1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/module.h> 13 #include <linux/mm.h> 14 #include <linux/genalloc.h> 15 #include <linux/gfp.h> 16 #include <linux/errno.h> 17 #include <linux/list.h> 18 #include <linux/init.h> 19 #include <linux/device.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/dma-contiguous.h> 22 #include <linux/highmem.h> 23 #include <linux/memblock.h> 24 #include <linux/slab.h> 25 #include <linux/iommu.h> 26 #include <linux/io.h> 27 #include <linux/vmalloc.h> 28 #include <linux/sizes.h> 29 #include <linux/cma.h> 30 31 #include <asm/memory.h> 32 #include <asm/highmem.h> 33 #include <asm/cacheflush.h> 34 #include <asm/tlbflush.h> 35 #include <asm/mach/arch.h> 36 #include <asm/dma-iommu.h> 37 #include <asm/mach/map.h> 38 #include <asm/system_info.h> 39 #include <asm/dma-contiguous.h> 40 41 #include "dma.h" 42 #include "mm.h" 43 44 struct arm_dma_alloc_args { 45 struct device *dev; 46 size_t size; 47 gfp_t gfp; 48 pgprot_t prot; 49 const void *caller; 50 bool want_vaddr; 51 int coherent_flag; 52 }; 53 54 struct arm_dma_free_args { 55 struct device *dev; 56 size_t size; 57 void *cpu_addr; 58 struct page *page; 59 bool want_vaddr; 60 }; 61 62 #define NORMAL 0 63 #define COHERENT 1 64 65 struct arm_dma_allocator { 66 void *(*alloc)(struct arm_dma_alloc_args *args, 67 struct page **ret_page); 68 void (*free)(struct arm_dma_free_args *args); 69 }; 70 71 struct arm_dma_buffer { 72 struct list_head list; 73 void *virt; 74 struct arm_dma_allocator *allocator; 75 }; 76 77 static LIST_HEAD(arm_dma_bufs); 78 static DEFINE_SPINLOCK(arm_dma_bufs_lock); 79 80 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) 81 { 82 struct arm_dma_buffer *buf, *found = NULL; 83 unsigned long flags; 84 85 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 86 list_for_each_entry(buf, &arm_dma_bufs, list) { 87 if (buf->virt == virt) { 88 list_del(&buf->list); 89 found = buf; 90 break; 91 } 92 } 93 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 94 return found; 95 } 96 97 /* 98 * The DMA API is built upon the notion of "buffer ownership". A buffer 99 * is either exclusively owned by the CPU (and therefore may be accessed 100 * by it) or exclusively owned by the DMA device. These helper functions 101 * represent the transitions between these two ownership states. 102 * 103 * Note, however, that on later ARMs, this notion does not work due to 104 * speculative prefetches. We model our approach on the assumption that 105 * the CPU does do speculative prefetches, which means we clean caches 106 * before transfers and delay cache invalidation until transfer completion. 107 * 108 */ 109 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 110 size_t, enum dma_data_direction); 111 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 112 size_t, enum dma_data_direction); 113 114 /** 115 * arm_dma_map_page - map a portion of a page for streaming DMA 116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 117 * @page: page that buffer resides in 118 * @offset: offset into page for start of buffer 119 * @size: size of buffer to map 120 * @dir: DMA transfer direction 121 * 122 * Ensure that any data held in the cache is appropriately discarded 123 * or written back. 124 * 125 * The device owns this memory once this call has completed. The CPU 126 * can regain ownership by calling dma_unmap_page(). 127 */ 128 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 129 unsigned long offset, size_t size, enum dma_data_direction dir, 130 unsigned long attrs) 131 { 132 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 133 __dma_page_cpu_to_dev(page, offset, size, dir); 134 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 135 } 136 137 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 138 unsigned long offset, size_t size, enum dma_data_direction dir, 139 unsigned long attrs) 140 { 141 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 142 } 143 144 /** 145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 147 * @handle: DMA address of buffer 148 * @size: size of buffer (same as passed to dma_map_page) 149 * @dir: DMA transfer direction (same as passed to dma_map_page) 150 * 151 * Unmap a page streaming mode DMA translation. The handle and size 152 * must match what was provided in the previous dma_map_page() call. 153 * All other usages are undefined. 154 * 155 * After this call, reads by the CPU to the buffer are guaranteed to see 156 * whatever the device wrote there. 157 */ 158 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 159 size_t size, enum dma_data_direction dir, unsigned long attrs) 160 { 161 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 162 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 163 handle & ~PAGE_MASK, size, dir); 164 } 165 166 static void arm_dma_sync_single_for_cpu(struct device *dev, 167 dma_addr_t handle, size_t size, enum dma_data_direction dir) 168 { 169 unsigned int offset = handle & (PAGE_SIZE - 1); 170 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 171 __dma_page_dev_to_cpu(page, offset, size, dir); 172 } 173 174 static void arm_dma_sync_single_for_device(struct device *dev, 175 dma_addr_t handle, size_t size, enum dma_data_direction dir) 176 { 177 unsigned int offset = handle & (PAGE_SIZE - 1); 178 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 179 __dma_page_cpu_to_dev(page, offset, size, dir); 180 } 181 182 const struct dma_map_ops arm_dma_ops = { 183 .alloc = arm_dma_alloc, 184 .free = arm_dma_free, 185 .mmap = arm_dma_mmap, 186 .get_sgtable = arm_dma_get_sgtable, 187 .map_page = arm_dma_map_page, 188 .unmap_page = arm_dma_unmap_page, 189 .map_sg = arm_dma_map_sg, 190 .unmap_sg = arm_dma_unmap_sg, 191 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 192 .sync_single_for_device = arm_dma_sync_single_for_device, 193 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 194 .sync_sg_for_device = arm_dma_sync_sg_for_device, 195 .dma_supported = arm_dma_supported, 196 }; 197 EXPORT_SYMBOL(arm_dma_ops); 198 199 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 200 dma_addr_t *handle, gfp_t gfp, unsigned long attrs); 201 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 202 dma_addr_t handle, unsigned long attrs); 203 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 204 void *cpu_addr, dma_addr_t dma_addr, size_t size, 205 unsigned long attrs); 206 207 const struct dma_map_ops arm_coherent_dma_ops = { 208 .alloc = arm_coherent_dma_alloc, 209 .free = arm_coherent_dma_free, 210 .mmap = arm_coherent_dma_mmap, 211 .get_sgtable = arm_dma_get_sgtable, 212 .map_page = arm_coherent_dma_map_page, 213 .map_sg = arm_dma_map_sg, 214 .dma_supported = arm_dma_supported, 215 }; 216 EXPORT_SYMBOL(arm_coherent_dma_ops); 217 218 static int __dma_supported(struct device *dev, u64 mask, bool warn) 219 { 220 unsigned long max_dma_pfn; 221 222 /* 223 * If the mask allows for more memory than we can address, 224 * and we actually have that much memory, then we must 225 * indicate that DMA to this device is not supported. 226 */ 227 if (sizeof(mask) != sizeof(dma_addr_t) && 228 mask > (dma_addr_t)~0 && 229 dma_to_pfn(dev, ~0) < max_pfn - 1) { 230 if (warn) { 231 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n", 232 mask); 233 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n"); 234 } 235 return 0; 236 } 237 238 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); 239 240 /* 241 * Translate the device's DMA mask to a PFN limit. This 242 * PFN number includes the page which we can DMA to. 243 */ 244 if (dma_to_pfn(dev, mask) < max_dma_pfn) { 245 if (warn) 246 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", 247 mask, 248 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, 249 max_dma_pfn + 1); 250 return 0; 251 } 252 253 return 1; 254 } 255 256 static u64 get_coherent_dma_mask(struct device *dev) 257 { 258 u64 mask = (u64)DMA_BIT_MASK(32); 259 260 if (dev) { 261 mask = dev->coherent_dma_mask; 262 263 /* 264 * Sanity check the DMA mask - it must be non-zero, and 265 * must be able to be satisfied by a DMA allocation. 266 */ 267 if (mask == 0) { 268 dev_warn(dev, "coherent DMA mask is unset\n"); 269 return 0; 270 } 271 272 if (!__dma_supported(dev, mask, true)) 273 return 0; 274 } 275 276 return mask; 277 } 278 279 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) 280 { 281 /* 282 * Ensure that the allocated pages are zeroed, and that any data 283 * lurking in the kernel direct-mapped region is invalidated. 