1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/dma-mapping.c 4 * 5 * Copyright (C) 2000-2004 Russell King 6 * 7 * DMA uncached mapping support. 8 */ 9 #include <linux/module.h> 10 #include <linux/mm.h> 11 #include <linux/genalloc.h> 12 #include <linux/gfp.h> 13 #include <linux/errno.h> 14 #include <linux/list.h> 15 #include <linux/init.h> 16 #include <linux/device.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/dma-contiguous.h> 19 #include <linux/highmem.h> 20 #include <linux/memblock.h> 21 #include <linux/slab.h> 22 #include <linux/iommu.h> 23 #include <linux/io.h> 24 #include <linux/vmalloc.h> 25 #include <linux/sizes.h> 26 #include <linux/cma.h> 27 28 #include <asm/memory.h> 29 #include <asm/highmem.h> 30 #include <asm/cacheflush.h> 31 #include <asm/tlbflush.h> 32 #include <asm/mach/arch.h> 33 #include <asm/dma-iommu.h> 34 #include <asm/mach/map.h> 35 #include <asm/system_info.h> 36 #include <asm/dma-contiguous.h> 37 38 #include "dma.h" 39 #include "mm.h" 40 41 struct arm_dma_alloc_args { 42 struct device *dev; 43 size_t size; 44 gfp_t gfp; 45 pgprot_t prot; 46 const void *caller; 47 bool want_vaddr; 48 int coherent_flag; 49 }; 50 51 struct arm_dma_free_args { 52 struct device *dev; 53 size_t size; 54 void *cpu_addr; 55 struct page *page; 56 bool want_vaddr; 57 }; 58 59 #define NORMAL 0 60 #define COHERENT 1 61 62 struct arm_dma_allocator { 63 void *(*alloc)(struct arm_dma_alloc_args *args, 64 struct page **ret_page); 65 void (*free)(struct arm_dma_free_args *args); 66 }; 67 68 struct arm_dma_buffer { 69 struct list_head list; 70 void *virt; 71 struct arm_dma_allocator *allocator; 72 }; 73 74 static LIST_HEAD(arm_dma_bufs); 75 static DEFINE_SPINLOCK(arm_dma_bufs_lock); 76 77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) 78 { 79 struct arm_dma_buffer *buf, *found = NULL; 80 unsigned long flags; 81 82 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 83 list_for_each_entry(buf, &arm_dma_bufs, list) { 84 if (buf->virt == virt) { 85 list_del(&buf->list); 86 found = buf; 87 break; 88 } 89 } 90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 91 return found; 92 } 93 94 /* 95 * The DMA API is built upon the notion of "buffer ownership". A buffer 96 * is either exclusively owned by the CPU (and therefore may be accessed 97 * by it) or exclusively owned by the DMA device. These helper functions 98 * represent the transitions between these two ownership states. 99 * 100 * Note, however, that on later ARMs, this notion does not work due to 101 * speculative prefetches. We model our approach on the assumption that 102 * the CPU does do speculative prefetches, which means we clean caches 103 * before transfers and delay cache invalidation until transfer completion. 104 * 105 */ 106 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 107 size_t, enum dma_data_direction); 108 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 109 size_t, enum dma_data_direction); 110 111 /** 112 * arm_dma_map_page - map a portion of a page for streaming DMA 113 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 114 * @page: page that buffer resides in 115 * @offset: offset into page for start of buffer 116 * @size: size of buffer to map 117 * @dir: DMA transfer direction 118 * 119 * Ensure that any data held in the cache is appropriately discarded 120 * or written back. 121 * 122 * The device owns this memory once this call has completed. The CPU 123 * can regain ownership by calling dma_unmap_page(). 124 */ 125 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 126 unsigned long offset, size_t size, enum dma_data_direction dir, 127 unsigned long attrs) 128 { 129 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 130 __dma_page_cpu_to_dev(page, offset, size, dir); 131 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 132 } 133 134 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 135 unsigned long offset, size_t size, enum dma_data_direction dir, 136 unsigned long attrs) 137 { 138 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 139 } 140 141 /** 142 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 143 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 144 * @handle: DMA address of buffer 145 * @size: size of buffer (same as passed to dma_map_page) 146 * @dir: DMA transfer direction (same as passed to dma_map_page) 147 * 148 * Unmap a page streaming mode DMA translation. The handle and size 149 * must match what was provided in the previous dma_map_page() call. 150 * All other usages are undefined. 151 * 152 * After this call, reads by the CPU to the buffer are guaranteed to see 153 * whatever the device wrote there. 154 */ 155 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 156 size_t size, enum dma_data_direction dir, unsigned long attrs) 157 { 158 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 159 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 160 handle & ~PAGE_MASK, size, dir); 161 } 162 163 static void arm_dma_sync_single_for_cpu(struct device *dev, 164 dma_addr_t handle, size_t size, enum dma_data_direction dir) 165 { 166 unsigned int offset = handle & (PAGE_SIZE - 1); 167 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 168 __dma_page_dev_to_cpu(page, offset, size, dir); 169 } 170 171 static void arm_dma_sync_single_for_device(struct device *dev, 172 dma_addr_t handle, size_t size, enum dma_data_direction dir) 173 { 174 unsigned int offset = handle & (PAGE_SIZE - 1); 175 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 176 __dma_page_cpu_to_dev(page, offset, size, dir); 177 } 178 179 const struct dma_map_ops arm_dma_ops = { 180 .alloc = arm_dma_alloc, 181 .free = arm_dma_free, 182 .mmap = arm_dma_mmap, 183 .get_sgtable = arm_dma_get_sgtable, 184 .map_page = arm_dma_map_page, 185 .unmap_page = arm_dma_unmap_page, 186 .map_sg = arm_dma_map_sg, 187 .unmap_sg = arm_dma_unmap_sg, 188 .map_resource = dma_direct_map_resource, 189 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 190 .sync_single_for_device = arm_dma_sync_single_for_device, 191 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 192 .sync_sg_for_device = arm_dma_sync_sg_for_device, 193 .dma_supported = arm_dma_supported, 194 }; 195 EXPORT_SYMBOL(arm_dma_ops); 196 197 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 198 dma_addr_t *handle, gfp_t gfp, unsigned long attrs); 199 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 200 dma_addr_t handle, unsigned long attrs); 201 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 202 void *cpu_addr, dma_addr_t dma_addr, size_t size, 203 unsigned long attrs); 204 205 const struct dma_map_ops arm_coherent_dma_ops = { 206 .alloc = arm_coherent_dma_alloc, 207 .free = arm_coherent_dma_free, 208 .mmap = arm_coherent_dma_mmap, 209 .get_sgtable = arm_dma_get_sgtable, 210 .map_page = arm_coherent_dma_map_page, 211 .map_sg = arm_dma_map_sg, 212 .map_resource = dma_direct_map_resource, 213 .dma_supported = arm_dma_supported, 214 }; 215 EXPORT_SYMBOL(arm_coherent_dma_ops); 216 217 static int __dma_supported(struct device *dev, u64 mask, bool warn) 218 { 219 unsigned long max_dma_pfn; 220 221 /* 222 * If the mask allows for more memory than we can address, 223 * and we actually have that much memory, then we must 224 * indicate that DMA to this device is not supported. 225 */ 226 if (sizeof(mask) != sizeof(dma_addr_t) && 227 mask > (dma_addr_t)~0 && 228 dma_to_pfn(dev, ~0) < max_pfn - 1) { 229 if (warn) { 230 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n", 231 mask); 232 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n"); 233 } 234 return 0; 235 } 236 237 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); 238 239 /* 240 * Translate the device's DMA mask to a PFN limit. This 241 * PFN number includes the page which we can DMA to. 242 */ 243 if (dma_to_pfn(dev, mask) < max_dma_pfn) { 244 if (warn) 245 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", 246 mask, 247 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, 248 max_dma_pfn + 1); 249 return 0; 250 } 251 252 return 1; 253 } 254 255 static u64 get_coherent_dma_mask(struct device *dev) 256 { 257 u64 mask = (u64)DMA_BIT_MASK(32); 258 259 if (dev) { 260 mask = dev->coherent_dma_mask; 261 262 /* 263 * Sanity check the DMA mask - it must be non-zero, and 264 * must be able to be satisfied by a DMA allocation. 265 */ 266 if (mask == 0) { 267 dev_warn(dev, "coherent DMA mask is unset\n"); 268 return 0; 269 } 270 271 if (!__dma_supported(dev, mask, true)) 272 return 0; 273 } 274 275 return mask; 276 } 277 278 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) 279 { 280 /* 281 * Ensure that the allocated pages are zeroed, and that any data 282 * lurking in the kernel direct-mapped region is invalidated. 