1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/module.h> 13 #include <linux/mm.h> 14 #include <linux/genalloc.h> 15 #include <linux/gfp.h> 16 #include <linux/errno.h> 17 #include <linux/list.h> 18 #include <linux/init.h> 19 #include <linux/device.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/dma-contiguous.h> 22 #include <linux/highmem.h> 23 #include <linux/memblock.h> 24 #include <linux/slab.h> 25 #include <linux/iommu.h> 26 #include <linux/io.h> 27 #include <linux/vmalloc.h> 28 #include <linux/sizes.h> 29 #include <linux/cma.h> 30 31 #include <asm/memory.h> 32 #include <asm/highmem.h> 33 #include <asm/cacheflush.h> 34 #include <asm/tlbflush.h> 35 #include <asm/mach/arch.h> 36 #include <asm/dma-iommu.h> 37 #include <asm/mach/map.h> 38 #include <asm/system_info.h> 39 #include <asm/dma-contiguous.h> 40 41 #include "dma.h" 42 #include "mm.h" 43 44 struct arm_dma_alloc_args { 45 struct device *dev; 46 size_t size; 47 gfp_t gfp; 48 pgprot_t prot; 49 const void *caller; 50 bool want_vaddr; 51 int coherent_flag; 52 }; 53 54 struct arm_dma_free_args { 55 struct device *dev; 56 size_t size; 57 void *cpu_addr; 58 struct page *page; 59 bool want_vaddr; 60 }; 61 62 #define NORMAL 0 63 #define COHERENT 1 64 65 struct arm_dma_allocator { 66 void *(*alloc)(struct arm_dma_alloc_args *args, 67 struct page **ret_page); 68 void (*free)(struct arm_dma_free_args *args); 69 }; 70 71 struct arm_dma_buffer { 72 struct list_head list; 73 void *virt; 74 struct arm_dma_allocator *allocator; 75 }; 76 77 static LIST_HEAD(arm_dma_bufs); 78 static DEFINE_SPINLOCK(arm_dma_bufs_lock); 79 80 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) 81 { 82 struct arm_dma_buffer *buf, *found = NULL; 83 unsigned long flags; 84 85 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 86 list_for_each_entry(buf, &arm_dma_bufs, list) { 87 if (buf->virt == virt) { 88 list_del(&buf->list); 89 found = buf; 90 break; 91 } 92 } 93 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 94 return found; 95 } 96 97 /* 98 * The DMA API is built upon the notion of "buffer ownership". A buffer 99 * is either exclusively owned by the CPU (and therefore may be accessed 100 * by it) or exclusively owned by the DMA device. These helper functions 101 * represent the transitions between these two ownership states. 102 * 103 * Note, however, that on later ARMs, this notion does not work due to 104 * speculative prefetches. We model our approach on the assumption that 105 * the CPU does do speculative prefetches, which means we clean caches 106 * before transfers and delay cache invalidation until transfer completion. 107 * 108 */ 109 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 110 size_t, enum dma_data_direction); 111 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 112 size_t, enum dma_data_direction); 113 114 /** 115 * arm_dma_map_page - map a portion of a page for streaming DMA 116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 117 * @page: page that buffer resides in 118 * @offset: offset into page for start of buffer 119 * @size: size of buffer to map 120 * @dir: DMA transfer direction 121 * 122 * Ensure that any data held in the cache is appropriately discarded 123 * or written back. 124 * 125 * The device owns this memory once this call has completed. The CPU 126 * can regain ownership by calling dma_unmap_page(). 127 */ 128 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 129 unsigned long offset, size_t size, enum dma_data_direction dir, 130 unsigned long attrs) 131 { 132 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 133 __dma_page_cpu_to_dev(page, offset, size, dir); 134 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 135 } 136 137 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 138 unsigned long offset, size_t size, enum dma_data_direction dir, 139 unsigned long attrs) 140 { 141 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 142 } 143 144 /** 145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 147 * @handle: DMA address of buffer 148 * @size: size of buffer (same as passed to dma_map_page) 149 * @dir: DMA transfer direction (same as passed to dma_map_page) 150 * 151 * Unmap a page streaming mode DMA translation. The handle and size 152 * must match what was provided in the previous dma_map_page() call. 153 * All other usages are undefined. 154 * 155 * After this call, reads by the CPU to the buffer are guaranteed to see 156 * whatever the device wrote there. 157 */ 158 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 159 size_t size, enum dma_data_direction dir, unsigned long attrs) 160 { 161 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 162 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 163 handle & ~PAGE_MASK, size, dir); 164 } 165 166 static void arm_dma_sync_single_for_cpu(struct device *dev, 167 dma_addr_t handle, size_t size, enum dma_data_direction dir) 168 { 169 unsigned int offset = handle & (PAGE_SIZE - 1); 170 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 171 __dma_page_dev_to_cpu(page, offset, size, dir); 172 } 173 174 static void arm_dma_sync_single_for_device(struct device *dev, 175 dma_addr_t handle, size_t size, enum dma_data_direction dir) 176 { 177 unsigned int offset = handle & (PAGE_SIZE - 1); 178 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 179 __dma_page_cpu_to_dev(page, offset, size, dir); 180 } 181 182 const struct dma_map_ops arm_dma_ops = { 183 .alloc = arm_dma_alloc, 184 .free = arm_dma_free, 185 .mmap = arm_dma_mmap, 186 .get_sgtable = arm_dma_get_sgtable, 187 .map_page = arm_dma_map_page, 188 .unmap_page = arm_dma_unmap_page, 189 .map_sg = arm_dma_map_sg, 190 .unmap_sg = arm_dma_unmap_sg, 191 .map_resource = dma_direct_map_resource, 192 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 193 .sync_single_for_device = arm_dma_sync_single_for_device, 194 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 195 .sync_sg_for_device = arm_dma_sync_sg_for_device, 196 .dma_supported = arm_dma_supported, 197 }; 198 EXPORT_SYMBOL(arm_dma_ops); 199 200 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 201 dma_addr_t *handle, gfp_t gfp, unsigned long attrs); 202 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 203 dma_addr_t handle, unsigned long attrs); 204 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 205 void *cpu_addr, dma_addr_t dma_addr, size_t size, 206 unsigned long attrs); 207 208 const struct dma_map_ops arm_coherent_dma_ops = { 209 .alloc = arm_coherent_dma_alloc, 210 .free = arm_coherent_dma_free, 211 .mmap = arm_coherent_dma_mmap, 212 .get_sgtable = arm_dma_get_sgtable, 213 .map_page = arm_coherent_dma_map_page, 214 .map_sg = arm_dma_map_sg, 215 .map_resource = dma_direct_map_resource, 216 .dma_supported = arm_dma_supported, 217 }; 218 EXPORT_SYMBOL(arm_coherent_dma_ops); 219 220 static int __dma_supported(struct device *dev, u64 mask, bool warn) 221 { 222 unsigned long max_dma_pfn; 223 224 /* 225 * If the mask allows for more memory than we can address, 226 * and we actually have that much memory, then we must 227 * indicate that DMA to this device is not supported. 228 */ 229 if (sizeof(mask) != sizeof(dma_addr_t) && 230 mask > (dma_addr_t)~0 && 231 dma_to_pfn(dev, ~0) < max_pfn - 1) { 232 if (warn) { 233 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n", 234 mask); 235 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n"); 236 } 237 return 0; 238 } 239 240 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); 241 242 /* 243 * Translate the device's DMA mask to a PFN limit. This 244 * PFN number includes the page which we can DMA to. 245 */ 246 if (dma_to_pfn(dev, mask) < max_dma_pfn) { 247 if (warn) 248 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", 249 mask, 250 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, 251 max_dma_pfn + 1); 252 return 0; 253 } 254 255 return 1; 256 } 257 258 static u64 get_coherent_dma_mask(struct device *dev) 259 { 260 u64 mask = (u64)DMA_BIT_MASK(32); 261 262 if (dev) { 263 mask = dev->coherent_dma_mask; 264 265 /* 266 * Sanity check the DMA mask - it must be non-zero, and 267 * must be able to be satisfied by a DMA allocation. 268 */ 269 if (mask == 0) { 270 dev_warn(dev, "coherent DMA mask is unset\n"); 271 return 0; 272 } 273 274 if (!__dma_supported(dev, mask, true)) 275 return 0; 276 } 277 278 return mask; 279 } 280 281 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) 282 { 283 /* 284 * Ensure that the allocated pages are zeroed, and that any data 285 * lurking in the kernel direct-mapped region is invalidated. 