284 */ 285 if (PageHighMem(page)) { 286 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 287 phys_addr_t end = base + size; 288 while (size > 0) { 289 void *ptr = kmap_atomic(page); 290 memset(ptr, 0, PAGE_SIZE); 291 if (coherent_flag != COHERENT) 292 dmac_flush_range(ptr, ptr + PAGE_SIZE); 293 kunmap_atomic(ptr); 294 page++; 295 size -= PAGE_SIZE; 296 } 297 if (coherent_flag != COHERENT) 298 outer_flush_range(base, end); 299 } else { 300 void *ptr = page_address(page); 301 memset(ptr, 0, size); 302 if (coherent_flag != COHERENT) { 303 dmac_flush_range(ptr, ptr + size); 304 outer_flush_range(__pa(ptr), __pa(ptr) + size); 305 } 306 } 307 } 308 309 /* 310 * Allocate a DMA buffer for 'dev' of size 'size' using the 311 * specified gfp mask. Note that 'size' must be page aligned. 312 */ 313 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, 314 gfp_t gfp, int coherent_flag) 315 { 316 unsigned long order = get_order(size); 317 struct page *page, *p, *e; 318 319 page = alloc_pages(gfp, order); 320 if (!page) 321 return NULL; 322 323 /* 324 * Now split the huge page and free the excess pages 325 */ 326 split_page(page, order); 327 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 328 __free_page(p); 329 330 __dma_clear_buffer(page, size, coherent_flag); 331 332 return page; 333 } 334 335 /* 336 * Free a DMA buffer. 'size' must be page aligned. 337 */ 338 static void __dma_free_buffer(struct page *page, size_t size) 339 { 340 struct page *e = page + (size >> PAGE_SHIFT); 341 342 while (page < e) { 343 __free_page(page); 344 page++; 345 } 346 } 347 348 static void *__alloc_from_contiguous(struct device *dev, size_t size, 349 pgprot_t prot, struct page **ret_page, 350 const void *caller, bool want_vaddr, 351 int coherent_flag, gfp_t gfp); 352 353 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 354 pgprot_t prot, struct page **ret_page, 355 const void *caller, bool want_vaddr); 356 357 static void * 358 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 359 const void *caller) 360 { 361 /* 362 * DMA allocation can be mapped to user space, so lets 363 * set VM_USERMAP flags too. 364 */ 365 return dma_common_contiguous_remap(page, size, 366 VM_ARM_DMA_CONSISTENT | VM_USERMAP, 367 prot, caller); 368 } 369 370 static void __dma_free_remap(void *cpu_addr, size_t size) 371 { 372 dma_common_free_remap(cpu_addr, size, 373 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 374 } 375 376 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 377 static struct gen_pool *atomic_pool __ro_after_init; 378 379 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 380 381 static int __init early_coherent_pool(char *p) 382 { 383 atomic_pool_size = memparse(p, &p); 384 return 0; 385 } 386 early_param("coherent_pool", early_coherent_pool); 387 388 /* 389 * Initialise the coherent pool for atomic allocations. 390 */ 391 static int __init atomic_pool_init(void) 392 { 393 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 394 gfp_t gfp = GFP_KERNEL | GFP_DMA; 395 struct page *page; 396 void *ptr; 397 398 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 399 if (!atomic_pool) 400 goto out; 401 /* 402 * The atomic pool is only used for non-coherent allocations 403 * so we must pass NORMAL for coherent_flag. 404 */ 405 if (dev_get_cma_area(NULL)) 406 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, 407 &page, atomic_pool_init, true, NORMAL, 408 GFP_KERNEL); 409 else 410 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, 411 &page, atomic_pool_init, true); 412 if (ptr) { 413 int ret; 414 415 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, 416 page_to_phys(page), 417 atomic_pool_size, -1); 418 if (ret) 419 goto destroy_genpool; 420 421 gen_pool_set_algo(atomic_pool, 422 gen_pool_first_fit_order_align, 423 NULL); 424 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", 425 atomic_pool_size / 1024); 426 return 0; 427 } 428 429 destroy_genpool: 430 gen_pool_destroy(atomic_pool); 431 atomic_pool = NULL; 432 out: 433 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 434 atomic_pool_size / 1024); 435 return -ENOMEM; 436 } 437 /* 438 * CMA is activated by core_initcall, so we must be called after it. 439 */ 440 postcore_initcall(atomic_pool_init); 441 442 struct dma_contig_early_reserve { 443 phys_addr_t base; 444 unsigned long size; 445 }; 446 447 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 448 449 static int dma_mmu_remap_num __initdata; 450 451 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 452 { 453 dma_mmu_remap[dma_mmu_remap_num].base = base; 454 dma_mmu_remap[dma_mmu_remap_num].size = size; 455 dma_mmu_remap_num++; 456 } 457 458 void __init dma_contiguous_remap(void) 459 { 460 int i; 461 for (i = 0; i < dma_mmu_remap_num; i++) { 462 phys_addr_t start = dma_mmu_remap[i].base; 463 phys_addr_t end = start + dma_mmu_remap[i].size; 464 struct map_desc map; 465 unsigned long addr; 466 467 if (end > arm_lowmem_limit) 468 end = arm_lowmem_limit; 469 if (start >= end) 470 continue; 471 472 map.pfn = __phys_to_pfn(start); 473 map.virtual = __phys_to_virt(start); 474 map.length = end - start; 475 map.type = MT_MEMORY_DMA_READY; 476 477 /* 478 * Clear previous low-memory mapping to ensure that the 479 * TLB does not see any conflicting entries, then flush 480 * the TLB of the old entries before creating new mappings. 481 * 482 * This ensures that any speculatively loaded TLB entries 483 * (even though they may be rare) can not cause any problems, 484 * and ensures that this code is architecturally compliant. 485 */ 486 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 487 addr += PMD_SIZE) 488 pmd_clear(pmd_off_k(addr)); 489 490 flush_tlb_kernel_range(__phys_to_virt(start), 491 __phys_to_virt(end)); 492 493 iotable_init(&map, 1); 494 } 495 } 496 497 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 498 void *data) 499 { 500 struct page *page = virt_to_page(addr); 501 pgprot_t prot = *(pgprot_t *)data; 502 503 set_pte_ext(pte, mk_pte(page, prot), 0); 504 return 0; 505 } 506 507 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 508 { 509 unsigned long start = (unsigned long) page_address(page); 510 unsigned end = start + size; 511 512 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 513 flush_tlb_kernel_range(start, end); 514 } 515 516 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 517 pgprot_t prot, struct page **ret_page, 518 const void *caller, bool want_vaddr) 519 { 520 struct page *page; 521 void *ptr = NULL; 522 /* 523 * __alloc_remap_buffer is only called when the device is 524 * non-coherent 525 */ 526 page = __dma_alloc_buffer(dev, size, gfp, NORMAL); 527 if (!page) 528 return NULL; 529 if (!want_vaddr) 530 goto out; 531 532 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 533 if (!ptr) { 534 __dma_free_buffer(page, size); 535 return NULL; 536 } 537 538 out: 539 *ret_page = page; 540 return ptr; 541 } 542 543 static void *__alloc_from_pool(size_t size, struct page **ret_page) 544 { 545 unsigned long val; 546 void *ptr = NULL; 547 548 if (!atomic_pool) { 549 WARN(1, "coherent pool not initialised!\n"); 550 return NULL; 551 } 552 553 val = gen_pool_alloc(atomic_pool, size); 554 if (val) { 555 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 556 557 *ret_page = phys_to_page(phys); 558 ptr = (void *)val; 559 } 560 561 return ptr; 562 } 563 564 static bool __in_atomic_pool(void *start, size_t size) 565 { 566 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 567 } 568 569 static int __free_from_pool(void *start, size_t size) 570 { 571 if (!__in_atomic_pool(start, size)) 572 return 0; 573 574 gen_pool_free(atomic_pool, (unsigned long)start, size); 575 576 return 1; 577 } 578 579 static void *__alloc_from_contiguous(struct device *dev, size_t size, 580 pgprot_t prot, struct page **ret_page, 581 const void *caller, bool want_vaddr, 582 int coherent_flag, gfp_t gfp) 583 { 584 unsigned long order = get_order(size); 585 size_t count = size >> PAGE_SHIFT; 586 struct page *page; 587 void *ptr = NULL; 588 589 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN); 590 if (!page) 591 return NULL; 592 593 __dma_clear_buffer(page, size, coherent_flag); 594 595 if (!want_vaddr) 596 goto out; 597 598 if (PageHighMem(page)) { 599 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 600 if (!ptr) { 601 dma_release_from_contiguous(dev, page, count); 602 return NULL; 603 } 604 } else { 605 __dma_remap(page, size, prot); 606 ptr = page_address(page); 607 } 608 609 out: 610 *ret_page = page; 611 return ptr; 612 } 613 614 static void __free_from_contiguous(struct device *dev, struct page *page, 615 void *cpu_addr, size_t size, bool want_vaddr) 616 { 617 if (want_vaddr) { 618 if (PageHighMem(page)) 619 __dma_free_remap(cpu_addr, size); 620 else 621 __dma_remap(page, size, PAGE_KERNEL); 622 } 623 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 624 } 625 626 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) 627 { 628 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? 