1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/bootmem.h> 13 #include <linux/module.h> 14 #include <linux/mm.h> 15 #include <linux/genalloc.h> 16 #include <linux/gfp.h> 17 #include <linux/errno.h> 18 #include <linux/list.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/dma-contiguous.h> 23 #include <linux/highmem.h> 24 #include <linux/memblock.h> 25 #include <linux/slab.h> 26 #include <linux/iommu.h> 27 #include <linux/io.h> 28 #include <linux/vmalloc.h> 29 #include <linux/sizes.h> 30 #include <linux/cma.h> 31 32 #include <asm/memory.h> 33 #include <asm/highmem.h> 34 #include <asm/cacheflush.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mach/arch.h> 37 #include <asm/dma-iommu.h> 38 #include <asm/mach/map.h> 39 #include <asm/system_info.h> 40 #include <asm/dma-contiguous.h> 41 42 #include "dma.h" 43 #include "mm.h" 44 45 struct arm_dma_alloc_args { 46 struct device *dev; 47 size_t size; 48 gfp_t gfp; 49 pgprot_t prot; 50 const void *caller; 51 bool want_vaddr; 52 int coherent_flag; 53 }; 54 55 struct arm_dma_free_args { 56 struct device *dev; 57 size_t size; 58 void *cpu_addr; 59 struct page *page; 60 bool want_vaddr; 61 }; 62 63 #define NORMAL 0 64 #define COHERENT 1 65 66 struct arm_dma_allocator { 67 void *(*alloc)(struct arm_dma_alloc_args *args, 68 struct page **ret_page); 69 void (*free)(struct arm_dma_free_args *args); 70 }; 71 72 struct arm_dma_buffer { 73 struct list_head list; 74 void *virt; 75 struct arm_dma_allocator *allocator; 76 }; 77 78 static LIST_HEAD(arm_dma_bufs); 79 static DEFINE_SPINLOCK(arm_dma_bufs_lock); 80 81 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) 82 { 83 struct arm_dma_buffer *buf, *found = NULL; 84 unsigned long flags; 85 86 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 87 list_for_each_entry(buf, &arm_dma_bufs, list) { 88 if (buf->virt == virt) { 89 list_del(&buf->list); 90 found = buf; 91 break; 92 } 93 } 94 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 95 return found; 96 } 97 98 /* 99 * The DMA API is built upon the notion of "buffer ownership". A buffer 100 * is either exclusively owned by the CPU (and therefore may be accessed 101 * by it) or exclusively owned by the DMA device. These helper functions 102 * represent the transitions between these two ownership states. 103 * 104 * Note, however, that on later ARMs, this notion does not work due to 105 * speculative prefetches. We model our approach on the assumption that 106 * the CPU does do speculative prefetches, which means we clean caches 107 * before transfers and delay cache invalidation until transfer completion. 108 * 109 */ 110 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 111 size_t, enum dma_data_direction); 112 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 113 size_t, enum dma_data_direction); 114 115 /** 116 * arm_dma_map_page - map a portion of a page for streaming DMA 117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 118 * @page: page that buffer resides in 119 * @offset: offset into page for start of buffer 120 * @size: size of buffer to map 121 * @dir: DMA transfer direction 122 * 123 * Ensure that any data held in the cache is appropriately discarded 124 * or written back. 125 * 126 * The device owns this memory once this call has completed. The CPU 127 * can regain ownership by calling dma_unmap_page(). 128 */ 129 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 130 unsigned long offset, size_t size, enum dma_data_direction dir, 131 unsigned long attrs) 132 { 133 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 134 __dma_page_cpu_to_dev(page, offset, size, dir); 135 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 136 } 137 138 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 139 unsigned long offset, size_t size, enum dma_data_direction dir, 140 unsigned long attrs) 141 { 142 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 143 } 144 145 /** 146 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 147 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 148 * @handle: DMA address of buffer 149 * @size: size of buffer (same as passed to dma_map_page) 150 * @dir: DMA transfer direction (same as passed to dma_map_page) 151 * 152 * Unmap a page streaming mode DMA translation. The handle and size 153 * must match what was provided in the previous dma_map_page() call. 154 * All other usages are undefined. 155 * 156 * After this call, reads by the CPU to the buffer are guaranteed to see 157 * whatever the device wrote there. 158 */ 159 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 160 size_t size, enum dma_data_direction dir, unsigned long attrs) 161 { 162 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 163 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 164 handle & ~PAGE_MASK, size, dir); 165 } 166 167 static void arm_dma_sync_single_for_cpu(struct device *dev, 168 dma_addr_t handle, size_t size, enum dma_data_direction dir) 169 { 170 unsigned int offset = handle & (PAGE_SIZE - 1); 171 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 172 __dma_page_dev_to_cpu(page, offset, size, dir); 173 } 174 175 static void arm_dma_sync_single_for_device(struct device *dev, 176 dma_addr_t handle, size_t size, enum dma_data_direction dir) 177 { 178 unsigned int offset = handle & (PAGE_SIZE - 1); 179 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 180 __dma_page_cpu_to_dev(page, offset, size, dir); 181 } 182 183 static int arm_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 184 { 185 return dma_addr == ARM_MAPPING_ERROR; 186 } 187 188 const struct dma_map_ops arm_dma_ops = { 189 .alloc = arm_dma_alloc, 190 .free = arm_dma_free, 191 .mmap = arm_dma_mmap, 192 .get_sgtable = arm_dma_get_sgtable, 193 .map_page = arm_dma_map_page, 194 .unmap_page = arm_dma_unmap_page, 195 .map_sg = arm_dma_map_sg, 196 .unmap_sg = arm_dma_unmap_sg, 197 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 198 .sync_single_for_device = arm_dma_sync_single_for_device, 199 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 200 .sync_sg_for_device = arm_dma_sync_sg_for_device, 201 .mapping_error = arm_dma_mapping_error, 202 .dma_supported = arm_dma_supported, 203 }; 204 EXPORT_SYMBOL(arm_dma_ops); 205 206 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 207 dma_addr_t *handle, gfp_t gfp, unsigned long attrs); 208 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 209 dma_addr_t handle, unsigned long attrs); 210 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 211 void *cpu_addr, dma_addr_t dma_addr, size_t size, 212 unsigned long attrs); 213 214 const struct dma_map_ops arm_coherent_dma_ops = { 215 .alloc = arm_coherent_dma_alloc, 216 .free = arm_coherent_dma_free, 217 .mmap = arm_coherent_dma_mmap, 218 .get_sgtable = arm_dma_get_sgtable, 219 .map_page = arm_coherent_dma_map_page, 220 .map_sg = arm_dma_map_sg, 221 .mapping_error = arm_dma_mapping_error, 222 .dma_supported = arm_dma_supported, 223 }; 224 EXPORT_SYMBOL(arm_coherent_dma_ops); 225 226 static int __dma_supported(struct device *dev, u64 mask, bool warn) 227 { 228 unsigned long max_dma_pfn; 229 230 /* 231 * If the mask allows for more memory than we can address, 232 * and we actually have that much memory, then we must 233 * indicate that DMA to this device is not supported. 