286 */ 287 if (PageHighMem(page)) { 288 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 289 phys_addr_t end = base + size; 290 while (size > 0) { 291 void *ptr = kmap_atomic(page); 292 memset(ptr, 0, PAGE_SIZE); 293 if (coherent_flag != COHERENT) 294 dmac_flush_range(ptr, ptr + PAGE_SIZE); 295 kunmap_atomic(ptr); 296 page++; 297 size -= PAGE_SIZE; 298 } 299 if (coherent_flag != COHERENT) 300 outer_flush_range(base, end); 301 } else { 302 void *ptr = page_address(page); 303 memset(ptr, 0, size); 304 if (coherent_flag != COHERENT) { 305 dmac_flush_range(ptr, ptr + size); 306 outer_flush_range(__pa(ptr), __pa(ptr) + size); 307 } 308 } 309 } 310 311 /* 312 * Allocate a DMA buffer for 'dev' of size 'size' using the 313 * specified gfp mask. Note that 'size' must be page aligned. 314 */ 315 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, 316 gfp_t gfp, int coherent_flag) 317 { 318 unsigned long order = get_order(size); 319 struct page *page, *p, *e; 320 321 page = alloc_pages(gfp, order); 322 if (!page) 323 return NULL; 324 325 /* 326 * Now split the huge page and free the excess pages 327 */ 328 split_page(page, order); 329 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 330 __free_page(p); 331 332 __dma_clear_buffer(page, size, coherent_flag); 333 334 return page; 335 } 336 337 /* 338 * Free a DMA buffer. 'size' must be page aligned. 339 */ 340 static void __dma_free_buffer(struct page *page, size_t size) 341 { 342 struct page *e = page + (size >> PAGE_SHIFT); 343 344 while (page < e) { 345 __free_page(page); 346 page++; 347 } 348 } 349 350 static void *__alloc_from_contiguous(struct device *dev, size_t size, 351 pgprot_t prot, struct page **ret_page, 352 const void *caller, bool want_vaddr, 353 int coherent_flag, gfp_t gfp); 354 355 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 356 pgprot_t prot, struct page **ret_page, 357 const void *caller, bool want_vaddr); 358 359 static void * 360 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 361 const void *caller) 362 { 363 /* 364 * DMA allocation can be mapped to user space, so lets 365 * set VM_USERMAP flags too. 366 */ 367 return dma_common_contiguous_remap(page, size, 368 VM_ARM_DMA_CONSISTENT | VM_USERMAP, 369 prot, caller); 370 } 371 372 static void __dma_free_remap(void *cpu_addr, size_t size) 373 { 374 dma_common_free_remap(cpu_addr, size, 375 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 376 } 377 378 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 379 static struct gen_pool *atomic_pool __ro_after_init; 380 381 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 382 383 static int __init early_coherent_pool(char *p) 384 { 385 atomic_pool_size = memparse(p, &p); 386 return 0; 387 } 388 early_param("coherent_pool", early_coherent_pool); 389 390 /* 391 * Initialise the coherent pool for atomic allocations. 392 */ 393 static int __init atomic_pool_init(void) 394 { 395 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 396 gfp_t gfp = GFP_KERNEL | GFP_DMA; 397 struct page *page; 398 void *ptr; 399 400 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 401 if (!atomic_pool) 402 goto out; 403 /* 404 * The atomic pool is only used for non-coherent allocations 405 * so we must pass NORMAL for coherent_flag. 406 */ 407 if (dev_get_cma_area(NULL)) 408 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, 409 &page, atomic_pool_init, true, NORMAL, 410 GFP_KERNEL); 411 else 412 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, 413 &page, atomic_pool_init, true); 414 if (ptr) { 415 int ret; 416 417 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, 418 page_to_phys(page), 419 atomic_pool_size, -1); 420 if (ret) 421 goto destroy_genpool; 422 423 gen_pool_set_algo(atomic_pool, 424 gen_pool_first_fit_order_align, 425 NULL); 426 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", 427 atomic_pool_size / 1024); 428 return 0; 429 } 430 431 destroy_genpool: 432 gen_pool_destroy(atomic_pool); 433 atomic_pool = NULL; 434 out: 435 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 436 atomic_pool_size / 1024); 437 return -ENOMEM; 438 } 439 /* 440 * CMA is activated by core_initcall, so we must be called after it. 441 */ 442 postcore_initcall(atomic_pool_init); 443 444 struct dma_contig_early_reserve { 445 phys_addr_t base; 446 unsigned long size; 447 }; 448 449 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 450 451 static int dma_mmu_remap_num __initdata; 452 453 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 454 { 455 dma_mmu_remap[dma_mmu_remap_num].base = base; 456 dma_mmu_remap[dma_mmu_remap_num].size = size; 457 dma_mmu_remap_num++; 458 } 459 460 void __init dma_contiguous_remap(void) 461 { 462 int i; 463 for (i = 0; i < dma_mmu_remap_num; i++) { 464 phys_addr_t start = dma_mmu_remap[i].base; 465 phys_addr_t end = start + dma_mmu_remap[i].size; 466 struct map_desc map; 467 unsigned long addr; 468 469 if (end > arm_lowmem_limit) 470 end = arm_lowmem_limit; 471 if (start >= end) 472 continue; 473 474 map.pfn = __phys_to_pfn(start); 475 map.virtual = __phys_to_virt(start); 476 map.length = end - start; 477 map.type = MT_MEMORY_DMA_READY; 478 479 /* 480 * Clear previous low-memory mapping to ensure that the 481 * TLB does not see any conflicting entries, then flush 482 * the TLB of the old entries before creating new mappings. 483 * 484 * This ensures that any speculatively loaded TLB entries 485 * (even though they may be rare) can not cause any problems, 486 * and ensures that this code is architecturally compliant. 487 */ 488 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 489 addr += PMD_SIZE) 490 pmd_clear(pmd_off_k(addr)); 491 492 flush_tlb_kernel_range(__phys_to_virt(start), 493 __phys_to_virt(end)); 494 495 iotable_init(&map, 1); 496 } 497 } 498 499 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 500 void *data) 501 { 502 struct page *page = virt_to_page(addr); 503 pgprot_t prot = *(pgprot_t *)data; 504 505 set_pte_ext(pte, mk_pte(page, prot), 0); 506 return 0; 507 } 508 509 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 510 { 511 unsigned long start = (unsigned long) page_address(page); 512 unsigned end = start + size; 513 514 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 515 flush_tlb_kernel_range(start, end); 516 } 517 518 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 519 pgprot_t prot, struct page **ret_page, 520 const void *caller, bool want_vaddr) 521 { 522 struct page *page; 523 void *ptr = NULL; 524 /* 525 * __alloc_remap_buffer is only called when the device is 526 * non-coherent 527 */ 528 page = __dma_alloc_buffer(dev, size, gfp, NORMAL); 529 if (!page) 530 return NULL; 531 if (!want_vaddr) 532 goto out; 533 534 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 535 if (!ptr) { 536 __dma_free_buffer(page, size); 537 return NULL; 538 } 539 540 out: 541 *ret_page = page; 542 return ptr; 543 } 544 545 static void *__alloc_from_pool(size_t size, struct page **ret_page) 546 { 547 unsigned long val; 548 void *ptr = NULL; 549 550 if (!atomic_pool) { 551 WARN(1, "coherent pool not initialised!\n"); 552 return NULL; 553 } 554 555 val = gen_pool_alloc(atomic_pool, size); 556 if (val) { 557 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 558 559 *ret_page = phys_to_page(phys); 560 ptr = (void *)val; 561 } 562 563 return ptr; 564 } 565 566 static bool __in_atomic_pool(void *start, size_t size) 567 { 568 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 569 } 570 571 static int __free_from_pool(void *start, size_t size) 572 { 573 if (!__in_atomic_pool(start, size)) 574 return 0; 575 576 gen_pool_free(atomic_pool, (unsigned long)start, size); 577 578 return 1; 579 } 580 581 static void *__alloc_from_contiguous(struct device *dev, size_t size, 582 pgprot_t prot, struct page **ret_page, 583 const void *caller, bool want_vaddr, 584 int coherent_flag, gfp_t gfp) 585 { 586 unsigned long order = get_order(size); 587 size_t count = size >> PAGE_SHIFT; 588 struct page *page; 589 void *ptr = NULL; 590 591 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN); 592 if (!page) 593 return NULL; 594 595 __dma_clear_buffer(page, size, coherent_flag); 596 597 if (!want_vaddr) 598 goto out; 599 600 if (PageHighMem(page)) { 601 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 602 if (!ptr) { 603 dma_release_from_contiguous(dev, page, count); 604 return NULL; 605 } 606 } else { 607 __dma_remap(page, size, prot); 608 ptr = page_address(page); 609 } 610 611 out: 612 *ret_page = page; 613 return ptr; 614 } 615 616 static void __free_from_contiguous(struct device *dev, struct page *page, 617 void *cpu_addr, size_t size, bool want_vaddr) 618 { 619 if (want_vaddr) { 620 if (PageHighMem(page)) 621 __dma_free_remap(cpu_addr, size); 622 else 623 __dma_remap(page, size, PAGE_KERNEL); 624 } 625 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 626 } 627 628 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) 629 { 630 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? 