1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/bootmem.h> 13 #include <linux/module.h> 14 #include <linux/mm.h> 15 #include <linux/genalloc.h> 16 #include <linux/gfp.h> 17 #include <linux/errno.h> 18 #include <linux/list.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/dma-contiguous.h> 23 #include <linux/highmem.h> 24 #include <linux/memblock.h> 25 #include <linux/slab.h> 26 #include <linux/iommu.h> 27 #include <linux/io.h> 28 #include <linux/vmalloc.h> 29 #include <linux/sizes.h> 30 #include <linux/cma.h> 31 32 #include <asm/memory.h> 33 #include <asm/highmem.h> 34 #include <asm/cacheflush.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mach/arch.h> 37 #include <asm/dma-iommu.h> 38 #include <asm/mach/map.h> 39 #include <asm/system_info.h> 40 #include <asm/dma-contiguous.h> 41 42 #include "mm.h" 43 44 /* 45 * The DMA API is built upon the notion of "buffer ownership". A buffer 46 * is either exclusively owned by the CPU (and therefore may be accessed 47 * by it) or exclusively owned by the DMA device. These helper functions 48 * represent the transitions between these two ownership states. 49 * 50 * Note, however, that on later ARMs, this notion does not work due to 51 * speculative prefetches. We model our approach on the assumption that 52 * the CPU does do speculative prefetches, which means we clean caches 53 * before transfers and delay cache invalidation until transfer completion. 54 * 55 */ 56 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 57 size_t, enum dma_data_direction); 58 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 59 size_t, enum dma_data_direction); 60 61 /** 62 * arm_dma_map_page - map a portion of a page for streaming DMA 63 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 64 * @page: page that buffer resides in 65 * @offset: offset into page for start of buffer 66 * @size: size of buffer to map 67 * @dir: DMA transfer direction 68 * 69 * Ensure that any data held in the cache is appropriately discarded 70 * or written back. 71 * 72 * The device owns this memory once this call has completed. The CPU 73 * can regain ownership by calling dma_unmap_page(). 74 */ 75 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 76 unsigned long offset, size_t size, enum dma_data_direction dir, 77 struct dma_attrs *attrs) 78 { 79 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 80 __dma_page_cpu_to_dev(page, offset, size, dir); 81 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 82 } 83 84 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 85 unsigned long offset, size_t size, enum dma_data_direction dir, 86 struct dma_attrs *attrs) 87 { 88 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 89 } 90 91 /** 92 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 93 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 94 * @handle: DMA address of buffer 95 * @size: size of buffer (same as passed to dma_map_page) 96 * @dir: DMA transfer direction (same as passed to dma_map_page) 97 * 98 * Unmap a page streaming mode DMA translation. The handle and size 99 * must match what was provided in the previous dma_map_page() call. 100 * All other usages are undefined. 101 * 102 * After this call, reads by the CPU to the buffer are guaranteed to see 103 * whatever the device wrote there. 104 */ 105 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 106 size_t size, enum dma_data_direction dir, 107 struct dma_attrs *attrs) 108 { 109 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 110 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 111 handle & ~PAGE_MASK, size, dir); 112 } 113 114 static void arm_dma_sync_single_for_cpu(struct device *dev, 115 dma_addr_t handle, size_t size, enum dma_data_direction dir) 116 { 117 unsigned int offset = handle & (PAGE_SIZE - 1); 118 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 119 __dma_page_dev_to_cpu(page, offset, size, dir); 120 } 121 122 static void arm_dma_sync_single_for_device(struct device *dev, 123 dma_addr_t handle, size_t size, enum dma_data_direction dir) 124 { 125 unsigned int offset = handle & (PAGE_SIZE - 1); 126 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 127 __dma_page_cpu_to_dev(page, offset, size, dir); 128 } 129 130 struct dma_map_ops arm_dma_ops = { 131 .alloc = arm_dma_alloc, 132 .free = arm_dma_free, 133 .mmap = arm_dma_mmap, 134 .get_sgtable = arm_dma_get_sgtable, 135 .map_page = arm_dma_map_page, 136 .unmap_page = arm_dma_unmap_page, 137 .map_sg = arm_dma_map_sg, 138 .unmap_sg = arm_dma_unmap_sg, 139 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 140 .sync_single_for_device = arm_dma_sync_single_for_device, 141 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 142 .sync_sg_for_device = arm_dma_sync_sg_for_device, 143 .set_dma_mask = arm_dma_set_mask, 144 }; 145 EXPORT_SYMBOL(arm_dma_ops); 146 147 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 148 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs); 149 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 150 dma_addr_t handle, struct dma_attrs *attrs); 151 152 struct dma_map_ops arm_coherent_dma_ops = { 153 .alloc = arm_coherent_dma_alloc, 154 .free = arm_coherent_dma_free, 155 .mmap = arm_dma_mmap, 156 .get_sgtable = arm_dma_get_sgtable, 157 .map_page = arm_coherent_dma_map_page, 158 .map_sg = arm_dma_map_sg, 159 .set_dma_mask = arm_dma_set_mask, 160 }; 161 EXPORT_SYMBOL(arm_coherent_dma_ops); 162 163 static int __dma_supported(struct device *dev, u64 mask, bool warn) 164 { 165 unsigned long max_dma_pfn; 166 167 /* 168 * If the mask allows for more memory than we can address, 169 * and we actually have that much memory, then we must 170 * indicate that DMA to this device is not supported. 171 */ 172 if (sizeof(mask) != sizeof(dma_addr_t) && 173 mask > (dma_addr_t)~0 && 174 dma_to_pfn(dev, ~0) < max_pfn - 1) { 175 if (warn) { 176 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n", 177 mask); 178 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n"); 179 } 180 return 0; 181 } 182 183 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); 184 185 /* 186 * Translate the device's DMA mask to a PFN limit. This 187 * PFN number includes the page which we can DMA to. 188 */ 189 if (dma_to_pfn(dev, mask) < max_dma_pfn) { 190 if (warn) 191 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", 192 mask, 193 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, 194 max_dma_pfn + 1); 195 return 0; 196 } 197 198 return 1; 199 } 200 201 static u64 get_coherent_dma_mask(struct device *dev) 202 { 203 u64 mask = (u64)DMA_BIT_MASK(32); 204 205 if (dev) { 206 mask = dev->coherent_dma_mask; 207 208 /* 209 * Sanity check the DMA mask - it must be non-zero, and 210 * must be able to be satisfied by a DMA allocation. 211 */ 212 if (mask == 0) { 213 dev_warn(dev, "coherent DMA mask is unset\n"); 214 return 0; 215 } 216 217 if (!__dma_supported(dev, mask, true)) 218 return 0; 219 } 220 221 return mask; 222 } 223 224 static void __dma_clear_buffer(struct page *page, size_t size) 225 { 226 /* 227 * Ensure that the allocated pages are zeroed, and that any data 228 * lurking in the kernel direct-mapped region is invalidated. 229 */ 230 if (PageHighMem(page)) { 231 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 232 phys_addr_t end = base + size; 233 while (size > 0) { 234 void *ptr = kmap_atomic(page); 235 memset(ptr, 0, PAGE_SIZE); 236 dmac_flush_range(ptr, ptr + PAGE_SIZE); 237 kunmap_atomic(ptr); 238 page++; 239 size -= PAGE_SIZE; 240 } 241 outer_flush_range(base, end); 242 } else { 243 void *ptr = page_address(page); 244 memset(ptr, 0, size); 245 dmac_flush_range(ptr, ptr + size); 246 outer_flush_range(__pa(ptr), __pa(ptr) + size); 247 } 248 } 249 250 /* 251 * Allocate a DMA buffer for 'dev' of size 'size' using the 252 * specified gfp mask. Note that 'size' must be page aligned. 