xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 4f3db074)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31 
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41 
42 #include "mm.h"
43 
44 /*
45  * The DMA API is built upon the notion of "buffer ownership".  A buffer
46  * is either exclusively owned by the CPU (and therefore may be accessed
47  * by it) or exclusively owned by the DMA device.  These helper functions
48  * represent the transitions between these two ownership states.
49  *
50  * Note, however, that on later ARMs, this notion does not work due to
51  * speculative prefetches.  We model our approach on the assumption that
52  * the CPU does do speculative prefetches, which means we clean caches
53  * before transfers and delay cache invalidation until transfer completion.
54  *
55  */
56 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
57 		size_t, enum dma_data_direction);
58 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
59 		size_t, enum dma_data_direction);
60 
61 /**
62  * arm_dma_map_page - map a portion of a page for streaming DMA
63  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
64  * @page: page that buffer resides in
65  * @offset: offset into page for start of buffer
66  * @size: size of buffer to map
67  * @dir: DMA transfer direction
68  *
69  * Ensure that any data held in the cache is appropriately discarded
70  * or written back.
71  *
72  * The device owns this memory once this call has completed.  The CPU
73  * can regain ownership by calling dma_unmap_page().
74  */
75 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
76 	     unsigned long offset, size_t size, enum dma_data_direction dir,
77 	     struct dma_attrs *attrs)
78 {
79 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
80 		__dma_page_cpu_to_dev(page, offset, size, dir);
81 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
82 }
83 
84 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
85 	     unsigned long offset, size_t size, enum dma_data_direction dir,
86 	     struct dma_attrs *attrs)
87 {
88 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
89 }
90 
91 /**
92  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
93  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
94  * @handle: DMA address of buffer
95  * @size: size of buffer (same as passed to dma_map_page)
96  * @dir: DMA transfer direction (same as passed to dma_map_page)
97  *
98  * Unmap a page streaming mode DMA translation.  The handle and size
99  * must match what was provided in the previous dma_map_page() call.
100  * All other usages are undefined.
101  *
102  * After this call, reads by the CPU to the buffer are guaranteed to see
103  * whatever the device wrote there.
104  */
105 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
106 		size_t size, enum dma_data_direction dir,
107 		struct dma_attrs *attrs)
108 {
109 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
110 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
111 				      handle & ~PAGE_MASK, size, dir);
112 }
113 
114 static void arm_dma_sync_single_for_cpu(struct device *dev,
115 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
116 {
117 	unsigned int offset = handle & (PAGE_SIZE - 1);
118 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
119 	__dma_page_dev_to_cpu(page, offset, size, dir);
120 }
121 
122 static void arm_dma_sync_single_for_device(struct device *dev,
123 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
124 {
125 	unsigned int offset = handle & (PAGE_SIZE - 1);
126 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
127 	__dma_page_cpu_to_dev(page, offset, size, dir);
128 }
129 
130 struct dma_map_ops arm_dma_ops = {
131 	.alloc			= arm_dma_alloc,
132 	.free			= arm_dma_free,
133 	.mmap			= arm_dma_mmap,
134 	.get_sgtable		= arm_dma_get_sgtable,
135 	.map_page		= arm_dma_map_page,
136 	.unmap_page		= arm_dma_unmap_page,
137 	.map_sg			= arm_dma_map_sg,
138 	.unmap_sg		= arm_dma_unmap_sg,
139 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
140 	.sync_single_for_device	= arm_dma_sync_single_for_device,
141 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
142 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
143 	.set_dma_mask		= arm_dma_set_mask,
144 };
145 EXPORT_SYMBOL(arm_dma_ops);
146 
147 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
148 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
149 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
150 				  dma_addr_t handle, struct dma_attrs *attrs);
151 
152 struct dma_map_ops arm_coherent_dma_ops = {
153 	.alloc			= arm_coherent_dma_alloc,
154 	.free			= arm_coherent_dma_free,
155 	.mmap			= arm_dma_mmap,
156 	.get_sgtable		= arm_dma_get_sgtable,
157 	.map_page		= arm_coherent_dma_map_page,
158 	.map_sg			= arm_dma_map_sg,
159 	.set_dma_mask		= arm_dma_set_mask,
160 };
161 EXPORT_SYMBOL(arm_coherent_dma_ops);
162 
163 static int __dma_supported(struct device *dev, u64 mask, bool warn)
164 {
165 	unsigned long max_dma_pfn;
166 
167 	/*
168 	 * If the mask allows for more memory than we can address,
169 	 * and we actually have that much memory, then we must
170 	 * indicate that DMA to this device is not supported.
171 	 */
172 	if (sizeof(mask) != sizeof(dma_addr_t) &&
173 	    mask > (dma_addr_t)~0 &&
174 	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
175 		if (warn) {
176 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
177 				 mask);
178 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
179 		}
180 		return 0;
181 	}
182 
183 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
184 
185 	/*
186 	 * Translate the device's DMA mask to a PFN limit.  This
187 	 * PFN number includes the page which we can DMA to.
188 	 */
189 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
190 		if (warn)
191 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
192 				 mask,
193 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
194 				 max_dma_pfn + 1);
195 		return 0;
196 	}
197 
198 	return 1;
199 }
200 
201 static u64 get_coherent_dma_mask(struct device *dev)
202 {
203 	u64 mask = (u64)DMA_BIT_MASK(32);
204 
205 	if (dev) {
206 		mask = dev->coherent_dma_mask;
207 
208 		/*
209 		 * Sanity check the DMA mask - it must be non-zero, and
210 		 * must be able to be satisfied by a DMA allocation.
211 		 */
212 		if (mask == 0) {
213 			dev_warn(dev, "coherent DMA mask is unset\n");
214 			return 0;
215 		}
216 
217 		if (!__dma_supported(dev, mask, true))
218 			return 0;
219 	}
220 
221 	return mask;
222 }
223 
224 static void __dma_clear_buffer(struct page *page, size_t size)
225 {
226 	/*
227 	 * Ensure that the allocated pages are zeroed, and that any data
228 	 * lurking in the kernel direct-mapped region is invalidated.
229 	 */
230 	if (PageHighMem(page)) {
231 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
232 		phys_addr_t end = base + size;
233 		while (size > 0) {
234 			void *ptr = kmap_atomic(page);
235 			memset(ptr, 0, PAGE_SIZE);
236 			dmac_flush_range(ptr, ptr + PAGE_SIZE);
237 			kunmap_atomic(ptr);
238 			page++;
239 			size -= PAGE_SIZE;
240 		}
241 		outer_flush_range(base, end);
242 	} else {
243 		void *ptr = page_address(page);
244 		memset(ptr, 0, size);
245 		dmac_flush_range(ptr, ptr + size);
246 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
247 	}
248 }
249 
250 /*
251  * Allocate a DMA buffer for 'dev' of size 'size' using the
252  * specified gfp mask.  Note that 'size' must be page aligned.
253  */
254 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
255 {
256 	unsigned long order = get_order(size);
257 	struct page *page, *p, *e;
258 
259 	page = alloc_pages(gfp, order);
260 	if (!page)
261 		return NULL;
262 
263 	/*
264 	 * Now split the huge page and free the excess pages
265 	 */
266 	split_page(page, order);
267 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
268 		__free_page(p);
269 
270 	__dma_clear_buffer(page, size);
271 
272 	return page;
273 }
274 
275 /*
276  * Free a DMA buffer.  'size' must be page aligned.