283 */ 284 if (PageHighMem(page)) { 285 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 286 phys_addr_t end = base + size; 287 while (size > 0) { 288 void *ptr = kmap_atomic(page); 289 memset(ptr, 0, PAGE_SIZE); 290 if (coherent_flag != COHERENT) 291 dmac_flush_range(ptr, ptr + PAGE_SIZE); 292 kunmap_atomic(ptr); 293 page++; 294 size -= PAGE_SIZE; 295 } 296 if (coherent_flag != COHERENT) 297 outer_flush_range(base, end); 298 } else { 299 void *ptr = page_address(page); 300 memset(ptr, 0, size); 301 if (coherent_flag != COHERENT) { 302 dmac_flush_range(ptr, ptr + size); 303 outer_flush_range(__pa(ptr), __pa(ptr) + size); 304 } 305 } 306 } 307 308 /* 309 * Allocate a DMA buffer for 'dev' of size 'size' using the 310 * specified gfp mask. Note that 'size' must be page aligned. 311 */ 312 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, 313 gfp_t gfp, int coherent_flag) 314 { 315 unsigned long order = get_order(size); 316 struct page *page, *p, *e; 317 318 page = alloc_pages(gfp, order); 319 if (!page) 320 return NULL; 321 322 /* 323 * Now split the huge page and free the excess pages 324 */ 325 split_page(page, order); 326 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 327 __free_page(p); 328 329 __dma_clear_buffer(page, size, coherent_flag); 330 331 return page; 332 } 333 334 /* 335 * Free a DMA buffer. 'size' must be page aligned. 336 */ 337 static void __dma_free_buffer(struct page *page, size_t size) 338 { 339 struct page *e = page + (size >> PAGE_SHIFT); 340 341 while (page < e) { 342 __free_page(page); 343 page++; 344 } 345 } 346 347 static void *__alloc_from_contiguous(struct device *dev, size_t size, 348 pgprot_t prot, struct page **ret_page, 349 const void *caller, bool want_vaddr, 350 int coherent_flag, gfp_t gfp); 351 352 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 353 pgprot_t prot, struct page **ret_page, 354 const void *caller, bool want_vaddr); 355 356 static void * 357 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 358 const void *caller) 359 { 360 /* 361 * DMA allocation can be mapped to user space, so lets 362 * set VM_USERMAP flags too. 363 */ 364 return dma_common_contiguous_remap(page, size, 365 VM_ARM_DMA_CONSISTENT | VM_USERMAP, 366 prot, caller); 367 } 368 369 static void __dma_free_remap(void *cpu_addr, size_t size) 370 { 371 dma_common_free_remap(cpu_addr, size, 372 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 373 } 374 375 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 376 static struct gen_pool *atomic_pool __ro_after_init; 377 378 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 379 380 static int __init early_coherent_pool(char *p) 381 { 382 atomic_pool_size = memparse(p, &p); 383 return 0; 384 } 385 early_param("coherent_pool", early_coherent_pool); 386 387 /* 388 * Initialise the coherent pool for atomic allocations. 389 */ 390 static int __init atomic_pool_init(void) 391 { 392 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 393 gfp_t gfp = GFP_KERNEL | GFP_DMA; 394 struct page *page; 395 void *ptr; 396 397 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 398 if (!atomic_pool) 399 goto out; 400 /* 401 * The atomic pool is only used for non-coherent allocations 402 * so we must pass NORMAL for coherent_flag. 403 */ 404 if (dev_get_cma_area(NULL)) 405 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, 406 &page, atomic_pool_init, true, NORMAL, 407 GFP_KERNEL); 408 else 409 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, 410 &page, atomic_pool_init, true); 411 if (ptr) { 412 int ret; 413 414 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, 415 page_to_phys(page), 416 atomic_pool_size, -1); 417 if (ret) 418 goto destroy_genpool; 419 420 gen_pool_set_algo(atomic_pool, 421 gen_pool_first_fit_order_align, 422 NULL); 423 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", 424 atomic_pool_size / 1024); 425 return 0; 426 } 427 428 destroy_genpool: 429 gen_pool_destroy(atomic_pool); 430 atomic_pool = NULL; 431 out: 432 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 433 atomic_pool_size / 1024); 434 return -ENOMEM; 435 } 436 /* 437 * CMA is activated by core_initcall, so we must be called after it. 438 */ 439 postcore_initcall(atomic_pool_init); 440 441 struct dma_contig_early_reserve { 442 phys_addr_t base; 443 unsigned long size; 444 }; 445 446 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 447 448 static int dma_mmu_remap_num __initdata; 449 450 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 451 { 452 dma_mmu_remap[dma_mmu_remap_num].base = base; 453 dma_mmu_remap[dma_mmu_remap_num].size = size; 454 dma_mmu_remap_num++; 455 } 456 457 void __init dma_contiguous_remap(void) 458 { 459 int i; 460 for (i = 0; i < dma_mmu_remap_num; i++) { 461 phys_addr_t start = dma_mmu_remap[i].base; 462 phys_addr_t end = start + dma_mmu_remap[i].size; 463 struct map_desc map; 464 unsigned long addr; 465 466 if (end > arm_lowmem_limit) 467 end = arm_lowmem_limit; 468 if (start >= end) 469 continue; 470 471 map.pfn = __phys_to_pfn(start); 472 map.virtual = __phys_to_virt(start); 473 map.length = end - start; 474 map.type = MT_MEMORY_DMA_READY; 475 476 /* 477 * Clear previous low-memory mapping to ensure that the 478 * TLB does not see any conflicting entries, then flush 479 * the TLB of the old entries before creating new mappings. 480 * 481 * This ensures that any speculatively loaded TLB entries 482 * (even though they may be rare) can not cause any problems, 483 * and ensures that this code is architecturally compliant. 484 */ 485 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 486 addr += PMD_SIZE) 487 pmd_clear(pmd_off_k(addr)); 488 489 flush_tlb_kernel_range(__phys_to_virt(start), 490 __phys_to_virt(end)); 491 492 iotable_init(&map, 1); 493 } 494 } 495 496 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 497 void *data) 498 { 499 struct page *page = virt_to_page(addr); 500 pgprot_t prot = *(pgprot_t *)data; 501 502 set_pte_ext(pte, mk_pte(page, prot), 0); 503 return 0; 504 } 505 506 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 507 { 508 unsigned long start = (unsigned long) page_address(page); 509 unsigned end = start + size; 510 511 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 512 flush_tlb_kernel_range(start, end); 513 } 514 515 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 516 pgprot_t prot, struct page **ret_page, 517 const void *caller, bool want_vaddr) 518 { 519 struct page *page; 520 void *ptr = NULL; 521 /* 522 * __alloc_remap_buffer is only called when the device is 523 * non-coherent 524 */ 525 page = __dma_alloc_buffer(dev, size, gfp, NORMAL); 526 if (!page) 527 return NULL; 528 if (!want_vaddr) 529 goto out; 530 531 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 532 if (!ptr) { 533 __dma_free_buffer(page, size); 534 return NULL; 535 } 536 537 out: 538 *ret_page = page; 539 return ptr; 540 } 541 542 static void *__alloc_from_pool(size_t size, struct page **ret_page) 543 { 544 unsigned long val; 545 void *ptr = NULL; 546 547 if (!atomic_pool) { 548 WARN(1, "coherent pool not initialised!\n"); 549 return NULL; 550 } 551 552 val = gen_pool_alloc(atomic_pool, size); 553 if (val) { 554 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 555 556 *ret_page = phys_to_page(phys); 557 ptr = (void *)val; 558 } 559 560 return ptr; 561 } 562 563 static bool __in_atomic_pool(void *start, size_t size) 564 { 565 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 566 } 567 568 static int __free_from_pool(void *start, size_t size) 569 { 570 if (!__in_atomic_pool(start, size)) 571 return 0; 572 573 gen_pool_free(atomic_pool, (unsigned long)start, size); 574 575 return 1; 576 } 577 578 static void *__alloc_from_contiguous(struct device *dev, size_t size, 579 pgprot_t prot, struct page **ret_page, 580 const void *caller, bool want_vaddr, 581 int coherent_flag, gfp_t gfp) 582 { 583 unsigned long order = get_order(size); 584 size_t count = size >> PAGE_SHIFT; 585 struct page *page; 586 void *ptr = NULL; 587 588 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN); 589 if (!page) 590 return NULL; 591 592 __dma_clear_buffer(page, size, coherent_flag); 593 594 if (!want_vaddr) 595 goto out; 596 597 if (PageHighMem(page)) { 598 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 599 if (!ptr) { 600 dma_release_from_contiguous(dev, page, count); 601 return NULL; 602 } 603 } else { 604 __dma_remap(page, size, prot); 605 ptr = page_address(page); 606 } 607 608 out: 609 *ret_page = page; 610 return ptr; 611 } 612 613 static void __free_from_contiguous(struct device *dev, struct page *page, 614 void *cpu_addr, size_t size, bool want_vaddr) 615 { 616 if (want_vaddr) { 617 if (PageHighMem(page)) 618 __dma_free_remap(cpu_addr, size); 619 else 620 __dma_remap(page, size, PAGE_KERNEL); 621 } 622 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 623 } 624 625 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) 626 { 627 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? 