xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 297ce026)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/dma-mapping.c
4  *
5  *  Copyright (C) 2000-2004 Russell King
6  *
7  *  DMA uncached mapping support.
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dma-map-ops.h>
19 #include <linux/highmem.h>
20 #include <linux/memblock.h>
21 #include <linux/slab.h>
22 #include <linux/iommu.h>
23 #include <linux/io.h>
24 #include <linux/vmalloc.h>
25 #include <linux/sizes.h>
26 #include <linux/cma.h>
27 
28 #include <asm/memory.h>
29 #include <asm/highmem.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mach/arch.h>
33 #include <asm/dma-iommu.h>
34 #include <asm/mach/map.h>
35 #include <asm/system_info.h>
36 #include <xen/swiotlb-xen.h>
37 
38 #include "dma.h"
39 #include "mm.h"
40 
41 struct arm_dma_alloc_args {
42 	struct device *dev;
43 	size_t size;
44 	gfp_t gfp;
45 	pgprot_t prot;
46 	const void *caller;
47 	bool want_vaddr;
48 	int coherent_flag;
49 };
50 
51 struct arm_dma_free_args {
52 	struct device *dev;
53 	size_t size;
54 	void *cpu_addr;
55 	struct page *page;
56 	bool want_vaddr;
57 };
58 
59 #define NORMAL	    0
60 #define COHERENT    1
61 
62 struct arm_dma_allocator {
63 	void *(*alloc)(struct arm_dma_alloc_args *args,
64 		       struct page **ret_page);
65 	void (*free)(struct arm_dma_free_args *args);
66 };
67 
68 struct arm_dma_buffer {
69 	struct list_head list;
70 	void *virt;
71 	struct arm_dma_allocator *allocator;
72 };
73 
74 static LIST_HEAD(arm_dma_bufs);
75 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76 
77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78 {
79 	struct arm_dma_buffer *buf, *found = NULL;
80 	unsigned long flags;
81 
82 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 	list_for_each_entry(buf, &arm_dma_bufs, list) {
84 		if (buf->virt == virt) {
85 			list_del(&buf->list);
86 			found = buf;
87 			break;
88 		}
89 	}
90 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 	return found;
92 }
93 
94 /*
95  * The DMA API is built upon the notion of "buffer ownership".  A buffer
96  * is either exclusively owned by the CPU (and therefore may be accessed
97  * by it) or exclusively owned by the DMA device.  These helper functions
98  * represent the transitions between these two ownership states.
99  *
100  * Note, however, that on later ARMs, this notion does not work due to
101  * speculative prefetches.  We model our approach on the assumption that
102  * the CPU does do speculative prefetches, which means we clean caches
103  * before transfers and delay cache invalidation until transfer completion.
104  *
105  */
106 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
107 		size_t, enum dma_data_direction);
108 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
109 		size_t, enum dma_data_direction);
110 
111 /**
112  * arm_dma_map_page - map a portion of a page for streaming DMA
113  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
114  * @page: page that buffer resides in
115  * @offset: offset into page for start of buffer
116  * @size: size of buffer to map
117  * @dir: DMA transfer direction
118  *
119  * Ensure that any data held in the cache is appropriately discarded
120  * or written back.
121  *
122  * The device owns this memory once this call has completed.  The CPU
123  * can regain ownership by calling dma_unmap_page().
124  */
125 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
126 	     unsigned long offset, size_t size, enum dma_data_direction dir,
127 	     unsigned long attrs)
128 {
129 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
130 		__dma_page_cpu_to_dev(page, offset, size, dir);
131 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
132 }
133 
134 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
135 	     unsigned long offset, size_t size, enum dma_data_direction dir,
136 	     unsigned long attrs)
137 {
138 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
139 }
140 
141 /**
142  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
143  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
144  * @handle: DMA address of buffer
145  * @size: size of buffer (same as passed to dma_map_page)
146  * @dir: DMA transfer direction (same as passed to dma_map_page)
147  *
148  * Unmap a page streaming mode DMA translation.  The handle and size
149  * must match what was provided in the previous dma_map_page() call.
150  * All other usages are undefined.
151  *
152  * After this call, reads by the CPU to the buffer are guaranteed to see
153  * whatever the device wrote there.
154  */
155 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
156 		size_t size, enum dma_data_direction dir, unsigned long attrs)
157 {
158 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
159 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
160 				      handle & ~PAGE_MASK, size, dir);
161 }
162 
163 static void arm_dma_sync_single_for_cpu(struct device *dev,
164 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
165 {
166 	unsigned int offset = handle & (PAGE_SIZE - 1);
167 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
168 	__dma_page_dev_to_cpu(page, offset, size, dir);
169 }
170 
171 static void arm_dma_sync_single_for_device(struct device *dev,
172 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
173 {
174 	unsigned int offset = handle & (PAGE_SIZE - 1);
175 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
176 	__dma_page_cpu_to_dev(page, offset, size, dir);
177 }
178 
179 /*
180  * Return whether the given device DMA address mask can be supported
181  * properly.  For example, if your device can only drive the low 24-bits
182  * during bus mastering, then you would pass 0x00ffffff as the mask
183  * to this function.
184  */
185 static int arm_dma_supported(struct device *dev, u64 mask)
186 {
187 	unsigned long max_dma_pfn = min(max_pfn - 1, arm_dma_pfn_limit);
188 
189 	/*
190 	 * Translate the device's DMA mask to a PFN limit.  This
191 	 * PFN number includes the page which we can DMA to.
192 	 */
193 	return dma_to_pfn(dev, mask) >= max_dma_pfn;
194 }
195 
196 const struct dma_map_ops arm_dma_ops = {
197 	.alloc			= arm_dma_alloc,
198 	.free			= arm_dma_free,
199 	.alloc_pages		= dma_direct_alloc_pages,
200 	.free_pages		= dma_direct_free_pages,
201 	.mmap			= arm_dma_mmap,
202 	.get_sgtable		= arm_dma_get_sgtable,
203 	.map_page		= arm_dma_map_page,
204 	.unmap_page		= arm_dma_unmap_page,
205 	.map_sg			= arm_dma_map_sg,
206 	.unmap_sg		= arm_dma_unmap_sg,
207 	.map_resource		= dma_direct_map_resource,
208 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
209 	.sync_single_for_device	= arm_dma_sync_single_for_device,
210 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
211 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
212 	.dma_supported		= arm_dma_supported,
213 	.get_required_mask	= dma_direct_get_required_mask,
214 };
215 EXPORT_SYMBOL(arm_dma_ops);
216 
217 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
218 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
219 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
220 				  dma_addr_t handle, unsigned long attrs);
221 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
222 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
223 		 unsigned long attrs);
224 
225 const struct dma_map_ops arm_coherent_dma_ops = {
226 	.alloc			= arm_coherent_dma_alloc,
227 	.free			= arm_coherent_dma_free,
228 	.alloc_pages		= dma_direct_alloc_pages,
229 	.free_pages		= dma_direct_free_pages,
230 	.mmap			= arm_coherent_dma_mmap,
231 	.get_sgtable		= arm_dma_get_sgtable,
232 	.map_page		= arm_coherent_dma_map_page,
233 	.map_sg			= arm_dma_map_sg,
234 	.map_resource		= dma_direct_map_resource,
235 	.dma_supported		= arm_dma_supported,
236 	.get_required_mask	= dma_direct_get_required_mask,
237 };
238 EXPORT_SYMBOL(arm_coherent_dma_ops);
239 
240 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
241 {
242 	/*
243 	 * Ensure that the allocated pages are zeroed, and that any data
244 	 * lurking in the kernel direct-mapped region is invalidated.
245 	 */
246 	if (PageHighMem(page)) {
247 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
248 		phys_addr_t end = base + size;
249 		while (size > 0) {
250 			void *ptr = kmap_atomic(page);
251 			memset(ptr, 0, PAGE_SIZE);
252 			if (coherent_flag != COHERENT)
253 				dmac_flush_range(ptr, ptr + PAGE_SIZE);
254 			kunmap_atomic(ptr);
255 			page++;
256 			size -= PAGE_SIZE;
257 		}
258 		if (coherent_flag != COHERENT)
259 			outer_flush_range(base, end);
260 	} else {
261 		void *ptr = page_address(page);
262 		memset(ptr, 0, size);
263 		if (coherent_flag != COHERENT) {
264 			dmac_flush_range(ptr, ptr + size);
265 			outer_flush_range(__pa(ptr), __pa(ptr) + size);
266 		}
267 	}
268 }
269 
270 /*
271  * Allocate a DMA buffer for 'dev' of size 'size' using the
272  * specified gfp mask.  Note that 'size' must be page aligned.