234 */ 235 if (sizeof(mask) != sizeof(dma_addr_t) && 236 mask > (dma_addr_t)~0 && 237 dma_to_pfn(dev, ~0) < max_pfn - 1) { 238 if (warn) { 239 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n", 240 mask); 241 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n"); 242 } 243 return 0; 244 } 245 246 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); 247 248 /* 249 * Translate the device's DMA mask to a PFN limit. This 250 * PFN number includes the page which we can DMA to. 251 */ 252 if (dma_to_pfn(dev, mask) < max_dma_pfn) { 253 if (warn) 254 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", 255 mask, 256 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, 257 max_dma_pfn + 1); 258 return 0; 259 } 260 261 return 1; 262 } 263 264 static u64 get_coherent_dma_mask(struct device *dev) 265 { 266 u64 mask = (u64)DMA_BIT_MASK(32); 267 268 if (dev) { 269 mask = dev->coherent_dma_mask; 270 271 /* 272 * Sanity check the DMA mask - it must be non-zero, and 273 * must be able to be satisfied by a DMA allocation. 274 */ 275 if (mask == 0) { 276 dev_warn(dev, "coherent DMA mask is unset\n"); 277 return 0; 278 } 279 280 if (!__dma_supported(dev, mask, true)) 281 return 0; 282 } 283 284 return mask; 285 } 286 287 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) 288 { 289 /* 290 * Ensure that the allocated pages are zeroed, and that any data 291 * lurking in the kernel direct-mapped region is invalidated. 292 */ 293 if (PageHighMem(page)) { 294 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 295 phys_addr_t end = base + size; 296 while (size > 0) { 297 void *ptr = kmap_atomic(page); 298 memset(ptr, 0, PAGE_SIZE); 299 if (coherent_flag != COHERENT) 300 dmac_flush_range(ptr, ptr + PAGE_SIZE); 301 kunmap_atomic(ptr); 302 page++; 303 size -= PAGE_SIZE; 304 } 305 if (coherent_flag != COHERENT) 306 outer_flush_range(base, end); 307 } else { 308 void *ptr = page_address(page); 309 memset(ptr, 0, size); 310 if (coherent_flag != COHERENT) { 311 dmac_flush_range(ptr, ptr + size); 312 outer_flush_range(__pa(ptr), __pa(ptr) + size); 313 } 314 } 315 } 316 317 /* 318 * Allocate a DMA buffer for 'dev' of size 'size' using the 319 * specified gfp mask. Note that 'size' must be page aligned. 320 */ 321 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, 322 gfp_t gfp, int coherent_flag) 323 { 324 unsigned long order = get_order(size); 325 struct page *page, *p, *e; 326 327 page = alloc_pages(gfp, order); 328 if (!page) 329 return NULL; 330 331 /* 332 * Now split the huge page and free the excess pages 333 */ 334 split_page(page, order); 335 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 336 __free_page(p); 337 338 __dma_clear_buffer(page, size, coherent_flag); 339 340 return page; 341 } 342 343 /* 344 * Free a DMA buffer. 'size' must be page aligned. 345 */ 346 static void __dma_free_buffer(struct page *page, size_t size) 347 { 348 struct page *e = page + (size >> PAGE_SHIFT); 349 350 while (page < e) { 351 __free_page(page); 352 page++; 353 } 354 } 355 356 static void *__alloc_from_contiguous(struct device *dev, size_t size, 357 pgprot_t prot, struct page **ret_page, 358 const void *caller, bool want_vaddr, 359 int coherent_flag, gfp_t gfp); 360 361 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 362 pgprot_t prot, struct page **ret_page, 363 const void *caller, bool want_vaddr); 364 365 static void * 366 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 367 const void *caller) 368 { 369 /* 370 * DMA allocation can be mapped to user space, so lets 371 * set VM_USERMAP flags too. 372 */ 373 return dma_common_contiguous_remap(page, size, 374 VM_ARM_DMA_CONSISTENT | VM_USERMAP, 375 prot, caller); 376 } 377 378 static void __dma_free_remap(void *cpu_addr, size_t size) 379 { 380 dma_common_free_remap(cpu_addr, size, 381 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 382 } 383 384 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 385 static struct gen_pool *atomic_pool __ro_after_init; 386 387 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 388 389 static int __init early_coherent_pool(char *p) 390 { 391 atomic_pool_size = memparse(p, &p); 392 return 0; 393 } 394 early_param("coherent_pool", early_coherent_pool); 395 396 /* 397 * Initialise the coherent pool for atomic allocations. 398 */ 399 static int __init atomic_pool_init(void) 400 { 401 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 402 gfp_t gfp = GFP_KERNEL | GFP_DMA; 403 struct page *page; 404 void *ptr; 405 406 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 407 if (!atomic_pool) 408 goto out; 409 /* 410 * The atomic pool is only used for non-coherent allocations 411 * so we must pass NORMAL for coherent_flag. 412 */ 413 if (dev_get_cma_area(NULL)) 414 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, 415 &page, atomic_pool_init, true, NORMAL, 416 GFP_KERNEL); 417 else 418 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, 419 &page, atomic_pool_init, true); 420 if (ptr) { 421 int ret; 422 423 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, 424 page_to_phys(page), 425 atomic_pool_size, -1); 426 if (ret) 427 goto destroy_genpool; 428 429 gen_pool_set_algo(atomic_pool, 430 gen_pool_first_fit_order_align, 431 NULL); 432 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", 433 atomic_pool_size / 1024); 434 return 0; 435 } 436 437 destroy_genpool: 438 gen_pool_destroy(atomic_pool); 439 atomic_pool = NULL; 440 out: 441 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 442 atomic_pool_size / 1024); 443 return -ENOMEM; 444 } 445 /* 446 * CMA is activated by core_initcall, so we must be called after it. 447 */ 448 postcore_initcall(atomic_pool_init); 449 450 struct dma_contig_early_reserve { 451 phys_addr_t base; 452 unsigned long size; 453 }; 454 455 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 456 457 static int dma_mmu_remap_num __initdata; 458 459 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 460 { 461 dma_mmu_remap[dma_mmu_remap_num].base = base; 462 dma_mmu_remap[dma_mmu_remap_num].size = size; 463 dma_mmu_remap_num++; 464 } 465 466 void __init dma_contiguous_remap(void) 467 { 468 int i; 469 470 if (!dma_mmu_remap_num) 471 return; 472 473 /* call flush_cache_all() since CMA area would be large enough */ 474 flush_cache_all(); 475 for (i = 0; i < dma_mmu_remap_num; i++) { 476 phys_addr_t start = dma_mmu_remap[i].base; 477 phys_addr_t end = start + dma_mmu_remap[i].size; 478 struct map_desc map; 479 unsigned long addr; 480 481 if (end > arm_lowmem_limit) 482 end = arm_lowmem_limit; 483 if (start >= end) 484 continue; 485 486 map.pfn = __phys_to_pfn(start); 487 map.virtual = __phys_to_virt(start); 488 map.length = end - start; 489 map.type = MT_MEMORY_DMA_READY; 490 491 /* 492 * Clear previous low-memory mapping to ensure that the 493 * TLB does not see any conflicting entries, then flush 494 * the TLB of the old entries before creating new mappings. 