO; 1607 1608 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1609 GFP_KERNEL); 1610 } 1611 1612 /* 1613 * Map a part of the scatter-gather list into contiguous io address space 1614 */ 1615 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1616 size_t size, dma_addr_t *handle, 1617 enum dma_data_direction dir, unsigned long attrs, 1618 bool is_coherent) 1619 { 1620 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1621 dma_addr_t iova, iova_base; 1622 int ret = 0; 1623 unsigned int count; 1624 struct scatterlist *s; 1625 int prot; 1626 1627 size = PAGE_ALIGN(size); 1628 *handle = DMA_MAPPING_ERROR; 1629 1630 iova_base = iova = __alloc_iova(mapping, size); 1631 if (iova == DMA_MAPPING_ERROR) 1632 return -ENOMEM; 1633 1634 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1635 phys_addr_t phys = page_to_phys(sg_page(s)); 1636 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1637 1638 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1639 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1640 1641 prot = __dma_info_to_prot(dir, attrs); 1642 1643 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1644 if (ret < 0) 1645 goto fail; 1646 count += len >> PAGE_SHIFT; 1647 iova += len; 1648 } 1649 *handle = iova_base; 1650 1651 return 0; 1652 fail: 1653 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1654 __free_iova(mapping, iova_base, size); 1655 return ret; 1656 } 1657 1658 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1659 enum dma_data_direction dir, unsigned long attrs, 1660 bool is_coherent) 1661 { 1662 struct scatterlist *s = sg, *dma = sg, *start = sg; 1663 int i, count = 0; 1664 unsigned int offset = s->offset; 1665 unsigned int size = s->offset + s->length; 1666 unsigned int max = dma_get_max_seg_size(dev); 1667 1668 for (i = 1; i < nents; i++) { 1669 s = sg_next(s); 1670 1671 s->dma_address = DMA_MAPPING_ERROR; 1672 s->dma_length = 0; 1673 1674 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1675 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1676 dir, attrs, is_coherent) < 0) 1677 goto bad_mapping; 1678 1679 dma->dma_address += offset; 1680 dma->dma_length = size - offset; 1681 1682 size = offset = s->offset; 1683 start = s; 1684 dma = sg_next(dma); 1685 count += 1; 1686 } 1687 size += s->length; 1688 } 1689 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1690 is_coherent) < 0) 1691 goto bad_mapping; 1692 1693 dma->dma_address += offset; 1694 dma->dma_length = size - offset; 1695 1696 return count+1; 1697 1698 bad_mapping: 1699 for_each_sg(sg, s, count, i) 1700 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1701 return 0; 1702 } 1703 1704 /** 1705 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1706 * @dev: valid struct device pointer 1707 * @sg: list of buffers 1708 * @nents: number of buffers to map 1709 * @dir: DMA transfer direction 1710 * 1711 * Map a set of i/o coherent buffers described by scatterlist in streaming 1712 * mode for DMA. The scatter gather list elements are merged together (if 1713 * possible) and tagged with the appropriate dma address and length. They are 1714 * obtained via sg_dma_{address,length}. 1715 */ 1716 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1717 int nents, enum dma_data_direction dir, unsigned long attrs) 1718 { 1719 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1720 } 1721 1722 /** 1723 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1724 * @dev: valid struct device pointer 1725 * @sg: list of buffers 1726 * @nents: number of buffers to map 1727 * @dir: DMA transfer direction 1728 * 1729 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1730 * The scatter gather list elements are merged together (if possible) and 1731 * tagged with the appropriate dma address and length. They are obtained via 1732 * sg_dma_{address,length}. 