628 pgprot_writecombine(prot) : 629 pgprot_dmacoherent(prot); 630 return prot; 631 } 632 633 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 634 struct page **ret_page) 635 { 636 struct page *page; 637 /* __alloc_simple_buffer is only called when the device is coherent */ 638 page = __dma_alloc_buffer(dev, size, gfp, COHERENT); 639 if (!page) 640 return NULL; 641 642 *ret_page = page; 643 return page_address(page); 644 } 645 646 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, 647 struct page **ret_page) 648 { 649 return __alloc_simple_buffer(args->dev, args->size, args->gfp, 650 ret_page); 651 } 652 653 static void simple_allocator_free(struct arm_dma_free_args *args) 654 { 655 __dma_free_buffer(args->page, args->size); 656 } 657 658 static struct arm_dma_allocator simple_allocator = { 659 .alloc = simple_allocator_alloc, 660 .free = simple_allocator_free, 661 }; 662 663 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, 664 struct page **ret_page) 665 { 666 return __alloc_from_contiguous(args->dev, args->size, args->prot, 667 ret_page, args->caller, 668 args->want_vaddr, args->coherent_flag, 669 args->gfp); 670 } 671 672 static void cma_allocator_free(struct arm_dma_free_args *args) 673 { 674 __free_from_contiguous(args->dev, args->page, args->cpu_addr, 675 args->size, args->want_vaddr); 676 } 677 678 static struct arm_dma_allocator cma_allocator = { 679 .alloc = cma_allocator_alloc, 680 .free = cma_allocator_free, 681 }; 682 683 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, 684 struct page **ret_page) 685 { 686 return __alloc_from_pool(args->size, ret_page); 687 } 688 689 static void pool_allocator_free(struct arm_dma_free_args *args) 690 { 691 __free_from_pool(args->cpu_addr, args->size); 692 } 693 694 static struct arm_dma_allocator pool_allocator = { 695 .alloc = pool_allocator_alloc, 696 .free = pool_allocator_free, 697 }; 698 699 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, 700 struct page **ret_page) 701 { 702 return __alloc_remap_buffer(args->dev, args->size, args->gfp, 703 args->prot, ret_page, args->caller, 704 args->want_vaddr); 705 } 706 707 static void remap_allocator_free(struct arm_dma_free_args *args) 708 { 709 if (args->want_vaddr) 710 __dma_free_remap(args->cpu_addr, args->size); 711 712 __dma_free_buffer(args->page, args->size); 713 } 714 715 static struct arm_dma_allocator remap_allocator = { 716 .alloc = remap_allocator_alloc, 717 .free = remap_allocator_free, 718 }; 719 720 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 721 gfp_t gfp, pgprot_t prot, bool is_coherent, 722 unsigned long attrs, const void *caller) 723 { 724 u64 mask = get_coherent_dma_mask(dev); 725 struct page *page = NULL; 726 void *addr; 727 bool allowblock, cma; 728 struct arm_dma_buffer *buf; 729 struct arm_dma_alloc_args args = { 730 .dev = dev, 731 .size = PAGE_ALIGN(size), 732 .gfp = gfp, 733 .prot = prot, 734 .caller = caller, 735 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 736 .coherent_flag = is_coherent ? COHERENT : NORMAL, 737 }; 738 739 #ifdef CONFIG_DMA_API_DEBUG 740 u64 limit = (mask + 1) & ~mask; 741 if (limit && size >= limit) { 742 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 743 size, mask); 744 return NULL; 745 } 746 #endif 747 748 if (!mask) 749 return NULL; 750 751 buf = kzalloc(sizeof(*buf), 752 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); 753 if (!buf) 754 return NULL; 755 756 if (mask < 0xffffffffULL) 757 gfp |= GFP_DMA; 758 759 /* 760 * Following is a work-around (a.k.a. hack) to prevent pages 761 * with __GFP_COMP being passed to split_page() which cannot 762 * handle them. The real problem is that this flag probably 763 * should be 0 on ARM as it is not supported on this 764 * platform; see CONFIG_HUGETLBFS. 765 */ 766 gfp &= ~(__GFP_COMP); 767 args.gfp = gfp; 768 769 *handle = DMA_MAPPING_ERROR; 770 allowblock = gfpflags_allow_blocking(gfp); 771 cma = allowblock ? dev_get_cma_area(dev) : false; 772 773 if (cma) 774 buf->allocator = &cma_allocator; 775 else if (is_coherent) 776 buf->allocator = &simple_allocator; 777 else if (allowblock) 778 buf->allocator = &remap_allocator; 779 else 780 buf->allocator = &pool_allocator; 781 782 addr = buf->allocator->alloc(&args, &page); 783 784 if (page) { 785 unsigned long flags; 786 787 *handle = pfn_to_dma(dev, page_to_pfn(page)); 788 buf->virt = args.want_vaddr ? addr : page; 789 790 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 791 list_add(&buf->list, &arm_dma_bufs); 792 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 793 } else { 794 kfree(buf); 795 } 796 797 return args.want_vaddr ? addr : page; 798 } 799 800 /* 801 * Allocate DMA-coherent memory space and return both the kernel remapped 802 * virtual and bus address for that space. 803 */ 804 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 805 gfp_t gfp, unsigned long attrs) 806 { 807 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 808 809 return __dma_alloc(dev, size, handle, gfp, prot, false, 810 attrs, __builtin_return_address(0)); 811 } 812 813 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 814 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 815 { 816 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true, 817 attrs, __builtin_return_address(0)); 818 } 819 820 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 821 void *cpu_addr, dma_addr_t dma_addr, size_t size, 822 unsigned long attrs) 823 { 824 int ret = -ENXIO; 825 unsigned long nr_vma_pages = vma_pages(vma); 826 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 827 unsigned long pfn = dma_to_pfn(dev, dma_addr); 828 unsigned long off = vma->vm_pgoff; 829 830 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 831 return ret; 832 833 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 834 ret = remap_pfn_range(vma, vma->vm_start, 835 pfn + off, 836 vma->vm_end - vma->vm_start, 837 vma->vm_page_prot); 838 } 839 840 return ret; 841 } 842 843 /* 844 * Create userspace mapping for the DMA-coherent memory. 845 */ 846 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 847 void *cpu_addr, dma_addr_t dma_addr, size_t size, 848 unsigned long attrs) 849 { 850 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 851 } 852 853 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 854 void *cpu_addr, dma_addr_t dma_addr, size_t size, 855 unsigned long attrs) 856 { 857 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 858 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 859 } 860 861 /* 862 * Free a buffer as defined by the above mapping. 863 */ 864 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 865 dma_addr_t handle, unsigned long attrs, 866 bool is_coherent) 867 { 868 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 869 struct arm_dma_buffer *buf; 870 struct arm_dma_free_args args = { 871 .dev = dev, 872 .size = PAGE_ALIGN(size), 873 .cpu_addr = cpu_addr, 874 .page = page, 875 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 876 }; 877 878 buf = arm_dma_buffer_find(cpu_addr); 879 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) 880 return; 881 882 buf->allocator->free(&args); 883 kfree(buf); 884 } 885 886 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 887 dma_addr_t handle, unsigned long attrs) 888 { 889 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 890 } 891 892 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 893 dma_addr_t handle, unsigned long attrs) 894 { 895 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 896 } 897 898 /* 899 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems 900 * that the intention is to allow exporting memory allocated via the 901 * coherent DMA APIs through the dma_buf API, which only accepts a 902 * scattertable. This presents a couple of problems: 903 * 1. Not all memory allocated via the coherent DMA APIs is backed by 904 * a struct page 905 * 2. Passing coherent DMA memory into the streaming APIs is not allowed 906 * as we will try to flush the memory through a different alias to that 907 * actually being used (and the flushes are redundant.) 