495 * 496 * This ensures that any speculatively loaded TLB entries 497 * (even though they may be rare) can not cause any problems, 498 * and ensures that this code is architecturally compliant. 499 */ 500 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 501 addr += PMD_SIZE) 502 pmd_clear(pmd_off_k(addr)); 503 504 flush_tlb_kernel_range(__phys_to_virt(start), 505 __phys_to_virt(end)); 506 507 /* 508 * All the memory in CMA region will be on ZONE_MOVABLE. 509 * If that zone is considered as highmem, the memory in CMA 510 * region is also considered as highmem even if it's 511 * physical address belong to lowmem. In this case, 512 * re-mapping isn't required. 513 */ 514 if (!is_highmem_idx(ZONE_MOVABLE)) 515 iotable_init(&map, 1); 516 } 517 } 518 519 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 520 void *data) 521 { 522 struct page *page = virt_to_page(addr); 523 pgprot_t prot = *(pgprot_t *)data; 524 525 set_pte_ext(pte, mk_pte(page, prot), 0); 526 return 0; 527 } 528 529 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 530 { 531 unsigned long start = (unsigned long) page_address(page); 532 unsigned end = start + size; 533 534 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 535 flush_tlb_kernel_range(start, end); 536 } 537 538 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 539 pgprot_t prot, struct page **ret_page, 540 const void *caller, bool want_vaddr) 541 { 542 struct page *page; 543 void *ptr = NULL; 544 /* 545 * __alloc_remap_buffer is only called when the device is 546 * non-coherent 547 */ 548 page = __dma_alloc_buffer(dev, size, gfp, NORMAL); 549 if (!page) 550 return NULL; 551 if (!want_vaddr) 552 goto out; 553 554 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 555 if (!ptr) { 556 __dma_free_buffer(page, size); 557 return NULL; 558 } 559 560 out: 561 *ret_page = page; 562 return ptr; 563 } 564 565 static void *__alloc_from_pool(size_t size, struct page **ret_page) 566 { 567 unsigned long val; 568 void *ptr = NULL; 569 570 if (!atomic_pool) { 571 WARN(1, "coherent pool not initialised!\n"); 572 return NULL; 573 } 574 575 val = gen_pool_alloc(atomic_pool, size); 576 if (val) { 577 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 578 579 *ret_page = phys_to_page(phys); 580 ptr = (void *)val; 581 } 582 583 return ptr; 584 } 585 586 static bool __in_atomic_pool(void *start, size_t size) 587 { 588 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 589 } 590 591 static int __free_from_pool(void *start, size_t size) 592 { 593 if (!__in_atomic_pool(start, size)) 594 return 0; 595 596 gen_pool_free(atomic_pool, (unsigned long)start, size); 597 598 return 1; 599 } 600 601 static void *__alloc_from_contiguous(struct device *dev, size_t size, 602 pgprot_t prot, struct page **ret_page, 603 const void *caller, bool want_vaddr, 604 int coherent_flag, gfp_t gfp) 605 { 606 unsigned long order = get_order(size); 607 size_t count = size >> PAGE_SHIFT; 608 struct page *page; 609 void *ptr = NULL; 610 611 page = dma_alloc_from_contiguous(dev, count, order, gfp); 612 if (!page) 613 return NULL; 614 615 __dma_clear_buffer(page, size, coherent_flag); 616 617 if (!want_vaddr) 618 goto out; 619 620 if (PageHighMem(page)) { 621 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 622 if (!ptr) { 623 dma_release_from_contiguous(dev, page, count); 624 return NULL; 625 } 626 } else { 627 __dma_remap(page, size, prot); 628 ptr = page_address(page); 629 } 630 631 out: 632 *ret_page = page; 633 return ptr; 634 } 635 636 static void __free_from_contiguous(struct device *dev, struct page *page, 637 void *cpu_addr, size_t size, bool want_vaddr) 638 { 639 if (want_vaddr) { 640 if (PageHighMem(page)) 641 __dma_free_remap(cpu_addr, size); 642 else 643 __dma_remap(page, size, PAGE_KERNEL); 644 } 645 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 646 } 647 648 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) 649 { 650 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? 651 pgprot_writecombine(prot) : 652 pgprot_dmacoherent(prot); 653 return prot; 654 } 655 656 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 657 struct page **ret_page) 658 { 659 struct page *page; 660 /* __alloc_simple_buffer is only called when the device is coherent */ 661 page = __dma_alloc_buffer(dev, size, gfp, COHERENT); 662 if (!page) 663 return NULL; 664 665 *ret_page = page; 666 return page_address(page); 667 } 668 669 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, 670 struct page **ret_page) 671 { 672 return __alloc_simple_buffer(args->dev, args->size, args->gfp, 673 ret_page); 674 } 675 676 static void simple_allocator_free(struct arm_dma_free_args *args) 677 { 678 __dma_free_buffer(args->page, args->size); 679 } 680 681 static struct arm_dma_allocator simple_allocator = { 682 .alloc = simple_allocator_alloc, 683 .free = simple_allocator_free, 684 }; 685 686 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, 687 struct page **ret_page) 688 { 689 return __alloc_from_contiguous(args->dev, args->size, args->prot, 690 ret_page, args->caller, 691 args->want_vaddr, args->coherent_flag, 692 args->gfp); 693 } 694 695 static void cma_allocator_free(struct arm_dma_free_args *args) 696 { 697 __free_from_contiguous(args->dev, args->page, args->cpu_addr, 698 args->size, args->want_vaddr); 699 } 700 701 static struct arm_dma_allocator cma_allocator = { 702 .alloc = cma_allocator_alloc, 703 .free = cma_allocator_free, 704 }; 705 706 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, 707 struct page **ret_page) 708 { 709 return __alloc_from_pool(args->size, ret_page); 710 } 711 712 static void pool_allocator_free(struct arm_dma_free_args *args) 713 { 714 __free_from_pool(args->cpu_addr, args->size); 715 } 716 717 static struct arm_dma_allocator pool_allocator = { 718 .alloc = pool_allocator_alloc, 719 .free = pool_allocator_free, 720 }; 721 722 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, 723 struct page **ret_page) 724 { 725 return __alloc_remap_buffer(args->dev, args->size, args->gfp, 726 args->prot, ret_page, args->caller, 727 args->want_vaddr); 728 } 729 730 static void remap_allocator_free(struct arm_dma_free_args *args) 731 { 732 if (args->want_vaddr) 733 __dma_free_remap(args->cpu_addr, args->size); 734 735 __dma_free_buffer(args->page, args->size); 736 } 737 738 static struct arm_dma_allocator remap_allocator = { 739 .alloc = remap_allocator_alloc, 740 .free = remap_allocator_free, 741 }; 742 743 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 