1733 */ 1734 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1735 int nents, enum dma_data_direction dir, unsigned long attrs) 1736 { 1737 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1738 } 1739 1740 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1741 int nents, enum dma_data_direction dir, 1742 unsigned long attrs, bool is_coherent) 1743 { 1744 struct scatterlist *s; 1745 int i; 1746 1747 for_each_sg(sg, s, nents, i) { 1748 if (sg_dma_len(s)) 1749 __iommu_remove_mapping(dev, sg_dma_address(s), 1750 sg_dma_len(s)); 1751 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1752 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1753 s->length, dir); 1754 } 1755 } 1756 1757 /** 1758 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1759 * @dev: valid struct device pointer 1760 * @sg: list of buffers 1761 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1762 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1763 * 1764 * Unmap a set of streaming mode DMA translations. Again, CPU access 1765 * rules concerning calls here are the same as for dma_unmap_single(). 1766 */ 1767 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1768 int nents, enum dma_data_direction dir, 1769 unsigned long attrs) 1770 { 1771 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1772 } 1773 1774 /** 1775 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1776 * @dev: valid struct device pointer 1777 * @sg: list of buffers 1778 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1779 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1780 * 1781 * Unmap a set of streaming mode DMA translations. Again, CPU access 1782 * rules concerning calls here are the same as for dma_unmap_single(). 1783 */ 1784 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1785 enum dma_data_direction dir, 1786 unsigned long attrs) 1787 { 1788 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1789 } 1790 1791 /** 1792 * arm_iommu_sync_sg_for_cpu 1793 * @dev: valid struct device pointer 1794 * @sg: list of buffers 1795 * @nents: number of buffers to map (returned from dma_map_sg) 1796 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1797 */ 1798 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1799 int nents, enum dma_data_direction dir) 1800 { 1801 struct scatterlist *s; 1802 int i; 1803 1804 for_each_sg(sg, s, nents, i) 1805 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1806 1807 } 1808 1809 /** 1810 * arm_iommu_sync_sg_for_device 1811 * @dev: valid struct device pointer 1812 * @sg: list of buffers 1813 * @nents: number of buffers to map (returned from dma_map_sg) 1814 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1815 */ 1816 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1817 int nents, enum dma_data_direction dir) 1818 { 1819 struct scatterlist *s; 1820 int i; 1821 1822 for_each_sg(sg, s, nents, i) 1823 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1824 } 1825 1826 1827 /** 1828 * arm_coherent_iommu_map_page 1829 * @dev: valid struct device pointer 1830 * @page: page that buffer resides in 1831 * @offset: offset into page for start of buffer 1832 * @size: size of buffer to map 1833 * @dir: DMA transfer direction 1834 * 1835 * Coherent IOMMU aware version of arm_dma_map_page() 1836 */ 1837 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1838 unsigned long offset, size_t size, enum dma_data_direction dir, 1839 unsigned long attrs) 1840 { 1841 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1842 dma_addr_t dma_addr; 1843 int ret, prot, len = PAGE_ALIGN(size + offset); 1844 1845 dma_addr = __alloc_iova(mapping, len); 1846 if (dma_addr == DMA_MAPPING_ERROR) 1847 return dma_addr; 1848 1849 prot = __dma_info_to_prot(dir, attrs); 1850 1851 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1852 if (ret < 0) 1853 goto fail; 1854 1855 return dma_addr + offset; 1856 fail: 1857 __free_iova(mapping, dma_addr, len); 1858 return DMA_MAPPING_ERROR; 1859 } 1860 1861 /** 1862 * arm_iommu_map_page 1863 * @dev: valid struct device pointer 1864 * @page: page that buffer resides in 1865 * @offset: offset into page for start of buffer 1866 * @size: size of buffer to map 1867 * @dir: DMA transfer direction 1868 * 1869 * IOMMU aware version of arm_dma_map_page() 1870 */ 1871 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1872 unsigned long offset, size_t size, enum dma_data_direction dir, 1873 unsigned long attrs) 1874 { 1875 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1876 __dma_page_cpu_to_dev(page, offset, size, dir); 1877 1878 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1879 } 1880 1881 /** 1882 * arm_coherent_iommu_unmap_page 1883 * @dev: valid struct device pointer 1884 * @handle: DMA address of buffer 1885 * @size: size of buffer (same as passed to dma_map_page) 1886 * @dir: DMA transfer direction (same as passed to dma_map_page) 1887 * 1888 * Coherent IOMMU aware version of arm_dma_unmap_page() 1889 */ 1890 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1891 size_t size, enum dma_data_direction dir, unsigned long attrs) 1892 { 1893 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1894 dma_addr_t iova = handle & PAGE_MASK; 1895 int offset = handle & ~PAGE_MASK; 1896 int len = PAGE_ALIGN(size + offset); 1897 1898 if (!iova) 1899 return; 1900 1901 iommu_unmap(mapping->domain, iova, len); 1902 __free_iova(mapping, iova, len); 1903 } 1904 1905 /** 1906 * arm_iommu_unmap_page 1907 * @dev: valid struct device pointer 1908 * @handle: DMA address of buffer 1909 * @size: size of buffer (same as passed to dma_map_page) 1910 * @dir: DMA transfer direction (same as passed to dma_map_page) 1911 * 1912 * IOMMU aware version of arm_dma_unmap_page() 1913 */ 1914 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1915 size_t size, enum dma_data_direction dir, unsigned long attrs) 1916 { 1917 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1918 dma_addr_t iova = handle & PAGE_MASK; 1919 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1920 int offset = handle & ~PAGE_MASK; 1921 int len = PAGE_ALIGN(size + offset); 1922 1923 if (!iova) 1924 return; 1925 1926 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1927 __dma_page_dev_to_cpu(page, offset, size, dir); 1928 1929 iommu_unmap(mapping->domain, iova, len); 1930 __free_iova(mapping, iova, len); 1931 } 1932 1933 /** 1934 * arm_iommu_map_resource - map a device resource for DMA 1935 * @dev: valid struct device pointer 1936 * @phys_addr: physical address of resource 1937 * @size: size of resource to map 1938 * @dir: DMA transfer direction 1939 */ 1940 static dma_addr_t arm_iommu_map_resource(struct device *dev, 1941 phys_addr_t phys_addr, size_t size, 1942 enum dma_data_direction dir, unsigned long attrs) 1943 { 1944 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1945 dma_addr_t dma_addr; 1946 int ret, prot; 1947 phys_addr_t addr = phys_addr & PAGE_MASK; 1948 unsigned int offset = phys_addr & ~PAGE_MASK; 1949 size_t len = PAGE_ALIGN(size + offset); 1950 1951 dma_addr = __alloc_iova(mapping, len); 1952 if (dma_addr == DMA_MAPPING_ERROR) 1953 return dma_addr; 1954 1955 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; 1956 1957 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot); 1958 if (ret < 0) 1959 goto fail; 1960 1961 return dma_addr + offset; 1962 fail: 1963 __free_iova(mapping, dma_addr, len); 1964 return DMA_MAPPING_ERROR; 1965 } 1966 1967 /** 1968 * arm_iommu_unmap_resource - unmap a device DMA resource 1969 * @dev: valid struct device pointer 1970 * @dma_handle: DMA address to resource 1971 * @size: size of resource to map 1972 * @dir: DMA