908 */ 909 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 910 void *cpu_addr, dma_addr_t handle, size_t size, 911 unsigned long attrs) 912 { 913 unsigned long pfn = dma_to_pfn(dev, handle); 914 struct page *page; 915 int ret; 916 917 /* If the PFN is not valid, we do not have a struct page */ 918 if (!pfn_valid(pfn)) 919 return -ENXIO; 920 921 page = pfn_to_page(pfn); 922 923 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 924 if (unlikely(ret)) 925 return ret; 926 927 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 928 return 0; 929 } 930 931 static void dma_cache_maint_page(struct page *page, unsigned long offset, 932 size_t size, enum dma_data_direction dir, 933 void (*op)(const void *, size_t, int)) 934 { 935 unsigned long pfn; 936 size_t left = size; 937 938 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 939 offset %= PAGE_SIZE; 940 941 /* 942 * A single sg entry may refer to multiple physically contiguous 943 * pages. But we still need to process highmem pages individually. 944 * If highmem is not configured then the bulk of this loop gets 945 * optimized out. 946 */ 947 do { 948 size_t len = left; 949 void *vaddr; 950 951 page = pfn_to_page(pfn); 952 953 if (PageHighMem(page)) { 954 if (len + offset > PAGE_SIZE) 955 len = PAGE_SIZE - offset; 956 957 if (cache_is_vipt_nonaliasing()) { 958 vaddr = kmap_atomic(page); 959 op(vaddr + offset, len, dir); 960 kunmap_atomic(vaddr); 961 } else { 962 vaddr = kmap_high_get(page); 963 if (vaddr) { 964 op(vaddr + offset, len, dir); 965 kunmap_high(page); 966 } 967 } 968 } else { 969 vaddr = page_address(page) + offset; 970 op(vaddr, len, dir); 971 } 972 offset = 0; 973 pfn++; 974 left -= len; 975 } while (left); 976 } 977 978 /* 979 * Make an area consistent for devices. 980 * Note: Drivers should NOT use this function directly, as it will break 981 * platforms with CONFIG_DMABOUNCE. 982 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 983 */ 984 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 985 size_t size, enum dma_data_direction dir) 986 { 987 phys_addr_t paddr; 988 989 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 990 991 paddr = page_to_phys(page) + off; 992 if (dir == DMA_FROM_DEVICE) { 993 outer_inv_range(paddr, paddr + size); 994 } else { 995 outer_clean_range(paddr, paddr + size); 996 } 997 /* FIXME: non-speculating: flush on bidirectional mappings? */ 998 } 999 1000 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 1001 size_t size, enum dma_data_direction dir) 1002 { 1003 phys_addr_t paddr = page_to_phys(page) + off; 1004 1005 /* FIXME: non-speculating: not required */ 1006 /* in any case, don't bother invalidating if DMA to device */ 1007 if (dir != DMA_TO_DEVICE) { 1008 outer_inv_range(paddr, paddr + size); 1009 1010 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 1011 } 1012 1013 /* 1014 * Mark the D-cache clean for these pages to avoid extra flushing. 1015 */ 1016 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 1017 unsigned long pfn; 1018 size_t left = size; 1019 1020 pfn = page_to_pfn(page) + off / PAGE_SIZE; 1021 off %= PAGE_SIZE; 1022 if (off) { 1023 pfn++; 1024 left -= PAGE_SIZE - off; 1025 } 1026 while (left >= PAGE_SIZE) { 1027 page = pfn_to_page(pfn++); 1028 set_bit(PG_dcache_clean, &page->flags); 1029 left -= PAGE_SIZE; 1030 } 1031 } 1032 } 1033 1034 /** 1035 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 1036 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1037 * @sg: list of buffers 1038 * @nents: number of buffers to map 1039 * @dir: DMA transfer direction 1040 * 1041 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1042 * This is the scatter-gather version of the dma_map_single interface. 1043 * Here the scatter gather list elements are each tagged with the 1044 * appropriate dma address and length. They are obtained via 1045 * sg_dma_{address,length}. 1046 * 1047 * Device ownership issues as mentioned for dma_map_single are the same 1048 * here. 1049 */ 1050 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1051 enum dma_data_direction dir, unsigned long attrs) 1052 { 1053 const struct dma_map_ops *ops = get_dma_ops(dev); 1054 struct scatterlist *s; 1055 int i, j; 1056 1057 for_each_sg(sg, s, nents, i) { 1058 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1059 s->dma_length = s->length; 1060 #endif 1061 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 1062 s->length, dir, attrs); 1063 if (dma_mapping_error(dev, s->dma_address)) 1064 goto bad_mapping; 1065 } 1066 return nents; 1067 1068 bad_mapping: 1069 for_each_sg(sg, s, i, j) 1070 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1071 return 0; 1072 } 1073 1074 /** 1075 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1076 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1077 * @sg: list of buffers 1078 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1079 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1080 * 1081 * Unmap a set of streaming mode DMA translations. Again, CPU access 1082 * rules concerning calls here are the same as for dma_unmap_single(). 1083 */ 1084 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1085 enum dma_data_direction dir, unsigned long attrs) 1086 { 1087 const struct dma_map_ops *ops = get_dma_ops(dev); 1088 struct scatterlist *s; 1089 1090 int i; 1091 1092 for_each_sg(sg, s, nents, i) 1093 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1094 } 1095 1096 /** 1097 * arm_dma_sync_sg_for_cpu 1098 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1099 * @sg: list of buffers 1100 * @nents: number of buffers to map (returned from dma_map_sg) 1101 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1102 */ 1103 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1104 int nents, enum dma_data_direction dir) 1105 { 1106 const struct dma_map_ops *ops = get_dma_ops(dev); 1107 struct scatterlist *s; 1108 int i; 1109 1110 for_each_sg(sg, s, nents, i) 1111 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 1112 dir); 1113 } 1114 1115 /** 1116 * arm_dma_sync_sg_for_device 1117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1118 * @sg: list of buffers 1119 * @nents: number of buffers to map (returned from dma_map_sg) 1120 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1121 */ 1122 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1123 int nents, enum dma_data_direction dir) 1124 { 1125 const struct dma_map_ops *ops = get_dma_ops(dev); 1126 struct scatterlist *s; 1127 int i; 1128 1129 for_each_sg(sg, s, nents, i) 1130 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 1131 dir); 1132 } 1133 1134 /* 1135 * Return whether the given device DMA address mask can be supported 1136 * properly. For example, if your device can only drive the low 24-bits 1137 * during bus mastering, then you would pass 0x00ffffff as the mask 1138 * to this function. 1139 */ 1140 int arm_dma_supported(struct device *dev, u64 mask) 1141 { 1142 return __dma_supported(dev, mask, false); 1143 } 1144 1145 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent) 1146 { 1147 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; 1148 } 1149 1150 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1151 1152 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) 1153 { 1154 int prot = 0; 1155 1156 if (attrs & DMA_ATTR_PRIVILEGED) 1157 prot |= IOMMU_PRIV; 1158 1159 switch (dir) { 1160 case DMA_BIDIRECTIONAL: 1161 return prot | IOMMU_READ | IOMMU_WRITE; 1162 case DMA_TO_DEVICE: 1163 return prot | IOMMU_READ; 1164 case DMA_FROM_DEVICE: 1165 return prot | IOMMU_WRITE; 1166 default: 1167 return prot; 1168 } 1169 } 1170 1171 /* IOMMU */ 1172 1173 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 1174 1175 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1176 size_t size) 1177 { 1178 unsigned int order = get_order(size); 1179 unsigned int align = 0; 1180 unsigned int count, start; 1181 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1182 unsigned long flags; 1183 dma_addr_t iova; 1184 int i; 1185 1186 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1187 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1188 1189 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1190 align = (1 << order) - 1; 1191 1192 spin_lock_irqsave(&mapping->lock, flags); 1193 for (i = 0; i < mapping->nr_bitmaps; i++) { 1194 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1195 mapping->bits, 0, count, align); 1196 1197 if (start > mapping->bits) 1198 continue; 1199 1200 bitmap_set(mapping->bitmaps[i], start, count); 1201 break; 1202 } 1203 1204 /* 1205 * No unused range found. Try to extend the existing mapping 1206 * and perform a second attempt to reserve an IO virtual 1207 * address range of size bytes. 