744 gfp_t gfp, pgprot_t prot, bool is_coherent, 745 unsigned long attrs, const void *caller) 746 { 747 u64 mask = get_coherent_dma_mask(dev); 748 struct page *page = NULL; 749 void *addr; 750 bool allowblock, cma; 751 struct arm_dma_buffer *buf; 752 struct arm_dma_alloc_args args = { 753 .dev = dev, 754 .size = PAGE_ALIGN(size), 755 .gfp = gfp, 756 .prot = prot, 757 .caller = caller, 758 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 759 .coherent_flag = is_coherent ? COHERENT : NORMAL, 760 }; 761 762 #ifdef CONFIG_DMA_API_DEBUG 763 u64 limit = (mask + 1) & ~mask; 764 if (limit && size >= limit) { 765 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 766 size, mask); 767 return NULL; 768 } 769 #endif 770 771 if (!mask) 772 return NULL; 773 774 buf = kzalloc(sizeof(*buf), 775 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); 776 if (!buf) 777 return NULL; 778 779 if (mask < 0xffffffffULL) 780 gfp |= GFP_DMA; 781 782 /* 783 * Following is a work-around (a.k.a. hack) to prevent pages 784 * with __GFP_COMP being passed to split_page() which cannot 785 * handle them. The real problem is that this flag probably 786 * should be 0 on ARM as it is not supported on this 787 * platform; see CONFIG_HUGETLBFS. 788 */ 789 gfp &= ~(__GFP_COMP); 790 args.gfp = gfp; 791 792 *handle = ARM_MAPPING_ERROR; 793 allowblock = gfpflags_allow_blocking(gfp); 794 cma = allowblock ? dev_get_cma_area(dev) : false; 795 796 if (cma) 797 buf->allocator = &cma_allocator; 798 else if (is_coherent) 799 buf->allocator = &simple_allocator; 800 else if (allowblock) 801 buf->allocator = &remap_allocator; 802 else 803 buf->allocator = &pool_allocator; 804 805 addr = buf->allocator->alloc(&args, &page); 806 807 if (page) { 808 unsigned long flags; 809 810 *handle = pfn_to_dma(dev, page_to_pfn(page)); 811 buf->virt = args.want_vaddr ? addr : page; 812 813 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 814 list_add(&buf->list, &arm_dma_bufs); 815 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 816 } else { 817 kfree(buf); 818 } 819 820 return args.want_vaddr ? addr : page; 821 } 822 823 /* 824 * Allocate DMA-coherent memory space and return both the kernel remapped 825 * virtual and bus address for that space. 826 */ 827 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 828 gfp_t gfp, unsigned long attrs) 829 { 830 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 831 832 return __dma_alloc(dev, size, handle, gfp, prot, false, 833 attrs, __builtin_return_address(0)); 834 } 835 836 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 837 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 838 { 839 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true, 840 attrs, __builtin_return_address(0)); 841 } 842 843 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 844 void *cpu_addr, dma_addr_t dma_addr, size_t size, 845 unsigned long attrs) 846 { 847 int ret; 848 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 849 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 850 unsigned long pfn = dma_to_pfn(dev, dma_addr); 851 unsigned long off = vma->vm_pgoff; 852 853 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 854 return ret; 855 856 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 857 ret = remap_pfn_range(vma, vma->vm_start, 858 pfn + off, 859 vma->vm_end - vma->vm_start, 860 vma->vm_page_prot); 861 } 862 863 return ret; 864 } 865 866 /* 867 * Create userspace mapping for the DMA-coherent memory. 868 */ 869 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 870 void *cpu_addr, dma_addr_t dma_addr, size_t size, 871 unsigned long attrs) 872 { 873 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 874 } 875 876 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 877 void *cpu_addr, dma_addr_t dma_addr, size_t size, 878 unsigned long attrs) 879 { 880 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 881 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 882 } 883 884 /* 885 * Free a buffer as defined by the above mapping. 886 */ 887 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 888 dma_addr_t handle, unsigned long attrs, 889 bool is_coherent) 890 { 891 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 892 struct arm_dma_buffer *buf; 893 struct arm_dma_free_args args = { 894 .dev = dev, 895 .size = PAGE_ALIGN(size), 896 .cpu_addr = cpu_addr, 897 .page = page, 898 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 899 }; 900 901 buf = arm_dma_buffer_find(cpu_addr); 902 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) 903 return; 904 905 buf->allocator->free(&args); 906 kfree(buf); 907 } 908 909 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 910 dma_addr_t handle, unsigned long attrs) 911 { 912 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 913 } 914 915 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 916 dma_addr_t handle, unsigned long attrs) 917 { 918 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 919 } 920 921 /* 922 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems 923 * that the intention is to allow exporting memory allocated via the 924 * coherent DMA APIs through the dma_buf API, which only accepts a 925 * scattertable. This presents a couple of problems: 926 * 1. Not all memory allocated via the coherent DMA APIs is backed by 927 * a struct page 928 * 2. Passing coherent DMA memory into the streaming APIs is not allowed 929 * as we will try to flush the memory through a different alias to that 930 * actually being used (and the flushes are redundant.) 931 */ 932 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 933 void *cpu_addr, dma_addr_t handle, size_t size, 934 unsigned long attrs) 935 { 936 unsigned long pfn = dma_to_pfn(dev, handle); 937 struct page *page; 938 int ret; 939 940 /* If the PFN is not valid, we do not have a struct page */ 941 if (!pfn_valid(pfn)) 942 return -ENXIO; 943 944 page = pfn_to_page(pfn); 945 946 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 947 if (unlikely(ret)) 948 return ret; 949 950 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 951 return 0; 952 } 953 954 static void dma_cache_maint_page(struct page *page, unsigned long offset, 955 size_t size, enum dma_data_direction dir, 956 void (*op)(const void *, size_t, int)) 957 { 958 unsigned long pfn; 959 size_t left = size; 960 961 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 962 offset %= PAGE_SIZE; 963 964 /* 965 * A single sg entry may refer to multiple physically contiguous 966 * pages. But we still need to process highmem pages individually. 