273  */
274 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
275 				       gfp_t gfp, int coherent_flag)
276 {
277 	unsigned long order = get_order(size);
278 	struct page *page, *p, *e;
279 
280 	page = alloc_pages(gfp, order);
281 	if (!page)
282 		return NULL;
283 
284 	/*
285 	 * Now split the huge page and free the excess pages
286 	 */
287 	split_page(page, order);
288 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
289 		__free_page(p);
290 
291 	__dma_clear_buffer(page, size, coherent_flag);
292 
293 	return page;
294 }
295 
296 /*
297  * Free a DMA buffer.  'size' must be page aligned.
298  */
299 static void __dma_free_buffer(struct page *page, size_t size)
300 {
301 	struct page *e = page + (size >> PAGE_SHIFT);
302 
303 	while (page < e) {
304 		__free_page(page);
305 		page++;
306 	}
307 }
308 
309 static void *__alloc_from_contiguous(struct device *dev, size_t size,
310 				     pgprot_t prot, struct page **ret_page,
311 				     const void *caller, bool want_vaddr,
312 				     int coherent_flag, gfp_t gfp);
313 
314 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
315 				 pgprot_t prot, struct page **ret_page,
316 				 const void *caller, bool want_vaddr);
317 
318 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
319 static struct gen_pool *atomic_pool __ro_after_init;
320 
321 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
322 
323 static int __init early_coherent_pool(char *p)
324 {
325 	atomic_pool_size = memparse(p, &p);
326 	return 0;
327 }
328 early_param("coherent_pool", early_coherent_pool);
329 
330 /*
331  * Initialise the coherent pool for atomic allocations.
332  */
333 static int __init atomic_pool_init(void)
334 {
335 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
336 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
337 	struct page *page;
338 	void *ptr;
339 
340 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
341 	if (!atomic_pool)
342 		goto out;
343 	/*
344 	 * The atomic pool is only used for non-coherent allocations
345 	 * so we must pass NORMAL for coherent_flag.
346 	 */
347 	if (dev_get_cma_area(NULL))
348 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
349 				      &page, atomic_pool_init, true, NORMAL,
350 				      GFP_KERNEL);
351 	else
352 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
353 					   &page, atomic_pool_init, true);
354 	if (ptr) {
355 		int ret;
356 
357 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
358 					page_to_phys(page),
359 					atomic_pool_size, -1);
360 		if (ret)
361 			goto destroy_genpool;
362 
363 		gen_pool_set_algo(atomic_pool,
364 				gen_pool_first_fit_order_align,
365 				NULL);
366 		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
367 		       atomic_pool_size / 1024);
368 		return 0;
369 	}
370 
371 destroy_genpool:
372 	gen_pool_destroy(atomic_pool);
373 	atomic_pool = NULL;
374 out:
375 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
376 	       atomic_pool_size / 1024);
377 	return -ENOMEM;
378 }
379 /*
380  * CMA is activated by core_initcall, so we must be called after it.
381  */
382 postcore_initcall(atomic_pool_init);
383 
384 #ifdef CONFIG_CMA_AREAS
385 struct dma_contig_early_reserve {
386 	phys_addr_t base;
387 	unsigned long size;
388 };
389 
390 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
391 
392 static int dma_mmu_remap_num __initdata;
393 
394 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
395 {
396 	dma_mmu_remap[dma_mmu_remap_num].base = base;
397 	dma_mmu_remap[dma_mmu_remap_num].size = size;
398 	dma_mmu_remap_num++;
399 }
400 
401 void __init dma_contiguous_remap(void)
402 {
403 	int i;
404 	for (i = 0; i < dma_mmu_remap_num; i++) {
405 		phys_addr_t start = dma_mmu_remap[i].base;
406 		phys_addr_t end = start + dma_mmu_remap[i].size;
407 		struct map_desc map;
408 		unsigned long addr;
409 
410 		if (end > arm_lowmem_limit)
411 			end = arm_lowmem_limit;
412 		if (start >= end)
413 			continue;
414 
415 		map.pfn = __phys_to_pfn(start);
416 		map.virtual = __phys_to_virt(start);
417 		map.length = end - start;
418 		map.type = MT_MEMORY_DMA_READY;
419 
420 		/*
421 		 * Clear previous low-memory mapping to ensure that the
422 		 * TLB does not see any conflicting entries, then flush
423 		 * the TLB of the old entries before creating new mappings.
424 		 *
425 		 * This ensures that any speculatively loaded TLB entries
426 		 * (even though they may be rare) can not cause any problems,
427 		 * and ensures that this code is architecturally compliant.
428 		 */
429 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
430 		     addr += PMD_SIZE)
431 			pmd_clear(pmd_off_k(addr));
432 
433 		flush_tlb_kernel_range(__phys_to_virt(start),
434 				       __phys_to_virt(end));
435 
436 		iotable_init(&map, 1);
437 	}
438 }
439 #endif
440 
441 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
442 {
443 	struct page *page = virt_to_page(addr);
444 	pgprot_t prot = *(pgprot_t *)data;
445 
446 	set_pte_ext(pte, mk_pte(page, prot), 0);
447 	return 0;
448 }
449 
450 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
451 {
452 	unsigned long start = (unsigned long) page_address(page);
453 	unsigned end = start + size;
454 
455 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
456 	flush_tlb_kernel_range(start, end);
457 }
458 
459 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
460 				 pgprot_t prot, struct page **ret_page,
461 				 const void *caller, bool want_vaddr)
462 {
463 	struct page *page;
464 	void *ptr = NULL;
465 	/*
466 	 * __alloc_remap_buffer is only called when the device is
467 	 * non-coherent
468 	 */
469 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
470 	if (!page)
471 		return NULL;
472 	if (!want_vaddr)
473 		goto out;
474 
475 	ptr = dma_common_contiguous_remap(page, size, prot, caller);
476 	if (!ptr) {
477 		__dma_free_buffer(page, size);
478 		return NULL;
479 	}
480 
481  out:
482 	*ret_page = page;
483 	return ptr;
484 }
485 
486 static void *__alloc_from_pool(size_t size, struct page **ret_page)
487 {
488 	unsigned long val;
489 	void *ptr = NULL;
490 
491 	if (!atomic_pool) {
492 		WARN(1, "coherent pool not initialised!\n");
493 		return NULL;
494 	}
495 
496 	val = gen_pool_alloc(atomic_pool, size);
497 	if (val) {
498 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
499 
500 		*ret_page = phys_to_page(phys);
501 		ptr = (void *)val;
502 	}
503 
504 	return ptr;
505 }
506 
507 static bool __in_atomic_pool(void *start, size_t size)
508 {
509 	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
510 }
511 
512 static int __free_from_pool(void *start, size_t size)
513 {
514 	if (!__in_atomic_pool(start, size))
515 		return 0;
516 
517 	gen_pool_free(atomic_pool, (unsigned long)start, size);
518 
519 	return 1;
520 }
521 
522 static void *__alloc_from_contiguous(struct device *dev, size_t size,
523 				     pgprot_t prot, struct page **ret_page,
524 				     const void *caller, bool want_vaddr,
525 				     int coherent_flag, gfp_t gfp)
526 {
527 	unsigned long order = get_order(size);
528 	size_t count = size >> PAGE_SHIFT;
529 	struct page *page;
530 	void *ptr = NULL;
531 
532 	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
533 	if (!page)
534 		return NULL;
535 
536 	__dma_clear_buffer(page, size, coherent_flag);
537 
538 	if (!want_vaddr)
539 		goto out;
540 
541 	if (PageHighMem(page)) {
542 		ptr = dma_common_contiguous_remap(page, size, prot, caller);
543 		if (!ptr) {
544 			dma_release_from_contiguous(dev, page, count);
545 			return NULL;
546 		}
547 	} else {
548 		__dma_remap(page, size, prot);
549 		ptr = page_address(page);
550 	}
551 
552  out:
553 	*ret_page = page;
554 	return ptr;
555 }
556 
557 static void __free_from_contiguous(struct device *dev, struct page *page,
558 				   void *cpu_addr, size_t size, bool want_vaddr)
559 {
560 	if (want_vaddr) {
561 		if (PageHighMem(page))
562 			dma_common_free_remap(cpu_addr, size);
563 		else
564 			__dma_remap(page, size, PAGE_KERNEL);
565 	}
566 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
567 }
568 
569 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
570 {
571 	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
572 			pgprot_writecombine(prot) :
573 			pgprot_dmacoherent(prot);
574 	return prot;
575 }
576 
577 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
578 				   struct page **ret_page)
579 {
580 	struct page *page;
581 	/* __alloc_simple_buffer is only called when the device is coherent */
582 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
583 	if (!page)
584 		return NULL;