631 pgprot_writecombine(prot) : 632 pgprot_dmacoherent(prot); 633 return prot; 634 } 635 636 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 637 struct page **ret_page) 638 { 639 struct page *page; 640 /* __alloc_simple_buffer is only called when the device is coherent */ 641 page = __dma_alloc_buffer(dev, size, gfp, COHERENT); 642 if (!page) 643 return NULL; 644 645 *ret_page = page; 646 return page_address(page); 647 } 648 649 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, 650 struct page **ret_page) 651 { 652 return __alloc_simple_buffer(args->dev, args->size, args->gfp, 653 ret_page); 654 } 655 656 static void simple_allocator_free(struct arm_dma_free_args *args) 657 { 658 __dma_free_buffer(args->page, args->size); 659 } 660 661 static struct arm_dma_allocator simple_allocator = { 662 .alloc = simple_allocator_alloc, 663 .free = simple_allocator_free, 664 }; 665 666 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, 667 struct page **ret_page) 668 { 669 return __alloc_from_contiguous(args->dev, args->size, args->prot, 670 ret_page, args->caller, 671 args->want_vaddr, args->coherent_flag, 672 args->gfp); 673 } 674 675 static void cma_allocator_free(struct arm_dma_free_args *args) 676 { 677 __free_from_contiguous(args->dev, args->page, args->cpu_addr, 678 args->size, args->want_vaddr); 679 } 680 681 static struct arm_dma_allocator cma_allocator = { 682 .alloc = cma_allocator_alloc, 683 .free = cma_allocator_free, 684 }; 685 686 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, 687 struct page **ret_page) 688 { 689 return __alloc_from_pool(args->size, ret_page); 690 } 691 692 static void pool_allocator_free(struct arm_dma_free_args *args) 693 { 694 __free_from_pool(args->cpu_addr, args->size); 695 } 696 697 static struct arm_dma_allocator pool_allocator = { 698 .alloc = pool_allocator_alloc, 699 .free = pool_allocator_free, 700 }; 701 702 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, 703 struct page **ret_page) 704 { 705 return __alloc_remap_buffer(args->dev, args->size, args->gfp, 706 args->prot, ret_page, args->caller, 707 args->want_vaddr); 708 } 709 710 static void remap_allocator_free(struct arm_dma_free_args *args) 711 { 712 if (args->want_vaddr) 713 __dma_free_remap(args->cpu_addr, args->size); 714 715 __dma_free_buffer(args->page, args->size); 716 } 717 718 static struct arm_dma_allocator remap_allocator = { 719 .alloc = remap_allocator_alloc, 720 .free = remap_allocator_free, 721 }; 722 723 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 724 gfp_t gfp, pgprot_t prot, bool is_coherent, 725 unsigned long attrs, const void *caller) 726 { 727 u64 mask = get_coherent_dma_mask(dev); 728 struct page *page = NULL; 729 void *addr; 730 bool allowblock, cma; 731 struct arm_dma_buffer *buf; 732 struct arm_dma_alloc_args args = { 733 .dev = dev, 734 .size = PAGE_ALIGN(size), 735 .gfp = gfp, 736 .prot = prot, 737 .caller = caller, 738 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 739 .coherent_flag = is_coherent ? COHERENT : NORMAL, 740 }; 741 742 #ifdef CONFIG_DMA_API_DEBUG 743 u64 limit = (mask + 1) & ~mask; 744 if (limit && size >= limit) { 745 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 746 size, mask); 747 return NULL; 748 } 749 #endif 750 751 if (!mask) 752 return NULL; 753 754 buf = kzalloc(sizeof(*buf), 755 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); 756 if (!buf) 757 return NULL; 758 759 if (mask < 0xffffffffULL) 760 gfp |= GFP_DMA; 761 762 /* 763 * Following is a work-around (a.k.a. hack) to prevent pages 764 * with __GFP_COMP being passed to split_page() which cannot 765 * handle them. The real problem is that this flag probably 766 * should be 0 on ARM as it is not supported on this 767 * platform; see CONFIG_HUGETLBFS. 768 */ 769 gfp &= ~(__GFP_COMP); 770 args.gfp = gfp; 771 772 *handle = DMA_MAPPING_ERROR; 773 allowblock = gfpflags_allow_blocking(gfp); 774 cma = allowblock ? dev_get_cma_area(dev) : false; 775 776 if (cma) 777 buf->allocator = &cma_allocator; 778 else if (is_coherent) 779 buf->allocator = &simple_allocator; 780 else if (allowblock) 781 buf->allocator = &remap_allocator; 782 else 783 buf->allocator = &pool_allocator; 784 785 addr = buf->allocator->alloc(&args, &page); 786 787 if (page) { 788 unsigned long flags; 789 790 *handle = pfn_to_dma(dev, page_to_pfn(page)); 791 buf->virt = args.want_vaddr ? addr : page; 792 793 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 794 list_add(&buf->list, &arm_dma_bufs); 795 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 796 } else { 797 kfree(buf); 798 } 799 800 return args.want_vaddr ? addr : page; 801 } 802 803 /* 804 * Allocate DMA-coherent memory space and return both the kernel remapped 805 * virtual and bus address for that space. 806 */ 807 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 808 gfp_t gfp, unsigned long attrs) 809 { 810 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 811 812 return __dma_alloc(dev, size, handle, gfp, prot, false, 813 attrs, __builtin_return_address(0)); 814 } 815 816 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 817 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 818 { 819 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true, 820 attrs, __builtin_return_address(0)); 821 } 822 823 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 824 void *cpu_addr, dma_addr_t dma_addr, size_t size, 825 unsigned long attrs) 826 { 827 int ret = -ENXIO; 828 unsigned long nr_vma_pages = vma_pages(vma); 829 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 830 unsigned long pfn = dma_to_pfn(dev, dma_addr); 831 unsigned long off = vma->vm_pgoff; 832 833 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 834 return ret; 835 836 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 837 ret = remap_pfn_range(vma, vma->vm_start, 838 pfn + off, 839 vma->vm_end - vma->vm_start, 840 vma->vm_page_prot); 841 } 842 843 return ret; 844 } 845 846 /* 847 * Create userspace mapping for the DMA-coherent memory. 848 */ 849 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 850 void *cpu_addr, dma_addr_t dma_addr, size_t size, 851 unsigned long attrs) 852 { 853 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 854 } 855 856 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 857 void *cpu_addr, dma_addr_t dma_addr, size_t size, 858 unsigned long attrs) 859 { 860 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 861 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 862 } 863 864 /* 865 * Free a buffer as defined by the above mapping. 866 */ 867 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 868 dma_addr_t handle, unsigned long attrs, 869 bool is_coherent) 870 { 871 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 872 struct arm_dma_buffer *buf; 873 struct arm_dma_free_args args = { 874 .dev = dev, 875 .size = PAGE_ALIGN(size), 876 .cpu_addr = cpu_addr, 877 .page = page, 878 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 879 }; 880 881 buf = arm_dma_buffer_find(cpu_addr); 882 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) 883 return; 884 885 buf->allocator->free(&args); 886 kfree(buf); 887 } 888 889 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 890 dma_addr_t handle, unsigned long attrs) 891 { 892 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 893 } 894 895 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 896 dma_addr_t handle, unsigned long attrs) 897 { 898 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 899 } 900 901 /* 902 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems 903 * that the intention is to allow exporting memory allocated via the 904 * coherent DMA APIs through the dma_buf API, which only accepts a 905 * scattertable. This presents a couple of problems: 906 * 1. Not all memory allocated via the coherent DMA APIs is backed by 907 * a struct page 908 * 2. Passing coherent DMA memory into the streaming APIs is not allowed 909 * as we will try to flush the memory through a different alias to that 910 * actually being used (and the flushes are redundant.) 