253 */ 254 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) 255 { 256 unsigned long order = get_order(size); 257 struct page *page, *p, *e; 258 259 page = alloc_pages(gfp, order); 260 if (!page) 261 return NULL; 262 263 /* 264 * Now split the huge page and free the excess pages 265 */ 266 split_page(page, order); 267 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 268 __free_page(p); 269 270 __dma_clear_buffer(page, size); 271 272 return page; 273 } 274 275 /* 276 * Free a DMA buffer. 'size' must be page aligned. 277 */ 278 static void __dma_free_buffer(struct page *page, size_t size) 279 { 280 struct page *e = page + (size >> PAGE_SHIFT); 281 282 while (page < e) { 283 __free_page(page); 284 page++; 285 } 286 } 287 288 #ifdef CONFIG_MMU 289 290 static void *__alloc_from_contiguous(struct device *dev, size_t size, 291 pgprot_t prot, struct page **ret_page, 292 const void *caller, bool want_vaddr); 293 294 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 295 pgprot_t prot, struct page **ret_page, 296 const void *caller, bool want_vaddr); 297 298 static void * 299 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 300 const void *caller) 301 { 302 /* 303 * DMA allocation can be mapped to user space, so lets 304 * set VM_USERMAP flags too. 305 */ 306 return dma_common_contiguous_remap(page, size, 307 VM_ARM_DMA_CONSISTENT | VM_USERMAP, 308 prot, caller); 309 } 310 311 static void __dma_free_remap(void *cpu_addr, size_t size) 312 { 313 dma_common_free_remap(cpu_addr, size, 314 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 315 } 316 317 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 318 static struct gen_pool *atomic_pool; 319 320 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE; 321 322 static int __init early_coherent_pool(char *p) 323 { 324 atomic_pool_size = memparse(p, &p); 325 return 0; 326 } 327 early_param("coherent_pool", early_coherent_pool); 328 329 void __init init_dma_coherent_pool_size(unsigned long size) 330 { 331 /* 332 * Catch any attempt to set the pool size too late. 333 */ 334 BUG_ON(atomic_pool); 335 336 /* 337 * Set architecture specific coherent pool size only if 338 * it has not been changed by kernel command line parameter. 339 */ 340 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE) 341 atomic_pool_size = size; 342 } 343 344 /* 345 * Initialise the coherent pool for atomic allocations. 346 */ 347 static int __init atomic_pool_init(void) 348 { 349 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 350 gfp_t gfp = GFP_KERNEL | GFP_DMA; 351 struct page *page; 352 void *ptr; 353 354 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 355 if (!atomic_pool) 356 goto out; 357 358 if (dev_get_cma_area(NULL)) 359 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, 360 &page, atomic_pool_init, true); 361 else 362 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, 363 &page, atomic_pool_init, true); 364 if (ptr) { 365 int ret; 366 367 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, 368 page_to_phys(page), 369 atomic_pool_size, -1); 370 if (ret) 371 goto destroy_genpool; 372 373 gen_pool_set_algo(atomic_pool, 374 gen_pool_first_fit_order_align, 375 (void *)PAGE_SHIFT); 376 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n", 377 atomic_pool_size / 1024); 378 return 0; 379 } 380 381 destroy_genpool: 382 gen_pool_destroy(atomic_pool); 383 atomic_pool = NULL; 384 out: 385 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n", 386 atomic_pool_size / 1024); 387 return -ENOMEM; 388 } 389 /* 390 * CMA is activated by core_initcall, so we must be called after it. 391 */ 392 postcore_initcall(atomic_pool_init); 393 394 struct dma_contig_early_reserve { 395 phys_addr_t base; 396 unsigned long size; 397 }; 398 399 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 400 401 static int dma_mmu_remap_num __initdata; 402 403 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 404 { 405 dma_mmu_remap[dma_mmu_remap_num].base = base; 406 dma_mmu_remap[dma_mmu_remap_num].size = size; 407 dma_mmu_remap_num++; 408 } 409 410 void __init dma_contiguous_remap(void) 411 { 412 int i; 413 for (i = 0; i < dma_mmu_remap_num; i++) { 414 phys_addr_t start = dma_mmu_remap[i].base; 415 phys_addr_t end = start + dma_mmu_remap[i].size; 416 struct map_desc map; 417 unsigned long addr; 418 419 if (end > arm_lowmem_limit) 420 end = arm_lowmem_limit; 421 if (start >= end) 422 continue; 423 424 map.pfn = __phys_to_pfn(start); 425 map.virtual = __phys_to_virt(start); 426 map.length = end - start; 427 map.type = MT_MEMORY_DMA_READY; 428 429 /* 430 * Clear previous low-memory mapping to ensure that the 431 * TLB does not see any conflicting entries, then flush 432 * the TLB of the old entries before creating new mappings. 433 * 434 * This ensures that any speculatively loaded TLB entries 435 * (even though they may be rare) can not cause any problems, 436 * and ensures that this code is architecturally compliant. 437 */ 438 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 439 addr += PMD_SIZE) 440 pmd_clear(pmd_off_k(addr)); 441 442 flush_tlb_kernel_range(__phys_to_virt(start), 443 __phys_to_virt(end)); 444 445 iotable_init(&map, 1); 446 } 447 } 448 449 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 450 void *data) 451 { 452 struct page *page = virt_to_page(addr); 453 pgprot_t prot = *(pgprot_t *)data; 454 455 set_pte_ext(pte, mk_pte(page, prot), 0); 456 return 0; 457 } 458 459 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 460 { 461 unsigned long start = (unsigned long) page_address(page); 462 unsigned end = start + size; 463 464 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 465 flush_tlb_kernel_range(start, end); 466 } 467 468 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 469 pgprot_t prot, struct page **ret_page, 470 const void *caller, bool want_vaddr) 471 { 472 struct page *page; 473 void *ptr = NULL; 474 page = __dma_alloc_buffer(dev, size, gfp); 475 if (!page) 476 return NULL; 477 if (!want_vaddr) 478 goto out; 479 480 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 481 if (!ptr) { 482 __dma_free_buffer(page, size); 483 return NULL; 484 } 485 486 out: 487 *ret_page = page; 488 return ptr; 489 } 490 491 static void *__alloc_from_pool(size_t size, struct page **ret_page) 492 { 493 unsigned long val; 494 void *ptr = NULL; 495 496 if (!atomic_pool) { 497 WARN(1, "coherent pool not initialised!\n"); 498 return NULL; 499 } 500 501 val = gen_pool_alloc(atomic_pool, size); 502 if (val) { 503 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 504 505 *ret_page = phys_to_page(phys); 506 ptr = (void *)val; 507 } 508 509 return ptr; 510 } 511 512 static bool __in_atomic_pool(void *start, size_t size) 513 { 514 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 515 } 516 517 static int __free_from_pool(void *start, size_t size) 518 { 519 if (!