585 
586 	*ret_page = page;
587 	return page_address(page);
588 }
589 
590 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
591 				    struct page **ret_page)
592 {
593 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
594 				     ret_page);
595 }
596 
597 static void simple_allocator_free(struct arm_dma_free_args *args)
598 {
599 	__dma_free_buffer(args->page, args->size);
600 }
601 
602 static struct arm_dma_allocator simple_allocator = {
603 	.alloc = simple_allocator_alloc,
604 	.free = simple_allocator_free,
605 };
606 
607 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
608 				 struct page **ret_page)
609 {
610 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
611 				       ret_page, args->caller,
612 				       args->want_vaddr, args->coherent_flag,
613 				       args->gfp);
614 }
615 
616 static void cma_allocator_free(struct arm_dma_free_args *args)
617 {
618 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
619 			       args->size, args->want_vaddr);
620 }
621 
622 static struct arm_dma_allocator cma_allocator = {
623 	.alloc = cma_allocator_alloc,
624 	.free = cma_allocator_free,
625 };
626 
627 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
628 				  struct page **ret_page)
629 {
630 	return __alloc_from_pool(args->size, ret_page);
631 }
632 
633 static void pool_allocator_free(struct arm_dma_free_args *args)
634 {
635 	__free_from_pool(args->cpu_addr, args->size);
636 }
637 
638 static struct arm_dma_allocator pool_allocator = {
639 	.alloc = pool_allocator_alloc,
640 	.free = pool_allocator_free,
641 };
642 
643 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
644 				   struct page **ret_page)
645 {
646 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
647 				    args->prot, ret_page, args->caller,
648 				    args->want_vaddr);
649 }
650 
651 static void remap_allocator_free(struct arm_dma_free_args *args)
652 {
653 	if (args->want_vaddr)
654 		dma_common_free_remap(args->cpu_addr, args->size);
655 
656 	__dma_free_buffer(args->page, args->size);
657 }
658 
659 static struct arm_dma_allocator remap_allocator = {
660 	.alloc = remap_allocator_alloc,
661 	.free = remap_allocator_free,
662 };
663 
664 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
665 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
666 			 unsigned long attrs, const void *caller)
667 {
668 	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
669 	struct page *page = NULL;
670 	void *addr;
671 	bool allowblock, cma;
672 	struct arm_dma_buffer *buf;
673 	struct arm_dma_alloc_args args = {
674 		.dev = dev,
675 		.size = PAGE_ALIGN(size),
676 		.gfp = gfp,
677 		.prot = prot,
678 		.caller = caller,
679 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
680 		.coherent_flag = is_coherent ? COHERENT : NORMAL,
681 	};
682 
683 #ifdef CONFIG_DMA_API_DEBUG
684 	u64 limit = (mask + 1) & ~mask;
685 	if (limit && size >= limit) {
686 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
687 			size, mask);
688 		return NULL;
689 	}
690 #endif
691 
692 	buf = kzalloc(sizeof(*buf),
693 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
694 	if (!buf)
695 		return NULL;
696 
697 	if (mask < 0xffffffffULL)
698 		gfp |= GFP_DMA;
699 
700 	/*
701 	 * Following is a work-around (a.k.a. hack) to prevent pages
702 	 * with __GFP_COMP being passed to split_page() which cannot
703 	 * handle them.  The real problem is that this flag probably
704 	 * should be 0 on ARM as it is not supported on this
705 	 * platform; see CONFIG_HUGETLBFS.
706 	 */
707 	gfp &= ~(__GFP_COMP);
708 	args.gfp = gfp;
709 
710 	*handle = DMA_MAPPING_ERROR;
711 	allowblock = gfpflags_allow_blocking(gfp);
712 	cma = allowblock ? dev_get_cma_area(dev) : false;
713 
714 	if (cma)
715 		buf->allocator = &cma_allocator;
716 	else if (is_coherent)
717 		buf->allocator = &simple_allocator;
718 	else if (allowblock)
719 		buf->allocator = &remap_allocator;
720 	else
721 		buf->allocator = &pool_allocator;
722 
723 	addr = buf->allocator->alloc(&args, &page);
724 
725 	if (page) {
726 		unsigned long flags;
727 
728 		*handle = pfn_to_dma(dev, page_to_pfn(page));
729 		buf->virt = args.want_vaddr ? addr : page;
730 
731 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
732 		list_add(&buf->list, &arm_dma_bufs);
733 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
734 	} else {
735 		kfree(buf);
736 	}
737 
738 	return args.want_vaddr ? addr : page;
739 }
740 
741 /*
742  * Allocate DMA-coherent memory space and return both the kernel remapped
743  * virtual and bus address for that space.
744  */
745 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
746 		    gfp_t gfp, unsigned long attrs)
747 {
748 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
749 
750 	return __dma_alloc(dev, size, handle, gfp, prot, false,
751 			   attrs, __builtin_return_address(0));
752 }
753 
754 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
755 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
756 {
757 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
758 			   attrs, __builtin_return_address(0));
759 }
760 
761 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
762 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
763 		 unsigned long attrs)
764 {
765 	int ret = -ENXIO;
766 	unsigned long nr_vma_pages = vma_pages(vma);
767 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
768 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
769 	unsigned long off = vma->vm_pgoff;
770 
771 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
772 		return ret;
773 
774 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
775 		ret = remap_pfn_range(vma, vma->vm_start,
776 				      pfn + off,
777 				      vma->vm_end - vma->vm_start,
778 				      vma->vm_page_prot);
779 	}
780 
781 	return ret;
782 }
783 
784 /*
785  * Create userspace mapping for the DMA-coherent memory.
786  */
787 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
788 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
789 		 unsigned long attrs)
790 {
791 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
792 }
793 
794 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
795 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
796 		 unsigned long attrs)
797 {
798 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
799 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
800 }
801 
802 /*
803  * Free a buffer as defined by the above mapping.
804  */
805 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
806 			   dma_addr_t handle, unsigned long attrs,
807 			   bool is_coherent)
808 {
809 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
810 	struct arm_dma_buffer *buf;
811 	struct arm_dma_free_args args = {
812 		.dev = dev,
813 		.size = PAGE_ALIGN(size),
814 		.cpu_addr = cpu_addr,
815 		.page = page,
816 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
817 	};
818 
819 	buf = arm_dma_buffer_find(cpu_addr);
820 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
821 		return;
822 
823 	buf->allocator->free(&args);
824 	kfree(buf);
825 }
826 
827 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
828 		  dma_addr_t handle, unsigned long attrs)
829 {
830 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
831 }
832 
833 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
834 				  dma_addr_t handle, unsigned long attrs)
835 {
836 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
837 }
838 
839 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
840 		 void *cpu_addr, dma_addr_t handle, size_t size,
841 		 unsigned long attrs)
842 {
843 	unsigned long pfn = dma_to_pfn(dev, handle);
844 	struct page *page;
845 	int ret;
846 
847 	/* If the PFN is not valid, we do not have a struct page */
848 	if (!pfn_valid(pfn))
849 		return -ENXIO;
850 
851 	page = pfn_to_page(pfn);
852 
853 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
854 	if (unlikely(ret))
855 		return ret;
856 
857 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
858 	return 0;
859 }
860 
861 static void dma_cache_maint_page(struct page *page, unsigned long offset,
862 	size_t size, enum dma_data_direction dir,
863 	void (*op)(const void *, size_t, int))
864 {
865 	unsigned long pfn;
866 	size_t left = size;
867 
868 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
869 	offset %= PAGE_SIZE;
870 
871 	/*
872 	 * A single sg entry may refer to multiple physically contiguous
873 	 * pages.  But we still need to process highmem pages individually.
874 	 * If highmem is not configured then the bulk of this loop gets
875 	 * optimized out.