967 * If highmem is not configured then the bulk of this loop gets 968 * optimized out. 969 */ 970 do { 971 size_t len = left; 972 void *vaddr; 973 974 page = pfn_to_page(pfn); 975 976 if (PageHighMem(page)) { 977 if (len + offset > PAGE_SIZE) 978 len = PAGE_SIZE - offset; 979 980 if (cache_is_vipt_nonaliasing()) { 981 vaddr = kmap_atomic(page); 982 op(vaddr + offset, len, dir); 983 kunmap_atomic(vaddr); 984 } else { 985 vaddr = kmap_high_get(page); 986 if (vaddr) { 987 op(vaddr + offset, len, dir); 988 kunmap_high(page); 989 } 990 } 991 } else { 992 vaddr = page_address(page) + offset; 993 op(vaddr, len, dir); 994 } 995 offset = 0; 996 pfn++; 997 left -= len; 998 } while (left); 999 } 1000 1001 /* 1002 * Make an area consistent for devices. 1003 * Note: Drivers should NOT use this function directly, as it will break 1004 * platforms with CONFIG_DMABOUNCE. 1005 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 1006 */ 1007 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 1008 size_t size, enum dma_data_direction dir) 1009 { 1010 phys_addr_t paddr; 1011 1012 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 1013 1014 paddr = page_to_phys(page) + off; 1015 if (dir == DMA_FROM_DEVICE) { 1016 outer_inv_range(paddr, paddr + size); 1017 } else { 1018 outer_clean_range(paddr, paddr + size); 1019 } 1020 /* FIXME: non-speculating: flush on bidirectional mappings? */ 1021 } 1022 1023 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 1024 size_t size, enum dma_data_direction dir) 1025 { 1026 phys_addr_t paddr = page_to_phys(page) + off; 1027 1028 /* FIXME: non-speculating: not required */ 1029 /* in any case, don't bother invalidating if DMA to device */ 1030 if (dir != DMA_TO_DEVICE) { 1031 outer_inv_range(paddr, paddr + size); 1032 1033 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 1034 } 1035 1036 /* 1037 * Mark the D-cache clean for these pages to avoid extra flushing. 1038 */ 1039 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 1040 unsigned long pfn; 1041 size_t left = size; 1042 1043 pfn = page_to_pfn(page) + off / PAGE_SIZE; 1044 off %= PAGE_SIZE; 1045 if (off) { 1046 pfn++; 1047 left -= PAGE_SIZE - off; 1048 } 1049 while (left >= PAGE_SIZE) { 1050 page = pfn_to_page(pfn++); 1051 set_bit(PG_dcache_clean, &page->flags); 1052 left -= PAGE_SIZE; 1053 } 1054 } 1055 } 1056 1057 /** 1058 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 1059 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1060 * @sg: list of buffers 1061 * @nents: number of buffers to map 1062 * @dir: DMA transfer direction 1063 * 1064 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1065 * This is the scatter-gather version of the dma_map_single interface. 1066 * Here the scatter gather list elements are each tagged with the 1067 * appropriate dma address and length. They are obtained via 1068 * sg_dma_{address,length}. 1069 * 1070 * Device ownership issues as mentioned for dma_map_single are the same 1071 * here. 1072 */ 1073 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1074 enum dma_data_direction dir, unsigned long attrs) 1075 { 1076 const struct dma_map_ops *ops = get_dma_ops(dev); 1077 struct scatterlist *s; 1078 int i, j; 1079 1080 for_each_sg(sg, s, nents, i) { 1081 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1082 s->dma_length = s->length; 1083 #endif 1084 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 1085 s->length, dir, attrs); 1086 if (dma_mapping_error(dev, s->dma_address)) 1087 goto bad_mapping; 1088 } 1089 return nents; 1090 1091 bad_mapping: 1092 for_each_sg(sg, s, i, j) 1093 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1094 return 0; 1095 } 1096 1097 /** 1098 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1099 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1100 * @sg: list of buffers 1101 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1102 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1103 * 1104 * Unmap a set of streaming mode DMA translations. Again, CPU access 1105 * rules concerning calls here are the same as for dma_unmap_single(). 1106 */ 1107 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1108 enum dma_data_direction dir, unsigned long attrs) 1109 { 1110 const struct dma_map_ops *ops = get_dma_ops(dev); 1111 struct scatterlist *s; 1112 1113 int i; 1114 1115 for_each_sg(sg, s, nents, i) 1116 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1117 } 1118 1119 /** 1120 * arm_dma_sync_sg_for_cpu 1121 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1122 * @sg: list of buffers 1123 * @nents: number of buffers to map (returned from dma_map_sg) 1124 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1125 */ 1126 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1127 int nents, enum dma_data_direction dir) 1128 { 1129 const struct dma_map_ops *ops = get_dma_ops(dev); 1130 struct scatterlist *s; 1131 int i; 1132 1133 for_each_sg(sg, s, nents, i) 1134 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 1135 dir); 1136 } 1137 1138 /** 1139 * arm_dma_sync_sg_for_device 1140 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1141 * @sg: list of buffers 1142 * @nents: number of buffers to map (returned from dma_map_sg) 1143 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1144 */ 1145 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1146 int nents, enum dma_data_direction dir) 1147 { 1148 const struct dma_map_ops *ops = get_dma_ops(dev); 1149 struct scatterlist *s; 1150 int i; 1151 1152 for_each_sg(sg, s, nents, i) 1153 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 1154 dir); 1155 } 1156 1157 /* 1158 * Return whether the given device DMA address mask can be supported 1159 * properly. For example, if your device can only drive the low 24-bits 1160 * during bus mastering, then you would pass 0x00ffffff as the mask 1161 * to this function. 1162 */ 1163 int arm_dma_supported(struct device *dev, u64 mask) 1164 { 1165 return __dma_supported(dev, mask, false); 1166 } 1167 1168 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 1169 1170 static int __init dma_debug_do_init(void) 1171 { 1172 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 1173 return 0; 1174 } 1175 core_initcall(dma_debug_do_init); 1176 1177 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1178 1179 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) 1180 { 1181 int prot = 0; 1182 1183 if (attrs & DMA_ATTR_PRIVILEGED) 1184 prot |= IOMMU_PRIV; 1185 1186 switch (dir) { 1187 case DMA_BIDIRECTIONAL: 1188 return prot | IOMMU_READ | IOMMU_WRITE; 1189 case DMA_TO_DEVICE: 1190 return prot | IOMMU_READ; 1191 case DMA_FROM_DEVICE: 1192 return prot | IOMMU_WRITE; 1193 default: 1194 return prot; 1195 } 1196 } 1197 1198 /* IOMMU */ 1199 1200 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 1201 1202 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1203 size_t size) 1204 { 1205 unsigned int order = get_order(size); 1206 unsigned int align = 0; 1207 unsigned int count, start; 1208 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1209 unsigned long flags; 1210 dma_addr_t iova; 1211 int i; 1212 1213 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1214 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1215 1216 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1217 align = (1 << order) - 1; 1218 1219 spin_lock_irqsave(&mapping->lock, flags); 1220 for (i = 0; i < mapping->nr_bitmaps; i++) { 1221 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1222 mapping->bits, 0, count, align); 1223 1224 if (start > mapping->bits) 1225 continue; 1226 1227 bitmap_set(mapping->bitmaps[i], start, count); 1228 break; 1229 } 1230 1231 /* 1232 * No unused range found. Try to extend the existing mapping 1233 * and perform a second attempt to reserve an IO virtual 1234 * address range of size bytes. 