629 pgprot_writecombine(prot) : 630 pgprot_dmacoherent(prot); 631 return prot; 632 } 633 634 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 635 struct page **ret_page) 636 { 637 struct page *page; 638 /* __alloc_simple_buffer is only called when the device is coherent */ 639 page = __dma_alloc_buffer(dev, size, gfp, COHERENT); 640 if (!page) 641 return NULL; 642 643 *ret_page = page; 644 return page_address(page); 645 } 646 647 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, 648 struct page **ret_page) 649 { 650 return __alloc_simple_buffer(args->dev, args->size, args->gfp, 651 ret_page); 652 } 653 654 static void simple_allocator_free(struct arm_dma_free_args *args) 655 { 656 __dma_free_buffer(args->page, args->size); 657 } 658 659 static struct arm_dma_allocator simple_allocator = { 660 .alloc = simple_allocator_alloc, 661 .free = simple_allocator_free, 662 }; 663 664 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, 665 struct page **ret_page) 666 { 667 return __alloc_from_contiguous(args->dev, args->size, args->prot, 668 ret_page, args->caller, 669 args->want_vaddr, args->coherent_flag, 670 args->gfp); 671 } 672 673 static void cma_allocator_free(struct arm_dma_free_args *args) 674 { 675 __free_from_contiguous(args->dev, args->page, args->cpu_addr, 676 args->size, args->want_vaddr); 677 } 678 679 static struct arm_dma_allocator cma_allocator = { 680 .alloc = cma_allocator_alloc, 681 .free = cma_allocator_free, 682 }; 683 684 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, 685 struct page **ret_page) 686 { 687 return __alloc_from_pool(args->size, ret_page); 688 } 689 690 static void pool_allocator_free(struct arm_dma_free_args *args) 691 { 692 __free_from_pool(args->cpu_addr, args->size); 693 } 694 695 static struct arm_dma_allocator pool_allocator = { 696 .alloc = pool_allocator_alloc, 697 .free = pool_allocator_free, 698 }; 699 700 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, 701 struct page **ret_page) 702 { 703 return __alloc_remap_buffer(args->dev, args->size, args->gfp, 704 args->prot, ret_page, args->caller, 705 args->want_vaddr); 706 } 707 708 static void remap_allocator_free(struct arm_dma_free_args *args) 709 { 710 if (args->want_vaddr) 711 __dma_free_remap(args->cpu_addr, args->size); 712 713 __dma_free_buffer(args->page, args->size); 714 } 715 716 static struct arm_dma_allocator remap_allocator = { 717 .alloc = remap_allocator_alloc, 718 .free = remap_allocator_free, 719 }; 720 721 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 722 gfp_t gfp, pgprot_t prot, bool is_coherent, 723 unsigned long attrs, const void *caller) 724 { 725 u64 mask = get_coherent_dma_mask(dev); 726 struct page *page = NULL; 727 void *addr; 728 bool allowblock, cma; 729 struct arm_dma_buffer *buf; 730 struct arm_dma_alloc_args args = { 731 .dev = dev, 732 .size = PAGE_ALIGN(size), 733 .gfp = gfp, 734 .prot = prot, 735 .caller = caller, 736 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 737 .coherent_flag = is_coherent ? COHERENT : NORMAL, 738 }; 739 740 #ifdef CONFIG_DMA_API_DEBUG 741 u64 limit = (mask + 1) & ~mask; 742 if (limit && size >= limit) { 743 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 744 size, mask); 745 return NULL; 746 } 747 #endif 748 749 if (!mask) 750 return NULL; 751 752 buf = kzalloc(sizeof(*buf), 753 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); 754 if (!buf) 755 return NULL; 756 757 if (mask < 0xffffffffULL) 758 gfp |= GFP_DMA; 759 760 /* 761 * Following is a work-around (a.k.a. hack) to prevent pages 762 * with __GFP_COMP being passed to split_page() which cannot 763 * handle them. The real problem is that this flag probably 764 * should be 0 on ARM as it is not supported on this 765 * platform; see CONFIG_HUGETLBFS. 766 */ 767 gfp &= ~(__GFP_COMP); 768 args.gfp = gfp; 769 770 *handle = DMA_MAPPING_ERROR; 771 allowblock = gfpflags_allow_blocking(gfp); 772 cma = allowblock ? dev_get_cma_area(dev) : false; 773 774 if (cma) 775 buf->allocator = &cma_allocator; 776 else if (is_coherent) 777 buf->allocator = &simple_allocator; 778 else if (allowblock) 779 buf->allocator = &remap_allocator; 780 else 781 buf->allocator = &pool_allocator; 782 783 addr = buf->allocator->alloc(&args, &page); 784 785 if (page) { 786 unsigned long flags; 787 788 *handle = pfn_to_dma(dev, page_to_pfn(page)); 789 buf->virt = args.want_vaddr ? addr : page; 790 791 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 792 list_add(&buf->list, &arm_dma_bufs); 793 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 794 } else { 795 kfree(buf); 796 } 797 798 return args.want_vaddr ? addr : page; 799 } 800 801 /* 802 * Allocate DMA-coherent memory space and return both the kernel remapped 803 * virtual and bus address for that space. 804 */ 805 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 806 gfp_t gfp, unsigned long attrs) 807 { 808 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 809 810 return __dma_alloc(dev, size, handle, gfp, prot, false, 811 attrs, __builtin_return_address(0)); 812 } 813 814 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 815 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 816 { 817 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true, 818 attrs, __builtin_return_address(0)); 819 } 820 821 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 822 void *cpu_addr, dma_addr_t dma_addr, size_t size, 823 unsigned long attrs) 824 { 825 int ret = -ENXIO; 826 unsigned long nr_vma_pages = vma_pages(vma); 827 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 828 unsigned long pfn = dma_to_pfn(dev, dma_addr); 829 unsigned long off = vma->vm_pgoff; 830 831 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 832 return ret; 833 834 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 835 ret = remap_pfn_range(vma, vma->vm_start, 836 pfn + off, 837 vma->vm_end - vma->vm_start, 838 vma->vm_page_prot); 839 } 840 841 return ret; 842 } 843 844 /* 845 * Create userspace mapping for the DMA-coherent memory. 846 */ 847 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 848 void *cpu_addr, dma_addr_t dma_addr, size_t size, 849 unsigned long attrs) 850 { 851 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 852 } 853 854 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 855 void *cpu_addr, dma_addr_t dma_addr, size_t size, 856 unsigned long attrs) 857 { 858 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 859 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 860 } 861 862 /* 863 * Free a buffer as defined by the above mapping. 864 */ 865 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 866 dma_addr_t handle, unsigned long attrs, 867 bool is_coherent) 868 { 869 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 870 struct arm_dma_buffer *buf; 871 struct arm_dma_free_args args = { 872 .dev = dev, 873 .size = PAGE_ALIGN(size), 874 .cpu_addr = cpu_addr, 875 .page = page, 876 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 877 }; 878 879 buf = arm_dma_buffer_find(cpu_addr); 880 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) 881 return; 882 883 buf->allocator->free(&args); 884 kfree(buf); 885 } 886 887 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 888 dma_addr_t handle, unsigned long attrs) 889 { 890 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 891 } 892 893 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 894 dma_addr_t handle, unsigned long attrs) 895 { 896 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 897 } 898 899 /* 900 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems 901 * that the intention is to allow exporting memory allocated via the 902 * coherent DMA APIs through the dma_buf API, which only accepts a 903 * scattertable. This presents a couple of problems: 904 * 1. Not all memory allocated via the coherent DMA APIs is backed by 905 * a struct page 906 * 2. Passing coherent DMA memory into the streaming APIs is not allowed 907 * as we will try to flush the memory through a different alias to that 908 * actually being used (and the flushes are redundant.) 