876 	 */
877 	do {
878 		size_t len = left;
879 		void *vaddr;
880 
881 		page = pfn_to_page(pfn);
882 
883 		if (PageHighMem(page)) {
884 			if (len + offset > PAGE_SIZE)
885 				len = PAGE_SIZE - offset;
886 
887 			if (cache_is_vipt_nonaliasing()) {
888 				vaddr = kmap_atomic(page);
889 				op(vaddr + offset, len, dir);
890 				kunmap_atomic(vaddr);
891 			} else {
892 				vaddr = kmap_high_get(page);
893 				if (vaddr) {
894 					op(vaddr + offset, len, dir);
895 					kunmap_high(page);
896 				}
897 			}
898 		} else {
899 			vaddr = page_address(page) + offset;
900 			op(vaddr, len, dir);
901 		}
902 		offset = 0;
903 		pfn++;
904 		left -= len;
905 	} while (left);
906 }
907 
908 /*
909  * Make an area consistent for devices.
910  * Note: Drivers should NOT use this function directly, as it will break
911  * platforms with CONFIG_DMABOUNCE.
912  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
913  */
914 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
915 	size_t size, enum dma_data_direction dir)
916 {
917 	phys_addr_t paddr;
918 
919 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
920 
921 	paddr = page_to_phys(page) + off;
922 	if (dir == DMA_FROM_DEVICE) {
923 		outer_inv_range(paddr, paddr + size);
924 	} else {
925 		outer_clean_range(paddr, paddr + size);
926 	}
927 	/* FIXME: non-speculating: flush on bidirectional mappings? */
928 }
929 
930 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
931 	size_t size, enum dma_data_direction dir)
932 {
933 	phys_addr_t paddr = page_to_phys(page) + off;
934 
935 	/* FIXME: non-speculating: not required */
936 	/* in any case, don't bother invalidating if DMA to device */
937 	if (dir != DMA_TO_DEVICE) {
938 		outer_inv_range(paddr, paddr + size);
939 
940 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
941 	}
942 
943 	/*
944 	 * Mark the D-cache clean for these pages to avoid extra flushing.
945 	 */
946 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
947 		unsigned long pfn;
948 		size_t left = size;
949 
950 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
951 		off %= PAGE_SIZE;
952 		if (off) {
953 			pfn++;
954 			left -= PAGE_SIZE - off;
955 		}
956 		while (left >= PAGE_SIZE) {
957 			page = pfn_to_page(pfn++);
958 			set_bit(PG_dcache_clean, &page->flags);
959 			left -= PAGE_SIZE;
960 		}
961 	}
962 }
963 
964 /**
965  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
966  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
967  * @sg: list of buffers
968  * @nents: number of buffers to map
969  * @dir: DMA transfer direction
970  *
971  * Map a set of buffers described by scatterlist in streaming mode for DMA.
972  * This is the scatter-gather version of the dma_map_single interface.
973  * Here the scatter gather list elements are each tagged with the
974  * appropriate dma address and length.  They are obtained via
975  * sg_dma_{address,length}.
976  *
977  * Device ownership issues as mentioned for dma_map_single are the same
978  * here.
979  */
980 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
981 		enum dma_data_direction dir, unsigned long attrs)
982 {
983 	const struct dma_map_ops *ops = get_dma_ops(dev);
984 	struct scatterlist *s;
985 	int i, j, ret;
986 
987 	for_each_sg(sg, s, nents, i) {
988 #ifdef CONFIG_NEED_SG_DMA_LENGTH
989 		s->dma_length = s->length;
990 #endif
991 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
992 						s->length, dir, attrs);
993 		if (dma_mapping_error(dev, s->dma_address)) {
994 			ret = -EIO;
995 			goto bad_mapping;
996 		}
997 	}
998 	return nents;
999 
1000  bad_mapping:
1001 	for_each_sg(sg, s, i, j)
1002 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1003 	return ret;
1004 }
1005 
1006 /**
1007  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1008  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1009  * @sg: list of buffers
1010  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1011  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1012  *
1013  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1014  * rules concerning calls here are the same as for dma_unmap_single().
1015  */
1016 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1017 		enum dma_data_direction dir, unsigned long attrs)
1018 {
1019 	const struct dma_map_ops *ops = get_dma_ops(dev);
1020 	struct scatterlist *s;
1021 
1022 	int i;
1023 
1024 	for_each_sg(sg, s, nents, i)
1025 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1026 }
1027 
1028 /**
1029  * arm_dma_sync_sg_for_cpu
1030  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1031  * @sg: list of buffers
1032  * @nents: number of buffers to map (returned from dma_map_sg)
1033  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1034  */
1035 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1036 			int nents, enum dma_data_direction dir)
1037 {
1038 	const struct dma_map_ops *ops = get_dma_ops(dev);
1039 	struct scatterlist *s;
1040 	int i;
1041 
1042 	for_each_sg(sg, s, nents, i)
1043 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1044 					 dir);
1045 }
1046 
1047 /**
1048  * arm_dma_sync_sg_for_device
1049  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1050  * @sg: list of buffers
1051  * @nents: number of buffers to map (returned from dma_map_sg)
1052  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1053  */
1054 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1055 			int nents, enum dma_data_direction dir)
1056 {
1057 	const struct dma_map_ops *ops = get_dma_ops(dev);
1058 	struct scatterlist *s;
1059 	int i;
1060 
1061 	for_each_sg(sg, s, nents, i)
1062 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1063 					    dir);
1064 }
1065 
1066 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1067 {
1068 	/*
1069 	 * When CONFIG_ARM_LPAE is set, physical address can extend above
1070 	 * 32-bits, which then can't be addressed by devices that only support
1071 	 * 32-bit DMA.
1072 	 * Use the generic dma-direct / swiotlb ops code in that case, as that
1073 	 * handles bounce buffering for us.
1074 	 */
1075 	if (IS_ENABLED(CONFIG_ARM_LPAE))
1076 		return NULL;
1077 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1078 }
1079 
1080 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1081 
1082 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1083 {
1084 	int prot = 0;
1085 
1086 	if (attrs & DMA_ATTR_PRIVILEGED)
1087 		prot |= IOMMU_PRIV;
1088 
1089 	switch (dir) {
1090 	case DMA_BIDIRECTIONAL:
1091 		return prot | IOMMU_READ | IOMMU_WRITE;
1092 	case DMA_TO_DEVICE:
1093 		return prot | IOMMU_READ;
1094 	case DMA_FROM_DEVICE:
1095 		return prot | IOMMU_WRITE;
1096 	default:
1097 		return prot;
1098 	}
1099 }
1100 
1101 /* IOMMU */
1102 
1103 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1104 
1105 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1106 				      size_t size)
1107 {
1108 	unsigned int order = get_order(size);
1109 	unsigned int align = 0;
1110 	unsigned int count, start;
1111 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1112 	unsigned long flags;
1113 	dma_addr_t iova;
1114 	int i;
1115 
1116 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1117 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1118 
1119 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1120 	align = (1 << order) - 1;
1121 
1122 	spin_lock_irqsave(&mapping->lock, flags);
1123 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1124 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1125 				mapping->bits, 0, count, align);
1126 
1127 		if (start > mapping->bits)
1128 			continue;
1129 
1130 		bitmap_set(mapping->bitmaps[i], start, count);
1131 		break;
1132 	}
1133 
1134 	/*
1135 	 * No unused range found. Try to extend the existing mapping
1136 	 * and perform a second attempt to reserve an IO virtual
1137 	 * address range of size bytes.
1138 	 */
1139 	if (i == mapping->nr_bitmaps) {
1140 		if (extend_iommu_mapping(mapping)) {
1141 			spin_unlock_irqrestore(&mapping->lock, flags);
1142 			return DMA_MAPPING_ERROR;
1143 		}
1144 
1145 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1146 				mapping->bits, 0, count, align);
1147 
1148 		if (start > mapping->bits) {
1149 			spin_unlock_irqrestore(&mapping->lock, flags);
1150 			return DMA_MAPPING_ERROR;
1151 		}
1152 
1153 		bitmap_set(mapping->bitmaps[i], start, count);
1154 	}
1155 	spin_unlock_irqrestore(&mapping->lock, flags);
1156 
1157 	iova = mapping->base + (mapping_size * i);
1158 	iova += start << PAGE_SHIFT;
1159 
1160 	return iova;
1161 }
1162 
1163 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1164 			       dma_addr_t addr, size_t size)
1165 {
1166 	unsigned int start, count;
1167 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1168 	unsigned long flags;
1169 	dma_addr_t bitmap_base;
1170 	u32 bitmap_index;
1171 
1172 	if (!size)
1173 		return;
1174 
1175 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1176 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1177 
1178 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1179 
1180 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1181 
1182 	if (addr + size > bitmap_base + mapping_size) {
1183 		/*
1184 		 * The address range to be freed reaches into the iova
1185 		 * range of the next bitmap. This should not happen as
1186 		 * we don't allow this in __alloc_iova (at the
1187 		 * moment).