277  */
278 static void __dma_free_buffer(struct page *page, size_t size)
279 {
280 	struct page *e = page + (size >> PAGE_SHIFT);
281 
282 	while (page < e) {
283 		__free_page(page);
284 		page++;
285 	}
286 }
287 
288 #ifdef CONFIG_MMU
289 
290 static void *__alloc_from_contiguous(struct device *dev, size_t size,
291 				     pgprot_t prot, struct page **ret_page,
292 				     const void *caller, bool want_vaddr);
293 
294 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
295 				 pgprot_t prot, struct page **ret_page,
296 				 const void *caller, bool want_vaddr);
297 
298 static void *
299 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
300 	const void *caller)
301 {
302 	/*
303 	 * DMA allocation can be mapped to user space, so lets
304 	 * set VM_USERMAP flags too.
305 	 */
306 	return dma_common_contiguous_remap(page, size,
307 			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
308 			prot, caller);
309 }
310 
311 static void __dma_free_remap(void *cpu_addr, size_t size)
312 {
313 	dma_common_free_remap(cpu_addr, size,
314 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
315 }
316 
317 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
318 static struct gen_pool *atomic_pool;
319 
320 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
321 
322 static int __init early_coherent_pool(char *p)
323 {
324 	atomic_pool_size = memparse(p, &p);
325 	return 0;
326 }
327 early_param("coherent_pool", early_coherent_pool);
328 
329 void __init init_dma_coherent_pool_size(unsigned long size)
330 {
331 	/*
332 	 * Catch any attempt to set the pool size too late.
333 	 */
334 	BUG_ON(atomic_pool);
335 
336 	/*
337 	 * Set architecture specific coherent pool size only if
338 	 * it has not been changed by kernel command line parameter.
339 	 */
340 	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
341 		atomic_pool_size = size;
342 }
343 
344 /*
345  * Initialise the coherent pool for atomic allocations.
346  */
347 static int __init atomic_pool_init(void)
348 {
349 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
350 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
351 	struct page *page;
352 	void *ptr;
353 
354 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
355 	if (!atomic_pool)
356 		goto out;
357 
358 	if (dev_get_cma_area(NULL))
359 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
360 					      &page, atomic_pool_init, true);
361 	else
362 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
363 					   &page, atomic_pool_init, true);
364 	if (ptr) {
365 		int ret;
366 
367 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
368 					page_to_phys(page),
369 					atomic_pool_size, -1);
370 		if (ret)
371 			goto destroy_genpool;
372 
373 		gen_pool_set_algo(atomic_pool,
374 				gen_pool_first_fit_order_align,
375 				(void *)PAGE_SHIFT);
376 		pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
377 		       atomic_pool_size / 1024);
378 		return 0;
379 	}
380 
381 destroy_genpool:
382 	gen_pool_destroy(atomic_pool);
383 	atomic_pool = NULL;
384 out:
385 	pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
386 	       atomic_pool_size / 1024);
387 	return -ENOMEM;
388 }
389 /*
390  * CMA is activated by core_initcall, so we must be called after it.
391  */
392 postcore_initcall(atomic_pool_init);
393 
394 struct dma_contig_early_reserve {
395 	phys_addr_t base;
396 	unsigned long size;
397 };
398 
399 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
400 
401 static int dma_mmu_remap_num __initdata;
402 
403 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
404 {
405 	dma_mmu_remap[dma_mmu_remap_num].base = base;
406 	dma_mmu_remap[dma_mmu_remap_num].size = size;
407 	dma_mmu_remap_num++;
408 }
409 
410 void __init dma_contiguous_remap(void)
411 {
412 	int i;
413 	for (i = 0; i < dma_mmu_remap_num; i++) {
414 		phys_addr_t start = dma_mmu_remap[i].base;
415 		phys_addr_t end = start + dma_mmu_remap[i].size;
416 		struct map_desc map;
417 		unsigned long addr;
418 
419 		if (end > arm_lowmem_limit)
420 			end = arm_lowmem_limit;
421 		if (start >= end)
422 			continue;
423 
424 		map.pfn = __phys_to_pfn(start);
425 		map.virtual = __phys_to_virt(start);
426 		map.length = end - start;
427 		map.type = MT_MEMORY_DMA_READY;
428 
429 		/*
430 		 * Clear previous low-memory mapping to ensure that the
431 		 * TLB does not see any conflicting entries, then flush
432 		 * the TLB of the old entries before creating new mappings.
433 		 *
434 		 * This ensures that any speculatively loaded TLB entries
435 		 * (even though they may be rare) can not cause any problems,
436 		 * and ensures that this code is architecturally compliant.
437 		 */
438 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
439 		     addr += PMD_SIZE)
440 			pmd_clear(pmd_off_k(addr));
441 
442 		flush_tlb_kernel_range(__phys_to_virt(start),
443 				       __phys_to_virt(end));
444 
445 		iotable_init(&map, 1);
446 	}
447 }
448 
449 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
450 			    void *data)
451 {
452 	struct page *page = virt_to_page(addr);
453 	pgprot_t prot = *(pgprot_t *)data;
454 
455 	set_pte_ext(pte, mk_pte(page, prot), 0);
456 	return 0;
457 }
458 
459 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
460 {
461 	unsigned long start = (unsigned long) page_address(page);
462 	unsigned end = start + size;
463 
464 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
465 	flush_tlb_kernel_range(start, end);
466 }
467 
468 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
469 				 pgprot_t prot, struct page **ret_page,
470 				 const void *caller, bool want_vaddr)
471 {
472 	struct page *page;
473 	void *ptr = NULL;
474 	page = __dma_alloc_buffer(dev, size, gfp);
475 	if (!page)
476 		return NULL;
477 	if (!want_vaddr)
478 		goto out;
479 
480 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
481 	if (!ptr) {
482 		__dma_free_buffer(page, size);
483 		return NULL;
484 	}
485 
486  out:
487 	*ret_page = page;
488 	return ptr;
489 }
490 
491 static void *__alloc_from_pool(size_t size, struct page **ret_page)
492 {
493 	unsigned long val;
494 	void *ptr = NULL;
495 
496 	if (!atomic_pool) {
497 		WARN(1, "coherent pool not initialised!\n");
498 		return NULL;
499 	}
500 
501 	val = gen_pool_alloc(atomic_pool, size);
502 	if (val) {
503 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
504 
505 		*ret_page = phys_to_page(phys);
506 		ptr = (void *)val;
507 	}
508 
509 	return ptr;
510 }
511 
512 static bool __in_atomic_pool(void *start, size_t size)
513 {
514 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
515 }
516 
517 static int __free_from_pool(void *start, size_t size)
518 {
519 	if (!__in_atomic_pool(start, size))
520 		return 0;
521 
522 	gen_pool_free(atomic_pool, (unsigned long)start, size);
523 
524 	return 1;
525 }
526 
527 static void *__alloc_from_contiguous(struct device *dev, size_t size,
528 				     pgprot_t prot, struct page **ret_page,
529 				     const void *caller, bool want_vaddr)
530 {
531 	unsigned long order = get_order(size);
532 	size_t count = size >> PAGE_SHIFT;
533 	struct page *page;
534 	void *ptr = NULL;
535 
536 	page = dma_alloc_from_contiguous(dev, count, order);
537 	if (!page)
538 		return NULL;
539 
540 	__dma_clear_buffer(page, size);
541 
542 	if (!want_vaddr)
543 		goto out;
544 
545 	if (PageHighMem(page)) {
546 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
547 		if (!ptr) {
548 			dma_release_from_contiguous(dev, page, count);
549 			return NULL;
550 		}
551 	} else {
552 		__dma_remap(page, size, prot);
553 		ptr = page_address(page);
554 	}
555 
556  out:
557 	*ret_page = page;
558 	return ptr;
559 }
560 
561 static void __free_from_contiguous(struct device *dev, struct page *page,
562 				   void *cpu_addr, size_t size, bool want_vaddr)