1208 */ 1209 if (i == mapping->nr_bitmaps) { 1210 if (extend_iommu_mapping(mapping)) { 1211 spin_unlock_irqrestore(&mapping->lock, flags); 1212 return DMA_MAPPING_ERROR; 1213 } 1214 1215 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1216 mapping->bits, 0, count, align); 1217 1218 if (start > mapping->bits) { 1219 spin_unlock_irqrestore(&mapping->lock, flags); 1220 return DMA_MAPPING_ERROR; 1221 } 1222 1223 bitmap_set(mapping->bitmaps[i], start, count); 1224 } 1225 spin_unlock_irqrestore(&mapping->lock, flags); 1226 1227 iova = mapping->base + (mapping_size * i); 1228 iova += start << PAGE_SHIFT; 1229 1230 return iova; 1231 } 1232 1233 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1234 dma_addr_t addr, size_t size) 1235 { 1236 unsigned int start, count; 1237 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1238 unsigned long flags; 1239 dma_addr_t bitmap_base; 1240 u32 bitmap_index; 1241 1242 if (!size) 1243 return; 1244 1245 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; 1246 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 1247 1248 bitmap_base = mapping->base + mapping_size * bitmap_index; 1249 1250 start = (addr - bitmap_base) >> PAGE_SHIFT; 1251 1252 if (addr + size > bitmap_base + mapping_size) { 1253 /* 1254 * The address range to be freed reaches into the iova 1255 * range of the next bitmap. This should not happen as 1256 * we don't allow this in __alloc_iova (at the 1257 * moment). 1258 */ 1259 BUG(); 1260 } else 1261 count = size >> PAGE_SHIFT; 1262 1263 spin_lock_irqsave(&mapping->lock, flags); 1264 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 1265 spin_unlock_irqrestore(&mapping->lock, flags); 1266 } 1267 1268 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ 1269 static const int iommu_order_array[] = { 9, 8, 4, 0 }; 1270 1271 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1272 gfp_t gfp, unsigned long attrs, 1273 int coherent_flag) 1274 { 1275 struct page **pages; 1276 int count = size >> PAGE_SHIFT; 1277 int array_size = count * sizeof(struct page *); 1278 int i = 0; 1279 int order_idx = 0; 1280 1281 if (array_size <= PAGE_SIZE) 1282 pages = kzalloc(array_size, GFP_KERNEL); 1283 else 1284 pages = vzalloc(array_size); 1285 if (!pages) 1286 return NULL; 1287 1288 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) 1289 { 1290 unsigned long order = get_order(size); 1291 struct page *page; 1292 1293 page = dma_alloc_from_contiguous(dev, count, order, 1294 gfp & __GFP_NOWARN); 1295 if (!page) 1296 goto error; 1297 1298 __dma_clear_buffer(page, size, coherent_flag); 1299 1300 for (i = 0; i < count; i++) 1301 pages[i] = page + i; 1302 1303 return pages; 1304 } 1305 1306 /* Go straight to 4K chunks if caller says it's OK. */ 1307 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 1308 order_idx = ARRAY_SIZE(iommu_order_array) - 1; 1309 1310 /* 1311 * IOMMU can map any pages, so himem can also be used here 1312 */ 1313 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1314 1315 while (count) { 1316 int j, order; 1317 1318 order = iommu_order_array[order_idx]; 1319 1320 /* Drop down when we get small */ 1321 if (__fls(count) < order) { 1322 order_idx++; 1323 continue; 1324 } 1325 1326 if (order) { 1327 /* See if it's easy to allocate a high-order chunk */ 1328 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); 1329 1330 /* Go down a notch at first sign of pressure */ 1331 if (!pages[i]) { 1332 order_idx++; 1333 continue; 1334 } 1335 } else { 1336 pages[i] = alloc_pages(gfp, 0); 1337 if (!pages[i]) 1338 goto error; 1339 } 1340 1341 if (order) { 1342 split_page(pages[i], order); 1343 j = 1 << order; 1344 while (--j) 1345 pages[i + j] = pages[i] + j; 1346 } 1347 1348 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); 1349 i += 1 << order; 1350 count -= 1 << order; 1351 } 1352 1353 return pages; 1354 error: 1355 while (i--) 1356 if (pages[i]) 1357 __free_pages(pages[i], 0); 1358 kvfree(pages); 1359 return NULL; 1360 } 1361 1362 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1363 size_t size, unsigned long attrs) 1364 { 1365 int count = size >> PAGE_SHIFT; 1366 int i; 1367 1368 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 1369 dma_release_from_contiguous(dev, pages[0], count); 1370 } else { 1371 for (i = 0; i < count; i++) 1372 if (pages[i]) 1373 __free_pages(pages[i], 0); 1374 } 1375 1376 kvfree(pages); 1377 return 0; 1378 } 1379 1380 /* 1381 * Create a CPU mapping for a specified pages 1382 */ 1383 static void * 1384 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1385 const void *caller) 1386 { 1387 return dma_common_pages_remap(pages, size, 1388 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller); 1389 } 1390 1391 /* 1392 * Create a mapping in device IO address space for specified pages 1393 */ 1394 static dma_addr_t 1395 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, 1396 unsigned long attrs) 1397 { 1398 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1399 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1400 dma_addr_t dma_addr, iova; 1401 int i; 1402 1403 dma_addr = __alloc_iova(mapping, size); 1404 if (dma_addr == DMA_MAPPING_ERROR) 1405 return dma_addr; 1406 1407 iova = dma_addr; 1408 for (i = 0; i < count; ) { 1409 int ret; 1410 1411 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1412 phys_addr_t phys = page_to_phys(pages[i]); 1413 unsigned int len, j; 1414 1415 for (j = i + 1; j < count; j++, next_pfn++) 1416 if (page_to_pfn(pages[j]) != next_pfn) 1417 break; 1418 1419 len = (j - i) << PAGE_SHIFT; 1420 ret = iommu_map(mapping->domain, iova, phys, len, 1421 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs)); 1422 if (ret < 0) 1423 goto fail; 1424 iova += len; 1425 i = j; 1426 } 1427 return dma_addr; 1428 fail: 1429 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1430 __free_iova(mapping, dma_addr, size); 1431 return DMA_MAPPING_ERROR; 1432 } 1433 1434 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1435 { 1436 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1437 1438 /* 1439 * add optional in-page offset from iova to size and align 1440 * result to page size 1441 */ 1442 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1443 iova &= PAGE_MASK; 1444 1445 iommu_unmap(mapping->domain, iova, size); 1446 __free_iova(mapping, iova, size); 1447 return 0; 1448 } 1449 1450 static struct page **__atomic_get_pages(void *addr) 1451 { 1452 struct page *page; 1453 phys_addr_t phys; 1454 1455 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); 1456 page = phys_to_page(phys); 1457 1458 return (struct page **)page; 1459 } 1460 1461 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) 1462 { 1463 struct vm_struct *area; 1464 1465 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1466 return __atomic_get_pages(cpu_addr); 1467 1468 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1469 return cpu_addr; 1470 1471 area = find_vm_area(cpu_addr); 1472 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1473 return area->pages; 1474 return NULL; 1475 } 1476 1477 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, 1478 dma_addr_t *handle, int coherent_flag, 1479 unsigned long attrs) 1480 { 1481 struct page *page; 1482 void *addr; 1483 1484 if (coherent_flag == COHERENT) 1485 addr = __alloc_simple_buffer(dev, size, gfp, &page); 1486 else 1487 addr = __alloc_from_pool(size, &page); 1488 if (!addr) 1489 return NULL; 1490 1491 *handle = __iommu_create_mapping(dev, &page, size, attrs); 1492 if (*handle == DMA_MAPPING_ERROR) 1493 goto err_mapping; 1494 1495 return addr; 1496 1497 err_mapping: 1498 __free_from_pool(addr, size); 1499 return NULL; 1500 } 1501 1502 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1503 dma_addr_t handle, size_t size, int coherent_flag) 1504 { 1505 __iommu_remove_mapping(dev, handle, size); 1506 if (coherent_flag == COHERENT) 1507 __dma_free_buffer(virt_to_page(cpu_addr), size); 1508 else 1509 __free_from_pool(cpu_addr, size); 1510 } 1511 1512 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size, 1513 dma_addr_t *handle, gfp_t gfp, unsigned long attrs, 1514 int coherent_flag) 1515 { 1516 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1517 struct page **pages; 1518 void *addr = NULL; 1519 1520 *handle = DMA_MAPPING_ERROR; 1521 size = PAGE_ALIGN(size); 1522 1523 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp)) 1524 return __iommu_alloc_simple(dev, size, gfp, handle, 1525 coherent_flag, attrs); 1526 1527 /* 1528 * Following is a work-around (a.k.a. hack) to prevent pages 1529 * with __GFP_COMP being passed to split_page() which cannot 1530 * handle them. The real problem is that this flag probably 1531 * should be 0 on ARM as it is not supported on this 1532 * platform; see CONFIG_HUGETLBFS. 