909 */ 910 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 911 void *cpu_addr, dma_addr_t handle, size_t size, 912 unsigned long attrs) 913 { 914 unsigned long pfn = dma_to_pfn(dev, handle); 915 struct page *page; 916 int ret; 917 918 /* If the PFN is not valid, we do not have a struct page */ 919 if (!pfn_valid(pfn)) 920 return -ENXIO; 921 922 page = pfn_to_page(pfn); 923 924 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 925 if (unlikely(ret)) 926 return ret; 927 928 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 929 return 0; 930 } 931 932 static void dma_cache_maint_page(struct page *page, unsigned long offset, 933 size_t size, enum dma_data_direction dir, 934 void (*op)(const void *, size_t, int)) 935 { 936 unsigned long pfn; 937 size_t left = size; 938 939 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 940 offset %= PAGE_SIZE; 941 942 /* 943 * A single sg entry may refer to multiple physically contiguous 944 * pages. But we still need to process highmem pages individually. 945 * If highmem is not configured then the bulk of this loop gets 946 * optimized out. 947 */ 948 do { 949 size_t len = left; 950 void *vaddr; 951 952 page = pfn_to_page(pfn); 953 954 if (PageHighMem(page)) { 955 if (len + offset > PAGE_SIZE) 956 len = PAGE_SIZE - offset; 957 958 if (cache_is_vipt_nonaliasing()) { 959 vaddr = kmap_atomic(page); 960 op(vaddr + offset, len, dir); 961 kunmap_atomic(vaddr); 962 } else { 963 vaddr = kmap_high_get(page); 964 if (vaddr) { 965 op(vaddr + offset, len, dir); 966 kunmap_high(page); 967 } 968 } 969 } else { 970 vaddr = page_address(page) + offset; 971 op(vaddr, len, dir); 972 } 973 offset = 0; 974 pfn++; 975 left -= len; 976 } while (left); 977 } 978 979 /* 980 * Make an area consistent for devices. 981 * Note: Drivers should NOT use this function directly, as it will break 982 * platforms with CONFIG_DMABOUNCE. 983 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 984 */ 985 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 986 size_t size, enum dma_data_direction dir) 987 { 988 phys_addr_t paddr; 989 990 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 991 992 paddr = page_to_phys(page) + off; 993 if (dir == DMA_FROM_DEVICE) { 994 outer_inv_range(paddr, paddr + size); 995 } else { 996 outer_clean_range(paddr, paddr + size); 997 } 998 /* FIXME: non-speculating: flush on bidirectional mappings? */ 999 } 1000 1001 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 1002 size_t size, enum dma_data_direction dir) 1003 { 1004 phys_addr_t paddr = page_to_phys(page) + off; 1005 1006 /* FIXME: non-speculating: not required */ 1007 /* in any case, don't bother invalidating if DMA to device */ 1008 if (dir != DMA_TO_DEVICE) { 1009 outer_inv_range(paddr, paddr + size); 1010 1011 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 1012 } 1013 1014 /* 1015 * Mark the D-cache clean for these pages to avoid extra flushing. 1016 */ 1017 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 1018 unsigned long pfn; 1019 size_t left = size; 1020 1021 pfn = page_to_pfn(page) + off / PAGE_SIZE; 1022 off %= PAGE_SIZE; 1023 if (off) { 1024 pfn++; 1025 left -= PAGE_SIZE - off; 1026 } 1027 while (left >= PAGE_SIZE) { 1028 page = pfn_to_page(pfn++); 1029 set_bit(PG_dcache_clean, &page->flags); 1030 left -= PAGE_SIZE; 1031 } 1032 } 1033 } 1034 1035 /** 1036 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 1037 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1038 * @sg: list of buffers 1039 * @nents: number of buffers to map 1040 * @dir: DMA transfer direction 1041 * 1042 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1043 * This is the scatter-gather version of the dma_map_single interface. 1044 * Here the scatter gather list elements are each tagged with the 1045 * appropriate dma address and length. They are obtained via 1046 * sg_dma_{address,length}. 1047 * 1048 * Device ownership issues as mentioned for dma_map_single are the same 1049 * here. 1050 */ 1051 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1052 enum dma_data_direction dir, unsigned long attrs) 1053 { 1054 const struct dma_map_ops *ops = get_dma_ops(dev); 1055 struct scatterlist *s; 1056 int i, j; 1057 1058 for_each_sg(sg, s, nents, i) { 1059 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1060 s->dma_length = s->length; 1061 #endif 1062 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 1063 s->length, dir, attrs); 1064 if (dma_mapping_error(dev, s->dma_address)) 1065 goto bad_mapping; 1066 } 1067 return nents; 1068 1069 bad_mapping: 1070 for_each_sg(sg, s, i, j) 1071 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1072 return 0; 1073 } 1074 1075 /** 1076 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1077 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1078 * @sg: list of buffers 1079 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1080 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1081 * 1082 * Unmap a set of streaming mode DMA translations. Again, CPU access 1083 * rules concerning calls here are the same as for dma_unmap_single(). 1084 */ 1085 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1086 enum dma_data_direction dir, unsigned long attrs) 1087 { 1088 const struct dma_map_ops *ops = get_dma_ops(dev); 1089 struct scatterlist *s; 1090 1091 int i; 1092 1093 for_each_sg(sg, s, nents, i) 1094 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1095 } 1096 1097 /** 1098 * arm_dma_sync_sg_for_cpu 1099 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1100 * @sg: list of buffers 1101 * @nents: number of buffers to map (returned from dma_map_sg) 1102 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1103 */ 1104 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1105 int nents, enum dma_data_direction dir) 1106 { 1107 const struct dma_map_ops *ops = get_dma_ops(dev); 1108 struct scatterlist *s; 1109 int i; 1110 1111 for_each_sg(sg, s, nents, i) 1112 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 1113 dir); 1114 } 1115 1116 /** 1117 * arm_dma_sync_sg_for_device 1118 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1119 * @sg: list of buffers 1120 * @nents: number of buffers to map (returned from dma_map_sg) 1121 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1122 */ 1123 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1124 int nents, enum dma_data_direction dir) 1125 { 1126 const struct dma_map_ops *ops = get_dma_ops(dev); 1127 struct scatterlist *s; 1128 int i; 1129 1130 for_each_sg(sg, s, nents, i) 1131 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 1132 dir); 1133 } 1134 1135 /* 1136 * Return whether the given device DMA address mask can be supported 1137 * properly. For example, if your device can only drive the low 24-bits 1138 * during bus mastering, then you would pass 0x00ffffff as the mask 1139 * to this function. 1140 */ 1141 int arm_dma_supported(struct device *dev, u64 mask) 1142 { 1143 return __dma_supported(dev, mask, false); 1144 } 1145 1146 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent) 1147 { 1148 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; 1149 } 1150 1151 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1152 1153 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) 1154 { 1155 int prot = 0; 1156 1157 if (attrs & DMA_ATTR_PRIVILEGED) 1158 prot |= IOMMU_PRIV; 1159 1160 switch (dir) { 1161 case DMA_BIDIRECTIONAL: 1162 return prot | IOMMU_READ | IOMMU_WRITE; 1163 case DMA_TO_DEVICE: 1164 return prot | IOMMU_READ; 1165 case DMA_FROM_DEVICE: 1166 return prot | IOMMU_WRITE; 1167 default: 1168 return prot; 1169 } 1170 } 1171 1172 /* IOMMU */ 1173 1174 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 1175 1176 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1177 size_t size) 1178 { 1179 unsigned int order = get_order(size); 1180 unsigned int align = 0; 1181 unsigned int count, start; 1182 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1183 unsigned long flags; 1184 dma_addr_t iova; 1185 int i; 1186 1187 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1188 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1189 1190 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1191 align = (1 << order) - 1; 1192 1193 spin_lock_irqsave(&mapping->lock, flags); 1194 for (i = 0; i < mapping->nr_bitmaps; i++) { 1195 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1196 mapping->bits, 0, count, align); 1197 1198 if (start > mapping->bits) 1199 continue; 1200 1201 bitmap_set(mapping->bitmaps[i], start, count); 1202 break; 1203 } 1204 1205 /* 1206 * No unused range found. Try to extend the existing mapping 1207 * and perform a second attempt to reserve an IO virtual 1208 * address range of size bytes. 