563 {
564 	if (want_vaddr) {
565 		if (PageHighMem(page))
566 			__dma_free_remap(cpu_addr, size);
567 		else
568 			__dma_remap(page, size, PAGE_KERNEL);
569 	}
570 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
571 }
572 
573 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
574 {
575 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
576 			    pgprot_writecombine(prot) :
577 			    pgprot_dmacoherent(prot);
578 	return prot;
579 }
580 
581 #define nommu() 0
582 
583 #else	/* !CONFIG_MMU */
584 
585 #define nommu() 1
586 
587 #define __get_dma_pgprot(attrs, prot)				__pgprot(0)
588 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
589 #define __alloc_from_pool(size, ret_page)			NULL
590 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv)	NULL
591 #define __free_from_pool(cpu_addr, size)			0
592 #define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
593 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
594 
595 #endif	/* CONFIG_MMU */
596 
597 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
598 				   struct page **ret_page)
599 {
600 	struct page *page;
601 	page = __dma_alloc_buffer(dev, size, gfp);
602 	if (!page)
603 		return NULL;
604 
605 	*ret_page = page;
606 	return page_address(page);
607 }
608 
609 
610 
611 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
612 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
613 			 struct dma_attrs *attrs, const void *caller)
614 {
615 	u64 mask = get_coherent_dma_mask(dev);
616 	struct page *page = NULL;
617 	void *addr;
618 	bool want_vaddr;
619 
620 #ifdef CONFIG_DMA_API_DEBUG
621 	u64 limit = (mask + 1) & ~mask;
622 	if (limit && size >= limit) {
623 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
624 			size, mask);
625 		return NULL;
626 	}
627 #endif
628 
629 	if (!mask)
630 		return NULL;
631 
632 	if (mask < 0xffffffffULL)
633 		gfp |= GFP_DMA;
634 
635 	/*
636 	 * Following is a work-around (a.k.a. hack) to prevent pages
637 	 * with __GFP_COMP being passed to split_page() which cannot
638 	 * handle them.  The real problem is that this flag probably
639 	 * should be 0 on ARM as it is not supported on this
640 	 * platform; see CONFIG_HUGETLBFS.
641 	 */
642 	gfp &= ~(__GFP_COMP);
643 
644 	*handle = DMA_ERROR_CODE;
645 	size = PAGE_ALIGN(size);
646 	want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
647 
648 	if (is_coherent || nommu())
649 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
650 	else if (!(gfp & __GFP_WAIT))
651 		addr = __alloc_from_pool(size, &page);
652 	else if (!dev_get_cma_area(dev))
653 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller, want_vaddr);
654 	else
655 		addr = __alloc_from_contiguous(dev, size, prot, &page, caller, want_vaddr);
656 
657 	if (page)
658 		*handle = pfn_to_dma(dev, page_to_pfn(page));
659 
660 	return want_vaddr ? addr : page;
661 }
662 
663 /*
664  * Allocate DMA-coherent memory space and return both the kernel remapped
665  * virtual and bus address for that space.
666  */
667 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
668 		    gfp_t gfp, struct dma_attrs *attrs)
669 {
670 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
671 	void *memory;
672 
673 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
674 		return memory;
675 
676 	return __dma_alloc(dev, size, handle, gfp, prot, false,
677 			   attrs, __builtin_return_address(0));
678 }
679 
680 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
681 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
682 {
683 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
684 	void *memory;
685 
686 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
687 		return memory;
688 
689 	return __dma_alloc(dev, size, handle, gfp, prot, true,
690 			   attrs, __builtin_return_address(0));
691 }
692 
693 /*
694  * Create userspace mapping for the DMA-coherent memory.
695  */
696 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
697 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
698 		 struct dma_attrs *attrs)
699 {
700 	int ret = -ENXIO;
701 #ifdef CONFIG_MMU
702 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
703 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
704 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
705 	unsigned long off = vma->vm_pgoff;
706 
707 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
708 
709 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
710 		return ret;
711 
712 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
713 		ret = remap_pfn_range(vma, vma->vm_start,
714 				      pfn + off,
715 				      vma->vm_end - vma->vm_start,
716 				      vma->vm_page_prot);
717 	}
718 #endif	/* CONFIG_MMU */
719 
720 	return ret;
721 }
722 
723 /*
724  * Free a buffer as defined by the above mapping.
725  */
726 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
727 			   dma_addr_t handle, struct dma_attrs *attrs,
728 			   bool is_coherent)
729 {
730 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
731 	bool want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
732 
733 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
734 		return;
735 
736 	size = PAGE_ALIGN(size);
737 
738 	if (is_coherent || nommu()) {
739 		__dma_free_buffer(page, size);
740 	} else if (__free_from_pool(cpu_addr, size)) {
741 		return;
742 	} else if (!dev_get_cma_area(dev)) {
743 		if (want_vaddr)
744 			__dma_free_remap(cpu_addr, size);
745 		__dma_free_buffer(page, size);
746 	} else {
747 		/*
748 		 * Non-atomic allocations cannot be freed with IRQs disabled
749 		 */
750 		WARN_ON(irqs_disabled());
751 		__free_from_contiguous(dev, page, cpu_addr, size, want_vaddr);
752 	}
753 }
754 
755 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
756 		  dma_addr_t handle, struct dma_attrs *attrs)
757 {
758 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
759 }
760 
761 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
762 				  dma_addr_t handle, struct dma_attrs *attrs)
763 {
764 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
765 }
766 
767 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
768 		 void *cpu_addr, dma_addr_t handle, size_t size,
769 		 struct dma_attrs *attrs)
770 {
771 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
772 	int ret;
773 
774 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
775 	if (unlikely(ret))
776 		return ret;
777 
778 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
779 	return 0;
780 }
781 
782 static void dma_cache_maint_page(struct page *page, unsigned long offset,
783 	size_t size, enum dma_data_direction dir,
784 	void (*op)(const void *, size_t, int))
785 {
786 	unsigned long pfn;
787 	size_t left = size;
788 
789 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
790 	offset %= PAGE_SIZE;
791 
792 	/*
793 	 * A single sg entry may refer to multiple physically contiguous
794 	 * pages.  But we still need to process highmem pages individually.
795 	 * If highmem is not configured then the bulk of this loop gets
796 	 * optimized out.
797 	 */
798 	do {
799 		size_t len = left;
800 		void *vaddr;
801 
802 		page = pfn_to_page(pfn);
803 
804 		if (PageHighMem(page)) {
805 			if (len + offset > PAGE_SIZE)
806 				len = PAGE_SIZE - offset;
807 
808 			if (cache_is_vipt_nonaliasing()) {
809 				vaddr = kmap_atomic(page);
810 				op(vaddr + offset, len, dir);
811 				kunmap_atomic(vaddr);
812 			} else {
813 				vaddr = kmap_high_get(page);
814 				if (vaddr) {
815 					op(vaddr + offset, len, dir);
816 					kunmap_high(page);
817 				}
818 			}
819 		} else {
820 			vaddr = page_address(page) + offset;
821 			op(vaddr, len, dir);
822 		}
823 		offset = 0;
824 		pfn++;
825 		left -= len;
826 	} while (left);
827 }
828 
829 /*
830  * Make an area consistent for devices.