1235 */ 1236 if (i == mapping->nr_bitmaps) { 1237 if (extend_iommu_mapping(mapping)) { 1238 spin_unlock_irqrestore(&mapping->lock, flags); 1239 return ARM_MAPPING_ERROR; 1240 } 1241 1242 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1243 mapping->bits, 0, count, align); 1244 1245 if (start > mapping->bits) { 1246 spin_unlock_irqrestore(&mapping->lock, flags); 1247 return ARM_MAPPING_ERROR; 1248 } 1249 1250 bitmap_set(mapping->bitmaps[i], start, count); 1251 } 1252 spin_unlock_irqrestore(&mapping->lock, flags); 1253 1254 iova = mapping->base + (mapping_size * i); 1255 iova += start << PAGE_SHIFT; 1256 1257 return iova; 1258 } 1259 1260 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1261 dma_addr_t addr, size_t size) 1262 { 1263 unsigned int start, count; 1264 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1265 unsigned long flags; 1266 dma_addr_t bitmap_base; 1267 u32 bitmap_index; 1268 1269 if (!size) 1270 return; 1271 1272 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; 1273 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 1274 1275 bitmap_base = mapping->base + mapping_size * bitmap_index; 1276 1277 start = (addr - bitmap_base) >> PAGE_SHIFT; 1278 1279 if (addr + size > bitmap_base + mapping_size) { 1280 /* 1281 * The address range to be freed reaches into the iova 1282 * range of the next bitmap. This should not happen as 1283 * we don't allow this in __alloc_iova (at the 1284 * moment). 1285 */ 1286 BUG(); 1287 } else 1288 count = size >> PAGE_SHIFT; 1289 1290 spin_lock_irqsave(&mapping->lock, flags); 1291 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 1292 spin_unlock_irqrestore(&mapping->lock, flags); 1293 } 1294 1295 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ 1296 static const int iommu_order_array[] = { 9, 8, 4, 0 }; 1297 1298 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1299 gfp_t gfp, unsigned long attrs, 1300 int coherent_flag) 1301 { 1302 struct page **pages; 1303 int count = size >> PAGE_SHIFT; 1304 int array_size = count * sizeof(struct page *); 1305 int i = 0; 1306 int order_idx = 0; 1307 1308 if (array_size <= PAGE_SIZE) 1309 pages = kzalloc(array_size, GFP_KERNEL); 1310 else 1311 pages = vzalloc(array_size); 1312 if (!pages) 1313 return NULL; 1314 1315 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) 1316 { 1317 unsigned long order = get_order(size); 1318 struct page *page; 1319 1320 page = dma_alloc_from_contiguous(dev, count, order, gfp); 1321 if (!page) 1322 goto error; 1323 1324 __dma_clear_buffer(page, size, coherent_flag); 1325 1326 for (i = 0; i < count; i++) 1327 pages[i] = page + i; 1328 1329 return pages; 1330 } 1331 1332 /* Go straight to 4K chunks if caller says it's OK. */ 1333 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 1334 order_idx = ARRAY_SIZE(iommu_order_array) - 1; 1335 1336 /* 1337 * IOMMU can map any pages, so himem can also be used here 1338 */ 1339 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1340 1341 while (count) { 1342 int j, order; 1343 1344 order = iommu_order_array[order_idx]; 1345 1346 /* Drop down when we get small */ 1347 if (__fls(count) < order) { 1348 order_idx++; 1349 continue; 1350 } 1351 1352 if (order) { 1353 /* See if it's easy to allocate a high-order chunk */ 1354 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); 1355 1356 /* Go down a notch at first sign of pressure */ 1357 if (!pages[i]) { 1358 order_idx++; 1359 continue; 1360 } 1361 } else { 1362 pages[i] = alloc_pages(gfp, 0); 1363 if (!pages[i]) 1364 goto error; 1365 } 1366 1367 if (order) { 1368 split_page(pages[i], order); 1369 j = 1 << order; 1370 while (--j) 1371 pages[i + j] = pages[i] + j; 1372 } 1373 1374 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); 1375 i += 1 << order; 1376 count -= 1 << order; 1377 } 1378 1379 return pages; 1380 error: 1381 while (i--) 1382 if (pages[i]) 1383 __free_pages(pages[i], 0); 1384 kvfree(pages); 1385 return NULL; 1386 } 1387 1388 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1389 size_t size, unsigned long attrs) 1390 { 1391 int count = size >> PAGE_SHIFT; 1392 int i; 1393 1394 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 1395 dma_release_from_contiguous(dev, pages[0], count); 1396 } else { 1397 for (i = 0; i < count; i++) 1398 if (pages[i]) 1399 __free_pages(pages[i], 0); 1400 } 1401 1402 kvfree(pages); 1403 return 0; 1404 } 1405 1406 /* 1407 * Create a CPU mapping for a specified pages 1408 */ 1409 static void * 1410 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1411 const void *caller) 1412 { 1413 return dma_common_pages_remap(pages, size, 1414 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller); 1415 } 1416 1417 /* 1418 * Create a mapping in device IO address space for specified pages 1419 */ 1420 static dma_addr_t 1421 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, 1422 unsigned long attrs) 1423 { 1424 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1425 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1426 dma_addr_t dma_addr, iova; 1427 int i; 1428 1429 dma_addr = __alloc_iova(mapping, size); 1430 if (dma_addr == ARM_MAPPING_ERROR) 1431 return dma_addr; 1432 1433 iova = dma_addr; 1434 for (i = 0; i < count; ) { 1435 int ret; 1436 1437 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1438 phys_addr_t phys = page_to_phys(pages[i]); 1439 unsigned int len, j; 1440 1441 for (j = i + 1; j < count; j++, next_pfn++) 1442 if (page_to_pfn(pages[j]) != next_pfn) 1443 break; 1444 1445 len = (j - i) << PAGE_SHIFT; 1446 ret = iommu_map(mapping->domain, iova, phys, len, 1447 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs)); 1448 if (ret < 0) 1449 goto fail; 1450 iova += len; 1451 i = j; 1452 } 1453 return dma_addr; 1454 fail: 1455 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1456 __free_iova(mapping, dma_addr, size); 1457 return ARM_MAPPING_ERROR; 1458 } 1459 1460 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1461 { 1462 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1463 1464 /* 1465 * add optional in-page offset from iova to size and align 1466 * result to page size 1467 */ 1468 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1469 iova &= PAGE_MASK; 1470 1471 iommu_unmap(mapping->domain, iova, size); 1472 __free_iova(mapping, iova, size); 1473 return 0; 1474 } 1475 