1209 */ 1210 if (i == mapping->nr_bitmaps) { 1211 if (extend_iommu_mapping(mapping)) { 1212 spin_unlock_irqrestore(&mapping->lock, flags); 1213 return DMA_MAPPING_ERROR; 1214 } 1215 1216 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1217 mapping->bits, 0, count, align); 1218 1219 if (start > mapping->bits) { 1220 spin_unlock_irqrestore(&mapping->lock, flags); 1221 return DMA_MAPPING_ERROR; 1222 } 1223 1224 bitmap_set(mapping->bitmaps[i], start, count); 1225 } 1226 spin_unlock_irqrestore(&mapping->lock, flags); 1227 1228 iova = mapping->base + (mapping_size * i); 1229 iova += start << PAGE_SHIFT; 1230 1231 return iova; 1232 } 1233 1234 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1235 dma_addr_t addr, size_t size) 1236 { 1237 unsigned int start, count; 1238 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1239 unsigned long flags; 1240 dma_addr_t bitmap_base; 1241 u32 bitmap_index; 1242 1243 if (!size) 1244 return; 1245 1246 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; 1247 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 1248 1249 bitmap_base = mapping->base + mapping_size * bitmap_index; 1250 1251 start = (addr - bitmap_base) >> PAGE_SHIFT; 1252 1253 if (addr + size > bitmap_base + mapping_size) { 1254 /* 1255 * The address range to be freed reaches into the iova 1256 * range of the next bitmap. This should not happen as 1257 * we don't allow this in __alloc_iova (at the 1258 * moment). 1259 */ 1260 BUG(); 1261 } else 1262 count = size >> PAGE_SHIFT; 1263 1264 spin_lock_irqsave(&mapping->lock, flags); 1265 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 1266 spin_unlock_irqrestore(&mapping->lock, flags); 1267 } 1268 1269 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ 1270 static const int iommu_order_array[] = { 9, 8, 4, 0 }; 1271 1272 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1273 gfp_t gfp, unsigned long attrs, 1274 int coherent_flag) 1275 { 1276 struct page **pages; 1277 int count = size >> PAGE_SHIFT; 1278 int array_size = count * sizeof(struct page *); 1279 int i = 0; 1280 int order_idx = 0; 1281 1282 if (array_size <= PAGE_SIZE) 1283 pages = kzalloc(array_size, GFP_KERNEL); 1284 else 1285 pages = vzalloc(array_size); 1286 if (!pages) 1287 return NULL; 1288 1289 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) 1290 { 1291 unsigned long order = get_order(size); 1292 struct page *page; 1293 1294 page = dma_alloc_from_contiguous(dev, count, order, 1295 gfp & __GFP_NOWARN); 1296 if (!page) 1297 goto error; 1298 1299 __dma_clear_buffer(page, size, coherent_flag); 1300 1301 for (i = 0; i < count; i++) 1302 pages[i] = page + i; 1303 1304 return pages; 1305 } 1306 1307 /* Go straight to 4K chunks if caller says it's OK. */ 1308 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 1309 order_idx = ARRAY_SIZE(iommu_order_array) - 1; 1310 1311 /* 1312 * IOMMU can map any pages, so himem can also be used here 1313 */ 1314 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1315 1316 while (count) { 1317 int j, order; 1318 1319 order = iommu_order_array[order_idx]; 1320 1321 /* Drop down when we get small */ 1322 if (__fls(count) < order) { 1323 order_idx++; 1324 continue; 1325 } 1326 1327 if (order) { 1328 /* See if it's easy to allocate a high-order chunk */ 1329 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); 1330 1331 /* Go down a notch at first sign of pressure */ 1332 if (!pages[i]) { 1333 order_idx++; 1334 continue; 1335 } 1336 } else { 1337 pages[i] = alloc_pages(gfp, 0); 1338 if (!pages[i]) 1339 goto error; 1340 } 1341 1342 if (order) { 1343 split_page(pages[i], order); 1344 j = 1 << order; 1345 while (--j) 1346 pages[i + j] = pages[i] + j; 1347 } 1348 1349 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); 1350 i += 1 << order; 1351 count -= 1 << order; 1352 } 1353 1354 return pages; 1355 error: 1356 while (i--) 1357 if (pages[i]) 1358 __free_pages(pages[i], 0); 1359 kvfree(pages); 1360 return NULL; 1361 } 1362 1363 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1364 size_t size, unsigned long attrs) 1365 { 1366 int count = size >> PAGE_SHIFT; 1367 int i; 1368 1369 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 1370 dma_release_from_contiguous(dev, pages[0], count); 1371 } else { 1372 for (i = 0; i < count; i++) 1373 if (pages[i]) 1374 __free_pages(pages[i], 0); 1375 } 1376 1377 kvfree(pages); 1378 return 0; 1379 } 1380 1381 /* 1382 * Create a CPU mapping for a specified pages 1383 */ 1384 static void * 1385 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1386 const void *caller) 1387 { 1388 return dma_common_pages_remap(pages, size, 1389 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller); 1390 } 1391 1392 /* 1393 * Create a mapping in device IO address space for specified pages 1394 */ 1395 static dma_addr_t 1396 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, 1397 unsigned long attrs) 1398 { 1399 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1400 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1401 dma_addr_t dma_addr, iova; 1402 int i; 1403 1404 dma_addr = __alloc_iova(mapping, size); 1405 if (dma_addr == DMA_MAPPING_ERROR) 1406 return dma_addr; 1407 1408 iova = dma_addr; 1409 for (i = 0; i < count; ) { 1410 int ret; 1411 1412 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1413 phys_addr_t phys = page_to_phys(pages[i]); 1414 unsigned int len, j; 1415 1416 for (j = i + 1; j < count; j++, next_pfn++) 1417 if (page_to_pfn(pages[j]) != next_pfn) 1418 break; 1419 1420 len = (j - i) << PAGE_SHIFT; 1421 ret = iommu_map(mapping->domain, iova, phys, len, 1422 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs)); 1423 if (ret < 0) 1424 goto fail; 1425 iova += len; 1426 i = j; 1427 } 1428 return dma_addr; 1429 fail: 1430 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1431 __free_iova(mapping, dma_addr, size); 1432 return DMA_MAPPING_ERROR; 1433 } 1434 1435 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1436 { 1437 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1438 1439 /* 1440 * add optional in-page offset from iova to size and align 1441 * result to page size 1442 */ 1443 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1444 iova &= PAGE_MASK; 1445 1446 iommu_unmap(mapping->domain, iova, size); 1447 __free_iova(mapping, iova, size); 1448 return 0; 1449 } 1450 1451 static struct page **__atomic_get_pages(void *addr) 1452 { 1453 struct page *page; 1454 phys_addr_t phys; 1455 1456 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); 1457 page = phys_to_page(phys); 1458 1459 return (struct page **)page; 1460 } 1461 1462 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) 1463 { 1464 struct vm_struct *area; 1465 1466 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1467 return __atomic_get_pages(cpu_addr); 1468 1469 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1470 return cpu_addr; 1471 1472 area = find_vm_area(cpu_addr); 1473 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1474 return area->pages; 1475 return NULL; 1476 } 1477 1478 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, 1479 dma_addr_t *handle, int coherent_flag, 1480 unsigned long attrs) 1481 { 1482 struct page *page; 1483 void *addr; 1484 1485 if (coherent_flag == COHERENT) 1486 addr = __alloc_simple_buffer(dev, size, gfp, &page); 1487 else 1488 addr = __alloc_from_pool(size, &page); 1489 if (!addr) 1490 return NULL; 1491 1492 *handle = __iommu_create_mapping(dev, &page, size, attrs); 1493 if (*handle == DMA_MAPPING_ERROR) 1494 goto err_mapping; 1495 1496 return addr; 1497 1498 err_mapping: 1499 __free_from_pool(addr, size); 1500 return NULL; 1501 } 1502 1503 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1504 dma_addr_t handle, size_t size, int coherent_flag) 1505 { 1506 __iommu_remove_mapping(dev, handle, size); 1507 if (coherent_flag == COHERENT) 1508 __dma_free_buffer(virt_to_page(cpu_addr), size); 1509 else 1510 __free_from_pool(cpu_addr, size); 1511 } 1512 1513 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size, 1514 dma_addr_t *handle, gfp_t gfp, unsigned long attrs, 1515 int coherent_flag) 1516 { 1517 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1518 struct page **pages; 1519 void *addr = NULL; 1520 1521 *handle = DMA_MAPPING_ERROR; 1522 size = PAGE_ALIGN(size); 1523 1524 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp)) 1525 return __iommu_alloc_simple(dev, size, gfp, handle, 1526 coherent_flag, attrs); 1527 1528 /* 1529 * Following is a work-around (a.k.a. hack) to prevent pages 1530 * with __GFP_COMP being passed to split_page() which cannot 1531 * handle them. The real problem is that this flag probably 1532 * should be 0 on ARM as it is not supported on this 1533 * platform; see CONFIG_HUGETLBFS. 