831  * Note: Drivers should NOT use this function directly, as it will break
832  * platforms with CONFIG_DMABOUNCE.
833  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
834  */
835 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
836 	size_t size, enum dma_data_direction dir)
837 {
838 	phys_addr_t paddr;
839 
840 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
841 
842 	paddr = page_to_phys(page) + off;
843 	if (dir == DMA_FROM_DEVICE) {
844 		outer_inv_range(paddr, paddr + size);
845 	} else {
846 		outer_clean_range(paddr, paddr + size);
847 	}
848 	/* FIXME: non-speculating: flush on bidirectional mappings? */
849 }
850 
851 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
852 	size_t size, enum dma_data_direction dir)
853 {
854 	phys_addr_t paddr = page_to_phys(page) + off;
855 
856 	/* FIXME: non-speculating: not required */
857 	/* in any case, don't bother invalidating if DMA to device */
858 	if (dir != DMA_TO_DEVICE) {
859 		outer_inv_range(paddr, paddr + size);
860 
861 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
862 	}
863 
864 	/*
865 	 * Mark the D-cache clean for these pages to avoid extra flushing.
866 	 */
867 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
868 		unsigned long pfn;
869 		size_t left = size;
870 
871 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
872 		off %= PAGE_SIZE;
873 		if (off) {
874 			pfn++;
875 			left -= PAGE_SIZE - off;
876 		}
877 		while (left >= PAGE_SIZE) {
878 			page = pfn_to_page(pfn++);
879 			set_bit(PG_dcache_clean, &page->flags);
880 			left -= PAGE_SIZE;
881 		}
882 	}
883 }
884 
885 /**
886  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
887  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
888  * @sg: list of buffers
889  * @nents: number of buffers to map
890  * @dir: DMA transfer direction
891  *
892  * Map a set of buffers described by scatterlist in streaming mode for DMA.
893  * This is the scatter-gather version of the dma_map_single interface.
894  * Here the scatter gather list elements are each tagged with the
895  * appropriate dma address and length.  They are obtained via
896  * sg_dma_{address,length}.
897  *
898  * Device ownership issues as mentioned for dma_map_single are the same
899  * here.
900  */
901 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
902 		enum dma_data_direction dir, struct dma_attrs *attrs)
903 {
904 	struct dma_map_ops *ops = get_dma_ops(dev);
905 	struct scatterlist *s;
906 	int i, j;
907 
908 	for_each_sg(sg, s, nents, i) {
909 #ifdef CONFIG_NEED_SG_DMA_LENGTH
910 		s->dma_length = s->length;
911 #endif
912 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
913 						s->length, dir, attrs);
914 		if (dma_mapping_error(dev, s->dma_address))
915 			goto bad_mapping;
916 	}
917 	return nents;
918 
919  bad_mapping:
920 	for_each_sg(sg, s, i, j)
921 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
922 	return 0;
923 }
924 
925 /**
926  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
927  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
928  * @sg: list of buffers
929  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
930  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
931  *
932  * Unmap a set of streaming mode DMA translations.  Again, CPU access
933  * rules concerning calls here are the same as for dma_unmap_single().
934  */
935 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
936 		enum dma_data_direction dir, struct dma_attrs *attrs)
937 {
938 	struct dma_map_ops *ops = get_dma_ops(dev);
939 	struct scatterlist *s;
940 
941 	int i;
942 
943 	for_each_sg(sg, s, nents, i)
944 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
945 }
946 
947 /**
948  * arm_dma_sync_sg_for_cpu
949  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
950  * @sg: list of buffers
951  * @nents: number of buffers to map (returned from dma_map_sg)
952  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
953  */
954 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
955 			int nents, enum dma_data_direction dir)
956 {
957 	struct dma_map_ops *ops = get_dma_ops(dev);
958 	struct scatterlist *s;
959 	int i;
960 
961 	for_each_sg(sg, s, nents, i)
962 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
963 					 dir);
964 }
965 
966 /**
967  * arm_dma_sync_sg_for_device
968  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
969  * @sg: list of buffers
970  * @nents: number of buffers to map (returned from dma_map_sg)
971  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
972  */
973 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
974 			int nents, enum dma_data_direction dir)
975 {
976 	struct dma_map_ops *ops = get_dma_ops(dev);
977 	struct scatterlist *s;
978 	int i;
979 
980 	for_each_sg(sg, s, nents, i)
981 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
982 					    dir);
983 }
984 
985 /*
986  * Return whether the given device DMA address mask can be supported
987  * properly.  For example, if your device can only drive the low 24-bits
988  * during bus mastering, then you would pass 0x00ffffff as the mask
989  * to this function.
990  */
991 int dma_supported(struct device *dev, u64 mask)
992 {
993 	return __dma_supported(dev, mask, false);
994 }
995 EXPORT_SYMBOL(dma_supported);
996 
997 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
998 {
999 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1000 		return -EIO;
1001 
1002 	*dev->dma_mask = dma_mask;
1003 
1004 	return 0;
1005 }
1006 
1007 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1008 
1009 static int __init dma_debug_do_init(void)
1010 {
1011 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1012 	return 0;
1013 }
1014 fs_initcall(dma_debug_do_init);
1015 
1016 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1017 
1018 /* IOMMU */
1019 
1020 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1021 
1022 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1023 				      size_t size)
1024 {
1025 	unsigned int order = get_order(size);
1026 	unsigned int align = 0;
1027 	unsigned int count, start;
1028 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1029 	unsigned long flags;
1030 	dma_addr_t iova;
1031 	int i;
1032 
1033 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1034 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1035 
1036 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1037 	align = (1 << order) - 1;
1038 
1039 	spin_lock_irqsave(&mapping->lock, flags);
1040 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1041 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1042 				mapping->bits, 0, count, align);
1043 
1044 		if (start > mapping->bits)
1045 			continue;
1046 
1047 		bitmap_set(mapping->bitmaps[i], start, count);
1048 		break;
1049 	}
1050 
1051 	/*
1052 	 * No unused range found. Try to extend the existing mapping
1053 	 * and perform a second attempt to reserve an IO virtual
1054 	 * address range of size bytes.
1055 	 */
1056 	if (i == mapping->nr_bitmaps) {
1057 		if (extend_iommu_mapping(mapping)) {
1058 			spin_unlock_irqrestore(&mapping->lock, flags);
1059 			return DMA_ERROR_CODE;
1060 		}
1061 
1062 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1063 				mapping->bits, 0, count, align);
1064 
1065 		if (start > mapping->bits) {
1066 			spin_unlock_irqrestore(&mapping->lock, flags);
1067 			return DMA_ERROR_CODE;
1068 		}
1069 
1070 		bitmap_set(mapping->bitmaps[i], start, count);
1071 	}
1072 	spin_unlock_irqrestore(&mapping->lock, flags);
1073 
1074 	iova = mapping->base + (mapping_size * i);
1075 	iova += start << PAGE_SHIFT;
1076 
1077 	return iova;
1078 }
1079 
1080 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1081 			       dma_addr_t addr, size_t size)
1082 {
1083 	unsigned int start, count;
1084 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1085 	unsigned long flags;
1086 	dma_addr_t bitmap_base;
1087 	u32 bitmap_index;
1088 
1089 	if (!size)
1090 		return;
1091 
1092 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1093 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1094 
1095 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1096 
1097 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1098 
1099 	if (addr + size > bitmap_base + mapping_size) {
1100 		/*
1101 		 * The address range to be freed reaches into the iova
1102 		 * range of the next bitmap. This should not happen as
1103 		 * we don't allow this in __alloc_iova (at the
1104 		 * moment).