1533 */ 1534 gfp &= ~(__GFP_COMP); 1535 1536 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); 1537 if (!pages) 1538 return NULL; 1539 1540 *handle = __iommu_create_mapping(dev, pages, size, attrs); 1541 if (*handle == DMA_MAPPING_ERROR) 1542 goto err_buffer; 1543 1544 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1545 return pages; 1546 1547 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1548 __builtin_return_address(0)); 1549 if (!addr) 1550 goto err_mapping; 1551 1552 return addr; 1553 1554 err_mapping: 1555 __iommu_remove_mapping(dev, *handle, size); 1556 err_buffer: 1557 __iommu_free_buffer(dev, pages, size, attrs); 1558 return NULL; 1559 } 1560 1561 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1562 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1563 { 1564 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL); 1565 } 1566 1567 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size, 1568 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1569 { 1570 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT); 1571 } 1572 1573 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1574 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1575 unsigned long attrs) 1576 { 1577 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1578 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1579 int err; 1580 1581 if (!pages) 1582 return -ENXIO; 1583 1584 if (vma->vm_pgoff >= nr_pages) 1585 return -ENXIO; 1586 1587 err = vm_map_pages(vma, pages, nr_pages); 1588 if (err) 1589 pr_err("Remapping memory failed: %d\n", err); 1590 1591 return err; 1592 } 1593 static int arm_iommu_mmap_attrs(struct device *dev, 1594 struct vm_area_struct *vma, void *cpu_addr, 1595 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1596 { 1597 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1598 1599 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1600 } 1601 1602 static int arm_coherent_iommu_mmap_attrs(struct device *dev, 1603 struct vm_area_struct *vma, void *cpu_addr, 1604 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1605 { 1606 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1607 } 1608 1609 /* 1610 * free a page as defined by the above mapping. 1611 * Must not be called with IRQs disabled. 1612 */ 1613 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1614 dma_addr_t handle, unsigned long attrs, int coherent_flag) 1615 { 1616 struct page **pages; 1617 size = PAGE_ALIGN(size); 1618 1619 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { 1620 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); 1621 return; 1622 } 1623 1624 pages = __iommu_get_pages(cpu_addr, attrs); 1625 if (!pages) { 1626 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1627 return; 1628 } 1629 1630 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) { 1631 dma_common_free_remap(cpu_addr, size, 1632 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 1633 } 1634 1635 __iommu_remove_mapping(dev, handle, size); 1636 __iommu_free_buffer(dev, pages, size, attrs); 1637 } 1638 1639 void arm_iommu_free_attrs(struct device *dev, size_t size, 1640 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1641 { 1642 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL); 1643 } 1644 1645 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size, 1646 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1647 { 1648 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT); 1649 } 1650 1651 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1652 void *cpu_addr, dma_addr_t dma_addr, 1653 size_t size, unsigned long attrs) 1654 { 1655 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1656 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1657 1658 if (!pages) 1659 return -ENXIO; 1660 1661 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1662 GFP_KERNEL); 1663 } 1664 1665 /* 1666 * Map a part of the scatter-gather list into contiguous io address space 1667 */ 1668 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1669 size_t size, dma_addr_t *handle, 1670 enum dma_data_direction dir, unsigned long attrs, 1671 bool is_coherent) 1672 { 1673 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1674 dma_addr_t iova, iova_base; 1675 int ret = 0; 1676 unsigned int count; 1677 struct scatterlist *s; 1678 int prot; 1679 1680 size = PAGE_ALIGN(size); 1681 *handle = DMA_MAPPING_ERROR; 1682 1683 iova_base = iova = __alloc_iova(mapping, size); 1684 if (iova == DMA_MAPPING_ERROR) 1685 return -ENOMEM; 1686 1687 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1688 phys_addr_t phys = page_to_phys(sg_page(s)); 1689 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1690 1691 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1692 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1693 1694 prot = __dma_info_to_prot(dir, attrs); 1695 1696 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1697 if (ret < 0) 1698 goto fail; 1699 count += len >> PAGE_SHIFT; 1700 iova += len; 1701 } 1702 *handle = iova_base; 1703 1704 return 0; 1705 fail: 1706 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1707 __free_iova(mapping, iova_base, size); 1708 return ret; 1709 } 1710 1711 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1712 enum dma_data_direction dir, unsigned long attrs, 1713 bool is_coherent) 1714 { 1715 struct scatterlist *s = sg, *dma = sg, *start = sg; 1716 int i, count = 0; 1717 unsigned int offset = s->offset; 1718 unsigned int size = s->offset + s->length; 1719 unsigned int max = dma_get_max_seg_size(dev); 1720 1721 for (i = 1; i < nents; i++) { 1722 s = sg_next(s); 1723 1724 s->dma_address = DMA_MAPPING_ERROR; 1725 s->dma_length = 0; 1726 1727 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1728 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1729 dir, attrs, is_coherent) < 0) 1730 goto bad_mapping; 1731 1732 dma->dma_address += offset; 1733 dma->dma_length = size - offset; 1734 1735 size = offset = s->offset; 1736 start = s; 1737 dma = sg_next(dma); 1738 count += 1; 1739 } 1740 size += s->length; 1741 } 1742 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1743 is_coherent) < 0) 1744 goto bad_mapping; 1745 1746 dma->dma_address += offset; 1747 dma->dma_length = size - offset; 1748 1749 return count+1; 1750 1751 bad_mapping: 1752 for_each_sg(sg, s, count, i) 1753 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1754 return 0; 1755 } 1756 1757 /** 1758 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1759 * @dev: valid struct device pointer 1760 * @sg: list of buffers 1761 * @nents: number of buffers to map 1762 * @dir: DMA transfer direction 1763 * 1764 * Map a set of i/o coherent buffers described by scatterlist in streaming 1765 * mode for DMA. The scatter gather list elements are merged together (if 1766 * possible) and tagged with the appropriate dma address and length. They are 1767 * obtained via sg_dma_{address,length}. 1768 */ 1769 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1770 int nents, enum dma_data_direction dir, unsigned long attrs) 1771 { 1772 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1773 } 1774 1775 /** 1776 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1777 * @dev: valid struct device pointer 1778 * @sg: list of buffers 1779 * @nents: number of buffers to map 1780 * @dir: DMA transfer direction 1781 * 1782 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1783 * The scatter gather list elements are merged together (if possible) and 1784 * tagged with the appropriate dma address and length. They are obtained via 1785 * sg_dma_{address,length}. 1786 */ 1787 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1788 int nents, enum dma_data_direction dir, unsigned long attrs) 1789 { 1790 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1791 } 1792 1793 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1794 int nents, enum dma_data_direction dir, 1795 unsigned long attrs, bool is_coherent) 1796 { 1797 struct scatterlist *s; 1798 int i; 1799 1800 for_each_sg(sg, s, nents, i) { 1801 if (sg_dma_len(s)) 1802 __iommu_remove_mapping(dev, sg_dma_address(s), 1803 sg_dma_len(s)); 1804 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1805 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1806 s->length, dir); 1807 } 1808 } 1809 1810 /** 1811 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1812 * @dev: valid struct device pointer 1813 * @sg: list of buffers 1814 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1815 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1816 * 1817 * Unmap a set of streaming mode DMA translations. Again, CPU access 1818 * rules concerning calls here are the same as for dma_unmap_single(). 