1534 */ 1535 gfp &= ~(__GFP_COMP); 1536 1537 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); 1538 if (!pages) 1539 return NULL; 1540 1541 *handle = __iommu_create_mapping(dev, pages, size, attrs); 1542 if (*handle == DMA_MAPPING_ERROR) 1543 goto err_buffer; 1544 1545 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1546 return pages; 1547 1548 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1549 __builtin_return_address(0)); 1550 if (!addr) 1551 goto err_mapping; 1552 1553 return addr; 1554 1555 err_mapping: 1556 __iommu_remove_mapping(dev, *handle, size); 1557 err_buffer: 1558 __iommu_free_buffer(dev, pages, size, attrs); 1559 return NULL; 1560 } 1561 1562 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1563 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1564 { 1565 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL); 1566 } 1567 1568 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size, 1569 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1570 { 1571 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT); 1572 } 1573 1574 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1575 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1576 unsigned long attrs) 1577 { 1578 unsigned long uaddr = vma->vm_start; 1579 unsigned long usize = vma->vm_end - vma->vm_start; 1580 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1581 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1582 unsigned long off = vma->vm_pgoff; 1583 1584 if (!pages) 1585 return -ENXIO; 1586 1587 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off) 1588 return -ENXIO; 1589 1590 pages += off; 1591 1592 do { 1593 int ret = vm_insert_page(vma, uaddr, *pages++); 1594 if (ret) { 1595 pr_err("Remapping memory failed: %d\n", ret); 1596 return ret; 1597 } 1598 uaddr += PAGE_SIZE; 1599 usize -= PAGE_SIZE; 1600 } while (usize > 0); 1601 1602 return 0; 1603 } 1604 static int arm_iommu_mmap_attrs(struct device *dev, 1605 struct vm_area_struct *vma, void *cpu_addr, 1606 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1607 { 1608 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1609 1610 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1611 } 1612 1613 static int arm_coherent_iommu_mmap_attrs(struct device *dev, 1614 struct vm_area_struct *vma, void *cpu_addr, 1615 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1616 { 1617 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1618 } 1619 1620 /* 1621 * free a page as defined by the above mapping. 1622 * Must not be called with IRQs disabled. 1623 */ 1624 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1625 dma_addr_t handle, unsigned long attrs, int coherent_flag) 1626 { 1627 struct page **pages; 1628 size = PAGE_ALIGN(size); 1629 1630 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { 1631 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); 1632 return; 1633 } 1634 1635 pages = __iommu_get_pages(cpu_addr, attrs); 1636 if (!pages) { 1637 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1638 return; 1639 } 1640 1641 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) { 1642 dma_common_free_remap(cpu_addr, size, 1643 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 1644 } 1645 1646 __iommu_remove_mapping(dev, handle, size); 1647 __iommu_free_buffer(dev, pages, size, attrs); 1648 } 1649 1650 void arm_iommu_free_attrs(struct device *dev, size_t size, 1651 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1652 { 1653 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL); 1654 } 1655 1656 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size, 1657 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1658 { 1659 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT); 1660 } 1661 1662 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1663 void *cpu_addr, dma_addr_t dma_addr, 1664 size_t size, unsigned long attrs) 1665 { 1666 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1667 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1668 1669 if (!pages) 1670 return -ENXIO; 1671 1672 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1673 GFP_KERNEL); 1674 } 1675 1676 /* 1677 * Map a part of the scatter-gather list into contiguous io address space 1678 */ 1679 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1680 size_t size, dma_addr_t *handle, 1681 enum dma_data_direction dir, unsigned long attrs, 1682 bool is_coherent) 1683 { 1684 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1685 dma_addr_t iova, iova_base; 1686 int ret = 0; 1687 unsigned int count; 1688 struct scatterlist *s; 1689 int prot; 1690 1691 size = PAGE_ALIGN(size); 1692 *handle = DMA_MAPPING_ERROR; 1693 1694 iova_base = iova = __alloc_iova(mapping, size); 1695 if (iova == DMA_MAPPING_ERROR) 1696 return -ENOMEM; 1697 1698 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1699 phys_addr_t phys = page_to_phys(sg_page(s)); 1700 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1701 1702 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1703 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1704 1705 prot = __dma_info_to_prot(dir, attrs); 1706 1707 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1708 if (ret < 0) 1709 goto fail; 1710 count += len >> PAGE_SHIFT; 1711 iova += len; 1712 } 1713 *handle = iova_base; 1714 1715 return 0; 1716 fail: 1717 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1718 __free_iova(mapping, iova_base, size); 1719 return ret; 1720 } 1721 1722 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1723 enum dma_data_direction dir, unsigned long attrs, 1724 bool is_coherent) 1725 { 1726 struct scatterlist *s = sg, *dma = sg, *start = sg; 1727 int i, count = 0; 1728 unsigned int offset = s->offset; 1729 unsigned int size = s->offset + s->length; 1730 unsigned int max = dma_get_max_seg_size(dev); 1731 1732 for (i = 1; i < nents; i++) { 1733 s = sg_next(s); 1734 1735 s->dma_address = DMA_MAPPING_ERROR; 1736 s->dma_length = 0; 1737 1738 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1739 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1740 dir, attrs, is_coherent) < 0) 1741 goto bad_mapping; 1742 1743 dma->dma_address += offset; 1744 dma->dma_length = size - offset; 1745 1746 size = offset = s->offset; 1747 start = s; 1748 dma = sg_next(dma); 1749 count += 1; 1750 } 1751 size += s->length; 1752 } 1753 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1754 is_coherent) < 0) 1755 goto bad_mapping; 1756 1757 dma->dma_address += offset; 1758 dma->dma_length = size - offset; 1759 1760 return count+1; 1761 1762 bad_mapping: 1763 for_each_sg(sg, s, count, i) 1764 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1765 return 0; 1766 } 1767 1768 /** 1769 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1770 * @dev: valid struct device pointer 1771 * @sg: list of buffers 1772 * @nents: number of buffers to map 1773 * @dir: DMA transfer direction 1774 * 1775 * Map a set of i/o coherent buffers described by scatterlist in streaming 1776 * mode for DMA. The scatter gather list elements are merged together (if 1777 * possible) and tagged with the appropriate dma address and length. They are 1778 * obtained via sg_dma_{address,length}. 1779 */ 1780 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1781 int nents, enum dma_data_direction dir, unsigned long attrs) 1782 { 1783 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1784 } 1785 1786 /** 1787 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1788 * @dev: valid struct device pointer 1789 * @sg: list of buffers 1790 * @nents: number of buffers to map 1791 * @dir: DMA transfer direction 1792 * 1793 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1794 * The scatter gather list elements are merged together (if possible) and 1795 * tagged with the appropriate dma address and length. They are obtained via 1796 * sg_dma_{address,length}. 1797 */ 1798 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1799 int nents, enum dma_data_direction dir, unsigned long attrs) 1800 { 1801 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1802 } 1803 1804 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1805 int nents, enum dma_data_direction dir, 1806 unsigned long attrs, bool is_coherent) 1807 { 1808 struct scatterlist *s; 1809 int i; 1810 1811 for_each_sg(sg, s, nents, i) { 1812 if (sg_dma_len(s)) 1813 __iommu_remove_mapping(dev, sg_dma_address(s), 1814 sg_dma_len(s)); 1815 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1816 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1817 s->length, dir); 1818 } 1819 } 1820 1821 /** 1822 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1823 * @dev: valid struct device pointer 1824 * @sg: list of buffers 1825 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1826 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1827 * 1828 * Unmap a set of streaming mode DMA translations. Again, CPU access 1829 * rules concerning calls here are the same as for dma_unmap_single(). 