1105 		 */
1106 		BUG();
1107 	} else
1108 		count = size >> PAGE_SHIFT;
1109 
1110 	spin_lock_irqsave(&mapping->lock, flags);
1111 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1112 	spin_unlock_irqrestore(&mapping->lock, flags);
1113 }
1114 
1115 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1116 					  gfp_t gfp, struct dma_attrs *attrs)
1117 {
1118 	struct page **pages;
1119 	int count = size >> PAGE_SHIFT;
1120 	int array_size = count * sizeof(struct page *);
1121 	int i = 0;
1122 
1123 	if (array_size <= PAGE_SIZE)
1124 		pages = kzalloc(array_size, GFP_KERNEL);
1125 	else
1126 		pages = vzalloc(array_size);
1127 	if (!pages)
1128 		return NULL;
1129 
1130 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1131 	{
1132 		unsigned long order = get_order(size);
1133 		struct page *page;
1134 
1135 		page = dma_alloc_from_contiguous(dev, count, order);
1136 		if (!page)
1137 			goto error;
1138 
1139 		__dma_clear_buffer(page, size);
1140 
1141 		for (i = 0; i < count; i++)
1142 			pages[i] = page + i;
1143 
1144 		return pages;
1145 	}
1146 
1147 	/*
1148 	 * IOMMU can map any pages, so himem can also be used here
1149 	 */
1150 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1151 
1152 	while (count) {
1153 		int j, order;
1154 
1155 		for (order = __fls(count); order > 0; --order) {
1156 			/*
1157 			 * We do not want OOM killer to be invoked as long
1158 			 * as we can fall back to single pages, so we force
1159 			 * __GFP_NORETRY for orders higher than zero.
1160 			 */
1161 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1162 			if (pages[i])
1163 				break;
1164 		}
1165 
1166 		if (!pages[i]) {
1167 			/*
1168 			 * Fall back to single page allocation.
1169 			 * Might invoke OOM killer as last resort.
1170 			 */
1171 			pages[i] = alloc_pages(gfp, 0);
1172 			if (!pages[i])
1173 				goto error;
1174 		}
1175 
1176 		if (order) {
1177 			split_page(pages[i], order);
1178 			j = 1 << order;
1179 			while (--j)
1180 				pages[i + j] = pages[i] + j;
1181 		}
1182 
1183 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1184 		i += 1 << order;
1185 		count -= 1 << order;
1186 	}
1187 
1188 	return pages;
1189 error:
1190 	while (i--)
1191 		if (pages[i])
1192 			__free_pages(pages[i], 0);
1193 	if (array_size <= PAGE_SIZE)
1194 		kfree(pages);
1195 	else
1196 		vfree(pages);
1197 	return NULL;
1198 }
1199 
1200 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1201 			       size_t size, struct dma_attrs *attrs)
1202 {
1203 	int count = size >> PAGE_SHIFT;
1204 	int array_size = count * sizeof(struct page *);
1205 	int i;
1206 
1207 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1208 		dma_release_from_contiguous(dev, pages[0], count);
1209 	} else {
1210 		for (i = 0; i < count; i++)
1211 			if (pages[i])
1212 				__free_pages(pages[i], 0);
1213 	}
1214 
1215 	if (array_size <= PAGE_SIZE)
1216 		kfree(pages);
1217 	else
1218 		vfree(pages);
1219 	return 0;
1220 }
1221 
1222 /*
1223  * Create a CPU mapping for a specified pages
1224  */
1225 static void *
1226 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1227 		    const void *caller)
1228 {
1229 	return dma_common_pages_remap(pages, size,
1230 			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1231 }
1232 
1233 /*
1234  * Create a mapping in device IO address space for specified pages
1235  */
1236 static dma_addr_t
1237 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1238 {
1239 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1240 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1241 	dma_addr_t dma_addr, iova;
1242 	int i, ret = DMA_ERROR_CODE;
1243 
1244 	dma_addr = __alloc_iova(mapping, size);
1245 	if (dma_addr == DMA_ERROR_CODE)
1246 		return dma_addr;
1247 
1248 	iova = dma_addr;
1249 	for (i = 0; i < count; ) {
1250 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1251 		phys_addr_t phys = page_to_phys(pages[i]);
1252 		unsigned int len, j;
1253 
1254 		for (j = i + 1; j < count; j++, next_pfn++)
1255 			if (page_to_pfn(pages[j]) != next_pfn)
1256 				break;
1257 
1258 		len = (j - i) << PAGE_SHIFT;
1259 		ret = iommu_map(mapping->domain, iova, phys, len,
1260 				IOMMU_READ|IOMMU_WRITE);
1261 		if (ret < 0)
1262 			goto fail;
1263 		iova += len;
1264 		i = j;
1265 	}
1266 	return dma_addr;
1267 fail:
1268 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1269 	__free_iova(mapping, dma_addr, size);
1270 	return DMA_ERROR_CODE;
1271 }
1272 
1273 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1274 {
1275 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1276 
1277 	/*
1278 	 * add optional in-page offset from iova to size and align
1279 	 * result to page size
1280 	 */
1281 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1282 	iova &= PAGE_MASK;
1283 
1284 	iommu_unmap(mapping->domain, iova, size);
1285 	__free_iova(mapping, iova, size);
1286 	return 0;
1287 }
1288 
1289 static struct page **__atomic_get_pages(void *addr)
1290 {
1291 	struct page *page;
1292 	phys_addr_t phys;
1293 
1294 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1295 	page = phys_to_page(phys);
1296 
1297 	return (struct page **)page;
1298 }
1299 
1300 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1301 {
1302 	struct vm_struct *area;
1303 
1304 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1305 		return __atomic_get_pages(cpu_addr);
1306 
1307 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1308 		return cpu_addr;
1309 
1310 	area = find_vm_area(cpu_addr);
1311 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1312 		return area->pages;
1313 	return NULL;
1314 }
1315 
1316 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1317 				  dma_addr_t *handle)
1318 {
1319 	struct page *page;
1320 	void *addr;
1321 
1322 	addr = __alloc_from_pool(size, &page);
1323 	if (!addr)
1324 		return NULL;
1325 
1326 	*handle = __iommu_create_mapping(dev, &page, size);
1327 	if (*handle == DMA_ERROR_CODE)
1328 		goto err_mapping;
1329 
1330 	return addr;
1331 
1332 err_mapping:
1333 	__free_from_pool(addr, size);
1334 	return NULL;
1335 }
1336 
1337 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1338 				dma_addr_t handle, size_t size)
1339 {
1340 	__iommu_remove_mapping(dev, handle, size);
1341 	__free_from_pool(cpu_addr, size);
1342 }
1343 
1344 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1345 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1346 {
1347 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1348 	struct page **pages;
1349 	void *addr = NULL;
1350 
1351 	*handle = DMA_ERROR_CODE;
1352 	size = PAGE_ALIGN(size);
1353 
1354 	if (!(gfp & __GFP_WAIT))
1355 		return __iommu_alloc_atomic(dev, size, handle);
1356 
1357 	/*
1358 	 * Following is a work-around (a.k.a. hack) to prevent pages
1359 	 * with __GFP_COMP being passed to split_page() which cannot
1360 	 * handle them.  The real problem is that this flag probably
1361 	 * should be 0 on ARM as it is not supported on this
1362 	 * platform; see CONFIG_HUGETLBFS.