transfer direction 1973 */ 1974 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, 1975 size_t size, enum dma_data_direction dir, 1976 unsigned long attrs) 1977 { 1978 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1979 dma_addr_t iova = dma_handle & PAGE_MASK; 1980 unsigned int offset = dma_handle & ~PAGE_MASK; 1981 size_t len = PAGE_ALIGN(size + offset); 1982 1983 if (!iova) 1984 return; 1985 1986 iommu_unmap(mapping->domain, iova, len); 1987 __free_iova(mapping, iova, len); 1988 } 1989 1990 static void arm_iommu_sync_single_for_cpu(struct device *dev, 1991 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1992 { 1993 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1994 dma_addr_t iova = handle & PAGE_MASK; 1995 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1996 unsigned int offset = handle & ~PAGE_MASK; 1997 1998 if (!iova) 1999 return; 2000 2001 __dma_page_dev_to_cpu(page, offset, size, dir); 2002 } 2003 2004 static void arm_iommu_sync_single_for_device(struct device *dev, 2005 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2006 { 2007 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2008 dma_addr_t iova = handle & PAGE_MASK; 2009 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2010 unsigned int offset = handle & ~PAGE_MASK; 2011 2012 if (!iova) 2013 return; 2014 2015 __dma_page_cpu_to_dev(page, offset, size, dir); 2016 } 2017 2018 const struct dma_map_ops iommu_ops = { 2019 .alloc = arm_iommu_alloc_attrs, 2020 .free = arm_iommu_free_attrs, 2021 .mmap = arm_iommu_mmap_attrs, 2022 .get_sgtable = arm_iommu_get_sgtable, 2023 2024 .map_page = arm_iommu_map_page, 2025 .unmap_page = arm_iommu_unmap_page, 2026 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 2027 .sync_single_for_device = arm_iommu_sync_single_for_device, 2028 2029 .map_sg = arm_iommu_map_sg, 2030 .unmap_sg = arm_iommu_unmap_sg, 2031 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 2032 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 2033 2034 .map_resource = arm_iommu_map_resource, 2035 .unmap_resource = arm_iommu_unmap_resource, 2036 2037 .dma_supported = arm_dma_supported, 2038 }; 2039 2040 const struct dma_map_ops iommu_coherent_ops = { 2041 .alloc = arm_coherent_iommu_alloc_attrs, 2042 .free = arm_coherent_iommu_free_attrs, 2043 .mmap = arm_coherent_iommu_mmap_attrs, 2044 .get_sgtable = arm_iommu_get_sgtable, 2045 2046 .map_page = arm_coherent_iommu_map_page, 2047 .unmap_page = arm_coherent_iommu_unmap_page, 2048 2049 .map_sg = arm_coherent_iommu_map_sg, 2050 .unmap_sg = arm_coherent_iommu_unmap_sg, 2051 2052 .map_resource = arm_iommu_map_resource, 2053 .unmap_resource = arm_iommu_unmap_resource, 2054 2055 .dma_supported = arm_dma_supported, 2056 }; 2057 2058 /** 2059 * arm_iommu_create_mapping 2060 * @bus: pointer to the bus holding the client device (for IOMMU calls) 2061 * @base: start address of the valid IO address space 2062 * @size: maximum size of the valid IO address space 2063 * 2064 * Creates a mapping structure which holds information about used/unused 2065 * IO address ranges, which is required to perform memory allocation and 2066 * mapping with IOMMU aware functions. 2067 * 2068 * The client device need to be attached to the mapping with 2069 * arm_iommu_attach_device function. 