__in_atomic_pool(start, size)) 520 return 0; 521 522 gen_pool_free(atomic_pool, (unsigned long)start, size); 523 524 return 1; 525 } 526 527 static void *__alloc_from_contiguous(struct device *dev, size_t size, 528 pgprot_t prot, struct page **ret_page, 529 const void *caller, bool want_vaddr) 530 { 531 unsigned long order = get_order(size); 532 size_t count = size >> PAGE_SHIFT; 533 struct page *page; 534 void *ptr = NULL; 535 536 page = dma_alloc_from_contiguous(dev, count, order); 537 if (!page) 538 return NULL; 539 540 __dma_clear_buffer(page, size); 541 542 if (!want_vaddr) 543 goto out; 544 545 if (PageHighMem(page)) { 546 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 547 if (!ptr) { 548 dma_release_from_contiguous(dev, page, count); 549 return NULL; 550 } 551 } else { 552 __dma_remap(page, size, prot); 553 ptr = page_address(page); 554 } 555 556 out: 557 *ret_page = page; 558 return ptr; 559 } 560 561 static void __free_from_contiguous(struct device *dev, struct page *page, 562 void *cpu_addr, size_t size, bool want_vaddr) 563 { 564 if (want_vaddr) { 565 if (PageHighMem(page)) 566 __dma_free_remap(cpu_addr, size); 567 else 568 __dma_remap(page, size, PAGE_KERNEL); 569 } 570 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 571 } 572 573 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot) 574 { 575 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ? 576 pgprot_writecombine(prot) : 577 pgprot_dmacoherent(prot); 578 return prot; 579 } 580 581 #define nommu() 0 582 583 #else /* !CONFIG_MMU */ 584 585 #define nommu() 1 586 587 #define __get_dma_pgprot(attrs, prot) __pgprot(0) 588 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL 589 #define __alloc_from_pool(size, ret_page) NULL 590 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv) NULL 591 #define __free_from_pool(cpu_addr, size) 0 592 #define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0) 593 #define __dma_free_remap(cpu_addr, size) do { } while (0) 594 595 #endif /* CONFIG_MMU */ 596 597 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 598 struct page **ret_page) 599 { 600 struct page *page; 601 page = __dma_alloc_buffer(dev, size, gfp); 602 if (!page) 603 return NULL; 604 605 *ret_page = page; 606 return page_address(page); 607 } 608 609 610 611 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 612 gfp_t gfp, pgprot_t prot, bool is_coherent, 613 struct dma_attrs *attrs, const void *caller) 614 { 615 u64 mask = get_coherent_dma_mask(dev); 616 struct page *page = NULL; 617 void *addr; 618 bool want_vaddr; 619 620 #ifdef CONFIG_DMA_API_DEBUG 621 u64 limit = (mask + 1) & ~mask; 622 if (limit && size >= limit) { 623 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 624 size, mask); 625 return NULL; 626 } 627 #endif 628 629 if (!mask) 630 return NULL; 631 632 if (mask < 0xffffffffULL) 633 gfp |= GFP_DMA; 634 635 /* 636 * Following is a work-around (a.k.a. hack) to prevent pages 637 * with __GFP_COMP being passed to split_page() which cannot 638 * handle them. The real problem is that this flag probably 639 * should be 0 on ARM as it is not supported on this 640 * platform; see CONFIG_HUGETLBFS. 641 */ 642 gfp &= ~(__GFP_COMP); 643 644 *handle = DMA_ERROR_CODE; 645 size = PAGE_ALIGN(size); 646 want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs); 647 648 if (is_coherent || nommu()) 649 addr = __alloc_simple_buffer(dev, size, gfp, &page); 650 else if (!(gfp & __GFP_WAIT)) 651 addr = __alloc_from_pool(size, &page); 652 else if (!dev_get_cma_area(dev)) 653 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller, want_vaddr); 654 else 655 addr = __alloc_from_contiguous(dev, size, prot, &page, caller, want_vaddr); 656 657 if (page) 658 *handle = pfn_to_dma(dev, page_to_pfn(page)); 659 660 return want_vaddr ? addr : page; 661 } 662 663 /* 664 * Allocate DMA-coherent memory space and return both the kernel remapped 665 * virtual and bus address for that space. 666 */ 667 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 668 gfp_t gfp, struct dma_attrs *attrs) 669 { 670 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 671 void *memory; 672 673 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 674 return memory; 675 676 return __dma_alloc(dev, size, handle, gfp, prot, false, 677 attrs, __builtin_return_address(0)); 678 } 679 680 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 681 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 682 { 683 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 684 void *memory; 685 686 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 687 return memory; 688 689 return __dma_alloc(dev, size, handle, gfp, prot, true, 690 attrs, __builtin_return_address(0)); 691 } 692 693 /* 694 * Create userspace mapping for the DMA-coherent memory. 695 */ 696 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 697 void *cpu_addr, dma_addr_t dma_addr, size_t size, 698 struct dma_attrs *attrs) 699 { 700 int ret = -ENXIO; 701 #ifdef CONFIG_MMU 702 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 703 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 704 unsigned long pfn = dma_to_pfn(dev, dma_addr); 705 unsigned long off = vma->vm_pgoff; 706 707 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 708 709 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 710 return ret; 711 712 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 713 ret = remap_pfn_range(vma, vma->vm_start, 714 pfn + off, 715 vma->vm_end - vma->vm_start, 716 vma->vm_page_prot); 717 } 718 #endif /* CONFIG_MMU */ 719 720 return ret; 721 } 722 723 /* 724 * Free a buffer as defined by the above mapping. 725 */ 726 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 727 dma_addr_t handle, struct dma_attrs *attrs, 728 bool is_coherent) 729 { 730 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 731 bool want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs); 732 733 if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) 734 return; 735 736 size = PAGE_ALIGN(size); 737 738 if (is_coherent || nommu()) { 739 __dma_free_buffer(page, size); 740 } else if (__free_from_pool(cpu_addr, size)) { 741 return; 742 } else if (!dev_get_cma_area(dev)) { 743 if (want_vaddr) 744 __dma_free_remap(cpu_addr, size); 745 __dma_free_buffer(page, size); 746 } else { 747 /* 748 * Non-atomic allocations cannot be freed with IRQs disabled 749 */ 750 WARN_ON(irqs_disabled()); 751 __free_from_contiguous(dev, page, cpu_addr, size, want_vaddr); 752 } 753 } 754 755 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 756 dma_addr_t handle, struct dma_attrs *attrs) 757 { 758 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 759 } 760 761 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 762 dma_addr_t handle, struct dma_attrs *attrs) 763 { 764 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 765 } 766 767 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 768 void *cpu_addr, dma_addr_t handle, size_t size, 769 struct dma_attrs *attrs) 770 { 771 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 772 int ret; 773 774 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 775 if (unlikely(ret)) 776 return ret; 777 778 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 779 return 0; 780 } 781 782 static void dma_cache_maint_page(struct page *page, unsigned long offset, 783 size_t size, enum dma_data_direction dir, 784 void (*op)(const void *, size_t, int)) 785 { 786 unsigned long pfn; 787 size_t left = size; 788 789 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 790 offset %= PAGE_SIZE; 791 792 /* 793 * A single sg entry may refer to multiple physically contiguous 794 * pages. But we still need to process highmem pages individually. 