1363 	 */
1364 	gfp &= ~(__GFP_COMP);
1365 
1366 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1367 	if (!pages)
1368 		return NULL;
1369 
1370 	*handle = __iommu_create_mapping(dev, pages, size);
1371 	if (*handle == DMA_ERROR_CODE)
1372 		goto err_buffer;
1373 
1374 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1375 		return pages;
1376 
1377 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1378 				   __builtin_return_address(0));
1379 	if (!addr)
1380 		goto err_mapping;
1381 
1382 	return addr;
1383 
1384 err_mapping:
1385 	__iommu_remove_mapping(dev, *handle, size);
1386 err_buffer:
1387 	__iommu_free_buffer(dev, pages, size, attrs);
1388 	return NULL;
1389 }
1390 
1391 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1392 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1393 		    struct dma_attrs *attrs)
1394 {
1395 	unsigned long uaddr = vma->vm_start;
1396 	unsigned long usize = vma->vm_end - vma->vm_start;
1397 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1398 
1399 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1400 
1401 	if (!pages)
1402 		return -ENXIO;
1403 
1404 	do {
1405 		int ret = vm_insert_page(vma, uaddr, *pages++);
1406 		if (ret) {
1407 			pr_err("Remapping memory failed: %d\n", ret);
1408 			return ret;
1409 		}
1410 		uaddr += PAGE_SIZE;
1411 		usize -= PAGE_SIZE;
1412 	} while (usize > 0);
1413 
1414 	return 0;
1415 }
1416 
1417 /*
1418  * free a page as defined by the above mapping.
1419  * Must not be called with IRQs disabled.
1420  */
1421 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1422 			  dma_addr_t handle, struct dma_attrs *attrs)
1423 {
1424 	struct page **pages;
1425 	size = PAGE_ALIGN(size);
1426 
1427 	if (__in_atomic_pool(cpu_addr, size)) {
1428 		__iommu_free_atomic(dev, cpu_addr, handle, size);
1429 		return;
1430 	}
1431 
1432 	pages = __iommu_get_pages(cpu_addr, attrs);
1433 	if (!pages) {
1434 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1435 		return;
1436 	}
1437 
1438 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1439 		dma_common_free_remap(cpu_addr, size,
1440 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1441 	}
1442 
1443 	__iommu_remove_mapping(dev, handle, size);
1444 	__iommu_free_buffer(dev, pages, size, attrs);
1445 }
1446 
1447 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1448 				 void *cpu_addr, dma_addr_t dma_addr,
1449 				 size_t size, struct dma_attrs *attrs)
1450 {
1451 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1452 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1453 
1454 	if (!pages)
1455 		return -ENXIO;
1456 
1457 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1458 					 GFP_KERNEL);
1459 }
1460 
1461 static int __dma_direction_to_prot(enum dma_data_direction dir)
1462 {
1463 	int prot;
1464 
1465 	switch (dir) {
1466 	case DMA_BIDIRECTIONAL:
1467 		prot = IOMMU_READ | IOMMU_WRITE;
1468 		break;
1469 	case DMA_TO_DEVICE:
1470 		prot = IOMMU_READ;
1471 		break;
1472 	case DMA_FROM_DEVICE:
1473 		prot = IOMMU_WRITE;
1474 		break;
1475 	default:
1476 		prot = 0;
1477 	}
1478 
1479 	return prot;
1480 }
1481 
1482 /*
1483  * Map a part of the scatter-gather list into contiguous io address space
1484  */
1485 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1486 			  size_t size, dma_addr_t *handle,
1487 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1488 			  bool is_coherent)
1489 {
1490 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1491 	dma_addr_t iova, iova_base;
1492 	int ret = 0;
1493 	unsigned int count;
1494 	struct scatterlist *s;
1495 	int prot;
1496 
1497 	size = PAGE_ALIGN(size);
1498 	*handle = DMA_ERROR_CODE;
1499 
1500 	iova_base = iova = __alloc_iova(mapping, size);
1501 	if (iova == DMA_ERROR_CODE)
1502 		return -ENOMEM;
1503 
1504 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1505 		phys_addr_t phys = page_to_phys(sg_page(s));
1506 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1507 
1508 		if (!is_coherent &&
1509 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1510 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1511 
1512 		prot = __dma_direction_to_prot(dir);
1513 
1514 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1515 		if (ret < 0)
1516 			goto fail;
1517 		count += len >> PAGE_SHIFT;
1518 		iova += len;
1519 	}
1520 	*handle = iova_base;
1521 
1522 	return 0;
1523 fail:
1524 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1525 	__free_iova(mapping, iova_base, size);
1526 	return ret;
1527 }
1528 
1529 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1530 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1531 		     bool is_coherent)
1532 {
1533 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1534 	int i, count = 0;
1535 	unsigned int offset = s->offset;
1536 	unsigned int size = s->offset + s->length;
1537 	unsigned int max = dma_get_max_seg_size(dev);
1538 
1539 	for (i = 1; i < nents; i++) {
1540 		s = sg_next(s);
1541 
1542 		s->dma_address = DMA_ERROR_CODE;
1543 		s->dma_length = 0;
1544 
1545 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1546 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1547 			    dir, attrs, is_coherent) < 0)
1548 				goto bad_mapping;
1549 
1550 			dma->dma_address += offset;
1551 			dma->dma_length = size - offset;
1552 
1553 			size = offset = s->offset;
1554 			start = s;
1555 			dma = sg_next(dma);
1556 			count += 1;
1557 		}
1558 		size += s->length;
1559 	}
1560 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1561 		is_coherent) < 0)
1562 		goto bad_mapping;
1563 
1564 	dma->dma_address += offset;
1565 	dma->dma_length = size - offset;
1566 
1567 	return count+1;
1568 
1569 bad_mapping:
1570 	for_each_sg(sg, s, count, i)
1571 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1572 	return 0;
1573 }
1574 
1575 /**
1576  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1577  * @dev: valid struct device pointer
1578  * @sg: list of buffers
1579  * @nents: number of buffers to map
1580  * @dir: DMA transfer direction
1581  *
1582  * Map a set of i/o coherent buffers described by scatterlist in streaming
1583  * mode for DMA. The scatter gather list elements are merged together (if
1584  * possible) and tagged with the appropriate dma address and length. They are
1585  * obtained via sg_dma_{address,length}.
1586  */
1587 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1588 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1589 {
1590 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1591 }
1592 
1593 /**
1594  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1595  * @dev: valid struct device pointer
1596  * @sg: list of buffers
1597  * @nents: number of buffers to map
1598  * @dir: DMA transfer direction
1599  *
1600  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1601  * The scatter gather list elements are merged together (if possible) and
1602  * tagged with the appropriate dma address and length. They are obtained via
1603  * sg_dma_{address,length}.
1604  */
1605 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1606 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1607 {
1608 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1609 }
1610 
1611 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1612 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1613 		bool is_coherent)
1614 {
1615 	struct scatterlist *s;
1616 	int i;
1617 
1618 	for_each_sg(sg, s, nents, i) {
1619 		if (sg_dma_len(s))
1620 			__iommu_remove_mapping(dev, sg_dma_address(s),
1621 					       sg_dma_len(s));
1622 		if (!is_coherent &&
1623 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1624 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1625 					      s->length, dir);
1626 	}
1627 }
1628 
1629 /**
1630  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1631  * @dev: valid struct device pointer
1632  * @sg: list of buffers
1633  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1634  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1635  *
1636  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1637  * rules concerning calls here are the same as for dma_unmap_single().