1188 		 */
1189 		BUG();
1190 	} else
1191 		count = size >> PAGE_SHIFT;
1192 
1193 	spin_lock_irqsave(&mapping->lock, flags);
1194 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1195 	spin_unlock_irqrestore(&mapping->lock, flags);
1196 }
1197 
1198 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1199 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1200 
1201 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1202 					  gfp_t gfp, unsigned long attrs,
1203 					  int coherent_flag)
1204 {
1205 	struct page **pages;
1206 	int count = size >> PAGE_SHIFT;
1207 	int array_size = count * sizeof(struct page *);
1208 	int i = 0;
1209 	int order_idx = 0;
1210 
1211 	if (array_size <= PAGE_SIZE)
1212 		pages = kzalloc(array_size, GFP_KERNEL);
1213 	else
1214 		pages = vzalloc(array_size);
1215 	if (!pages)
1216 		return NULL;
1217 
1218 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1219 	{
1220 		unsigned long order = get_order(size);
1221 		struct page *page;
1222 
1223 		page = dma_alloc_from_contiguous(dev, count, order,
1224 						 gfp & __GFP_NOWARN);
1225 		if (!page)
1226 			goto error;
1227 
1228 		__dma_clear_buffer(page, size, coherent_flag);
1229 
1230 		for (i = 0; i < count; i++)
1231 			pages[i] = page + i;
1232 
1233 		return pages;
1234 	}
1235 
1236 	/* Go straight to 4K chunks if caller says it's OK. */
1237 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1238 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1239 
1240 	/*
1241 	 * IOMMU can map any pages, so himem can also be used here
1242 	 */
1243 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1244 
1245 	while (count) {
1246 		int j, order;
1247 
1248 		order = iommu_order_array[order_idx];
1249 
1250 		/* Drop down when we get small */
1251 		if (__fls(count) < order) {
1252 			order_idx++;
1253 			continue;
1254 		}
1255 
1256 		if (order) {
1257 			/* See if it's easy to allocate a high-order chunk */
1258 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1259 
1260 			/* Go down a notch at first sign of pressure */
1261 			if (!pages[i]) {
1262 				order_idx++;
1263 				continue;
1264 			}
1265 		} else {
1266 			pages[i] = alloc_pages(gfp, 0);
1267 			if (!pages[i])
1268 				goto error;
1269 		}
1270 
1271 		if (order) {
1272 			split_page(pages[i], order);
1273 			j = 1 << order;
1274 			while (--j)
1275 				pages[i + j] = pages[i] + j;
1276 		}
1277 
1278 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1279 		i += 1 << order;
1280 		count -= 1 << order;
1281 	}
1282 
1283 	return pages;
1284 error:
1285 	while (i--)
1286 		if (pages[i])
1287 			__free_pages(pages[i], 0);
1288 	kvfree(pages);
1289 	return NULL;
1290 }
1291 
1292 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1293 			       size_t size, unsigned long attrs)
1294 {
1295 	int count = size >> PAGE_SHIFT;
1296 	int i;
1297 
1298 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1299 		dma_release_from_contiguous(dev, pages[0], count);
1300 	} else {
1301 		for (i = 0; i < count; i++)
1302 			if (pages[i])
1303 				__free_pages(pages[i], 0);
1304 	}
1305 
1306 	kvfree(pages);
1307 	return 0;
1308 }
1309 
1310 /*
1311  * Create a mapping in device IO address space for specified pages
1312  */
1313 static dma_addr_t
1314 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1315 		       unsigned long attrs)
1316 {
1317 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1318 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1319 	dma_addr_t dma_addr, iova;
1320 	int i;
1321 
1322 	dma_addr = __alloc_iova(mapping, size);
1323 	if (dma_addr == DMA_MAPPING_ERROR)
1324 		return dma_addr;
1325 
1326 	iova = dma_addr;
1327 	for (i = 0; i < count; ) {
1328 		int ret;
1329 
1330 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1331 		phys_addr_t phys = page_to_phys(pages[i]);
1332 		unsigned int len, j;
1333 
1334 		for (j = i + 1; j < count; j++, next_pfn++)
1335 			if (page_to_pfn(pages[j]) != next_pfn)
1336 				break;
1337 
1338 		len = (j - i) << PAGE_SHIFT;
1339 		ret = iommu_map(mapping->domain, iova, phys, len,
1340 				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1341 		if (ret < 0)
1342 			goto fail;
1343 		iova += len;
1344 		i = j;
1345 	}
1346 	return dma_addr;
1347 fail:
1348 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1349 	__free_iova(mapping, dma_addr, size);
1350 	return DMA_MAPPING_ERROR;
1351 }
1352 
1353 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1354 {
1355 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1356 
1357 	/*
1358 	 * add optional in-page offset from iova to size and align
1359 	 * result to page size
1360 	 */
1361 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1362 	iova &= PAGE_MASK;
1363 
1364 	iommu_unmap(mapping->domain, iova, size);
1365 	__free_iova(mapping, iova, size);
1366 	return 0;
1367 }
1368 
1369 static struct page **__atomic_get_pages(void *addr)
1370 {
1371 	struct page *page;
1372 	phys_addr_t phys;
1373 
1374 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1375 	page = phys_to_page(phys);
1376 
1377 	return (struct page **)page;
1378 }
1379 
1380 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1381 {
1382 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1383 		return __atomic_get_pages(cpu_addr);
1384 
1385 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1386 		return cpu_addr;
1387 
1388 	return dma_common_find_pages(cpu_addr);
1389 }
1390 
1391 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1392 				  dma_addr_t *handle, int coherent_flag,
1393 				  unsigned long attrs)
1394 {
1395 	struct page *page;
1396 	void *addr;
1397 
1398 	if (coherent_flag  == COHERENT)
1399 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1400 	else
1401 		addr = __alloc_from_pool(size, &page);
1402 	if (!addr)
1403 		return NULL;
1404 
1405 	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1406 	if (*handle == DMA_MAPPING_ERROR)
1407 		goto err_mapping;
1408 
1409 	return addr;
1410 
1411 err_mapping:
1412 	__free_from_pool(addr, size);
1413 	return NULL;
1414 }
1415 
1416 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1417 			dma_addr_t handle, size_t size, int coherent_flag)
1418 {
1419 	__iommu_remove_mapping(dev, handle, size);
1420 	if (coherent_flag == COHERENT)
1421 		__dma_free_buffer(virt_to_page(cpu_addr), size);
1422 	else
1423 		__free_from_pool(cpu_addr, size);
1424 }
1425 
1426 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1427 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1428 	    int coherent_flag)
1429 {
1430 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1431 	struct page **pages;
1432 	void *addr = NULL;
1433 
1434 	*handle = DMA_MAPPING_ERROR;
1435 	size = PAGE_ALIGN(size);
1436 
1437 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1438 		return __iommu_alloc_simple(dev, size, gfp, handle,
1439 					    coherent_flag, attrs);
1440 
1441 	/*
1442 	 * Following is a work-around (a.k.a. hack) to prevent pages
1443 	 * with __GFP_COMP being passed to split_page() which cannot
1444 	 * handle them.  The real problem is that this flag probably
1445 	 * should be 0 on ARM as it is not supported on this
1446 	 * platform; see CONFIG_HUGETLBFS.