795 * If highmem is not configured then the bulk of this loop gets 796 * optimized out. 797 */ 798 do { 799 size_t len = left; 800 void *vaddr; 801 802 page = pfn_to_page(pfn); 803 804 if (PageHighMem(page)) { 805 if (len + offset > PAGE_SIZE) 806 len = PAGE_SIZE - offset; 807 808 if (cache_is_vipt_nonaliasing()) { 809 vaddr = kmap_atomic(page); 810 op(vaddr + offset, len, dir); 811 kunmap_atomic(vaddr); 812 } else { 813 vaddr = kmap_high_get(page); 814 if (vaddr) { 815 op(vaddr + offset, len, dir); 816 kunmap_high(page); 817 } 818 } 819 } else { 820 vaddr = page_address(page) + offset; 821 op(vaddr, len, dir); 822 } 823 offset = 0; 824 pfn++; 825 left -= len; 826 } while (left); 827 } 828 829 /* 830 * Make an area consistent for devices. 831 * Note: Drivers should NOT use this function directly, as it will break 832 * platforms with CONFIG_DMABOUNCE. 833 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 834 */ 835 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 836 size_t size, enum dma_data_direction dir) 837 { 838 phys_addr_t paddr; 839 840 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 841 842 paddr = page_to_phys(page) + off; 843 if (dir == DMA_FROM_DEVICE) { 844 outer_inv_range(paddr, paddr + size); 845 } else { 846 outer_clean_range(paddr, paddr + size); 847 } 848 /* FIXME: non-speculating: flush on bidirectional mappings? */ 849 } 850 851 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 852 size_t size, enum dma_data_direction dir) 853 { 854 phys_addr_t paddr = page_to_phys(page) + off; 855 856 /* FIXME: non-speculating: not required */ 857 /* in any case, don't bother invalidating if DMA to device */ 858 if (dir != DMA_TO_DEVICE) { 859 outer_inv_range(paddr, paddr + size); 860 861 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 862 } 863 864 /* 865 * Mark the D-cache clean for these pages to avoid extra flushing. 866 */ 867 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 868 unsigned long pfn; 869 size_t left = size; 870 871 pfn = page_to_pfn(page) + off / PAGE_SIZE; 872 off %= PAGE_SIZE; 873 if (off) { 874 pfn++; 875 left -= PAGE_SIZE - off; 876 } 877 while (left >= PAGE_SIZE) { 878 page = pfn_to_page(pfn++); 879 set_bit(PG_dcache_clean, &page->flags); 880 left -= PAGE_SIZE; 881 } 882 } 883 } 884 885 /** 886 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 887 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 888 * @sg: list of buffers 889 * @nents: number of buffers to map 890 * @dir: DMA transfer direction 891 * 892 * Map a set of buffers described by scatterlist in streaming mode for DMA. 893 * This is the scatter-gather version of the dma_map_single interface. 894 * Here the scatter gather list elements are each tagged with the 895 * appropriate dma address and length. They are obtained via 896 * sg_dma_{address,length}. 897 * 898 * Device ownership issues as mentioned for dma_map_single are the same 899 * here. 900 */ 901 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 902 enum dma_data_direction dir, struct dma_attrs *attrs) 903 { 904 struct dma_map_ops *ops = get_dma_ops(dev); 905 struct scatterlist *s; 906 int i, j; 907 908 for_each_sg(sg, s, nents, i) { 909 #ifdef CONFIG_NEED_SG_DMA_LENGTH 910 s->dma_length = s->length; 911 #endif 912 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 913 s->length, dir, attrs); 914 if (dma_mapping_error(dev, s->dma_address)) 915 goto bad_mapping; 916 } 917 return nents; 918 919 bad_mapping: 920 for_each_sg(sg, s, i, j) 921 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 922 return 0; 923 } 924 925 /** 926 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 927 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 928 * @sg: list of buffers 929 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 930 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 931 * 932 * Unmap a set of streaming mode DMA translations. Again, CPU access 933 * rules concerning calls here are the same as for dma_unmap_single(). 934 */ 935 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 936 enum dma_data_direction dir, struct dma_attrs *attrs) 937 { 938 struct dma_map_ops *ops = get_dma_ops(dev); 939 struct scatterlist *s; 940 941 int i; 942 943 for_each_sg(sg, s, nents, i) 944 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 945 } 946 947 /** 948 * arm_dma_sync_sg_for_cpu 949 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 950 * @sg: list of buffers 951 * @nents: number of buffers to map (returned from dma_map_sg) 952 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 953 */ 954 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 955 int nents, enum dma_data_direction dir) 956 { 957 struct dma_map_ops *ops = get_dma_ops(dev); 958 struct scatterlist *s; 959 int i; 960 961 for_each_sg(sg, s, nents, i) 962 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 963 dir); 964 } 965 966 /** 967 * arm_dma_sync_sg_for_device 968 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 969 * @sg: list of buffers 970 * @nents: number of buffers to map (returned from dma_map_sg) 971 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 972 */ 973 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 974 int nents, enum dma_data_direction dir) 975 { 976 struct dma_map_ops *ops = get_dma_ops(dev); 977 struct scatterlist *s; 978 int i; 979 980 for_each_sg(sg, s, nents, i) 981 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 982 dir); 983 } 984 985 /* 986 * Return whether the given device DMA address mask can be supported 987 * properly. For example, if your device can only drive the low 24-bits 988 * during bus mastering, then you would pass 0x00ffffff as the mask 989 * to this function. 990 */ 991 int dma_supported(struct device *dev, u64 mask) 992 { 993 return __dma_supported(dev, mask, false); 994 } 995 EXPORT_SYMBOL(dma_supported); 996 997 int arm_dma_set_mask(struct device *dev, u64 dma_mask) 998 { 999 if (!dev->dma_mask || !dma_supported(dev, dma_mask)) 1000 return -EIO; 1001 1002 *dev->dma_mask = dma_mask; 1003 1004 return 0; 1005 } 1006 1007 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 1008 1009 static int __init dma_debug_do_init(void) 1010 { 1011 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 1012 return 0; 1013 } 1014 fs_initcall(dma_debug_do_init); 1015 1016 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1017 1018 /* IOMMU */ 1019 1020 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 1021 1022 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1023 size_t size) 1024 { 1025 unsigned int order = get_order(size); 1026 unsigned int align = 0; 1027 unsigned int count, start; 1028 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1029 unsigned long flags; 1030 dma_addr_t iova; 1031 int i; 1032 1033 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1034 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1035 1036 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1037 align = (1 << order) - 1; 1038 1039 spin_lock_irqsave(&mapping->lock, flags); 1040 for (i = 0; i < mapping->nr_bitmaps; i++) { 1041 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1042 mapping->bits, 0, count, align); 1043 1044 if (start > mapping->bits) 1045 continue; 1046 1047 bitmap_set(mapping->bitmaps[i], start, count); 1048 break; 1049 } 1050 1051 /* 1052 * No unused range found. Try to extend the existing mapping 1053 * and perform a second attempt to reserve an IO virtual 1054 * address range of size bytes. 