1638  */
1639 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1640 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1641 {
1642 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1643 }
1644 
1645 /**
1646  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1647  * @dev: valid struct device pointer
1648  * @sg: list of buffers
1649  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1650  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1651  *
1652  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1653  * rules concerning calls here are the same as for dma_unmap_single().
1654  */
1655 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1656 			enum dma_data_direction dir, struct dma_attrs *attrs)
1657 {
1658 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1659 }
1660 
1661 /**
1662  * arm_iommu_sync_sg_for_cpu
1663  * @dev: valid struct device pointer
1664  * @sg: list of buffers
1665  * @nents: number of buffers to map (returned from dma_map_sg)
1666  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1667  */
1668 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1669 			int nents, enum dma_data_direction dir)
1670 {
1671 	struct scatterlist *s;
1672 	int i;
1673 
1674 	for_each_sg(sg, s, nents, i)
1675 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1676 
1677 }
1678 
1679 /**
1680  * arm_iommu_sync_sg_for_device
1681  * @dev: valid struct device pointer
1682  * @sg: list of buffers
1683  * @nents: number of buffers to map (returned from dma_map_sg)
1684  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1685  */
1686 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1687 			int nents, enum dma_data_direction dir)
1688 {
1689 	struct scatterlist *s;
1690 	int i;
1691 
1692 	for_each_sg(sg, s, nents, i)
1693 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1694 }
1695 
1696 
1697 /**
1698  * arm_coherent_iommu_map_page
1699  * @dev: valid struct device pointer
1700  * @page: page that buffer resides in
1701  * @offset: offset into page for start of buffer
1702  * @size: size of buffer to map
1703  * @dir: DMA transfer direction
1704  *
1705  * Coherent IOMMU aware version of arm_dma_map_page()
1706  */
1707 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1708 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1709 	     struct dma_attrs *attrs)
1710 {
1711 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1712 	dma_addr_t dma_addr;
1713 	int ret, prot, len = PAGE_ALIGN(size + offset);
1714 
1715 	dma_addr = __alloc_iova(mapping, len);
1716 	if (dma_addr == DMA_ERROR_CODE)
1717 		return dma_addr;
1718 
1719 	prot = __dma_direction_to_prot(dir);
1720 
1721 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1722 	if (ret < 0)
1723 		goto fail;
1724 
1725 	return dma_addr + offset;
1726 fail:
1727 	__free_iova(mapping, dma_addr, len);
1728 	return DMA_ERROR_CODE;
1729 }
1730 
1731 /**
1732  * arm_iommu_map_page
1733  * @dev: valid struct device pointer
1734  * @page: page that buffer resides in
1735  * @offset: offset into page for start of buffer
1736  * @size: size of buffer to map
1737  * @dir: DMA transfer direction
1738  *
1739  * IOMMU aware version of arm_dma_map_page()
1740  */
1741 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1742 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1743 	     struct dma_attrs *attrs)
1744 {
1745 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1746 		__dma_page_cpu_to_dev(page, offset, size, dir);
1747 
1748 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1749 }
1750 
1751 /**
1752  * arm_coherent_iommu_unmap_page
1753  * @dev: valid struct device pointer
1754  * @handle: DMA address of buffer
1755  * @size: size of buffer (same as passed to dma_map_page)
1756  * @dir: DMA transfer direction (same as passed to dma_map_page)
1757  *
1758  * Coherent IOMMU aware version of arm_dma_unmap_page()
1759  */
1760 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1761 		size_t size, enum dma_data_direction dir,
1762 		struct dma_attrs *attrs)
1763 {
1764 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1765 	dma_addr_t iova = handle & PAGE_MASK;
1766 	int offset = handle & ~PAGE_MASK;
1767 	int len = PAGE_ALIGN(size + offset);
1768 
1769 	if (!iova)
1770 		return;
1771 
1772 	iommu_unmap(mapping->domain, iova, len);
1773 	__free_iova(mapping, iova, len);
1774 }
1775 
1776 /**
1777  * arm_iommu_unmap_page
1778  * @dev: valid struct device pointer
1779  * @handle: DMA address of buffer
1780  * @size: size of buffer (same as passed to dma_map_page)
1781  * @dir: DMA transfer direction (same as passed to dma_map_page)
1782  *
1783  * IOMMU aware version of arm_dma_unmap_page()
1784  */
1785 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1786 		size_t size, enum dma_data_direction dir,
1787 		struct dma_attrs *attrs)
1788 {
1789 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1790 	dma_addr_t iova = handle & PAGE_MASK;
1791 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1792 	int offset = handle & ~PAGE_MASK;
1793 	int len = PAGE_ALIGN(size + offset);
1794 
1795 	if (!iova)
1796 		return;
1797 
1798 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1799 		__dma_page_dev_to_cpu(page, offset, size, dir);
1800 
1801 	iommu_unmap(mapping->domain, iova, len);
1802 	__free_iova(mapping, iova, len);
1803 }
1804 
1805 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1806 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1807 {
1808 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1809 	dma_addr_t iova = handle & PAGE_MASK;
1810 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1811 	unsigned int offset = handle & ~PAGE_MASK;
1812 
1813 	if (!iova)
1814 		return;
1815 
1816 	__dma_page_dev_to_cpu(page, offset, size, dir);
1817 }
1818 
1819 static void arm_iommu_sync_single_for_device(struct device *dev,
1820 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1821 {
1822 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1823 	dma_addr_t iova = handle & PAGE_MASK;
1824 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1825 	unsigned int offset = handle & ~PAGE_MASK;
1826 
1827 	if (!iova)
1828 		return;
1829 
1830 	__dma_page_cpu_to_dev(page, offset, size, dir);
1831 }
1832 
1833 struct dma_map_ops iommu_ops = {
1834 	.alloc		= arm_iommu_alloc_attrs,
1835 	.free		= arm_iommu_free_attrs,
1836 	.mmap		= arm_iommu_mmap_attrs,
1837 	.get_sgtable	= arm_iommu_get_sgtable,
1838 
1839 	.map_page		= arm_iommu_map_page,
1840 	.unmap_page		= arm_iommu_unmap_page,
1841 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1842 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1843 
1844 	.map_sg			= arm_iommu_map_sg,
1845 	.unmap_sg		= arm_iommu_unmap_sg,
1846 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1847 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1848 
1849 	.set_dma_mask		= arm_dma_set_mask,
1850 };
1851 
1852 struct dma_map_ops iommu_coherent_ops = {
1853 	.alloc		= arm_iommu_alloc_attrs,
1854 	.free		= arm_iommu_free_attrs,
1855 	.mmap		= arm_iommu_mmap_attrs,
1856 	.get_sgtable	= arm_iommu_get_sgtable,
1857 
1858 	.map_page	= arm_coherent_iommu_map_page,
1859 	.unmap_page	= arm_coherent_iommu_unmap_page,
1860 
1861 	.map_sg		= arm_coherent_iommu_map_sg,
1862 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1863 
1864 	.set_dma_mask	= arm_dma_set_mask,
1865 };
1866 
1867 /**
1868  * arm_iommu_create_mapping
1869  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1870  * @base: start address of the valid IO address space
1871  * @size: maximum size of the valid IO address space
1872  *
1873  * Creates a mapping structure which holds information about used/unused
1874  * IO address ranges, which is required to perform memory allocation and
1875  * mapping with IOMMU aware functions.