911 */ 912 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 913 void *cpu_addr, dma_addr_t handle, size_t size, 914 unsigned long attrs) 915 { 916 unsigned long pfn = dma_to_pfn(dev, handle); 917 struct page *page; 918 int ret; 919 920 /* If the PFN is not valid, we do not have a struct page */ 921 if (!pfn_valid(pfn)) 922 return -ENXIO; 923 924 page = pfn_to_page(pfn); 925 926 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 927 if (unlikely(ret)) 928 return ret; 929 930 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 931 return 0; 932 } 933 934 static void dma_cache_maint_page(struct page *page, unsigned long offset, 935 size_t size, enum dma_data_direction dir, 936 void (*op)(const void *, size_t, int)) 937 { 938 unsigned long pfn; 939 size_t left = size; 940 941 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 942 offset %= PAGE_SIZE; 943 944 /* 945 * A single sg entry may refer to multiple physically contiguous 946 * pages. But we still need to process highmem pages individually. 947 * If highmem is not configured then the bulk of this loop gets 948 * optimized out. 949 */ 950 do { 951 size_t len = left; 952 void *vaddr; 953 954 page = pfn_to_page(pfn); 955 956 if (PageHighMem(page)) { 957 if (len + offset > PAGE_SIZE) 958 len = PAGE_SIZE - offset; 959 960 if (cache_is_vipt_nonaliasing()) { 961 vaddr = kmap_atomic(page); 962 op(vaddr + offset, len, dir); 963 kunmap_atomic(vaddr); 964 } else { 965 vaddr = kmap_high_get(page); 966 if (vaddr) { 967 op(vaddr + offset, len, dir); 968 kunmap_high(page); 969 } 970 } 971 } else { 972 vaddr = page_address(page) + offset; 973 op(vaddr, len, dir); 974 } 975 offset = 0; 976 pfn++; 977 left -= len; 978 } while (left); 979 } 980 981 /* 982 * Make an area consistent for devices. 983 * Note: Drivers should NOT use this function directly, as it will break 984 * platforms with CONFIG_DMABOUNCE. 985 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 986 */ 987 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 988 size_t size, enum dma_data_direction dir) 989 { 990 phys_addr_t paddr; 991 992 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 993 994 paddr = page_to_phys(page) + off; 995 if (dir == DMA_FROM_DEVICE) { 996 outer_inv_range(paddr, paddr + size); 997 } else { 998 outer_clean_range(paddr, paddr + size); 999 } 1000 /* FIXME: non-speculating: flush on bidirectional mappings? */ 1001 } 1002 1003 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 1004 size_t size, enum dma_data_direction dir) 1005 { 1006 phys_addr_t paddr = page_to_phys(page) + off; 1007 1008 /* FIXME: non-speculating: not required */ 1009 /* in any case, don't bother invalidating if DMA to device */ 1010 if (dir != DMA_TO_DEVICE) { 1011 outer_inv_range(paddr, paddr + size); 1012 1013 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 1014 } 1015 1016 /* 1017 * Mark the D-cache clean for these pages to avoid extra flushing. 1018 */ 1019 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 1020 unsigned long pfn; 1021 size_t left = size; 1022 1023 pfn = page_to_pfn(page) + off / PAGE_SIZE; 1024 off %= PAGE_SIZE; 1025 if (off) { 1026 pfn++; 1027 left -= PAGE_SIZE - off; 1028 } 1029 while (left >= PAGE_SIZE) { 1030 page = pfn_to_page(pfn++); 1031 set_bit(PG_dcache_clean, &page->flags); 1032 left -= PAGE_SIZE; 1033 } 1034 } 1035 } 1036 1037 /** 1038 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 1039 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1040 * @sg: list of buffers 1041 * @nents: number of buffers to map 1042 * @dir: DMA transfer direction 1043 * 1044 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1045 * This is the scatter-gather version of the dma_map_single interface. 1046 * Here the scatter gather list elements are each tagged with the 1047 * appropriate dma address and length. They are obtained via 1048 * sg_dma_{address,length}. 1049 * 1050 * Device ownership issues as mentioned for dma_map_single are the same 1051 * here. 1052 */ 1053 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1054 enum dma_data_direction dir, unsigned long attrs) 1055 { 1056 const struct dma_map_ops *ops = get_dma_ops(dev); 1057 struct scatterlist *s; 1058 int i, j; 1059 1060 for_each_sg(sg, s, nents, i) { 1061 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1062 s->dma_length = s->length; 1063 #endif 1064 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 1065 s->length, dir, attrs); 1066 if (dma_mapping_error(dev, s->dma_address)) 1067 goto bad_mapping; 1068 } 1069 return nents; 1070 1071 bad_mapping: 1072 for_each_sg(sg, s, i, j) 1073 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1074 return 0; 1075 } 1076 1077 /** 1078 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1079 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1080 * @sg: list of buffers 1081 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1082 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1083 * 1084 * Unmap a set of streaming mode DMA translations. Again, CPU access 1085 * rules concerning calls here are the same as for dma_unmap_single(). 1086 */ 1087 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1088 enum dma_data_direction dir, unsigned long attrs) 1089 { 1090 const struct dma_map_ops *ops = get_dma_ops(dev); 1091 struct scatterlist *s; 1092 1093 int i; 1094 1095 for_each_sg(sg, s, nents, i) 1096 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1097 } 1098 1099 /** 1100 * arm_dma_sync_sg_for_cpu 1101 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1102 * @sg: list of buffers 1103 * @nents: number of buffers to map (returned from dma_map_sg) 1104 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1105 */ 1106 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1107 int nents, enum dma_data_direction dir) 1108 { 1109 const struct dma_map_ops *ops = get_dma_ops(dev); 1110 struct scatterlist *s; 1111 int i; 1112 1113 for_each_sg(sg, s, nents, i) 1114 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 1115 dir); 1116 } 1117 1118 /** 1119 * arm_dma_sync_sg_for_device 1120 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1121 * @sg: list of buffers 1122 * @nents: number of buffers to map (returned from dma_map_sg) 1123 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1124 */ 1125 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1126 int nents, enum dma_data_direction dir) 1127 { 1128 const struct dma_map_ops *ops = get_dma_ops(dev); 1129 struct scatterlist *s; 1130 int i; 1131 1132 for_each_sg(sg, s, nents, i) 1133 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 1134 dir); 1135 } 1136 1137 /* 1138 * Return whether the given device DMA address mask can be supported 1139 * properly. For example, if your device can only drive the low 24-bits 1140 * during bus mastering, then you would pass 0x00ffffff as the mask 1141 * to this function. 1142 */ 1143 int arm_dma_supported(struct device *dev, u64 mask) 1144 { 1145 return __dma_supported(dev, mask, false); 1146 } 1147 1148 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent) 1149 { 1150 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; 1151 } 1152 1153 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1154 1155 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) 1156 { 1157 int prot = 0; 1158 1159 if (attrs & DMA_ATTR_PRIVILEGED) 1160 prot |= IOMMU_PRIV; 1161 1162 switch (dir) { 1163 case DMA_BIDIRECTIONAL: 1164 return prot | IOMMU_READ | IOMMU_WRITE; 1165 case DMA_TO_DEVICE: 1166 return prot | IOMMU_READ; 1167 case DMA_FROM_DEVICE: 1168 return prot | IOMMU_WRITE; 1169 default: 1170 return prot; 1171 } 1172 } 1173 1174 /* IOMMU */ 1175 1176 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 1177 1178 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1179 size_t size) 1180 { 1181 unsigned int order = get_order(size); 1182 unsigned int align = 0; 1183 unsigned int count, start; 1184 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1185 unsigned long flags; 1186 dma_addr_t iova; 1187 int i; 1188 1189 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1190 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1191 1192 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1193 align = (1 << order) - 1; 1194 1195 spin_lock_irqsave(&mapping->lock, flags); 1196 for (i = 0; i < mapping->nr_bitmaps; i++) { 1197 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1198 mapping->bits, 0, count, align); 1199 1200 if (start > mapping->bits) 1201 continue; 1202 1203 bitmap_set(mapping->bitmaps[i], start, count); 1204 break; 1205 } 1206 1207 /* 1208 * No unused range found. Try to extend the existing mapping 1209 * and perform a second attempt to reserve an IO virtual 1210 * address range of size bytes. 