1476 static struct page **__atomic_get_pages(void *addr) 1477 { 1478 struct page *page; 1479 phys_addr_t phys; 1480 1481 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); 1482 page = phys_to_page(phys); 1483 1484 return (struct page **)page; 1485 } 1486 1487 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) 1488 { 1489 struct vm_struct *area; 1490 1491 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1492 return __atomic_get_pages(cpu_addr); 1493 1494 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1495 return cpu_addr; 1496 1497 area = find_vm_area(cpu_addr); 1498 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1499 return area->pages; 1500 return NULL; 1501 } 1502 1503 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, 1504 dma_addr_t *handle, int coherent_flag, 1505 unsigned long attrs) 1506 { 1507 struct page *page; 1508 void *addr; 1509 1510 if (coherent_flag == COHERENT) 1511 addr = __alloc_simple_buffer(dev, size, gfp, &page); 1512 else 1513 addr = __alloc_from_pool(size, &page); 1514 if (!addr) 1515 return NULL; 1516 1517 *handle = __iommu_create_mapping(dev, &page, size, attrs); 1518 if (*handle == ARM_MAPPING_ERROR) 1519 goto err_mapping; 1520 1521 return addr; 1522 1523 err_mapping: 1524 __free_from_pool(addr, size); 1525 return NULL; 1526 } 1527 1528 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1529 dma_addr_t handle, size_t size, int coherent_flag) 1530 { 1531 __iommu_remove_mapping(dev, handle, size); 1532 if (coherent_flag == COHERENT) 1533 __dma_free_buffer(virt_to_page(cpu_addr), size); 1534 else 1535 __free_from_pool(cpu_addr, size); 1536 } 1537 1538 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size, 1539 dma_addr_t *handle, gfp_t gfp, unsigned long attrs, 1540 int coherent_flag) 1541 { 1542 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1543 struct page **pages; 1544 void *addr = NULL; 1545 1546 *handle = ARM_MAPPING_ERROR; 1547 size = PAGE_ALIGN(size); 1548 1549 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp)) 1550 return __iommu_alloc_simple(dev, size, gfp, handle, 1551 coherent_flag, attrs); 1552 1553 /* 1554 * Following is a work-around (a.k.a. hack) to prevent pages 1555 * with __GFP_COMP being passed to split_page() which cannot 1556 * handle them. The real problem is that this flag probably 1557 * should be 0 on ARM as it is not supported on this 1558 * platform; see CONFIG_HUGETLBFS. 1559 */ 1560 gfp &= ~(__GFP_COMP); 1561 1562 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); 1563 if (!pages) 1564 return NULL; 1565 1566 *handle = __iommu_create_mapping(dev, pages, size, attrs); 1567 if (*handle == ARM_MAPPING_ERROR) 1568 goto err_buffer; 1569 1570 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1571 return pages; 1572 1573 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1574 __builtin_return_address(0)); 1575 if (!addr) 1576 goto err_mapping; 1577 1578 return addr; 1579 1580 err_mapping: 1581 __iommu_remove_mapping(dev, *handle, size); 1582 err_buffer: 1583 __iommu_free_buffer(dev, pages, size, attrs); 1584 return NULL; 1585 } 1586 1587 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1588 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1589 { 1590 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL); 1591 } 1592 1593 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size, 1594 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1595 { 1596 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT); 1597 } 1598 1599 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1600 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1601 unsigned long attrs) 1602 { 1603 unsigned long uaddr = vma->vm_start; 1604 unsigned long usize = vma->vm_end - vma->vm_start; 1605 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1606 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1607 unsigned long off = vma->vm_pgoff; 1608 1609 if (!pages) 1610 return -ENXIO; 1611 1612 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off) 1613 return -ENXIO; 1614 1615 pages += off; 1616 1617 do { 1618 int ret = vm_insert_page(vma, uaddr, *pages++); 1619 if (ret) { 1620 pr_err("Remapping memory failed: %d\n", ret); 1621 return ret; 1622 } 1623 uaddr += PAGE_SIZE; 1624 usize -= PAGE_SIZE; 1625 } while (usize > 0); 1626 1627 return 0; 1628 } 1629 static int arm_iommu_mmap_attrs(struct device *dev, 1630 struct vm_area_struct *vma, void *cpu_addr, 1631 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1632 { 1633 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1634 1635 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1636 } 1637 1638 static int arm_coherent_iommu_mmap_attrs(struct device *dev, 1639 struct vm_area_struct *vma, void *cpu_addr, 1640 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1641 { 1642 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1643 } 1644 1645 /* 1646 * free a page as defined by the above mapping. 1647 * Must not be called with IRQs disabled. 1648 */ 1649 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1650 dma_addr_t handle, unsigned long attrs, int coherent_flag) 1651 { 1652 struct page **pages; 1653 size = PAGE_ALIGN(size); 1654 1655 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { 1656 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); 1657 return; 1658 } 1659 1660 pages = __iommu_get_pages(cpu_addr, attrs); 1661 if (!pages) { 1662 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1663 return; 1664 } 1665 1666 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) { 1667 dma_common_free_remap(cpu_addr, size, 1668 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 1669 } 1670 1671 __iommu_remove_mapping(dev, handle, size); 1672 __iommu_free_buffer(dev, pages, size, attrs); 1673 } 1674 1675 void arm_iommu_free_attrs(struct device *dev, size_t size, 1676 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1677 { 1678 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL); 1679 } 1680 1681 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size, 1682 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1683 { 1684 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT); 1685 } 1686 1687 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1688 void *cpu_addr, dma_addr_t dma_addr, 1689 size_t size, unsigned long attrs) 1690 { 1691 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1692 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1693 1694 if (!pages) 1695 return -ENXIO; 1696 1697 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1698 GFP_KERNEL); 1699 } 1700 1701 /* 1702 * Map a part of the scatter-gather list into contiguous io address space 1703 */ 1704 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1705 size_t size, dma_addr_t *handle, 1706 enum dma_data_direction dir, unsigned long attrs, 1707 bool is_coherent) 1708 { 1709 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1710 dma_addr_t