1055 */ 1056 if (i == mapping->nr_bitmaps) { 1057 if (extend_iommu_mapping(mapping)) { 1058 spin_unlock_irqrestore(&mapping->lock, flags); 1059 return DMA_ERROR_CODE; 1060 } 1061 1062 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1063 mapping->bits, 0, count, align); 1064 1065 if (start > mapping->bits) { 1066 spin_unlock_irqrestore(&mapping->lock, flags); 1067 return DMA_ERROR_CODE; 1068 } 1069 1070 bitmap_set(mapping->bitmaps[i], start, count); 1071 } 1072 spin_unlock_irqrestore(&mapping->lock, flags); 1073 1074 iova = mapping->base + (mapping_size * i); 1075 iova += start << PAGE_SHIFT; 1076 1077 return iova; 1078 } 1079 1080 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1081 dma_addr_t addr, size_t size) 1082 { 1083 unsigned int start, count; 1084 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1085 unsigned long flags; 1086 dma_addr_t bitmap_base; 1087 u32 bitmap_index; 1088 1089 if (!size) 1090 return; 1091 1092 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; 1093 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 1094 1095 bitmap_base = mapping->base + mapping_size * bitmap_index; 1096 1097 start = (addr - bitmap_base) >> PAGE_SHIFT; 1098 1099 if (addr + size > bitmap_base + mapping_size) { 1100 /* 1101 * The address range to be freed reaches into the iova 1102 * range of the next bitmap. This should not happen as 1103 * we don't allow this in __alloc_iova (at the 1104 * moment). 1105 */ 1106 BUG(); 1107 } else 1108 count = size >> PAGE_SHIFT; 1109 1110 spin_lock_irqsave(&mapping->lock, flags); 1111 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 1112 spin_unlock_irqrestore(&mapping->lock, flags); 1113 } 1114 1115 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1116 gfp_t gfp, struct dma_attrs *attrs) 1117 { 1118 struct page **pages; 1119 int count = size >> PAGE_SHIFT; 1120 int array_size = count * sizeof(struct page *); 1121 int i = 0; 1122 1123 if (array_size <= PAGE_SIZE) 1124 pages = kzalloc(array_size, GFP_KERNEL); 1125 else 1126 pages = vzalloc(array_size); 1127 if (!pages) 1128 return NULL; 1129 1130 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) 1131 { 1132 unsigned long order = get_order(size); 1133 struct page *page; 1134 1135 page = dma_alloc_from_contiguous(dev, count, order); 1136 if (!page) 1137 goto error; 1138 1139 __dma_clear_buffer(page, size); 1140 1141 for (i = 0; i < count; i++) 1142 pages[i] = page + i; 1143 1144 return pages; 1145 } 1146 1147 /* 1148 * IOMMU can map any pages, so himem can also be used here 1149 */ 1150 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1151 1152 while (count) { 1153 int j, order; 1154 1155 for (order = __fls(count); order > 0; --order) { 1156 /* 1157 * We do not want OOM killer to be invoked as long 1158 * as we can fall back to single pages, so we force 1159 * __GFP_NORETRY for orders higher than zero. 1160 */ 1161 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); 1162 if (pages[i]) 1163 break; 1164 } 1165 1166 if (!pages[i]) { 1167 /* 1168 * Fall back to single page allocation. 1169 * Might invoke OOM killer as last resort. 1170 */ 1171 pages[i] = alloc_pages(gfp, 0); 1172 if (!pages[i]) 1173 goto error; 1174 } 1175 1176 if (order) { 1177 split_page(pages[i], order); 1178 j = 1 << order; 1179 while (--j) 1180 pages[i + j] = pages[i] + j; 1181 } 1182 1183 __dma_clear_buffer(pages[i], PAGE_SIZE << order); 1184 i += 1 << order; 1185 count -= 1 << order; 1186 } 1187 1188 return pages; 1189 error: 1190 while (i--) 1191 if (pages[i]) 1192 __free_pages(pages[i], 0); 1193 if (array_size <= PAGE_SIZE) 1194 kfree(pages); 1195 else 1196 vfree(pages); 1197 return NULL; 1198 } 1199 1200 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1201 size_t size, struct dma_attrs *attrs) 1202 { 1203 int count = size >> PAGE_SHIFT; 1204 int array_size = count * sizeof(struct page *); 1205 int i; 1206 1207 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) { 1208 dma_release_from_contiguous(dev, pages[0], count); 1209 } else { 1210 for (i = 0; i < count; i++) 1211 if (pages[i]) 1212 __free_pages(pages[i], 0); 1213 } 1214 1215 if (array_size <= PAGE_SIZE) 1216 kfree(pages); 1217 else 1218 vfree(pages); 1219 return 0; 1220 } 1221 1222 /* 1223 * Create a CPU mapping for a specified pages 1224 */ 1225 static void * 1226 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1227 const void *caller) 1228 { 1229 return dma_common_pages_remap(pages, size, 1230 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller); 1231 } 1232 1233 /* 1234 * Create a mapping in device IO address space for specified pages 1235 */ 1236 static dma_addr_t 1237 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size) 1238 { 1239 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1240 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1241 dma_addr_t dma_addr, iova; 1242 int i, ret = DMA_ERROR_CODE; 1243 1244 dma_addr = __alloc_iova(mapping, size); 1245 if (dma_addr == DMA_ERROR_CODE) 1246 return dma_addr; 1247 1248 iova = dma_addr; 1249 for (i = 0; i < count; ) { 1250 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1251 phys_addr_t phys = page_to_phys(pages[i]); 1252 unsigned int len, j; 1253 1254 for (j = i + 1; j < count; j++, next_pfn++) 1255 if (page_to_pfn(pages[j]) != next_pfn) 1256 break; 1257 1258 len = (j - i) << PAGE_SHIFT; 1259 ret = iommu_map(mapping->domain, iova, phys, len, 1260 IOMMU_READ|IOMMU_WRITE); 1261 if (ret < 0) 1262 goto fail; 1263 iova += len; 1264 i = j; 1265 } 1266 return dma_addr; 1267 fail: 1268 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1269 __free_iova(mapping, dma_addr, size); 1270 return DMA_ERROR_CODE; 1271 } 1272 1273 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1274 { 1275 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1276 1277 /* 1278 * add optional in-page offset from iova to size and align 1279 * result to page size 1280 */ 1281 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1282 iova &= PAGE_MASK; 1283 1284 iommu_unmap(mapping->domain, iova, size); 1285 __free_iova(mapping, iova, size); 1286 return 0; 1287 } 1288 1289 static struct page **__atomic_get_pages(void *addr) 1290 { 1291 struct page *page; 1292 phys_addr_t phys; 1293 1294 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); 1295 page = phys_to_page(phys); 1296 1297 return (struct page **)page; 1298 } 1299 1300 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs) 1301 { 1302 struct vm_struct *area; 1303 1304 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1305 return __atomic_get_pages(cpu_addr); 1306 1307 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1308 return cpu_addr; 1309 1310 area = find_vm_area(cpu_addr); 1311 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1312 return area->pages; 1313 return NULL; 1314 } 1315 1316 static void *__iommu_alloc_atomic(struct device *dev, size_t size, 1317 dma_addr_t *handle) 1318 { 1319 struct page *page; 1320 void *addr; 1321 1322 addr = __alloc_from_pool(size, &page); 1323 if (!addr) 1324 return NULL; 1325 1326 *handle = __iommu_create_mapping(dev, &page, size); 1327 if (*handle == DMA_ERROR_CODE) 1328 goto err_mapping; 1329 1330 return addr; 1331 1332 err_mapping: 1333 __free_from_pool(addr, size); 1334 return NULL; 1335 } 1336 1337 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1338 dma_addr_t handle, size_t size) 1339 { 1340 __iommu_remove_mapping(dev, handle, size); 1341 __free_from_pool(cpu_addr, size); 1342 } 1343 1344 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1345 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 1346 { 1347 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1348 struct page **pages; 1349 void *addr = NULL; 1350 1351 *handle = DMA_ERROR_CODE; 1352 size = PAGE_ALIGN(size); 1353 1354 if (!