1211 */ 1212 if (i == mapping->nr_bitmaps) { 1213 if (extend_iommu_mapping(mapping)) { 1214 spin_unlock_irqrestore(&mapping->lock, flags); 1215 return DMA_MAPPING_ERROR; 1216 } 1217 1218 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1219 mapping->bits, 0, count, align); 1220 1221 if (start > mapping->bits) { 1222 spin_unlock_irqrestore(&mapping->lock, flags); 1223 return DMA_MAPPING_ERROR; 1224 } 1225 1226 bitmap_set(mapping->bitmaps[i], start, count); 1227 } 1228 spin_unlock_irqrestore(&mapping->lock, flags); 1229 1230 iova = mapping->base + (mapping_size * i); 1231 iova += start << PAGE_SHIFT; 1232 1233 return iova; 1234 } 1235 1236 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1237 dma_addr_t addr, size_t size) 1238 { 1239 unsigned int start, count; 1240 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1241 unsigned long flags; 1242 dma_addr_t bitmap_base; 1243 u32 bitmap_index; 1244 1245 if (!size) 1246 return; 1247 1248 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; 1249 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 1250 1251 bitmap_base = mapping->base + mapping_size * bitmap_index; 1252 1253 start = (addr - bitmap_base) >> PAGE_SHIFT; 1254 1255 if (addr + size > bitmap_base + mapping_size) { 1256 /* 1257 * The address range to be freed reaches into the iova 1258 * range of the next bitmap. This should not happen as 1259 * we don't allow this in __alloc_iova (at the 1260 * moment). 1261 */ 1262 BUG(); 1263 } else 1264 count = size >> PAGE_SHIFT; 1265 1266 spin_lock_irqsave(&mapping->lock, flags); 1267 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 1268 spin_unlock_irqrestore(&mapping->lock, flags); 1269 } 1270 1271 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ 1272 static const int iommu_order_array[] = { 9, 8, 4, 0 }; 1273 1274 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1275 gfp_t gfp, unsigned long attrs, 1276 int coherent_flag) 1277 { 1278 struct page **pages; 1279 int count = size >> PAGE_SHIFT; 1280 int array_size = count * sizeof(struct page *); 1281 int i = 0; 1282 int order_idx = 0; 1283 1284 if (array_size <= PAGE_SIZE) 1285 pages = kzalloc(array_size, GFP_KERNEL); 1286 else 1287 pages = vzalloc(array_size); 1288 if (!pages) 1289 return NULL; 1290 1291 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) 1292 { 1293 unsigned long order = get_order(size); 1294 struct page *page; 1295 1296 page = dma_alloc_from_contiguous(dev, count, order, 1297 gfp & __GFP_NOWARN); 1298 if (!page) 1299 goto error; 1300 1301 __dma_clear_buffer(page, size, coherent_flag); 1302 1303 for (i = 0; i < count; i++) 1304 pages[i] = page + i; 1305 1306 return pages; 1307 } 1308 1309 /* Go straight to 4K chunks if caller says it's OK. */ 1310 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 1311 order_idx = ARRAY_SIZE(iommu_order_array) - 1; 1312 1313 /* 1314 * IOMMU can map any pages, so himem can also be used here 1315 */ 1316 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1317 1318 while (count) { 1319 int j, order; 1320 1321 order = iommu_order_array[order_idx]; 1322 1323 /* Drop down when we get small */ 1324 if (__fls(count) < order) { 1325 order_idx++; 1326 continue; 1327 } 1328 1329 if (order) { 1330 /* See if it's easy to allocate a high-order chunk */ 1331 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); 1332 1333 /* Go down a notch at first sign of pressure */ 1334 if (!pages[i]) { 1335 order_idx++; 1336 continue; 1337 } 1338 } else { 1339 pages[i] = alloc_pages(gfp, 0); 1340 if (!pages[i]) 1341 goto error; 1342 } 1343 1344 if (order) { 1345 split_page(pages[i], order); 1346 j = 1 << order; 1347 while (--j) 1348 pages[i + j] = pages[i] + j; 1349 } 1350 1351 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); 1352 i += 1 << order; 1353 count -= 1 << order; 1354 } 1355 1356 return pages; 1357 error: 1358 while (i--) 1359 if (pages[i]) 1360 __free_pages(pages[i], 0); 1361 kvfree(pages); 1362 return NULL; 1363 } 1364 1365 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1366 size_t size, unsigned long attrs) 1367 { 1368 int count = size >> PAGE_SHIFT; 1369 int i; 1370 1371 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 1372 dma_release_from_contiguous(dev, pages[0], count); 1373 } else { 1374 for (i = 0; i < count; i++) 1375 if (pages[i]) 1376 __free_pages(pages[i], 0); 1377 } 1378 1379 kvfree(pages); 1380 return 0; 1381 } 1382 1383 /* 1384 * Create a CPU mapping for a specified pages 1385 */ 1386 static void * 1387 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1388 const void *caller) 1389 { 1390 return dma_common_pages_remap(pages, size, 1391 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller); 1392 } 1393 1394 /* 1395 * Create a mapping in device IO address space for specified pages 1396 */ 1397 static dma_addr_t 1398 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, 1399 unsigned long attrs) 1400 { 1401 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1402 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1403 dma_addr_t dma_addr, iova; 1404 int i; 1405 1406 dma_addr = __alloc_iova(mapping, size); 1407 if (dma_addr == DMA_MAPPING_ERROR) 1408 return dma_addr; 1409 1410 iova = dma_addr; 1411 for (i = 0; i < count; ) { 1412 int ret; 1413 1414 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1415 phys_addr_t phys = page_to_phys(pages[i]); 1416 unsigned int len, j; 1417 1418 for (j = i + 1; j < count; j++, next_pfn++) 1419 if (page_to_pfn(pages[j]) != next_pfn) 1420 break; 1421 1422 len = (j - i) << PAGE_SHIFT; 1423 ret = iommu_map(mapping->domain, iova, phys, len, 1424 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs)); 1425 if (ret < 0) 1426 goto fail; 1427 iova += len; 1428 i = j; 1429 } 1430 return dma_addr; 1431 fail: 1432 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1433 __free_iova(mapping, dma_addr, size); 1434 return DMA_MAPPING_ERROR; 1435 } 1436 1437 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1438 { 1439 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1440 1441 /* 1442 * add optional in-page offset from iova to size and align 1443 * result to page size 1444 */ 1445 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1446 iova &= PAGE_MASK; 1447 1448 iommu_unmap(mapping->domain, iova, size); 1449 __free_iova(mapping, iova, size); 1450 return 0; 1451 } 1452 1453 static struct page **__atomic_get_pages(void *addr) 1454 { 1455 struct page *page; 1456 phys_addr_t phys; 1457 1458 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); 1459 page = phys_to_page(phys); 1460 1461 return (struct page **)page; 1462 } 1463 1464 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) 1465 { 1466 struct vm_struct *area; 1467 1468 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1469 return __atomic_get_pages(cpu_addr); 1470 1471 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1472 return cpu_addr; 1473 1474 area = find_vm_area(cpu_addr); 1475 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1476 return area->pages; 1477 return NULL; 1478 } 1479 1480 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, 1481 dma_addr_t *handle, int coherent_flag, 1482 unsigned long attrs) 1483 { 1484 struct page *page; 1485 void *addr; 1486 1487 if (coherent_flag == COHERENT) 1488 addr = __alloc_simple_buffer(dev, size, gfp, &page); 1489 else 1490 addr = __alloc_from_pool(size, &page); 1491 if (!addr) 1492 return NULL; 1493 1494 *handle = __iommu_create_mapping(dev, &page, size, attrs); 1495 if (*handle == DMA_MAPPING_ERROR) 1496 goto err_mapping; 1497 1498 return addr; 1499 1500 err_mapping: 1501 __free_from_pool(addr, size); 1502 return NULL; 1503 } 1504 1505 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1506 dma_addr_t handle, size_t size, int coherent_flag) 1507 { 1508 __iommu_remove_mapping(dev, handle, size); 1509 if (coherent_flag == COHERENT) 1510 __dma_free_buffer(virt_to_page(cpu_addr), size); 1511 else 1512 __free_from_pool(cpu_addr, size); 1513 } 1514 1515 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size, 1516 dma_addr_t *handle, gfp_t gfp, unsigned long attrs, 1517 int coherent_flag) 1518 { 1519 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1520 struct page **pages; 1521 void *addr = NULL; 1522 1523 *handle = DMA_MAPPING_ERROR; 1524 size = PAGE_ALIGN(size); 1525 1526 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp)) 1527 return __iommu_alloc_simple(dev, size, gfp, handle, 1528 coherent_flag, attrs); 1529 1530 /* 1531 * Following is a work-around (a.k.a. hack) to prevent pages 1532 * with __GFP_COMP being passed to split_page() which cannot 1533 * handle them. The real problem is that this flag probably 1534 * should be 0 on ARM as it is not supported on this 1535 * platform; see CONFIG_HUGETLBFS. 