1876  *
1877  * The client device need to be attached to the mapping with
1878  * arm_iommu_attach_device function.
1879  */
1880 struct dma_iommu_mapping *
1881 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1882 {
1883 	unsigned int bits = size >> PAGE_SHIFT;
1884 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1885 	struct dma_iommu_mapping *mapping;
1886 	int extensions = 1;
1887 	int err = -ENOMEM;
1888 
1889 	if (!bitmap_size)
1890 		return ERR_PTR(-EINVAL);
1891 
1892 	if (bitmap_size > PAGE_SIZE) {
1893 		extensions = bitmap_size / PAGE_SIZE;
1894 		bitmap_size = PAGE_SIZE;
1895 	}
1896 
1897 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1898 	if (!mapping)
1899 		goto err;
1900 
1901 	mapping->bitmap_size = bitmap_size;
1902 	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1903 				GFP_KERNEL);
1904 	if (!mapping->bitmaps)
1905 		goto err2;
1906 
1907 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1908 	if (!mapping->bitmaps[0])
1909 		goto err3;
1910 
1911 	mapping->nr_bitmaps = 1;
1912 	mapping->extensions = extensions;
1913 	mapping->base = base;
1914 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1915 
1916 	spin_lock_init(&mapping->lock);
1917 
1918 	mapping->domain = iommu_domain_alloc(bus);
1919 	if (!mapping->domain)
1920 		goto err4;
1921 
1922 	kref_init(&mapping->kref);
1923 	return mapping;
1924 err4:
1925 	kfree(mapping->bitmaps[0]);
1926 err3:
1927 	kfree(mapping->bitmaps);
1928 err2:
1929 	kfree(mapping);
1930 err:
1931 	return ERR_PTR(err);
1932 }
1933 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1934 
1935 static void release_iommu_mapping(struct kref *kref)
1936 {
1937 	int i;
1938 	struct dma_iommu_mapping *mapping =
1939 		container_of(kref, struct dma_iommu_mapping, kref);
1940 
1941 	iommu_domain_free(mapping->domain);
1942 	for (i = 0; i < mapping->nr_bitmaps; i++)
1943 		kfree(mapping->bitmaps[i]);
1944 	kfree(mapping->bitmaps);
1945 	kfree(mapping);
1946 }
1947 
1948 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1949 {
1950 	int next_bitmap;
1951 
1952 	if (mapping->nr_bitmaps > mapping->extensions)
1953 		return -EINVAL;
1954 
1955 	next_bitmap = mapping->nr_bitmaps;
1956 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1957 						GFP_ATOMIC);
1958 	if (!mapping->bitmaps[next_bitmap])
1959 		return -ENOMEM;
1960 
1961 	mapping->nr_bitmaps++;
1962 
1963 	return 0;
1964 }
1965 
1966 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1967 {
1968 	if (mapping)
1969 		kref_put(&mapping->kref, release_iommu_mapping);
1970 }
1971 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1972 
1973 static int __arm_iommu_attach_device(struct device *dev,
1974 				     struct dma_iommu_mapping *mapping)
1975 {
1976 	int err;
1977 
1978 	err = iommu_attach_device(mapping->domain, dev);
1979 	if (err)
1980 		return err;
1981 
1982 	kref_get(&mapping->kref);
1983 	to_dma_iommu_mapping(dev) = mapping;
1984 
1985 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1986 	return 0;
1987 }
1988 
1989 /**
1990  * arm_iommu_attach_device
1991  * @dev: valid struct device pointer
1992  * @mapping: io address space mapping structure (returned from
1993  *	arm_iommu_create_mapping)
1994  *
1995  * Attaches specified io address space mapping to the provided device.
1996  * This replaces the dma operations (dma_map_ops pointer) with the
1997  * IOMMU aware version.
1998  *
1999  * More than one client might be attached to the same io address space
2000  * mapping.
2001  */
2002 int arm_iommu_attach_device(struct device *dev,
2003 			    struct dma_iommu_mapping *mapping)
2004 {
2005 	int err;
2006 
2007 	err = __arm_iommu_attach_device(dev, mapping);
2008 	if (err)
2009 		return err;
2010 
2011 	set_dma_ops(dev, &iommu_ops);
2012 	return 0;
2013 }
2014 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2015 
2016 static void __arm_iommu_detach_device(struct device *dev)
2017 {
2018 	struct dma_iommu_mapping *mapping;
2019 
2020 	mapping = to_dma_iommu_mapping(dev);
2021 	if (!mapping) {
2022 		dev_warn(dev, "Not attached\n");
2023 		return;
2024 	}
2025 
2026 	iommu_detach_device(mapping->domain, dev);
2027 	kref_put(&mapping->kref, release_iommu_mapping);
2028 	to_dma_iommu_mapping(dev) = NULL;
2029 
2030 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2031 }
2032 
2033 /**
2034  * arm_iommu_detach_device
2035  * @dev: valid struct device pointer
2036  *
2037  * Detaches the provided device from a previously attached map.
2038  * This voids the dma operations (dma_map_ops pointer)
2039  */
2040 void arm_iommu_detach_device(struct device *dev)
2041 {
2042 	__arm_iommu_detach_device(dev);
2043 	set_dma_ops(dev, NULL);
2044 }
2045 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2046 
2047 static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2048 {
2049 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2050 }
2051 
2052 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2053 				    struct iommu_ops *iommu)
2054 {
2055 	struct dma_iommu_mapping *mapping;
2056 
2057 	if (!iommu)
2058 		return false;
2059 
2060 	/*
2061 	 * currently arm_iommu_create_mapping() takes a max of size_t
2062 	 * for size param. So check this limit for now.
2063 	 */
2064 	if (size > SIZE_MAX)
2065 		return false;
2066 
2067 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2068 	if (IS_ERR(mapping)) {
2069 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2070 				size, dev_name(dev));
2071 		return false;
2072 	}
2073 
2074 	if (__arm_iommu_attach_device(dev, mapping)) {
2075 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2076 				dev_name(dev));
2077 		arm_iommu_release_mapping(mapping);
2078 		return false;
2079 	}
2080 
2081 	return true;
2082 }
2083 
2084 static void arm_teardown_iommu_dma_ops(struct device *dev)
2085 {
2086 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2087 
2088 	if (!mapping)
2089 		return;
2090 
2091 	__arm_iommu_detach_device(dev);
2092 	arm_iommu_release_mapping(mapping);
2093 }
2094 
2095 #else
2096 
2097 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2098 				    struct iommu_ops *iommu)
2099 {
2100 	return false;
2101 }
2102 
2103 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2104 
2105 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2106 
2107 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2108 
2109 static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2110 {
2111 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2112 }
2113 
2114 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2115 			struct iommu_ops *iommu, bool coherent)
2116 {
2117 	struct dma_map_ops *dma_ops;
2118 
2119 	dev->archdata.dma_coherent = coherent;
2120 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2121 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2122 	else
2123 		dma_ops = arm_get_dma_map_ops(coherent);
2124 
2125 	set_dma_ops(dev, dma_ops);
2126 }
2127 
2128 void arch_teardown_dma_ops(struct device *dev)
2129 {
2130 	arm_teardown_iommu_dma_ops(dev);
2131 }
2132