(gfp & __GFP_WAIT)) 1355 return __iommu_alloc_atomic(dev, size, handle); 1356 1357 /* 1358 * Following is a work-around (a.k.a. hack) to prevent pages 1359 * with __GFP_COMP being passed to split_page() which cannot 1360 * handle them. The real problem is that this flag probably 1361 * should be 0 on ARM as it is not supported on this 1362 * platform; see CONFIG_HUGETLBFS. 1363 */ 1364 gfp &= ~(__GFP_COMP); 1365 1366 pages = __iommu_alloc_buffer(dev, size, gfp, attrs); 1367 if (!pages) 1368 return NULL; 1369 1370 *handle = __iommu_create_mapping(dev, pages, size); 1371 if (*handle == DMA_ERROR_CODE) 1372 goto err_buffer; 1373 1374 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1375 return pages; 1376 1377 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1378 __builtin_return_address(0)); 1379 if (!addr) 1380 goto err_mapping; 1381 1382 return addr; 1383 1384 err_mapping: 1385 __iommu_remove_mapping(dev, *handle, size); 1386 err_buffer: 1387 __iommu_free_buffer(dev, pages, size, attrs); 1388 return NULL; 1389 } 1390 1391 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1392 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1393 struct dma_attrs *attrs) 1394 { 1395 unsigned long uaddr = vma->vm_start; 1396 unsigned long usize = vma->vm_end - vma->vm_start; 1397 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1398 1399 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1400 1401 if (!pages) 1402 return -ENXIO; 1403 1404 do { 1405 int ret = vm_insert_page(vma, uaddr, *pages++); 1406 if (ret) { 1407 pr_err("Remapping memory failed: %d\n", ret); 1408 return ret; 1409 } 1410 uaddr += PAGE_SIZE; 1411 usize -= PAGE_SIZE; 1412 } while (usize > 0); 1413 1414 return 0; 1415 } 1416 1417 /* 1418 * free a page as defined by the above mapping. 1419 * Must not be called with IRQs disabled. 1420 */ 1421 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1422 dma_addr_t handle, struct dma_attrs *attrs) 1423 { 1424 struct page **pages; 1425 size = PAGE_ALIGN(size); 1426 1427 if (__in_atomic_pool(cpu_addr, size)) { 1428 __iommu_free_atomic(dev, cpu_addr, handle, size); 1429 return; 1430 } 1431 1432 pages = __iommu_get_pages(cpu_addr, attrs); 1433 if (!pages) { 1434 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1435 return; 1436 } 1437 1438 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) { 1439 dma_common_free_remap(cpu_addr, size, 1440 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 1441 } 1442 1443 __iommu_remove_mapping(dev, handle, size); 1444 __iommu_free_buffer(dev, pages, size, attrs); 1445 } 1446 1447 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1448 void *cpu_addr, dma_addr_t dma_addr, 1449 size_t size, struct dma_attrs *attrs) 1450 { 1451 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1452 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1453 1454 if (!pages) 1455 return -ENXIO; 1456 1457 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1458 GFP_KERNEL); 1459 } 1460 1461 static int __dma_direction_to_prot(enum dma_data_direction dir) 1462 { 1463 int prot; 1464 1465 switch (dir) { 1466 case DMA_BIDIRECTIONAL: 1467 prot = IOMMU_READ | IOMMU_WRITE; 1468 break; 1469 case DMA_TO_DEVICE: 1470 prot = IOMMU_READ; 1471 break; 1472 case DMA_FROM_DEVICE: 1473 prot = IOMMU_WRITE; 1474 break; 1475 default: 1476 prot = 0; 1477 } 1478 1479 return prot; 1480 } 1481 1482 /* 1483 * Map a part of the scatter-gather list into contiguous io address space 1484 */ 1485 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1486 size_t size, dma_addr_t *handle, 1487 enum dma_data_direction dir, struct dma_attrs *attrs, 1488 bool is_coherent) 1489 { 1490 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1491 dma_addr_t iova, iova_base; 1492 int ret = 0; 1493 unsigned int count; 1494 struct scatterlist *s; 1495 int prot; 1496 1497 size = PAGE_ALIGN(size); 1498 *handle = DMA_ERROR_CODE; 1499 1500 iova_base = iova = __alloc_iova(mapping, size); 1501 if (iova == DMA_ERROR_CODE) 1502 return -ENOMEM; 1503 1504 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1505 phys_addr_t phys = page_to_phys(sg_page(s)); 1506 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1507 1508 if (!is_coherent && 1509 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1510 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1511 1512 prot = __dma_direction_to_prot(dir); 1513 1514 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1515 if (ret < 0) 1516 goto fail; 1517 count += len >> PAGE_SHIFT; 1518 iova += len; 1519 } 1520 *handle = iova_base; 1521 1522 return 0; 1523 fail: 1524 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1525 __free_iova(mapping, iova_base, size); 1526 return ret; 1527 } 1528 1529 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1530 enum dma_data_direction dir, struct dma_attrs *attrs, 1531 bool is_coherent) 1532 { 1533 struct scatterlist *s = sg, *dma = sg, *start = sg; 1534 int i, count = 0; 1535 unsigned int offset = s->offset; 1536 unsigned int size = s->offset + s->length; 1537 unsigned int max = dma_get_max_seg_size(dev); 1538 1539 for (i = 1; i < nents; i++) { 1540 s = sg_next(s); 1541 1542 s->dma_address = DMA_ERROR_CODE; 1543 s->dma_length = 0; 1544 1545 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1546 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1547 dir, attrs, is_coherent) < 0) 1548 goto bad_mapping; 1549 1550 dma->dma_address += offset; 1551 dma->dma_length = size - offset; 1552 1553 size = offset = s->offset; 1554 start = s; 1555 dma = sg_next(dma); 1556 count += 1; 1557 } 1558 size += s->length; 1559 } 1560 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1561 is_coherent) < 0) 1562 goto bad_mapping; 1563 1564 dma->dma_address += offset; 1565 dma->dma_length = size - offset; 1566 1567 return count+1; 1568 1569 bad_mapping: 1570 for_each_sg(sg, s, count, i) 1571 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1572 return 0; 1573 } 1574 1575 /** 1576 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1577 * @dev: valid struct device pointer 1578 * @sg: list of buffers 1579 * @nents: number of buffers to map 1580 * @dir: DMA transfer direction 1581 * 1582 * Map a set of i/o coherent buffers described by scatterlist in streaming 1583 * mode for DMA. The scatter gather list elements are merged together (if 1584 * possible) and tagged with the appropriate dma address and length. They are 1585 * obtained via sg_dma_{address,length}. 1586 */ 1587 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1588 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1589 { 1590 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1591 } 1592 1593 /** 1594 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1595 * @dev: valid struct device pointer 1596 * @sg: list of buffers 1597 * @nents: number of buffers to map 1598 * @dir: DMA transfer direction 1599 * 1600 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1601 * The scatter gather list elements are merged together (if possible) and 1602 * tagged with the appropriate dma address and length. They are obtained via 1603 * sg_dma_{address,length}. 