1536 */ 1537 gfp &= ~(__GFP_COMP); 1538 1539 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); 1540 if (!pages) 1541 return NULL; 1542 1543 *handle = __iommu_create_mapping(dev, pages, size, attrs); 1544 if (*handle == DMA_MAPPING_ERROR) 1545 goto err_buffer; 1546 1547 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1548 return pages; 1549 1550 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1551 __builtin_return_address(0)); 1552 if (!addr) 1553 goto err_mapping; 1554 1555 return addr; 1556 1557 err_mapping: 1558 __iommu_remove_mapping(dev, *handle, size); 1559 err_buffer: 1560 __iommu_free_buffer(dev, pages, size, attrs); 1561 return NULL; 1562 } 1563 1564 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1565 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1566 { 1567 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL); 1568 } 1569 1570 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size, 1571 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1572 { 1573 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT); 1574 } 1575 1576 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1577 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1578 unsigned long attrs) 1579 { 1580 unsigned long uaddr = vma->vm_start; 1581 unsigned long usize = vma->vm_end - vma->vm_start; 1582 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1583 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1584 unsigned long off = vma->vm_pgoff; 1585 1586 if (!pages) 1587 return -ENXIO; 1588 1589 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off) 1590 return -ENXIO; 1591 1592 pages += off; 1593 1594 do { 1595 int ret = vm_insert_page(vma, uaddr, *pages++); 1596 if (ret) { 1597 pr_err("Remapping memory failed: %d\n", ret); 1598 return ret; 1599 } 1600 uaddr += PAGE_SIZE; 1601 usize -= PAGE_SIZE; 1602 } while (usize > 0); 1603 1604 return 0; 1605 } 1606 static int arm_iommu_mmap_attrs(struct device *dev, 1607 struct vm_area_struct *vma, void *cpu_addr, 1608 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1609 { 1610 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1611 1612 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1613 } 1614 1615 static int arm_coherent_iommu_mmap_attrs(struct device *dev, 1616 struct vm_area_struct *vma, void *cpu_addr, 1617 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1618 { 1619 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1620 } 1621 1622 /* 1623 * free a page as defined by the above mapping. 1624 * Must not be called with IRQs disabled. 1625 */ 1626 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1627 dma_addr_t handle, unsigned long attrs, int coherent_flag) 1628 { 1629 struct page **pages; 1630 size = PAGE_ALIGN(size); 1631 1632 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { 1633 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); 1634 return; 1635 } 1636 1637 pages = __iommu_get_pages(cpu_addr, attrs); 1638 if (!pages) { 1639 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1640 return; 1641 } 1642 1643 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) { 1644 dma_common_free_remap(cpu_addr, size, 1645 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 1646 } 1647 1648 __iommu_remove_mapping(dev, handle, size); 1649 __iommu_free_buffer(dev, pages, size, attrs); 1650 } 1651 1652 void arm_iommu_free_attrs(struct device *dev, size_t size, 1653 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1654 { 1655 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL); 1656 } 1657 1658 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size, 1659 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1660 { 1661 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT); 1662 } 1663 1664 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1665 void *cpu_addr, dma_addr_t dma_addr, 1666 size_t size, unsigned long attrs) 1667 { 1668 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1669 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1670 1671 if (!pages) 1672 return -ENXIO; 1673 1674 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1675 GFP_KERNEL); 1676 } 1677 1678 /* 1679 * Map a part of the scatter-gather list into contiguous io address space 1680 */ 1681 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1682 size_t size, dma_addr_t *handle, 1683 enum dma_data_direction dir, unsigned long attrs, 1684 bool is_coherent) 1685 { 1686 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1687 dma_addr_t iova, iova_base; 1688 int ret = 0; 1689 unsigned int count; 1690 struct scatterlist *s; 1691 int prot; 1692 1693 size = PAGE_ALIGN(size); 1694 *handle = DMA_MAPPING_ERROR; 1695 1696 iova_base = iova = __alloc_iova(mapping, size); 1697 if (iova == DMA_MAPPING_ERROR) 1698 return -ENOMEM; 1699 1700 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1701 phys_addr_t phys = page_to_phys(sg_page(s)); 1702 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1703 1704 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1705 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1706 1707 prot = __dma_info_to_prot(dir, attrs); 1708 1709 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1710 if (ret < 0) 1711 goto fail; 1712 count += len >> PAGE_SHIFT; 1713 iova += len; 1714 } 1715 *handle = iova_base; 1716 1717 return 0; 1718 fail: 1719 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1720 __free_iova(mapping, iova_base, size); 1721 return ret; 1722 } 1723 1724 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1725 enum dma_data_direction dir, unsigned long attrs, 1726 bool is_coherent) 1727 { 1728 struct scatterlist *s = sg, *dma = sg, *start = sg; 1729 int i, count = 0; 1730 unsigned int offset = s->offset; 1731 unsigned int size = s->offset + s->length; 1732 unsigned int max = dma_get_max_seg_size(dev); 1733 1734 for (i = 1; i < nents; i++) { 1735 s = sg_next(s); 1736 1737 s->dma_address = DMA_MAPPING_ERROR; 1738 s->dma_length = 0; 1739 1740 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1741 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1742 dir, attrs, is_coherent) < 0) 1743 goto bad_mapping; 1744 1745 dma->dma_address += offset; 1746 dma->dma_length = size - offset; 1747 1748 size = offset = s->offset; 1749 start = s; 1750 dma = sg_next(dma); 1751 count += 1; 1752 } 1753 size += s->length; 1754 } 1755 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1756 is_coherent) < 0) 1757 goto bad_mapping; 1758 1759 dma->dma_address += offset; 1760 dma->dma_length = size - offset; 1761 1762 return count+1; 1763 1764 bad_mapping: 1765 for_each_sg(sg, s, count, i) 1766 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1767 return 0; 1768 } 1769 1770 /** 1771 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1772 * @dev: valid struct device pointer 1773 * @sg: list of buffers 1774 * @nents: number of buffers to map 1775 * @dir: DMA transfer direction 1776 * 1777 * Map a set of i/o coherent buffers described by scatterlist in streaming 1778 * mode for DMA. The scatter gather list elements are merged together (if 1779 * possible) and tagged with the appropriate dma address and length. They are 1780 * obtained via sg_dma_{address,length}. 1781 */ 1782 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1783 int nents, enum dma_data_direction dir, unsigned long attrs) 1784 { 1785 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1786 } 1787 1788 /** 1789 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1790 * @dev: valid struct device pointer 1791 * @sg: list of buffers 1792 * @nents: number of buffers to map 1793 * @dir: DMA transfer direction 1794 * 1795 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1796 * The scatter gather list elements are merged together (if possible) and 1797 * tagged with the appropriate dma address and length. They are obtained via 1798 * sg_dma_{address,length}. 1799 */ 1800 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1801 int nents, enum dma_data_direction dir, unsigned long attrs) 1802 { 1803 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1804 } 1805 1806 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1807 int nents, enum dma_data_direction dir, 1808 unsigned long attrs, bool is_coherent) 1809 { 1810 struct scatterlist *s; 1811 int i; 1812 1813 for_each_sg(sg, s, nents, i) { 1814 if (sg_dma_len(s)) 1815 __iommu_remove_mapping(dev, sg_dma_address(s), 1816 sg_dma_len(s)); 1817 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1818 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1819 s->length, dir); 1820 } 1821 } 1822 1823 /** 1824 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1825 * @dev: valid struct device pointer 1826 * @sg: list of buffers 1827 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1828 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1829 * 1830 * Unmap a set of streaming mode DMA translations. Again, CPU access 1831 * rules concerning calls here are the same as for dma_unmap_single(). 