2070 */ 2071 struct dma_iommu_mapping * 2072 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) 2073 { 2074 unsigned int bits = size >> PAGE_SHIFT; 2075 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 2076 struct dma_iommu_mapping *mapping; 2077 int extensions = 1; 2078 int err = -ENOMEM; 2079 2080 /* currently only 32-bit DMA address space is supported */ 2081 if (size > DMA_BIT_MASK(32) + 1) 2082 return ERR_PTR(-ERANGE); 2083 2084 if (!bitmap_size) 2085 return ERR_PTR(-EINVAL); 2086 2087 if (bitmap_size > PAGE_SIZE) { 2088 extensions = bitmap_size / PAGE_SIZE; 2089 bitmap_size = PAGE_SIZE; 2090 } 2091 2092 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 2093 if (!mapping) 2094 goto err; 2095 2096 mapping->bitmap_size = bitmap_size; 2097 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *), 2098 GFP_KERNEL); 2099 if (!mapping->bitmaps) 2100 goto err2; 2101 2102 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 2103 if (!mapping->bitmaps[0]) 2104 goto err3; 2105 2106 mapping->nr_bitmaps = 1; 2107 mapping->extensions = extensions; 2108 mapping->base = base; 2109 mapping->bits = BITS_PER_BYTE * bitmap_size; 2110 2111 spin_lock_init(&mapping->lock); 2112 2113 mapping->domain = iommu_domain_alloc(bus); 2114 if (!mapping->domain) 2115 goto err4; 2116 2117 kref_init(&mapping->kref); 2118 return mapping; 2119 err4: 2120 kfree(mapping->bitmaps[0]); 2121 err3: 2122 kfree(mapping->bitmaps); 2123 err2: 2124 kfree(mapping); 2125 err: 2126 return ERR_PTR(err); 2127 } 2128 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 2129 2130 static void release_iommu_mapping(struct kref *kref) 2131 { 2132 int i; 2133 struct dma_iommu_mapping *mapping = 2134 container_of(kref, struct dma_iommu_mapping, kref); 2135 2136 iommu_domain_free(mapping->domain); 2137 for (i = 0; i < mapping->nr_bitmaps; i++) 2138 kfree(mapping->bitmaps[i]); 2139 kfree(mapping->bitmaps); 2140 kfree(mapping); 2141 } 2142 2143 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 2144 { 2145 int next_bitmap; 2146 2147 if (mapping->nr_bitmaps >= mapping->extensions) 2148 return -EINVAL; 2149 2150 next_bitmap = mapping->nr_bitmaps; 2151 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 2152 GFP_ATOMIC); 2153 if (!mapping->bitmaps[next_bitmap]) 2154 return -ENOMEM; 2155 2156 mapping->nr_bitmaps++; 2157 2158 return 0; 2159 } 2160 2161 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 2162 { 2163 if (mapping) 2164 kref_put(&mapping->kref, release_iommu_mapping); 2165 } 2166 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 2167 2168 static int __arm_iommu_attach_device(struct device *dev, 2169 struct dma_iommu_mapping *mapping) 2170 { 2171 int err; 2172 2173 err = iommu_attach_device(mapping->domain, dev); 2174 if (err) 2175 return err; 2176 2177 kref_get(&mapping->kref); 2178 to_dma_iommu_mapping(dev) = mapping; 2179 2180 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 2181 return 0; 2182 } 2183 2184 /** 2185 * arm_iommu_attach_device 2186 * @dev: valid struct device pointer 2187 * @mapping: io address space mapping structure (returned from 2188 * arm_iommu_create_mapping) 2189 * 2190 * Attaches specified io address space mapping to the provided device. 2191 * This replaces the dma operations (dma_map_ops pointer) with the 2192 * IOMMU aware version. 2193 * 2194 * More than one client might be attached to the same io address space 2195 * mapping. 2196 */ 2197 int arm_iommu_attach_device(struct device *dev, 2198 struct dma_iommu_mapping *mapping) 2199 { 2200 int err; 2201 2202 err = __arm_iommu_attach_device(dev, mapping); 2203 if (err) 2204 return err; 2205 2206 set_dma_ops(dev, &iommu_ops); 2207 return 0; 2208 } 2209 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 2210 2211 /** 2212 * arm_iommu_detach_device 2213 * @dev: valid struct device pointer 2214 * 2215 * Detaches the provided device from a previously attached map. 2216 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops. 2217 */ 2218 void arm_iommu_detach_device(struct device *dev) 2219 { 2220 struct dma_iommu_mapping *mapping; 2221 2222 mapping = to_dma_iommu_mapping(dev); 2223 if (!mapping) { 2224 dev_warn(dev, "Not attached\n"); 2225 return; 2226 } 2227 2228 iommu_detach_device(mapping->domain, dev); 2229 kref_put(&mapping->kref, release_iommu_mapping); 2230 to_dma_iommu_mapping(dev) = NULL; 2231 