1447 	 */
1448 	gfp &= ~(__GFP_COMP);
1449 
1450 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1451 	if (!pages)
1452 		return NULL;
1453 
1454 	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1455 	if (*handle == DMA_MAPPING_ERROR)
1456 		goto err_buffer;
1457 
1458 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1459 		return pages;
1460 
1461 	addr = dma_common_pages_remap(pages, size, prot,
1462 				   __builtin_return_address(0));
1463 	if (!addr)
1464 		goto err_mapping;
1465 
1466 	return addr;
1467 
1468 err_mapping:
1469 	__iommu_remove_mapping(dev, *handle, size);
1470 err_buffer:
1471 	__iommu_free_buffer(dev, pages, size, attrs);
1472 	return NULL;
1473 }
1474 
1475 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1476 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1477 {
1478 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1479 }
1480 
1481 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1482 		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1483 {
1484 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1485 }
1486 
1487 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1488 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1489 		    unsigned long attrs)
1490 {
1491 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1492 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1493 	int err;
1494 
1495 	if (!pages)
1496 		return -ENXIO;
1497 
1498 	if (vma->vm_pgoff >= nr_pages)
1499 		return -ENXIO;
1500 
1501 	err = vm_map_pages(vma, pages, nr_pages);
1502 	if (err)
1503 		pr_err("Remapping memory failed: %d\n", err);
1504 
1505 	return err;
1506 }
1507 static int arm_iommu_mmap_attrs(struct device *dev,
1508 		struct vm_area_struct *vma, void *cpu_addr,
1509 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1510 {
1511 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1512 
1513 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1514 }
1515 
1516 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1517 		struct vm_area_struct *vma, void *cpu_addr,
1518 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1519 {
1520 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1521 }
1522 
1523 /*
1524  * free a page as defined by the above mapping.
1525  * Must not be called with IRQs disabled.
1526  */
1527 static void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1528 	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1529 {
1530 	struct page **pages;
1531 	size = PAGE_ALIGN(size);
1532 
1533 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1534 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1535 		return;
1536 	}
1537 
1538 	pages = __iommu_get_pages(cpu_addr, attrs);
1539 	if (!pages) {
1540 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1541 		return;
1542 	}
1543 
1544 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1545 		dma_common_free_remap(cpu_addr, size);
1546 
1547 	__iommu_remove_mapping(dev, handle, size);
1548 	__iommu_free_buffer(dev, pages, size, attrs);
1549 }
1550 
1551 static void arm_iommu_free_attrs(struct device *dev, size_t size,
1552 				 void *cpu_addr, dma_addr_t handle,
1553 				 unsigned long attrs)
1554 {
1555 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1556 }
1557 
1558 static void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1559 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1560 {
1561 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1562 }
1563 
1564 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1565 				 void *cpu_addr, dma_addr_t dma_addr,
1566 				 size_t size, unsigned long attrs)
1567 {
1568 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1569 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1570 
1571 	if (!pages)
1572 		return -ENXIO;
1573 
1574 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1575 					 GFP_KERNEL);
1576 }
1577 
1578 /*
1579  * Map a part of the scatter-gather list into contiguous io address space
1580  */
1581 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1582 			  size_t size, dma_addr_t *handle,
1583 			  enum dma_data_direction dir, unsigned long attrs,
1584 			  bool is_coherent)
1585 {
1586 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1587 	dma_addr_t iova, iova_base;
1588 	int ret = 0;
1589 	unsigned int count;
1590 	struct scatterlist *s;
1591 	int prot;
1592 
1593 	size = PAGE_ALIGN(size);
1594 	*handle = DMA_MAPPING_ERROR;
1595 
1596 	iova_base = iova = __alloc_iova(mapping, size);
1597 	if (iova == DMA_MAPPING_ERROR)
1598 		return -ENOMEM;
1599 
1600 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1601 		phys_addr_t phys = page_to_phys(sg_page(s));
1602 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1603 
1604 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1605 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1606 
1607 		prot = __dma_info_to_prot(dir, attrs);
1608 
1609 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1610 		if (ret < 0)
1611 			goto fail;
1612 		count += len >> PAGE_SHIFT;
1613 		iova += len;
1614 	}
1615 	*handle = iova_base;
1616 
1617 	return 0;
1618 fail:
1619 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1620 	__free_iova(mapping, iova_base, size);
1621 	return ret;
1622 }
1623 
1624 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1625 		     enum dma_data_direction dir, unsigned long attrs,
1626 		     bool is_coherent)
1627 {
1628 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1629 	int i, count = 0, ret;
1630 	unsigned int offset = s->offset;
1631 	unsigned int size = s->offset + s->length;
1632 	unsigned int max = dma_get_max_seg_size(dev);
1633 
1634 	for (i = 1; i < nents; i++) {
1635 		s = sg_next(s);
1636 
1637 		s->dma_length = 0;
1638 
1639 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1640 			ret = __map_sg_chunk(dev, start, size,
1641 					     &dma->dma_address, dir, attrs,
1642 					     is_coherent);
1643 			if (ret < 0)
1644 				goto bad_mapping;
1645 
1646 			dma->dma_address += offset;
1647 			dma->dma_length = size - offset;
1648 
1649 			size = offset = s->offset;
1650 			start = s;
1651 			dma = sg_next(dma);
1652 			count += 1;
1653 		}
1654 		size += s->length;
1655 	}
1656 	ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1657 			     is_coherent);
1658 	if (ret < 0)
1659 		goto bad_mapping;
1660 
1661 	dma->dma_address += offset;
1662 	dma->dma_length = size - offset;
1663 
1664 	return count+1;
1665 
1666 bad_mapping:
1667 	for_each_sg(sg, s, count, i)
1668 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1669 	if (ret == -ENOMEM)
1670 		return ret;
1671 	return -EINVAL;
1672 }
1673 
1674 /**
1675  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1676  * @dev: valid struct device pointer
1677  * @sg: list of buffers
1678  * @nents: number of buffers to map
1679  * @dir: DMA transfer direction
1680  *
1681  * Map a set of i/o coherent buffers described by scatterlist in streaming
1682  * mode for DMA. The scatter gather list elements are merged together (if
1683  * possible) and tagged with the appropriate dma address and length. They are
1684  * obtained via sg_dma_{address,length}.
1685  */
1686 static int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1687 		int nents, enum dma_data_direction dir, unsigned long attrs)
1688 {
1689 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1690 }
1691 
1692 /**
1693  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1694  * @dev: valid struct device pointer
1695  * @sg: list of buffers
1696  * @nents: number of buffers to map
1697  * @dir: DMA transfer direction
1698  *
1699  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1700  * The scatter gather list elements are merged together (if possible) and
1701  * tagged with the appropriate dma address and length. They are obtained via
1702  * sg_dma_{address,length}.
1703  */
1704 static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1705 		int nents, enum dma_data_direction dir, unsigned long attrs)
1706 {
1707 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1708 }
1709 
1710 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1711 		int nents, enum dma_data_direction dir,
1712 		unsigned long attrs, bool is_coherent)
1713 {
1714 	struct scatterlist *s;
1715 	int i;
1716 
1717 	for_each_sg(sg, s, nents, i) {
1718 		if (sg_dma_len(s))
1719 			__iommu_remove_mapping(dev, sg_dma_address(s),
1720 					       sg_dma_len(s));
1721 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1722 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1723 					      s->length, dir);
1724 	}
1725 }
1726 
1727 /**
1728  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1729  * @dev: valid struct device pointer
1730  * @sg: list of buffers
1731  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1732  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1733  *
1734  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1735  * rules concerning calls here are the same as for dma_unmap_single().
1736  */
1737 static void arm_coherent_iommu_unmap_sg(struct device *dev,
1738 		struct scatterlist *sg, int nents, enum dma_data_direction dir,
1739 		unsigned long attrs)
1740 {
1741 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1742 }
1743 
1744 /**
1745  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1746  * @dev: valid struct device pointer
1747  * @sg: list of buffers
1748  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1749  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1750  *
1751  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1752  * rules concerning calls here are the same as for dma_unmap_single().