1832 */ 1833 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1834 int nents, enum dma_data_direction dir, 1835 unsigned long attrs) 1836 { 1837 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1838 } 1839 1840 /** 1841 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1842 * @dev: valid struct device pointer 1843 * @sg: list of buffers 1844 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1845 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1846 * 1847 * Unmap a set of streaming mode DMA translations. Again, CPU access 1848 * rules concerning calls here are the same as for dma_unmap_single(). 1849 */ 1850 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1851 enum dma_data_direction dir, 1852 unsigned long attrs) 1853 { 1854 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1855 } 1856 1857 /** 1858 * arm_iommu_sync_sg_for_cpu 1859 * @dev: valid struct device pointer 1860 * @sg: list of buffers 1861 * @nents: number of buffers to map (returned from dma_map_sg) 1862 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1863 */ 1864 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1865 int nents, enum dma_data_direction dir) 1866 { 1867 struct scatterlist *s; 1868 int i; 1869 1870 for_each_sg(sg, s, nents, i) 1871 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1872 1873 } 1874 1875 /** 1876 * arm_iommu_sync_sg_for_device 1877 * @dev: valid struct device pointer 1878 * @sg: list of buffers 1879 * @nents: number of buffers to map (returned from dma_map_sg) 1880 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1881 */ 1882 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1883 int nents, enum dma_data_direction dir) 1884 { 1885 struct scatterlist *s; 1886 int i; 1887 1888 for_each_sg(sg, s, nents, i) 1889 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1890 } 1891 1892 1893 /** 1894 * arm_coherent_iommu_map_page 1895 * @dev: valid struct device pointer 1896 * @page: page that buffer resides in 1897 * @offset: offset into page for start of buffer 1898 * @size: size of buffer to map 1899 * @dir: DMA transfer direction 1900 * 1901 * Coherent IOMMU aware version of arm_dma_map_page() 1902 */ 1903 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1904 unsigned long offset, size_t size, enum dma_data_direction dir, 1905 unsigned long attrs) 1906 { 1907 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1908 dma_addr_t dma_addr; 1909 int ret, prot, len = PAGE_ALIGN(size + offset); 1910 1911 dma_addr = __alloc_iova(mapping, len); 1912 if (dma_addr == DMA_MAPPING_ERROR) 1913 return dma_addr; 1914 1915 prot = __dma_info_to_prot(dir, attrs); 1916 1917 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1918 if (ret < 0) 1919 goto fail; 1920 1921 return dma_addr + offset; 1922 fail: 1923 __free_iova(mapping, dma_addr, len); 1924 return DMA_MAPPING_ERROR; 1925 } 1926 1927 /** 1928 * arm_iommu_map_page 1929 * @dev: valid struct device pointer 1930 * @page: page that buffer resides in 1931 * @offset: offset into page for start of buffer 1932 * @size: size of buffer to map 1933 * @dir: DMA transfer direction 1934 * 1935 * IOMMU aware version of arm_dma_map_page() 1936 */ 1937 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1938 unsigned long offset, size_t size, enum dma_data_direction dir, 1939 unsigned long attrs) 1940 { 1941 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1942 __dma_page_cpu_to_dev(page, offset, size, dir); 1943 1944 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1945 } 1946 1947 /** 1948 * arm_coherent_iommu_unmap_page 1949 * @dev: valid struct device pointer 1950 * @handle: DMA address of buffer 1951 * @size: size of buffer (same as passed to dma_map_page) 1952 * @dir: DMA transfer direction (same as passed to dma_map_page) 1953 * 1954 * Coherent IOMMU aware version of arm_dma_unmap_page() 1955 */ 1956 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1957 size_t size, enum dma_data_direction dir, unsigned long attrs) 1958 { 1959 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1960 dma_addr_t iova = handle & PAGE_MASK; 1961 int offset = handle & ~PAGE_MASK; 1962 int len = PAGE_ALIGN(size + offset); 1963 1964 if (!iova) 1965 return; 1966 1967 iommu_unmap(mapping->domain, iova, len); 1968 __free_iova(mapping, iova, len); 1969 } 1970 1971 /** 1972 * arm_iommu_unmap_page 1973 * @dev: valid struct device pointer 1974 * @handle: DMA address of buffer 1975 * @size: size of buffer (same as passed to dma_map_page) 1976 * @dir: DMA transfer direction (same as passed to dma_map_page) 1977 * 1978 * IOMMU aware version of arm_dma_unmap_page() 1979 */ 1980 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1981 size_t size, enum dma_data_direction dir, unsigned long attrs) 1982 { 1983 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1984 dma_addr_t iova = handle & PAGE_MASK; 1985 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1986 int offset = handle & ~PAGE_MASK; 1987 int len = PAGE_ALIGN(size + offset); 1988 1989 if (!iova) 1990 return; 1991 1992 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1993 __dma_page_dev_to_cpu(page, offset, size, dir); 1994 1995 iommu_unmap(mapping->domain, iova, len); 1996 __free_iova(mapping, iova, len); 1997 } 1998 1999 /** 2000 * arm_iommu_map_resource - map a device resource for DMA 2001 * @dev: valid struct device pointer 2002 * @phys_addr: physical address of resource 2003 * @size: size of resource to map 2004 * @dir: DMA transfer direction 2005 */ 2006 static dma_addr_t arm_iommu_map_resource(struct device *dev, 2007 phys_addr_t phys_addr, size_t size, 2008 enum dma_data_direction dir, unsigned long attrs) 2009 { 2010 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2011 dma_addr_t dma_addr; 2012 int ret, prot; 2013 phys_addr_t addr = phys_addr & PAGE_MASK; 2014 unsigned int offset = phys_addr & ~PAGE_MASK; 2015 size_t len = PAGE_ALIGN(size + offset); 2016 2017 dma_addr = __alloc_iova(mapping, len); 2018 if (dma_addr == DMA_MAPPING_ERROR) 2019 return dma_addr; 2020 2021 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; 2022 2023 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot); 2024 if (ret < 0) 2025 goto fail; 2026 2027 return dma_addr + offset; 2028 fail: 2029 __free_iova(mapping, dma_addr, len); 2030 return DMA_MAPPING_ERROR; 2031 } 2032 2033 /** 2034 * arm_iommu_unmap_resource - unmap a device DMA resource 2035 * @dev: valid struct device pointer 2036 * @dma_handle: DMA address to resource 2037 * @size: size of resource to map 2038 * @dir: DMA transfer direction 2039 */ 2040 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, 2041 size_t size, enum dma_data_direction dir, 2042 unsigned long attrs) 2043 { 2044 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2045 dma_addr_t iova = dma_handle & PAGE_MASK; 2046 unsigned int offset = dma_handle & ~PAGE_MASK; 2047 size_t len = PAGE_ALIGN(size + offset); 2048 2049 if (!iova) 2050 return; 2051 2052 iommu_unmap(mapping->domain, iova, len); 2053 __free_iova(mapping, iova, len); 2054 } 2055 2056 static void arm_iommu_sync_single_for_cpu(struct device *dev, 2057 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2058 { 2059 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2060 dma_addr_t iova = handle & PAGE_MASK; 2061 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2062 unsigned int offset = handle & ~PAGE_MASK; 2063 2064 if (!iova) 2065 return; 2066 2067 __dma_page_dev_to_cpu(page, offset, size, dir); 2068 } 2069 2070 static void arm_iommu_sync_single_for_device(struct device *dev, 2071 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2072 { 2073 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2074 dma_addr_t iova = handle & PAGE_MASK; 2075 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2076 unsigned int offset = handle & ~PAGE_MASK; 2077 2078 if (!iova) 2079 return; 2080 2081 __dma_page_cpu_to_dev(page, offset, size, dir); 2082 } 2083 2084 const struct dma_map_ops iommu_ops = { 2085 .alloc = arm_iommu_alloc_attrs, 2086 .free = arm_iommu_free_attrs, 2087 .mmap = arm_iommu_mmap_attrs, 2088 .get_sgtable = arm_iommu_get_sgtable, 2089 2090 .map_page = arm_iommu_map_page, 2091 .unmap_page = arm_iommu_unmap_page, 2092 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 