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent)); 2232 2233 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 2234 } 2235 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 2236 2237 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) 2238 { 2239 return coherent ? &iommu_coherent_ops : &iommu_ops; 2240 } 2241 2242 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2243 const struct iommu_ops *iommu) 2244 { 2245 struct dma_iommu_mapping *mapping; 2246 2247 if (!iommu) 2248 return false; 2249 2250 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); 2251 if (IS_ERR(mapping)) { 2252 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", 2253 size, dev_name(dev)); 2254 return false; 2255 } 2256 2257 if (__arm_iommu_attach_device(dev, mapping)) { 2258 pr_warn("Failed to attached device %s to IOMMU_mapping\n", 2259 dev_name(dev)); 2260 arm_iommu_release_mapping(mapping); 2261 return false; 2262 } 2263 2264 return true; 2265 } 2266 2267 static void arm_teardown_iommu_dma_ops(struct device *dev) 2268 { 2269 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2270 2271 if (!mapping) 2272 return; 2273 2274 arm_iommu_detach_device(dev); 2275 arm_iommu_release_mapping(mapping); 2276 } 2277 2278 #else 2279 2280 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2281 const struct iommu_ops *iommu) 2282 { 2283 return false; 2284 } 2285 2286 static void arm_teardown_iommu_dma_ops(struct device *dev) { } 2287 2288 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops 2289 2290 #endif /* CONFIG_ARM_DMA_USE_IOMMU */ 2291 2292 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 2293 const struct iommu_ops *iommu, bool coherent) 2294 { 2295 const struct dma_map_ops *dma_ops; 2296 2297 dev->archdata.dma_coherent = coherent; 2298 #ifdef CONFIG_SWIOTLB 2299 dev->dma_coherent = coherent; 2300 #endif 2301 2302 /* 2303 * Don't override the dma_ops if they have already been set. Ideally 2304 * this should be the only location where dma_ops are set, remove this 2305 * check when all other callers of set_dma_ops will have disappeared. 2306 */ 2307 if (dev->dma_ops) 2308 return; 2309 2310 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) 2311 dma_ops = arm_get_iommu_dma_map_ops(coherent); 2312 else 2313 dma_ops = arm_get_dma_map_ops(coherent); 2314 2315 set_dma_ops(dev, dma_ops); 2316 2317 #ifdef CONFIG_XEN 2318 if (xen_initial_domain()) 2319 dev->dma_ops = &xen_swiotlb_dma_ops; 2320 #endif 2321 dev->archdata.dma_ops_setup = true; 2322 } 2323 2324 void arch_teardown_dma_ops(struct device *dev) 2325 { 2326 if (!dev->archdata.dma_ops_setup) 2327 return; 2328 2329 arm_teardown_iommu_dma_ops(dev); 2330 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */ 2331 set_dma_ops(dev, NULL); 2332 } 2333 2334 #ifdef CONFIG_SWIOTLB 2335 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr, 2336 size_t size, enum dma_data_direction dir) 2337 { 2338 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1), 2339 size, dir); 2340 } 2341 2342 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, 2343 size_t size, enum dma_data_direction dir) 2344 { 2345 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1), 2346 size, dir); 2347 } 2348 2349 long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr, 2350 dma_addr_t dma_addr) 2351 { 2352 return dma_to_pfn(dev, dma_addr); 2353 } 2354 2355 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, 2356 gfp_t gfp, unsigned long attrs) 2357 { 2358 return __dma_alloc(dev, size, dma_handle, gfp, 2359 __get_dma_pgprot(attrs, PAGE_KERNEL), false, 2360 attrs, __builtin_return_address(0)); 2361 } 2362 2363 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, 2364 dma_addr_t dma_handle, unsigned long attrs) 2365 { 2366 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false); 2367 } 2368 #endif /* CONFIG_SWIOTLB */ 2369