1753  */
1754 static void arm_iommu_unmap_sg(struct device *dev,
1755 			       struct scatterlist *sg, int nents,
1756 			       enum dma_data_direction dir,
1757 			       unsigned long attrs)
1758 {
1759 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1760 }
1761 
1762 /**
1763  * arm_iommu_sync_sg_for_cpu
1764  * @dev: valid struct device pointer
1765  * @sg: list of buffers
1766  * @nents: number of buffers to map (returned from dma_map_sg)
1767  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1768  */
1769 static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1770 			struct scatterlist *sg,
1771 			int nents, enum dma_data_direction dir)
1772 {
1773 	struct scatterlist *s;
1774 	int i;
1775 
1776 	for_each_sg(sg, s, nents, i)
1777 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1778 
1779 }
1780 
1781 /**
1782  * arm_iommu_sync_sg_for_device
1783  * @dev: valid struct device pointer
1784  * @sg: list of buffers
1785  * @nents: number of buffers to map (returned from dma_map_sg)
1786  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1787  */
1788 static void arm_iommu_sync_sg_for_device(struct device *dev,
1789 			struct scatterlist *sg,
1790 			int nents, enum dma_data_direction dir)
1791 {
1792 	struct scatterlist *s;
1793 	int i;
1794 
1795 	for_each_sg(sg, s, nents, i)
1796 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1797 }
1798 
1799 
1800 /**
1801  * arm_coherent_iommu_map_page
1802  * @dev: valid struct device pointer
1803  * @page: page that buffer resides in
1804  * @offset: offset into page for start of buffer
1805  * @size: size of buffer to map
1806  * @dir: DMA transfer direction
1807  *
1808  * Coherent IOMMU aware version of arm_dma_map_page()
1809  */
1810 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1811 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1812 	     unsigned long attrs)
1813 {
1814 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1815 	dma_addr_t dma_addr;
1816 	int ret, prot, len = PAGE_ALIGN(size + offset);
1817 
1818 	dma_addr = __alloc_iova(mapping, len);
1819 	if (dma_addr == DMA_MAPPING_ERROR)
1820 		return dma_addr;
1821 
1822 	prot = __dma_info_to_prot(dir, attrs);
1823 
1824 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1825 	if (ret < 0)
1826 		goto fail;
1827 
1828 	return dma_addr + offset;
1829 fail:
1830 	__free_iova(mapping, dma_addr, len);
1831 	return DMA_MAPPING_ERROR;
1832 }
1833 
1834 /**
1835  * arm_iommu_map_page
1836  * @dev: valid struct device pointer
1837  * @page: page that buffer resides in
1838  * @offset: offset into page for start of buffer
1839  * @size: size of buffer to map
1840  * @dir: DMA transfer direction
1841  *
1842  * IOMMU aware version of arm_dma_map_page()
1843  */
1844 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1845 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1846 	     unsigned long attrs)
1847 {
1848 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1849 		__dma_page_cpu_to_dev(page, offset, size, dir);
1850 
1851 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1852 }
1853 
1854 /**
1855  * arm_coherent_iommu_unmap_page
1856  * @dev: valid struct device pointer
1857  * @handle: DMA address of buffer
1858  * @size: size of buffer (same as passed to dma_map_page)
1859  * @dir: DMA transfer direction (same as passed to dma_map_page)
1860  *
1861  * Coherent IOMMU aware version of arm_dma_unmap_page()
1862  */
1863 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1864 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1865 {
1866 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1867 	dma_addr_t iova = handle & PAGE_MASK;
1868 	int offset = handle & ~PAGE_MASK;
1869 	int len = PAGE_ALIGN(size + offset);
1870 
1871 	if (!iova)
1872 		return;
1873 
1874 	iommu_unmap(mapping->domain, iova, len);
1875 	__free_iova(mapping, iova, len);
1876 }
1877 
1878 /**
1879  * arm_iommu_unmap_page
1880  * @dev: valid struct device pointer
1881  * @handle: DMA address of buffer
1882  * @size: size of buffer (same as passed to dma_map_page)
1883  * @dir: DMA transfer direction (same as passed to dma_map_page)
1884  *
1885  * IOMMU aware version of arm_dma_unmap_page()
1886  */
1887 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1888 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1889 {
1890 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1891 	dma_addr_t iova = handle & PAGE_MASK;
1892 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1893 	int offset = handle & ~PAGE_MASK;
1894 	int len = PAGE_ALIGN(size + offset);
1895 
1896 	if (!iova)
1897 		return;
1898 
1899 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1900 		__dma_page_dev_to_cpu(page, offset, size, dir);
1901 
1902 	iommu_unmap(mapping->domain, iova, len);
1903 	__free_iova(mapping, iova, len);
1904 }
1905 
1906 /**
1907  * arm_iommu_map_resource - map a device resource for DMA
1908  * @dev: valid struct device pointer
1909  * @phys_addr: physical address of resource
1910  * @size: size of resource to map
1911  * @dir: DMA transfer direction
1912  */
1913 static dma_addr_t arm_iommu_map_resource(struct device *dev,
1914 		phys_addr_t phys_addr, size_t size,
1915 		enum dma_data_direction dir, unsigned long attrs)
1916 {
1917 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1918 	dma_addr_t dma_addr;
1919 	int ret, prot;
1920 	phys_addr_t addr = phys_addr & PAGE_MASK;
1921 	unsigned int offset = phys_addr & ~PAGE_MASK;
1922 	size_t len = PAGE_ALIGN(size + offset);
1923 
1924 	dma_addr = __alloc_iova(mapping, len);
1925 	if (dma_addr == DMA_MAPPING_ERROR)
1926 		return dma_addr;
1927 
1928 	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1929 
1930 	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1931 	if (ret < 0)
1932 		goto fail;
1933 
1934 	return dma_addr + offset;
1935 fail:
1936 	__free_iova(mapping, dma_addr, len);
1937 	return DMA_MAPPING_ERROR;
1938 }
1939 
1940 /**
1941  * arm_iommu_unmap_resource - unmap a device DMA resource
1942  * @dev: valid struct device pointer
1943  * @dma_handle: DMA address to resource
1944  * @size: size of resource to map
1945  * @dir: DMA transfer direction
1946  */
1947 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1948 		size_t size, enum dma_data_direction dir,
1949 		unsigned long attrs)
1950 {
1951 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1952 	dma_addr_t iova = dma_handle & PAGE_MASK;
1953 	unsigned int offset = dma_handle & ~PAGE_MASK;
1954 	size_t len = PAGE_ALIGN(size + offset);
1955 
1956 	if (!iova)
1957 		return;
1958 
1959 	iommu_unmap(mapping->domain, iova, len);
1960 	__free_iova(mapping, iova, len);
1961 }
1962 
1963 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1964 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1965 {
1966 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1967 	dma_addr_t iova = handle & PAGE_MASK;
1968 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1969 	unsigned int offset = handle & ~PAGE_MASK;
1970 
1971 	if (!iova)
1972 		return;
1973 
1974 	__dma_page_dev_to_cpu(page, offset, size, dir);
1975 }
1976 
1977 static void arm_iommu_sync_single_for_device(struct device *dev,
1978 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1979 {
1980 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1981 	dma_addr_t iova = handle & PAGE_MASK;
1982 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1983 	unsigned int offset = handle & ~PAGE_MASK;
1984 
1985 	if (!iova)
1986 		return;
1987 
1988 	__dma_page_cpu_to_dev(page, offset, size, dir);
1989 }
1990 
1991 static const struct dma_map_ops iommu_ops = {
1992 	.alloc		= arm_iommu_alloc_attrs,
1993 	.free		= arm_iommu_free_attrs,
1994 	.mmap		= arm_iommu_mmap_attrs,
1995 	.get_sgtable	= arm_iommu_get_sgtable,
1996 
1997 	.map_page		= arm_iommu_map_page,
1998 	.unmap_page		= arm_iommu_unmap_page,
1999 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2000 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2001 
2002 	.map_sg			= arm_iommu_map_sg,
2003 	.unmap_sg		= arm_iommu_unmap_sg,
2004 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2005 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2006 
2007 	.map_resource		= arm_iommu_map_resource,
2008 	.unmap_resource		= arm_iommu_unmap_resource,
2009 
2010 	.dma_supported		= arm_dma_supported,
2011 };
2012 
2013 static const struct dma_map_ops iommu_coherent_ops = {
2014 	.alloc		= arm_coherent_iommu_alloc_attrs,
2015 	.free		= arm_coherent_iommu_free_attrs,
2016 	.mmap		= arm_coherent_iommu_mmap_attrs,
2017 	.get_sgtable	= arm_iommu_get_sgtable,
2018 
2019 	.map_page	= arm_coherent_iommu_map_page,
2020 	.unmap_page	= arm_coherent_iommu_unmap_page,
2021 
2022 	.map_sg		= arm_coherent_iommu_map_sg,
2023 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2024 
2025 	.map_resource	= arm_iommu_map_resource,
2026 	.unmap_resource	= arm_iommu_unmap_resource,
2027 
2028 	.dma_supported		= arm_dma_supported,
2029 };
2030 
2031 /**
2032  * arm_iommu_create_mapping
2033  * @bus: pointer to the bus holding the client device (for IOMMU calls)
2034  * @base: start address of the valid IO address space
2035  * @size: maximum size of the valid IO address space
2036  *
2037  * Creates a mapping structure which holds information about used/unused
2038  * IO address ranges, which is required to perform memory allocation and
2039  * mapping with IOMMU aware functions.
2040  *
2041  * The client device need to be attached to the mapping with
2042  * arm_iommu_attach_device function.