2093 .sync_single_for_device = arm_iommu_sync_single_for_device, 2094 2095 .map_sg = arm_iommu_map_sg, 2096 .unmap_sg = arm_iommu_unmap_sg, 2097 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 2098 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 2099 2100 .map_resource = arm_iommu_map_resource, 2101 .unmap_resource = arm_iommu_unmap_resource, 2102 2103 .dma_supported = arm_dma_supported, 2104 }; 2105 2106 const struct dma_map_ops iommu_coherent_ops = { 2107 .alloc = arm_coherent_iommu_alloc_attrs, 2108 .free = arm_coherent_iommu_free_attrs, 2109 .mmap = arm_coherent_iommu_mmap_attrs, 2110 .get_sgtable = arm_iommu_get_sgtable, 2111 2112 .map_page = arm_coherent_iommu_map_page, 2113 .unmap_page = arm_coherent_iommu_unmap_page, 2114 2115 .map_sg = arm_coherent_iommu_map_sg, 2116 .unmap_sg = arm_coherent_iommu_unmap_sg, 2117 2118 .map_resource = arm_iommu_map_resource, 2119 .unmap_resource = arm_iommu_unmap_resource, 2120 2121 .dma_supported = arm_dma_supported, 2122 }; 2123 2124 /** 2125 * arm_iommu_create_mapping 2126 * @bus: pointer to the bus holding the client device (for IOMMU calls) 2127 * @base: start address of the valid IO address space 2128 * @size: maximum size of the valid IO address space 2129 * 2130 * Creates a mapping structure which holds information about used/unused 2131 * IO address ranges, which is required to perform memory allocation and 2132 * mapping with IOMMU aware functions. 2133 * 2134 * The client device need to be attached to the mapping with 2135 * arm_iommu_attach_device function. 2136 */ 2137 struct dma_iommu_mapping * 2138 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) 2139 { 2140 unsigned int bits = size >> PAGE_SHIFT; 2141 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 2142 struct dma_iommu_mapping *mapping; 2143 int extensions = 1; 2144 int err = -ENOMEM; 2145 2146 /* currently only 32-bit DMA address space is supported */ 2147 if (size > DMA_BIT_MASK(32) + 1) 2148 return ERR_PTR(-ERANGE); 2149 2150 if (!bitmap_size) 2151 return ERR_PTR(-EINVAL); 2152 2153 if (bitmap_size > PAGE_SIZE) { 2154 extensions = bitmap_size / PAGE_SIZE; 2155 bitmap_size = PAGE_SIZE; 2156 } 2157 2158 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 2159 if (!mapping) 2160 goto err; 2161 2162 mapping->bitmap_size = bitmap_size; 2163 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *), 2164 GFP_KERNEL); 2165 if (!mapping->bitmaps) 2166 goto err2; 2167 2168 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 2169 if (!mapping->bitmaps[0]) 2170 goto err3; 2171 2172 mapping->nr_bitmaps = 1; 2173 mapping->extensions = extensions; 2174 mapping->base = base; 2175 mapping->bits = BITS_PER_BYTE * bitmap_size; 2176 2177 spin_lock_init(&mapping->lock); 2178 2179 mapping->domain = iommu_domain_alloc(bus); 2180 if (!mapping->domain) 2181 goto err4; 2182 2183 kref_init(&mapping->kref); 2184 return mapping; 2185 err4: 2186 kfree(mapping->bitmaps[0]); 2187 err3: 2188 kfree(mapping->bitmaps); 2189 err2: 2190 kfree(mapping); 2191 err: 2192 return ERR_PTR(err); 2193 } 2194 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 2195 2196 static void release_iommu_mapping(struct kref *kref) 2197 { 2198 int i; 2199 struct dma_iommu_mapping *mapping = 2200 container_of(kref, struct dma_iommu_mapping, kref); 2201 2202 iommu_domain_free(mapping->domain); 2203 for (i = 0; i < mapping->nr_bitmaps; i++) 2204 kfree(mapping->bitmaps[i]); 2205 kfree(mapping->bitmaps); 2206 kfree(mapping); 2207 } 2208 2209 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 2210 { 2211 int next_bitmap; 2212 2213 if (mapping->nr_bitmaps >= mapping->extensions) 2214 return -EINVAL; 2215 2216 next_bitmap = mapping->nr_bitmaps; 2217 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 2218 GFP_ATOMIC); 2219 if (!mapping->bitmaps[next_bitmap]) 2220 return -ENOMEM; 2221 2222 mapping->nr_bitmaps++; 2223 2224 return 0; 2225 } 2226 2227 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 2228 { 2229 if (mapping) 2230 kref_put(&mapping->kref, release_iommu_mapping); 2231 } 2232 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 2233 2234 static int __arm_iommu_attach_device(struct device *dev, 2235 struct dma_iommu_mapping *mapping) 2236 { 2237 int err; 2238 2239 err = iommu_attach_device(mapping->domain, dev); 2240 if (err) 2241 return err; 2242 2243 kref_get(&mapping->kref); 2244 to_dma_iommu_mapping(dev) = mapping; 2245 2246 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 2247 return 0; 2248 } 2249 2250 /** 2251 * arm_iommu_attach_device 2252 * @dev: valid struct device pointer 2253 * @mapping: io address space mapping structure (returned from 2254 * arm_iommu_create_mapping) 2255 * 2256 * Attaches specified io address space mapping to the provided device. 2257 * This replaces the dma operations (dma_map_ops pointer) with the 2258 * IOMMU aware version. 2259 * 2260 * More than one client might be attached to the same io address space 2261 * mapping. 2262 */ 2263 int arm_iommu_attach_device(struct device *dev, 2264 struct dma_iommu_mapping *mapping) 2265 { 2266 int err; 2267 2268 err = __arm_iommu_attach_device(dev, mapping); 2269 if (err) 2270 return err; 2271 2272 set_dma_ops(dev, &iommu_ops); 2273 return 0; 2274 } 2275 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 2276 2277 /** 2278 * arm_iommu_detach_device 2279 * @dev: valid struct device pointer 2280 * 2281 * Detaches the provided device from a previously attached map. 2282 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops. 2283 */ 2284 void arm_iommu_detach_device(struct device *dev) 2285 { 2286 struct dma_iommu_mapping *mapping; 2287 2288 mapping = to_dma_iommu_mapping(dev); 2289 if (!mapping) { 2290 dev_warn(dev, "Not attached\n"); 2291 return; 2292 } 2293 2294 iommu_detach_device(mapping->domain, dev); 2295 kref_put(&mapping->kref, release_iommu_mapping); 2296 to_dma_iommu_mapping(dev) = NULL; 2297 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent)); 2298 2299 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 2300 } 2301 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 2302 2303 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) 2304 { 2305 return coherent ? &iommu_coherent_ops : &iommu_ops; 2306 } 2307 2308 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2309 const struct iommu_ops *iommu) 2310 { 2311 struct dma_iommu_mapping *mapping; 2312 2313 if (!iommu) 2314 return false; 2315 2316 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); 2317 if (IS_ERR(mapping)) { 2318 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", 2319 size, dev_name(dev)); 2320 return false; 2321 } 2322 2323 if (__arm_iommu_attach_device(dev, mapping)) { 2324 pr_warn("Failed to attached device %s to IOMMU_mapping\n", 2325 dev_name(dev)); 2326 arm_iommu_release_mapping(mapping); 2327 return false; 2328 } 2329 2330 return true; 2331 } 2332 2333 static void arm_teardown_iommu_dma_ops(struct device *dev) 2334 { 2335 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2336 2337 if (!mapping) 2338 return; 2339 2340 arm_iommu_detach_device(dev); 2341 arm_iommu_release_mapping(mapping); 2342 } 2343 2344 #else 2345 2346 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2347 const struct iommu_ops *iommu) 2348 { 2349 return false; 2350 } 2351 2352 static void arm_teardown_iommu_dma_ops(struct device *dev) { } 2353 2354 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops 2355 2356 #endif /* CONFIG_ARM_DMA_USE_IOMMU */ 2357 2358 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 2359 const struct iommu_ops *iommu, bool coherent) 2360 { 2361 const struct dma_map_ops *dma_ops; 2362 2363 dev->archdata.dma_coherent = coherent; 2364 2365 /* 2366 * Don't override the dma_ops if they have already been set. Ideally 2367 * this should be the only location where dma_ops are set, remove this 2368 * check when all other callers of set_dma_ops will have disappeared. 2369 */ 2370 if (dev->dma_ops) 2371 return; 2372 2373 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) 2374 dma_ops = arm_get_iommu_dma_map_ops(coherent); 2375 else 2376 dma_ops = arm_get_dma_map_ops(coherent); 2377 2378 set_dma_ops(dev, dma_ops); 2379 2380 #ifdef CONFIG_XEN 2381 if (xen_initial_domain()) { 2382 dev->archdata.dev_dma_ops = dev->dma_ops; 2383 dev->dma_ops = xen_dma_ops; 2384 } 2385 #endif 2386 dev->archdata.dma_ops_setup = true; 2387 } 2388 2389 void arch_teardown_dma_ops(struct device *dev) 2390 { 2391 if (!dev->archdata.dma_ops_setup) 2392 return; 2393 2394 arm_teardown_iommu_dma_ops(dev); 2395 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */ 2396 set_dma_ops(dev, NULL); 2397 } 2398