1830 */ 1831 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1832 int nents, enum dma_data_direction dir, 1833 unsigned long attrs) 1834 { 1835 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1836 } 1837 1838 /** 1839 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1840 * @dev: valid struct device pointer 1841 * @sg: list of buffers 1842 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1843 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1844 * 1845 * Unmap a set of streaming mode DMA translations. Again, CPU access 1846 * rules concerning calls here are the same as for dma_unmap_single(). 1847 */ 1848 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1849 enum dma_data_direction dir, 1850 unsigned long attrs) 1851 { 1852 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1853 } 1854 1855 /** 1856 * arm_iommu_sync_sg_for_cpu 1857 * @dev: valid struct device pointer 1858 * @sg: list of buffers 1859 * @nents: number of buffers to map (returned from dma_map_sg) 1860 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1861 */ 1862 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1863 int nents, enum dma_data_direction dir) 1864 { 1865 struct scatterlist *s; 1866 int i; 1867 1868 for_each_sg(sg, s, nents, i) 1869 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1870 1871 } 1872 1873 /** 1874 * arm_iommu_sync_sg_for_device 1875 * @dev: valid struct device pointer 1876 * @sg: list of buffers 1877 * @nents: number of buffers to map (returned from dma_map_sg) 1878 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1879 */ 1880 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1881 int nents, enum dma_data_direction dir) 1882 { 1883 struct scatterlist *s; 1884 int i; 1885 1886 for_each_sg(sg, s, nents, i) 1887 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1888 } 1889 1890 1891 /** 1892 * arm_coherent_iommu_map_page 1893 * @dev: valid struct device pointer 1894 * @page: page that buffer resides in 1895 * @offset: offset into page for start of buffer 1896 * @size: size of buffer to map 1897 * @dir: DMA transfer direction 1898 * 1899 * Coherent IOMMU aware version of arm_dma_map_page() 1900 */ 1901 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1902 unsigned long offset, size_t size, enum dma_data_direction dir, 1903 unsigned long attrs) 1904 { 1905 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1906 dma_addr_t dma_addr; 1907 int ret, prot, len = PAGE_ALIGN(size + offset); 1908 1909 dma_addr = __alloc_iova(mapping, len); 1910 if (dma_addr == DMA_MAPPING_ERROR) 1911 return dma_addr; 1912 1913 prot = __dma_info_to_prot(dir, attrs); 1914 1915 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1916 if (ret < 0) 1917 goto fail; 1918 1919 return dma_addr + offset; 1920 fail: 1921 __free_iova(mapping, dma_addr, len); 1922 return DMA_MAPPING_ERROR; 1923 } 1924 1925 /** 1926 * arm_iommu_map_page 1927 * @dev: valid struct device pointer 1928 * @page: page that buffer resides in 1929 * @offset: offset into page for start of buffer 1930 * @size: size of buffer to map 1931 * @dir: DMA transfer direction 1932 * 1933 * IOMMU aware version of arm_dma_map_page() 1934 */ 1935 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1936 unsigned long offset, size_t size, enum dma_data_direction dir, 1937 unsigned long attrs) 1938 { 1939 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1940 __dma_page_cpu_to_dev(page, offset, size, dir); 1941 1942 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1943 } 1944 1945 /** 1946 * arm_coherent_iommu_unmap_page 1947 * @dev: valid struct device pointer 1948 * @handle: DMA address of buffer 1949 * @size: size of buffer (same as passed to dma_map_page) 1950 * @dir: DMA transfer direction (same as passed to dma_map_page) 1951 * 1952 * Coherent IOMMU aware version of arm_dma_unmap_page() 1953 */ 1954 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1955 size_t size, enum dma_data_direction dir, unsigned long attrs) 1956 { 1957 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1958 dma_addr_t iova = handle & PAGE_MASK; 1959 int offset = handle & ~PAGE_MASK; 1960 int len = PAGE_ALIGN(size + offset); 1961 1962 if (!iova) 1963 return; 1964 1965 iommu_unmap(mapping->domain, iova, len); 1966 __free_iova(mapping, iova, len); 1967 } 1968 1969 /** 1970 * arm_iommu_unmap_page 1971 * @dev: valid struct device pointer 1972 * @handle: DMA address of buffer 1973 * @size: size of buffer (same as passed to dma_map_page) 1974 * @dir: DMA transfer direction (same as passed to dma_map_page) 1975 * 1976 * IOMMU aware version of arm_dma_unmap_page() 1977 */ 1978 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1979 size_t size, enum dma_data_direction dir, unsigned long attrs) 1980 { 1981 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1982 dma_addr_t iova = handle & PAGE_MASK; 1983 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1984 int offset = handle & ~PAGE_MASK; 1985 int len = PAGE_ALIGN(size + offset); 1986 1987 if (!iova) 1988 return; 1989 1990 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1991 __dma_page_dev_to_cpu(page, offset, size, dir); 1992 1993 iommu_unmap(mapping->domain, iova, len); 1994 __free_iova(mapping, iova, len); 1995 } 1996 1997 /** 1998 * arm_iommu_map_resource - map a device resource for DMA 1999 * @dev: valid struct device pointer 2000 * @phys_addr: physical address of resource 2001 * @size: size of resource to map 2002 * @dir: DMA transfer direction 2003 */ 2004 static dma_addr_t arm_iommu_map_resource(struct device *dev, 2005 phys_addr_t phys_addr, size_t size, 2006 enum dma_data_direction dir, unsigned long attrs) 2007 { 2008 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2009 dma_addr_t dma_addr; 2010 int ret, prot; 2011 phys_addr_t addr = phys_addr & PAGE_MASK; 2012 unsigned int offset = phys_addr & ~PAGE_MASK; 2013 size_t len = PAGE_ALIGN(size + offset); 2014 2015 dma_addr = __alloc_iova(mapping, len); 2016 if (dma_addr == DMA_MAPPING_ERROR) 2017 return dma_addr; 2018 2019 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; 2020 2021 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot); 2022 if (ret < 0) 2023 goto fail; 2024 2025 return dma_addr + offset; 2026 fail: 2027 __free_iova(mapping, dma_addr, len); 2028 return DMA_MAPPING_ERROR; 2029 } 2030 2031 /** 2032 * arm_iommu_unmap_resource - unmap a device DMA resource 2033 * @dev: valid struct device pointer 2034 * @dma_handle: DMA address to resource 2035 * @size: size of resource to map 2036 * @dir: DMA transfer direction 2037 */ 2038 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, 2039 size_t size, enum dma_data_direction dir, 2040 unsigned long attrs) 2041 { 2042 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2043 dma_addr_t iova = dma_handle & PAGE_MASK; 2044 unsigned int offset = dma_handle & ~PAGE_MASK; 2045 size_t len = PAGE_ALIGN(size + offset); 2046 2047 if (!iova) 2048 return; 2049 2050 iommu_unmap(mapping->domain, iova, len); 2051 __free_iova(mapping, iova, len); 2052 } 2053 2054 static void arm_iommu_sync_single_for_cpu(struct device *dev, 2055 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2056 { 2057 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2058 dma_addr_t iova = handle & PAGE_MASK; 2059 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2060 unsigned int offset = handle & ~PAGE_MASK; 2061 2062 if (!iova) 2063 return; 2064 2065 __dma_page_dev_to_cpu(page, offset, size, dir); 2066 } 2067 2068 static void arm_iommu_sync_single_for_device(struct device *dev, 2069 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2070 { 2071 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2072 dma_addr_t iova = handle & PAGE_MASK; 2073 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2074 unsigned int offset = handle & ~PAGE_MASK; 2075 2076 if (!iova) 2077 return; 2078 2079 __dma_page_cpu_to_dev(page, offset, size, dir); 2080 } 2081 2082 const struct dma_map_ops iommu_ops = { 2083 .alloc = arm_iommu_alloc_attrs, 2084 .free = arm_iommu_free_attrs, 2085 .mmap = arm_iommu_mmap_attrs, 2086 .get_sgtable = arm_iommu_get_sgtable, 2087 2088 .map_page = arm_iommu_map_page, 2089 .unmap_page = arm_iommu_unmap_page, 2090 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 2091 .sync_single_for_device = arm_iommu_sync_single_for_device, 2092 2093 .map_sg = arm_iommu_map_sg, 2094 .unmap_sg = arm_iommu_unmap_sg, 2095 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 2096 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 2097 2098 .map_resource = arm_iommu_map_resource, 2099 .unmap_resource = arm_iommu_unmap_resource, 2100 2101 .dma_supported = arm_dma_supported, 2102 }; 2103 2104 const struct dma_map_ops iommu_coherent_ops = { 2105 .alloc = arm_coherent_iommu_alloc_attrs, 2106 .free = arm_coherent_iommu_free_attrs, 2107 .mmap = arm_coherent_iommu_mmap_attrs, 2108 .get_sgtable = arm_iommu_get_sgtable, 2109 2110 .map_page = arm_coherent_iommu_map_page, 2111 .unmap_page = arm_coherent_iommu_unmap_page, 2112 2113 .map_sg = arm_coherent_iommu_map_sg, 2114 .unmap_sg = arm_coherent_iommu_unmap_sg, 2115 2116 .map_resource = arm_iommu_map_resource, 2117 .unmap_resource = arm_iommu_unmap_resource, 2118 2119 .dma_supported = arm_dma_supported, 2120 }; 2121 2122 /** 2123 * arm_iommu_create_mapping 2124 * @bus: pointer to the bus holding the client device (for IOMMU calls) 2125 * @base: start address of the valid IO address space 2126 * @size: maximum size of the valid IO address space 2127 * 2128 * Creates a mapping structure which holds information about used/unused 2129 * IO address ranges, which is required to perform memory allocation and 2130 * mapping with IOMMU aware functions. 2131 * 2132 * The client device need to be attached to the mapping with 2133 * arm_iommu_attach_device function. 2134 */ 2135 struct dma_iommu_mapping * 2136 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) 2137 { 2138 unsigned int bits = size >> PAGE_SHIFT; 2139 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 2140 struct dma_iommu_mapping *mapping; 2141 int extensions = 1; 2142 int err = -ENOMEM; 2143 2144 /* currently only 32-bit DMA address space is supported */ 2145 if (size > DMA_BIT_MASK(32) + 1) 2146 return ERR_PTR(-ERANGE); 2147 2148 if (!bitmap_size) 2149 return ERR_PTR(-EINVAL); 2150 2151 if (bitmap_size > PAGE_SIZE) { 2152 extensions = bitmap_size / PAGE_SIZE; 2153 bitmap_size = PAGE_SIZE; 2154 } 2155 2156 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 2157 if (!mapping) 2158 goto err; 2159 2160 mapping->bitmap_size = bitmap_size; 2161 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *), 2162 GFP_KERNEL); 2163 if (!mapping->bitmaps) 2164 goto err2; 2165 2166 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 2167 if (!mapping->bitmaps[0]) 2168 goto err3; 2169 2170 mapping->nr_bitmaps = 1; 2171 mapping->extensions = extensions; 2172 mapping->base = base; 2173 mapping->bits = BITS_PER_BYTE * bitmap_size; 2174 2175 spin_lock_init(&mapping->lock); 2176 2177 mapping->domain = iommu_domain_alloc(bus); 2178 if (!mapping->domain) 2179 goto err4; 2180 2181 kref_init(&mapping->kref); 2182 return mapping; 2183 err4: 2184 kfree(mapping->bitmaps[0]); 2185 err3: 2186 kfree(mapping->bitmaps); 2187 err2: 2188 kfree(mapping); 2189 err: 2190 return ERR_PTR(err); 2191 } 2192 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 2193 2194 static void release_iommu_mapping(struct kref *kref) 2195 { 2196 int i; 2197 struct dma_iommu_mapping *mapping = 2198 container_of(kref, struct dma_iommu_mapping, kref); 2199 2200 iommu_domain_free(mapping->domain); 2201 for (i = 0; i < mapping->nr_bitmaps; i++) 2202 kfree(mapping->bitmaps[i]); 2203 kfree(mapping->bitmaps); 2204 kfree(mapping); 2205 } 2206 2207 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 2208 { 2209 int next_bitmap; 2210 2211 if (mapping->nr_bitmaps >= mapping->extensions) 2212 return -EINVAL; 2213 2214 next_bitmap = mapping->nr_bitmaps; 2215 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 2216 GFP_ATOMIC); 2217 if (!mapping->bitmaps[next_bitmap]) 2218 return -ENOMEM; 2219 2220 mapping->nr_bitmaps++; 2221 2222 return 0; 2223 } 2224 2225 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 2226 { 2227 if (mapping) 2228 kref_put(&mapping->kref, release_iommu_mapping); 2229 } 2230 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 2231 2232 static int __arm_iommu_attach_device(struct device *dev, 2233 struct dma_iommu_mapping *mapping) 2234 { 2235 int err; 2236 2237 err = iommu_attach_device(mapping->domain, dev); 2238 if (err) 2239 return err; 2240 2241 kref_get(&mapping->kref); 2242 to_dma_iommu_mapping(dev) = mapping; 2243 2244 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 2245 return 0; 2246 } 2247 2248 /** 2249 * arm_iommu_attach_device 2250 * @dev: valid struct device pointer 2251 * @mapping: io address space mapping structure (returned from 2252 * arm_iommu_create_mapping) 2253 * 2254 * Attaches specified io address space mapping to the provided device. 2255 * This replaces the dma operations (dma_map_ops pointer) with the 2256 * IOMMU aware version. 2257 * 2258 * More than one client might be attached to the same io address space 2259 * mapping. 2260 */ 2261 int arm_iommu_attach_device(struct device *dev, 2262 struct dma_iommu_mapping *mapping) 2263 { 2264 int err; 2265 2266 err = __arm_iommu_attach_device(dev, mapping); 2267 if (err) 2268 return err; 2269 2270 set_dma_ops(dev, &iommu_ops); 2271 return 0; 2272 } 2273 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 2274 2275 /** 2276 * arm_iommu_detach_device 2277 * @dev: valid struct device pointer 2278 * 2279 * Detaches the provided device from a previously attached map. 2280 * This voids the dma operations (dma_map_ops pointer) 2281 */ 2282 void arm_iommu_detach_device(struct device *dev) 2283 { 2284 struct dma_iommu_mapping *mapping; 2285 2286 mapping = to_dma_iommu_mapping(dev); 2287 if (!mapping) { 2288 dev_warn(dev, "Not attached\n"); 2289 return; 2290 } 2291 2292 iommu_detach_device(mapping->domain, dev); 2293 kref_put(&mapping->kref, release_iommu_mapping); 2294 to_dma_iommu_mapping(dev) = NULL; 2295 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent)); 2296 2297 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 2298 } 2299 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 2300 2301 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) 2302 { 2303 return coherent ? &iommu_coherent_ops : &iommu_ops; 2304 } 2305 2306 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2307 const struct iommu_ops *iommu) 2308 { 2309 struct dma_iommu_mapping *mapping; 2310 2311 if (!iommu) 2312 return false; 2313 2314 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); 2315 if (IS_ERR(mapping)) { 2316 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", 2317 size, dev_name(dev)); 2318 return false; 2319 } 2320 2321 if (__arm_iommu_attach_device(dev, mapping)) { 2322 pr_warn("Failed to attached device %s to IOMMU_mapping\n", 2323 dev_name(dev)); 2324 arm_iommu_release_mapping(mapping); 2325 return false; 2326 } 2327 2328 return true; 2329 } 2330 2331 static void arm_teardown_iommu_dma_ops(struct device *dev) 2332 { 2333 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2334 2335 if (!mapping) 2336 return; 2337 2338 arm_iommu_detach_device(dev); 2339 arm_iommu_release_mapping(mapping); 2340 } 2341 2342 #else 2343 2344 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2345 const struct iommu_ops *iommu) 2346 { 2347 return false; 2348 } 2349 2350 static void arm_teardown_iommu_dma_ops(struct device *dev) { } 2351 2352 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops 2353 2354 #endif /* CONFIG_ARM_DMA_USE_IOMMU */ 2355 2356 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 2357 const struct iommu_ops *iommu, bool coherent) 2358 { 2359 const struct dma_map_ops *dma_ops; 2360 2361 dev->archdata.dma_coherent = coherent; 2362 2363 /* 2364 * Don't override the dma_ops if they have already been set. Ideally 2365 * this should be the only location where dma_ops are set, remove this 2366 * check when all other callers of set_dma_ops will have disappeared. 2367 */ 2368 if (dev->dma_ops) 2369 return; 2370 2371 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) 2372 dma_ops = arm_get_iommu_dma_map_ops(coherent); 2373 else 2374 dma_ops = arm_get_dma_map_ops(coherent); 2375 2376 set_dma_ops(dev, dma_ops); 2377 2378 #ifdef CONFIG_XEN 2379 if (xen_initial_domain()) { 2380 dev->archdata.dev_dma_ops = dev->dma_ops; 2381 dev->dma_ops = xen_dma_ops; 2382 } 2383 #endif 2384 dev->archdata.dma_ops_setup = true; 2385 } 2386 2387 void arch_teardown_dma_ops(struct device *dev) 2388 { 2389 if (!dev->archdata.dma_ops_setup) 2390 return; 2391 2392 arm_teardown_iommu_dma_ops(dev); 2393 } 2394