2043  */
2044 struct dma_iommu_mapping *
2045 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2046 {
2047 	unsigned int bits = size >> PAGE_SHIFT;
2048 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2049 	struct dma_iommu_mapping *mapping;
2050 	int extensions = 1;
2051 	int err = -ENOMEM;
2052 
2053 	/* currently only 32-bit DMA address space is supported */
2054 	if (size > DMA_BIT_MASK(32) + 1)
2055 		return ERR_PTR(-ERANGE);
2056 
2057 	if (!bitmap_size)
2058 		return ERR_PTR(-EINVAL);
2059 
2060 	if (bitmap_size > PAGE_SIZE) {
2061 		extensions = bitmap_size / PAGE_SIZE;
2062 		bitmap_size = PAGE_SIZE;
2063 	}
2064 
2065 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2066 	if (!mapping)
2067 		goto err;
2068 
2069 	mapping->bitmap_size = bitmap_size;
2070 	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2071 				   GFP_KERNEL);
2072 	if (!mapping->bitmaps)
2073 		goto err2;
2074 
2075 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2076 	if (!mapping->bitmaps[0])
2077 		goto err3;
2078 
2079 	mapping->nr_bitmaps = 1;
2080 	mapping->extensions = extensions;
2081 	mapping->base = base;
2082 	mapping->bits = BITS_PER_BYTE * bitmap_size;
2083 
2084 	spin_lock_init(&mapping->lock);
2085 
2086 	mapping->domain = iommu_domain_alloc(bus);
2087 	if (!mapping->domain)
2088 		goto err4;
2089 
2090 	kref_init(&mapping->kref);
2091 	return mapping;
2092 err4:
2093 	kfree(mapping->bitmaps[0]);
2094 err3:
2095 	kfree(mapping->bitmaps);
2096 err2:
2097 	kfree(mapping);
2098 err:
2099 	return ERR_PTR(err);
2100 }
2101 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2102 
2103 static void release_iommu_mapping(struct kref *kref)
2104 {
2105 	int i;
2106 	struct dma_iommu_mapping *mapping =
2107 		container_of(kref, struct dma_iommu_mapping, kref);
2108 
2109 	iommu_domain_free(mapping->domain);
2110 	for (i = 0; i < mapping->nr_bitmaps; i++)
2111 		kfree(mapping->bitmaps[i]);
2112 	kfree(mapping->bitmaps);
2113 	kfree(mapping);
2114 }
2115 
2116 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2117 {
2118 	int next_bitmap;
2119 
2120 	if (mapping->nr_bitmaps >= mapping->extensions)
2121 		return -EINVAL;
2122 
2123 	next_bitmap = mapping->nr_bitmaps;
2124 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2125 						GFP_ATOMIC);
2126 	if (!mapping->bitmaps[next_bitmap])
2127 		return -ENOMEM;
2128 
2129 	mapping->nr_bitmaps++;
2130 
2131 	return 0;
2132 }
2133 
2134 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2135 {
2136 	if (mapping)
2137 		kref_put(&mapping->kref, release_iommu_mapping);
2138 }
2139 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2140 
2141 static int __arm_iommu_attach_device(struct device *dev,
2142 				     struct dma_iommu_mapping *mapping)
2143 {
2144 	int err;
2145 
2146 	err = iommu_attach_device(mapping->domain, dev);
2147 	if (err)
2148 		return err;
2149 
2150 	kref_get(&mapping->kref);
2151 	to_dma_iommu_mapping(dev) = mapping;
2152 
2153 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2154 	return 0;
2155 }
2156 
2157 /**
2158  * arm_iommu_attach_device
2159  * @dev: valid struct device pointer
2160  * @mapping: io address space mapping structure (returned from
2161  *	arm_iommu_create_mapping)
2162  *
2163  * Attaches specified io address space mapping to the provided device.
2164  * This replaces the dma operations (dma_map_ops pointer) with the
2165  * IOMMU aware version.
2166  *
2167  * More than one client might be attached to the same io address space
2168  * mapping.
2169  */
2170 int arm_iommu_attach_device(struct device *dev,
2171 			    struct dma_iommu_mapping *mapping)
2172 {
2173 	int err;
2174 
2175 	err = __arm_iommu_attach_device(dev, mapping);
2176 	if (err)
2177 		return err;
2178 
2179 	set_dma_ops(dev, &iommu_ops);
2180 	return 0;
2181 }
2182 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2183 
2184 /**
2185  * arm_iommu_detach_device
2186  * @dev: valid struct device pointer
2187  *
2188  * Detaches the provided device from a previously attached map.
2189  * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2190  */
2191 void arm_iommu_detach_device(struct device *dev)
2192 {
2193 	struct dma_iommu_mapping *mapping;
2194 
2195 	mapping = to_dma_iommu_mapping(dev);
2196 	if (!mapping) {
2197 		dev_warn(dev, "Not attached\n");
2198 		return;
2199 	}
2200 
2201 	iommu_detach_device(mapping->domain, dev);
2202 	kref_put(&mapping->kref, release_iommu_mapping);
2203 	to_dma_iommu_mapping(dev) = NULL;
2204 	set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2205 
2206 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2207 }
2208 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2209 
2210 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2211 {
2212 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2213 }
2214 
2215 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2216 				    const struct iommu_ops *iommu)
2217 {
2218 	struct dma_iommu_mapping *mapping;
2219 
2220 	if (!iommu)
2221 		return false;
2222 
2223 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2224 	if (IS_ERR(mapping)) {
2225 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2226 				size, dev_name(dev));
2227 		return false;
2228 	}
2229 
2230 	if (__arm_iommu_attach_device(dev, mapping)) {
2231 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2232 				dev_name(dev));
2233 		arm_iommu_release_mapping(mapping);
2234 		return false;
2235 	}
2236 
2237 	return true;
2238 }
2239 
2240 static void arm_teardown_iommu_dma_ops(struct device *dev)
2241 {
2242 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2243 
2244 	if (!mapping)
2245 		return;
2246 
2247 	arm_iommu_detach_device(dev);
2248 	arm_iommu_release_mapping(mapping);
2249 }
2250 
2251 #else
2252 
2253 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2254 				    const struct iommu_ops *iommu)
2255 {
2256 	return false;
2257 }
2258 
2259 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2260 
2261 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2262 
2263 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2264 
2265 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2266 			const struct iommu_ops *iommu, bool coherent)
2267 {
2268 	const struct dma_map_ops *dma_ops;
2269 
2270 	dev->archdata.dma_coherent = coherent;
2271 #ifdef CONFIG_SWIOTLB
2272 	dev->dma_coherent = coherent;
2273 #endif
2274 
2275 	/*
2276 	 * Don't override the dma_ops if they have already been set. Ideally
2277 	 * this should be the only location where dma_ops are set, remove this
2278 	 * check when all other callers of set_dma_ops will have disappeared.
2279 	 */
2280 	if (dev->dma_ops)
2281 		return;
2282 
2283 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2284 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2285 	else
2286 		dma_ops = arm_get_dma_map_ops(coherent);
2287 
2288 	set_dma_ops(dev, dma_ops);
2289 
2290 #ifdef CONFIG_XEN
2291 	if (xen_initial_domain())
2292 		dev->dma_ops = &xen_swiotlb_dma_ops;
2293 #endif
2294 	dev->archdata.dma_ops_setup = true;
2295 }
2296 
2297 void arch_teardown_dma_ops(struct device *dev)
2298 {
2299 	if (!dev->archdata.dma_ops_setup)
2300 		return;
2301 
2302 	arm_teardown_iommu_dma_ops(dev);
2303 	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2304 	set_dma_ops(dev, NULL);
2305 }
2306 
2307 #ifdef CONFIG_SWIOTLB
2308 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
2309 		enum dma_data_direction dir)
2310 {
2311 	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2312 			      size, dir);
2313 }
2314 
2315 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
2316 		enum dma_data_direction dir)
2317 {
2318 	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2319 			      size, dir);
2320 }
2321 
2322 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2323 		gfp_t gfp, unsigned long attrs)
2324 {
2325 	return __dma_alloc(dev, size, dma_handle, gfp,
2326 			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2327 			   attrs, __builtin_return_address(0));
2328 }
2329 
2330 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2331 		dma_addr_t dma_handle, unsigned long attrs)
2332 {
2333 	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2334 }
2335 #endif /* CONFIG_SWIOTLB */
2336