1604 */ 1605 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1606 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1607 { 1608 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1609 } 1610 1611 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1612 int nents, enum dma_data_direction dir, struct dma_attrs *attrs, 1613 bool is_coherent) 1614 { 1615 struct scatterlist *s; 1616 int i; 1617 1618 for_each_sg(sg, s, nents, i) { 1619 if (sg_dma_len(s)) 1620 __iommu_remove_mapping(dev, sg_dma_address(s), 1621 sg_dma_len(s)); 1622 if (!is_coherent && 1623 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1624 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1625 s->length, dir); 1626 } 1627 } 1628 1629 /** 1630 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1631 * @dev: valid struct device pointer 1632 * @sg: list of buffers 1633 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1634 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1635 * 1636 * Unmap a set of streaming mode DMA translations. Again, CPU access 1637 * rules concerning calls here are the same as for dma_unmap_single(). 1638 */ 1639 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1640 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1641 { 1642 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1643 } 1644 1645 /** 1646 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1647 * @dev: valid struct device pointer 1648 * @sg: list of buffers 1649 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1650 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1651 * 1652 * Unmap a set of streaming mode DMA translations. Again, CPU access 1653 * rules concerning calls here are the same as for dma_unmap_single(). 1654 */ 1655 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1656 enum dma_data_direction dir, struct dma_attrs *attrs) 1657 { 1658 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1659 } 1660 1661 /** 1662 * arm_iommu_sync_sg_for_cpu 1663 * @dev: valid struct device pointer 1664 * @sg: list of buffers 1665 * @nents: number of buffers to map (returned from dma_map_sg) 1666 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1667 */ 1668 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1669 int nents, enum dma_data_direction dir) 1670 { 1671 struct scatterlist *s; 1672 int i; 1673 1674 for_each_sg(sg, s, nents, i) 1675 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1676 1677 } 1678 1679 /** 1680 * arm_iommu_sync_sg_for_device 1681 * @dev: valid struct device pointer 1682 * @sg: list of buffers 1683 * @nents: number of buffers to map (returned from dma_map_sg) 1684 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1685 */ 1686 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1687 int nents, enum dma_data_direction dir) 1688 { 1689 struct scatterlist *s; 1690 int i; 1691 1692 for_each_sg(sg, s, nents, i) 1693 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1694 } 1695 1696 1697 /** 1698 * arm_coherent_iommu_map_page 1699 * @dev: valid struct device pointer 1700 * @page: page that buffer resides in 1701 * @offset: offset into page for start of buffer 1702 * @size: size of buffer to map 1703 * @dir: DMA transfer direction 1704 * 1705 * Coherent IOMMU aware version of arm_dma_map_page() 1706 */ 1707 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1708 unsigned long offset, size_t size, enum dma_data_direction dir, 1709 struct dma_attrs *attrs) 1710 { 1711 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1712 dma_addr_t dma_addr; 1713 int ret, prot, len = PAGE_ALIGN(size + offset); 1714 1715 dma_addr = __alloc_iova(mapping, len); 1716 if (dma_addr == DMA_ERROR_CODE) 1717 return dma_addr; 1718 1719 prot = __dma_direction_to_prot(dir); 1720 1721 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1722 if (ret < 0) 1723 goto fail; 1724 1725 return dma_addr + offset; 1726 fail: 1727 __free_iova(mapping, dma_addr, len); 1728 return DMA_ERROR_CODE; 1729 } 1730 1731 /** 1732 * arm_iommu_map_page 1733 * @dev: valid struct device pointer 1734 * @page: page that buffer resides in 1735 * @offset: offset into page for start of buffer 1736 * @size: size of buffer to map 1737 * @dir: DMA transfer direction 1738 * 1739 * IOMMU aware version of arm_dma_map_page() 1740 */ 1741 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1742 unsigned long offset, size_t size, enum dma_data_direction dir, 1743 struct dma_attrs *attrs) 1744 { 1745 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1746 __dma_page_cpu_to_dev(page, offset, size, dir); 1747 1748 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1749 } 1750 1751 /** 1752 * arm_coherent_iommu_unmap_page 1753 * @dev: valid struct device pointer 1754 * @handle: DMA address of buffer 1755 * @size: size of buffer (same as passed to dma_map_page) 1756 * @dir: DMA transfer direction (same as passed to dma_map_page) 1757 * 1758 * Coherent IOMMU aware version of arm_dma_unmap_page() 1759 */ 1760 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1761 size_t size, enum dma_data_direction dir, 1762 struct dma_attrs *attrs) 1763 { 1764 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1765 dma_addr_t iova = handle & PAGE_MASK; 1766 int offset = handle & ~PAGE_MASK; 1767 int len = PAGE_ALIGN(size + offset); 1768 1769 if (!iova) 1770 return; 1771 1772 iommu_unmap(mapping->domain, iova, len); 1773 __free_iova(mapping, iova, len); 1774 } 1775 1776 /** 1777 * arm_iommu_unmap_page 1778 * @dev: valid struct device pointer 1779 * @handle: DMA address of buffer 1780 * @size: size of buffer (same as passed to dma_map_page) 1781 * @dir: DMA transfer direction (same as passed to dma_map_page) 1782 * 1783 * IOMMU aware version of arm_dma_unmap_page() 1784 */ 1785 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1786 size_t size, enum dma_data_direction dir, 1787 struct dma_attrs *attrs) 1788 { 1789 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1790 dma_addr_t iova = handle & PAGE_MASK; 1791 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1792 int offset = handle & ~PAGE_MASK; 1793 int len = PAGE_ALIGN(size + offset); 1794 1795 if (!iova) 1796 return; 1797 1798 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1799 __dma_page_dev_to_cpu(page, offset, size, dir); 1800 1801 iommu_unmap(mapping->domain, iova, len); 1802 __free_iova(mapping, iova, len); 1803 } 1804 1805 static void arm_iommu_sync_single_for_cpu(struct device *dev, 1806 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1807 { 1808 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1809 dma_addr_t iova = handle & PAGE_MASK; 1810 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1811 unsigned int offset = handle & ~PAGE_MASK; 1812 1813 if (!iova) 1814 return; 1815 1816 __dma_page_dev_to_cpu(page, offset, size, dir); 1817 } 1818 1819 static void arm_iommu_sync_single_for_device(struct device *dev, 1820 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1821 { 1822 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1823 dma_addr_t iova = handle & PAGE_MASK; 1824 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1825 unsigned int offset = handle & ~PAGE_MASK; 1826 1827 if (!iova) 1828 return; 1829 1830 __dma_page_cpu_to_dev(page, offset, size, dir); 1831 } 1832 1833 struct dma_map_ops iommu_ops = { 1834 .alloc = arm_iommu_alloc_attrs, 1835 .free = arm_iommu_free_attrs, 1836 .mmap = arm_iommu_mmap_attrs, 1837 .get_sgtable = arm_iommu_get_sgtable, 1838 1839 .map_page = arm_iommu_map_page, 1840 .unmap_page = arm_iommu_unmap_page, 1841 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 1842 .sync_single_for_device = arm_iommu_sync_single_for_device, 1843 1844 .map_sg = arm_iommu_map_sg, 1845 .unmap_sg = arm_iommu_unmap_sg, 1846 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 1847 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 1848 1849 .set_dma_mask = arm_dma_set_mask, 1850 }; 1851 1852 struct dma_map_ops iommu_coherent_ops = { 1853 .alloc = arm_iommu_alloc_attrs, 1854 .free = arm_iommu_free_attrs, 1855 .mmap = arm_iommu_mmap_attrs, 1856 .get_sgtable = arm_iommu_get_sgtable, 1857 1858 .map_page = arm_coherent_iommu_map_page, 1859 .unmap_page = arm_coherent_iommu_unmap_page, 1860 1861 .map_sg = arm_coherent_iommu_map_sg, 1862 .unmap_sg = arm_coherent_iommu_unmap_sg, 1863 1864 .set_dma_mask = arm_dma_set_mask, 1865 }; 1866 1867 /** 1868 * arm_iommu_create_mapping 1869 * @bus: pointer to the bus holding the client device (for IOMMU calls) 1870 * @base: start address of the valid IO address space 1871 * @size: maximum size of the valid IO address space 1872 * 1873 * Creates a mapping structure which holds information about used/unused 1874 * IO address ranges, which is required to perform memory allocation and 1875 * mapping with IOMMU aware functions. 