1819 */ 1820 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1821 int nents, enum dma_data_direction dir, 1822 unsigned long attrs) 1823 { 1824 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1825 } 1826 1827 /** 1828 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1829 * @dev: valid struct device pointer 1830 * @sg: list of buffers 1831 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1832 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1833 * 1834 * Unmap a set of streaming mode DMA translations. Again, CPU access 1835 * rules concerning calls here are the same as for dma_unmap_single(). 1836 */ 1837 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1838 enum dma_data_direction dir, 1839 unsigned long attrs) 1840 { 1841 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1842 } 1843 1844 /** 1845 * arm_iommu_sync_sg_for_cpu 1846 * @dev: valid struct device pointer 1847 * @sg: list of buffers 1848 * @nents: number of buffers to map (returned from dma_map_sg) 1849 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1850 */ 1851 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1852 int nents, enum dma_data_direction dir) 1853 { 1854 struct scatterlist *s; 1855 int i; 1856 1857 for_each_sg(sg, s, nents, i) 1858 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1859 1860 } 1861 1862 /** 1863 * arm_iommu_sync_sg_for_device 1864 * @dev: valid struct device pointer 1865 * @sg: list of buffers 1866 * @nents: number of buffers to map (returned from dma_map_sg) 1867 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1868 */ 1869 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1870 int nents, enum dma_data_direction dir) 1871 { 1872 struct scatterlist *s; 1873 int i; 1874 1875 for_each_sg(sg, s, nents, i) 1876 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1877 } 1878 1879 1880 /** 1881 * arm_coherent_iommu_map_page 1882 * @dev: valid struct device pointer 1883 * @page: page that buffer resides in 1884 * @offset: offset into page for start of buffer 1885 * @size: size of buffer to map 1886 * @dir: DMA transfer direction 1887 * 1888 * Coherent IOMMU aware version of arm_dma_map_page() 1889 */ 1890 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1891 unsigned long offset, size_t size, enum dma_data_direction dir, 1892 unsigned long attrs) 1893 { 1894 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1895 dma_addr_t dma_addr; 1896 int ret, prot, len = PAGE_ALIGN(size + offset); 1897 1898 dma_addr = __alloc_iova(mapping, len); 1899 if (dma_addr == DMA_MAPPING_ERROR) 1900 return dma_addr; 1901 1902 prot = __dma_info_to_prot(dir, attrs); 1903 1904 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1905 if (ret < 0) 1906 goto fail; 1907 1908 return dma_addr + offset; 1909 fail: 1910 __free_iova(mapping, dma_addr, len); 1911 return DMA_MAPPING_ERROR; 1912 } 1913 1914 /** 1915 * arm_iommu_map_page 1916 * @dev: valid struct device pointer 1917 * @page: page that buffer resides in 1918 * @offset: offset into page for start of buffer 1919 * @size: size of buffer to map 1920 * @dir: DMA transfer direction 1921 * 1922 * IOMMU aware version of arm_dma_map_page() 1923 */ 1924 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1925 unsigned long offset, size_t size, enum dma_data_direction dir, 1926 unsigned long attrs) 1927 { 1928 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1929 __dma_page_cpu_to_dev(page, offset, size, dir); 1930 1931 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1932 } 1933 1934 /** 1935 * arm_coherent_iommu_unmap_page 1936 * @dev: valid struct device pointer 1937 * @handle: DMA address of buffer 1938 * @size: size of buffer (same as passed to dma_map_page) 1939 * @dir: DMA transfer direction (same as passed to dma_map_page) 1940 * 1941 * Coherent IOMMU aware version of arm_dma_unmap_page() 1942 */ 1943 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1944 size_t size, enum dma_data_direction dir, unsigned long attrs) 1945 { 1946 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1947 dma_addr_t iova = handle & PAGE_MASK; 1948 int offset = handle & ~PAGE_MASK; 1949 int len = PAGE_ALIGN(size + offset); 1950 1951 if (!iova) 1952 return; 1953 1954 iommu_unmap(mapping->domain, iova, len); 1955 __free_iova(mapping, iova, len); 1956 } 1957 1958 /** 1959 * arm_iommu_unmap_page 1960 * @dev: valid struct device pointer 1961 * @handle: DMA address of buffer 1962 * @size: size of buffer (same as passed to dma_map_page) 1963 * @dir: DMA transfer direction (same as passed to dma_map_page) 1964 * 1965 * IOMMU aware version of arm_dma_unmap_page() 1966 */ 1967 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1968 size_t size, enum dma_data_direction dir, unsigned long attrs) 1969 { 1970 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1971 dma_addr_t iova = handle & PAGE_MASK; 1972 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1973 int offset = handle & ~PAGE_MASK; 1974 int len = PAGE_ALIGN(size + offset); 1975 1976 if (!iova) 1977 return; 1978 1979 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1980 __dma_page_dev_to_cpu(page, offset, size, dir); 1981 1982 iommu_unmap(mapping->domain, iova, len); 1983 __free_iova(mapping, iova, len); 1984 } 1985 1986 /** 1987 * arm_iommu_map_resource - map a device resource for DMA 1988 * @dev: valid struct device pointer 1989 * @phys_addr: physical address of resource 1990 * @size: size of resource to map 1991 * @dir: DMA transfer direction 1992 */ 1993 static dma_addr_t arm_iommu_map_resource(struct device *dev, 1994 phys_addr_t phys_addr, size_t size, 1995 enum dma_data_direction dir, unsigned long attrs) 1996 { 1997 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1998 dma_addr_t dma_addr; 1999 int ret, prot; 2000 phys_addr_t addr = phys_addr & PAGE_MASK; 2001 unsigned int offset = phys_addr & ~PAGE_MASK; 2002 size_t len = PAGE_ALIGN(size + offset); 2003 2004 dma_addr = __alloc_iova(mapping, len); 2005 if (dma_addr == DMA_MAPPING_ERROR) 2006 return dma_addr; 2007 2008 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; 2009 2010 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot); 2011 if (ret < 0) 2012 goto fail; 2013 2014 return dma_addr + offset; 2015 fail: 2016 __free_iova(mapping, dma_addr, len); 2017 return DMA_MAPPING_ERROR; 2018 } 2019 2020 /** 2021 * arm_iommu_unmap_resource - unmap a device DMA resource 2022 * @dev: valid struct device pointer 2023 * @dma_handle: DMA address to resource 2024 * @size: size of resource to map 2025 * @dir: DMA transfer direction 2026 */ 2027 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, 2028 size_t size, enum dma_data_direction dir, 2029 unsigned long attrs) 2030 { 2031 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2032 dma_addr_t iova = dma_handle & PAGE_MASK; 2033 unsigned int offset = dma_handle & ~PAGE_MASK; 2034 size_t len = PAGE_ALIGN(size + offset); 2035 2036 if (!iova) 2037 return; 2038 2039 iommu_unmap(mapping->domain, iova, len); 2040 __free_iova(mapping, iova, len); 2041 } 2042 2043 static void arm_iommu_sync_single_for_cpu(struct device *dev, 2044 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2045 { 2046 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2047 dma_addr_t iova = handle & PAGE_MASK; 2048 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2049 unsigned int offset = handle & ~PAGE_MASK; 2050 2051 if (!iova) 2052 return; 2053 2054 __dma_page_dev_to_cpu(page, offset, size, dir); 2055 } 2056 2057 static void arm_iommu_sync_single_for_device(struct device *dev, 2058 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2059 { 2060 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2061 dma_addr_t iova = handle & PAGE_MASK; 2062 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2063 unsigned int offset = handle & ~PAGE_MASK; 2064 2065 if (!iova) 2066 return; 2067 2068 __dma_page_cpu_to_dev(page, offset, size, dir); 2069 } 2070 2071 const struct dma_map_ops iommu_ops = { 2072 .alloc = arm_iommu_alloc_attrs, 2073 .free = arm_iommu_free_attrs, 2074 .mmap = arm_iommu_mmap_attrs, 2075 .get_sgtable = arm_iommu_get_sgtable, 2076 2077 .map_page = arm_iommu_map_page, 2078 .unmap_page = arm_iommu_unmap_page, 2079 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 2080 .sync_single_for_device = arm_iommu_sync_single_for_device, 2081 2082 .map_sg = arm_iommu_map_sg, 2083 .unmap_sg = arm_iommu_unmap_sg, 2084 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 2085 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 2086 2087 .map_resource = arm_iommu_map_resource, 2088 .unmap_resource = arm_iommu_unmap_resource, 2089 2090 .dma_supported = arm_dma_supported, 2091 }; 2092 2093 const struct dma_map_ops iommu_coherent_ops = { 2094 .alloc = arm_coherent_iommu_alloc_attrs, 2095 .free = arm_coherent_iommu_free_attrs, 2096 .mmap = arm_coherent_iommu_mmap_attrs, 2097 .get_sgtable = arm_iommu_get_sgtable, 2098 2099 .map_page = arm_coherent_iommu_map_page, 2100 .unmap_page = arm_coherent_iommu_unmap_page, 2101 2102 .map_sg = arm_coherent_iommu_map_sg, 2103 .unmap_sg = arm_coherent_iommu_unmap_sg, 2104 2105 .map_resource = arm_iommu_map_resource, 2106 .unmap_resource = arm_iommu_unmap_resource, 2107 2108 .dma_supported = arm_dma_supported, 2109 }; 2110 2111 /** 2112 * arm_iommu_create_mapping 2113 * @bus: pointer to the bus holding the client device (for IOMMU calls) 2114 * @base: start address of the valid IO address space 2115 * @size: maximum size of the valid IO address space 2116 * 2117 * Creates a mapping structure which holds information about used/unused 2118 * IO address ranges, which is required to perform memory allocation and 2119 * mapping with IOMMU aware functions. 2120 * 2121 * The client device need to be attached to the mapping with 2122 * arm_iommu_attach_device function. 2123 */ 2124 struct dma_iommu_mapping * 2125 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) 2126 { 2127 unsigned int bits = size >> PAGE_SHIFT; 2128 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 2129 struct dma_iommu_mapping *mapping; 2130 int extensions = 1; 2131 int err = -ENOMEM; 2132 2133 /* currently only 32-bit DMA address space is supported */ 2134 if (size > DMA_BIT_MASK(32) + 1) 2135 return ERR_PTR(-ERANGE); 2136 2137 if (!bitmap_size) 2138 return ERR_PTR(-EINVAL); 2139 2140 if (bitmap_size > PAGE_SIZE) { 2141 extensions = bitmap_size / PAGE_SIZE; 2142 bitmap_size = PAGE_SIZE; 2143 } 2144 2145 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 2146 if (!mapping) 2147 goto err; 2148 2149 mapping->bitmap_size = bitmap_size; 2150 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *), 2151 GFP_KERNEL); 2152 if (!mapping->bitmaps) 2153 goto err2; 2154 2155 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 2156 if (!mapping->bitmaps[0]) 2157 goto err3; 2158 2159 mapping->nr_bitmaps = 1; 2160 mapping->extensions = extensions; 2161 mapping->base = base; 2162 mapping->bits = BITS_PER_BYTE * bitmap_size; 2163 2164 spin_lock_init(&mapping->lock); 2165 2166 mapping->domain = iommu_domain_alloc(bus); 2167 if (!mapping->domain) 2168 goto err4; 2169 2170 kref_init(&mapping->kref); 2171 return mapping; 2172 err4: 2173 kfree(mapping->bitmaps[0]); 2174 err3: 2175 kfree(mapping->bitmaps); 2176 err2: 2177 kfree(mapping); 2178 err: 2179 return ERR_PTR(err); 2180 } 2181 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 2182 2183 static void release_iommu_mapping(struct kref *kref) 2184 { 2185 int i; 2186 struct dma_iommu_mapping *mapping = 2187 container_of(kref, struct dma_iommu_mapping, kref); 2188 2189 iommu_domain_free(mapping->domain); 2190 for (i = 0; i < mapping->nr_bitmaps; i++) 2191 kfree(mapping->bitmaps[i]); 2192 kfree(mapping->bitmaps); 2193 kfree(mapping); 2194 } 2195 2196 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 2197 { 2198 int next_bitmap; 2199 2200 if (mapping->nr_bitmaps >= mapping->extensions) 2201 return -EINVAL; 2202 2203 next_bitmap = mapping->nr_bitmaps; 2204 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 2205 GFP_ATOMIC); 2206 if (!mapping->bitmaps[next_bitmap]) 2207 return -ENOMEM; 2208 2209 mapping->nr_bitmaps++; 2210 2211 return 0; 2212 } 2213 2214 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 2215 { 2216 if (mapping) 2217 kref_put(&mapping->kref, release_iommu_mapping); 2218 } 2219 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 2220 2221 static int __arm_iommu_attach_device(struct device *dev, 2222 struct dma_iommu_mapping *mapping) 2223 { 2224 int err; 2225 2226 err = iommu_attach_device(mapping->domain, dev); 2227 if (err) 2228 return err; 2229 2230 kref_get(&mapping->kref); 2231 to_dma_iommu_mapping(dev) = mapping; 2232 2233 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 2234 return 0; 2235 } 2236 2237 /** 2238 * arm_iommu_attach_device 2239 * @dev: valid struct device pointer 2240 * @mapping: io address space mapping structure (returned from 2241 * arm_iommu_create_mapping) 2242 * 2243 * Attaches specified io address space mapping to the provided device. 2244 * This replaces the dma operations (dma_map_ops pointer) with the 2245 * IOMMU aware version. 2246 * 2247 * More than one client might be attached to the same io address space 2248 * mapping. 2249 */ 2250 int arm_iommu_attach_device(struct device *dev, 2251 struct dma_iommu_mapping *mapping) 2252 { 2253 int err; 2254 2255 err = __arm_iommu_attach_device(dev, mapping); 2256 if (err) 2257 return err; 2258 2259 set_dma_ops(dev, &iommu_ops); 2260 return 0; 2261 } 2262 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 2263 2264 /** 2265 * arm_iommu_detach_device 2266 * @dev: valid struct device pointer 2267 * 2268 * Detaches the provided device from a previously attached map. 2269 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops. 2270 */ 2271 void arm_iommu_detach_device(struct device *dev) 2272 { 2273 struct dma_iommu_mapping *mapping; 2274 2275 mapping = to_dma_iommu_mapping(dev); 2276 if (!mapping) { 2277 dev_warn(dev, "Not attached\n"); 2278 return; 2279 } 2280 2281 iommu_detach_device(mapping->domain, dev); 2282 kref_put(&mapping->kref, release_iommu_mapping); 2283 to_dma_iommu_mapping(dev) = NULL; 2284 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent)); 2285 2286 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 2287 } 2288 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 2289 2290 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) 2291 { 2292 return coherent ? &iommu_coherent_ops : &iommu_ops; 2293 } 2294 2295 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2296 const struct iommu_ops *iommu) 2297 { 2298 struct dma_iommu_mapping *mapping; 2299 2300 if (!iommu) 2301 return false; 2302 2303 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); 2304 if (IS_ERR(mapping)) { 2305 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", 2306 size, dev_name(dev)); 2307 return false; 2308 } 2309 2310 if (__arm_iommu_attach_device(dev, mapping)) { 2311 pr_warn("Failed to attached device %s to IOMMU_mapping\n", 2312 dev_name(dev)); 2313 arm_iommu_release_mapping(mapping); 2314 return false; 2315 } 2316 2317 return true; 2318 } 2319 2320 static void arm_teardown_iommu_dma_ops(struct device *dev) 2321 { 2322 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2323 2324 if (!mapping) 2325 return; 2326 2327 arm_iommu_detach_device(dev); 2328 arm_iommu_release_mapping(mapping); 2329 } 2330 2331 #else 2332 2333 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2334 const struct iommu_ops *iommu) 2335 { 2336 return false; 2337 } 2338 2339 static void arm_teardown_iommu_dma_ops(struct device *dev) { } 2340 2341 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops 2342 2343 #endif /* CONFIG_ARM_DMA_USE_IOMMU */ 2344 2345 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 2346 const struct iommu_ops *iommu, bool coherent) 2347 { 2348 const struct dma_map_ops *dma_ops; 2349 2350 dev->archdata.dma_coherent = coherent; 2351 2352 /* 2353 * Don't override the dma_ops if they have already been set. Ideally 2354 * this should be the only location where dma_ops are set, remove this 2355 * check when all other callers of set_dma_ops will have disappeared. 2356 */ 2357 if (dev->dma_ops) 2358 return; 2359 2360 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) 2361 dma_ops = arm_get_iommu_dma_map_ops(coherent); 2362 else 2363 dma_ops = arm_get_dma_map_ops(coherent); 2364 2365 set_dma_ops(dev, dma_ops); 2366 2367 #ifdef CONFIG_XEN 2368 if (xen_initial_domain()) { 2369 dev->archdata.dev_dma_ops = dev->dma_ops; 2370 dev->dma_ops = xen_dma_ops; 2371 } 2372 #endif 2373 dev->archdata.dma_ops_setup = true; 2374 } 2375 2376 void arch_teardown_dma_ops(struct device *dev) 2377 { 2378 if (!dev->archdata.dma_ops_setup) 2379 return; 2380 2381 arm_teardown_iommu_dma_ops(dev); 2382 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */ 2383 set_dma_ops(dev, NULL); 2384 } 2385