1876 * 1877 * The client device need to be attached to the mapping with 1878 * arm_iommu_attach_device function. 1879 */ 1880 struct dma_iommu_mapping * 1881 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size) 1882 { 1883 unsigned int bits = size >> PAGE_SHIFT; 1884 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 1885 struct dma_iommu_mapping *mapping; 1886 int extensions = 1; 1887 int err = -ENOMEM; 1888 1889 if (!bitmap_size) 1890 return ERR_PTR(-EINVAL); 1891 1892 if (bitmap_size > PAGE_SIZE) { 1893 extensions = bitmap_size / PAGE_SIZE; 1894 bitmap_size = PAGE_SIZE; 1895 } 1896 1897 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 1898 if (!mapping) 1899 goto err; 1900 1901 mapping->bitmap_size = bitmap_size; 1902 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *), 1903 GFP_KERNEL); 1904 if (!mapping->bitmaps) 1905 goto err2; 1906 1907 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 1908 if (!mapping->bitmaps[0]) 1909 goto err3; 1910 1911 mapping->nr_bitmaps = 1; 1912 mapping->extensions = extensions; 1913 mapping->base = base; 1914 mapping->bits = BITS_PER_BYTE * bitmap_size; 1915 1916 spin_lock_init(&mapping->lock); 1917 1918 mapping->domain = iommu_domain_alloc(bus); 1919 if (!mapping->domain) 1920 goto err4; 1921 1922 kref_init(&mapping->kref); 1923 return mapping; 1924 err4: 1925 kfree(mapping->bitmaps[0]); 1926 err3: 1927 kfree(mapping->bitmaps); 1928 err2: 1929 kfree(mapping); 1930 err: 1931 return ERR_PTR(err); 1932 } 1933 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 1934 1935 static void release_iommu_mapping(struct kref *kref) 1936 { 1937 int i; 1938 struct dma_iommu_mapping *mapping = 1939 container_of(kref, struct dma_iommu_mapping, kref); 1940 1941 iommu_domain_free(mapping->domain); 1942 for (i = 0; i < mapping->nr_bitmaps; i++) 1943 kfree(mapping->bitmaps[i]); 1944 kfree(mapping->bitmaps); 1945 kfree(mapping); 1946 } 1947 1948 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 1949 { 1950 int next_bitmap; 1951 1952 if (mapping->nr_bitmaps > mapping->extensions) 1953 return -EINVAL; 1954 1955 next_bitmap = mapping->nr_bitmaps; 1956 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 1957 GFP_ATOMIC); 1958 if (!mapping->bitmaps[next_bitmap]) 1959 return -ENOMEM; 1960 1961 mapping->nr_bitmaps++; 1962 1963 return 0; 1964 } 1965 1966 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 1967 { 1968 if (mapping) 1969 kref_put(&mapping->kref, release_iommu_mapping); 1970 } 1971 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 1972 1973 static int __arm_iommu_attach_device(struct device *dev, 1974 struct dma_iommu_mapping *mapping) 1975 { 1976 int err; 1977 1978 err = iommu_attach_device(mapping->domain, dev); 1979 if (err) 1980 return err; 1981 1982 kref_get(&mapping->kref); 1983 to_dma_iommu_mapping(dev) = mapping; 1984 1985 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 1986 return 0; 1987 } 1988 1989 /** 1990 * arm_iommu_attach_device 1991 * @dev: valid struct device pointer 1992 * @mapping: io address space mapping structure (returned from 1993 * arm_iommu_create_mapping) 1994 * 1995 * Attaches specified io address space mapping to the provided device. 1996 * This replaces the dma operations (dma_map_ops pointer) with the 1997 * IOMMU aware version. 1998 * 1999 * More than one client might be attached to the same io address space 2000 * mapping. 2001 */ 2002 int arm_iommu_attach_device(struct device *dev, 2003 struct dma_iommu_mapping *mapping) 2004 { 2005 int err; 2006 2007 err = __arm_iommu_attach_device(dev, mapping); 2008 if (err) 2009 return err; 2010 2011 set_dma_ops(dev, &iommu_ops); 2012 return 0; 2013 } 2014 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 2015 2016 static void __arm_iommu_detach_device(struct device *dev) 2017 { 2018 struct dma_iommu_mapping *mapping; 2019 2020 mapping = to_dma_iommu_mapping(dev); 2021 if (!mapping) { 2022 dev_warn(dev, "Not attached\n"); 2023 return; 2024 } 2025 2026 iommu_detach_device(mapping->domain, dev); 2027 kref_put(&mapping->kref, release_iommu_mapping); 2028 to_dma_iommu_mapping(dev) = NULL; 2029 2030 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 2031 } 2032 2033 /** 2034 * arm_iommu_detach_device 2035 * @dev: valid struct device pointer 2036 * 2037 * Detaches the provided device from a previously attached map. 2038 * This voids the dma operations (dma_map_ops pointer) 2039 */ 2040 void arm_iommu_detach_device(struct device *dev) 2041 { 2042 __arm_iommu_detach_device(dev); 2043 set_dma_ops(dev, NULL); 2044 } 2045 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 2046 2047 static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) 2048 { 2049 return coherent ? &iommu_coherent_ops : &iommu_ops; 2050 } 2051 2052 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2053 struct iommu_ops *iommu) 2054 { 2055 struct dma_iommu_mapping *mapping; 2056 2057 if (!iommu) 2058 return false; 2059 2060 /* 2061 * currently arm_iommu_create_mapping() takes a max of size_t 2062 * for size param. So check this limit for now. 2063 */ 2064 if (size > SIZE_MAX) 2065 return false; 2066 2067 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); 2068 if (IS_ERR(mapping)) { 2069 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", 2070 size, dev_name(dev)); 2071 return false; 2072 } 2073 2074 if (__arm_iommu_attach_device(dev, mapping)) { 2075 pr_warn("Failed to attached device %s to IOMMU_mapping\n", 2076 dev_name(dev)); 2077 arm_iommu_release_mapping(mapping); 2078 return false; 2079 } 2080 2081 return true; 2082 } 2083 2084 static void arm_teardown_iommu_dma_ops(struct device *dev) 2085 { 2086 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2087 2088 if (!mapping) 2089 return; 2090 2091 __arm_iommu_detach_device(dev); 2092 arm_iommu_release_mapping(mapping); 2093 } 2094 2095 #else 2096 2097 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2098 struct iommu_ops *iommu) 2099 { 2100 return false; 2101 } 2102 2103 static void arm_teardown_iommu_dma_ops(struct device *dev) { } 2104 2105 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops 2106 2107 #endif /* CONFIG_ARM_DMA_USE_IOMMU */ 2108 2109 static struct dma_map_ops *arm_get_dma_map_ops(bool coherent) 2110 { 2111 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; 2112 } 2113 2114 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 2115 struct iommu_ops *iommu, bool coherent) 2116 { 2117 struct dma_map_ops *dma_ops; 2118 2119 dev->archdata.dma_coherent = coherent; 2120 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) 2121 dma_ops = arm_get_iommu_dma_map_ops(coherent); 2122 else 2123 dma_ops = arm_get_dma_map_ops(coherent); 2124 2125 set_dma_ops(dev, dma_ops); 2126 } 2127 2128 void arch_teardown_dma_ops(struct device *dev) 2129 { 2130 arm_teardown_iommu_dma_ops(dev); 2131 } 2132