iova, iova_base; 1711 int ret = 0; 1712 unsigned int count; 1713 struct scatterlist *s; 1714 int prot; 1715 1716 size = PAGE_ALIGN(size); 1717 *handle = ARM_MAPPING_ERROR; 1718 1719 iova_base = iova = __alloc_iova(mapping, size); 1720 if (iova == ARM_MAPPING_ERROR) 1721 return -ENOMEM; 1722 1723 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1724 phys_addr_t phys = page_to_phys(sg_page(s)); 1725 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1726 1727 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1728 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1729 1730 prot = __dma_info_to_prot(dir, attrs); 1731 1732 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1733 if (ret < 0) 1734 goto fail; 1735 count += len >> PAGE_SHIFT; 1736 iova += len; 1737 } 1738 *handle = iova_base; 1739 1740 return 0; 1741 fail: 1742 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1743 __free_iova(mapping, iova_base, size); 1744 return ret; 1745 } 1746 1747 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1748 enum dma_data_direction dir, unsigned long attrs, 1749 bool is_coherent) 1750 { 1751 struct scatterlist *s = sg, *dma = sg, *start = sg; 1752 int i, count = 0; 1753 unsigned int offset = s->offset; 1754 unsigned int size = s->offset + s->length; 1755 unsigned int max = dma_get_max_seg_size(dev); 1756 1757 for (i = 1; i < nents; i++) { 1758 s = sg_next(s); 1759 1760 s->dma_address = ARM_MAPPING_ERROR; 1761 s->dma_length = 0; 1762 1763 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1764 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1765 dir, attrs, is_coherent) < 0) 1766 goto bad_mapping; 1767 1768 dma->dma_address += offset; 1769 dma->dma_length = size - offset; 1770 1771 size = offset = s->offset; 1772 start = s; 1773 dma = sg_next(dma); 1774 count += 1; 1775 } 1776 size += s->length; 1777 } 1778 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1779 is_coherent) < 0) 1780 goto bad_mapping; 1781 1782 dma->dma_address += offset; 1783 dma->dma_length = size - offset; 1784 1785 return count+1; 1786 1787 bad_mapping: 1788 for_each_sg(sg, s, count, i) 1789 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1790 return 0; 1791 } 1792 1793 /** 1794 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1795 * @dev: valid struct device pointer 1796 * @sg: list of buffers 1797 * @nents: number of buffers to map 1798 * @dir: DMA transfer direction 1799 * 1800 * Map a set of i/o coherent buffers described by scatterlist in streaming 1801 * mode for DMA. The scatter gather list elements are merged together (if 1802 * possible) and tagged with the appropriate dma address and length. They are 1803 * obtained via sg_dma_{address,length}. 1804 */ 1805 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1806 int nents, enum dma_data_direction dir, unsigned long attrs) 1807 { 1808 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1809 } 1810 1811 /** 1812 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1813 * @dev: valid struct device pointer 1814 * @sg: list of buffers 1815 * @nents: number of buffers to map 1816 * @dir: DMA transfer direction 1817 * 1818 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1819 * The scatter gather list elements are merged together (if possible) and 1820 * tagged with the appropriate dma address and length. They are obtained via 1821 * sg_dma_{address,length}. 1822 */ 1823 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1824 int nents, enum dma_data_direction dir, unsigned long attrs) 1825 { 1826 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1827 } 1828 1829 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1830 int nents, enum dma_data_direction dir, 1831 unsigned long attrs, bool is_coherent) 1832 { 1833 struct scatterlist *s; 1834 int i; 1835 1836 for_each_sg(sg, s, nents, i) { 1837 if (sg_dma_len(s)) 1838 __iommu_remove_mapping(dev, sg_dma_address(s), 1839 sg_dma_len(s)); 1840 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1841 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1842 s->length, dir); 1843 } 1844 } 1845 1846 /** 1847 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1848 * @dev: valid struct device pointer 1849 * @sg: list of buffers 1850 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1851 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1852 * 1853 * Unmap a set of streaming mode DMA translations. Again, CPU access 1854 * rules concerning calls here are the same as for dma_unmap_single(). 1855 */ 1856 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1857 int nents, enum dma_data_direction dir, 1858 unsigned long attrs) 1859 { 1860 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1861 } 1862 1863 /** 1864 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1865 * @dev: valid struct device pointer 1866 * @sg: list of buffers 1867 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1868 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1869 * 1870 * Unmap a set of streaming mode DMA translations. Again, CPU access 1871 * rules concerning calls here are the same as for dma_unmap_single(). 1872 */ 1873 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1874 enum dma_data_direction dir, 1875 unsigned long attrs) 1876 { 1877 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1878 } 1879 1880 /** 1881 * arm_iommu_sync_sg_for_cpu 1882 * @dev: valid struct device pointer 1883 * @sg: list of buffers 1884 * @nents: number of buffers to map (returned from dma_map_sg) 1885 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1886 */ 1887 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1888 int nents, enum dma_data_direction dir) 1889 { 1890 struct scatterlist *s; 1891 int i; 1892 1893 for_each_sg(sg, s, nents, i) 1894 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1895 1896 } 1897 1898 /** 1899 * arm_iommu_sync_sg_for_device 1900 * @dev: valid struct device pointer 1901 * @sg: list of buffers 1902 * @nents: number of buffers to map (returned from dma_map_sg) 1903 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1904 */ 1905 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1906 int nents, enum dma_data_direction dir) 1907 { 1908 struct scatterlist *s; 1909 int i; 1910 1911 for_each_sg(sg, s, nents, i) 1912 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1913 } 1914 1915 1916 /** 1917 * arm_coherent_iommu_map_page 1918 * @dev: valid struct device pointer 1919 * @page: page that buffer resides in 1920 * @offset: offset into page for start of buffer 1921 * @size: size of buffer to map 1922 * @dir: DMA transfer direction 1923 * 1924 * Coherent IOMMU aware version of arm_dma_map_page() 1925 */ 1926 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1927 unsigned long offset, size_t size, enum dma_data_direction dir, 1928 unsigned long attrs) 1929 { 1930 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1931 dma_addr_t dma_addr; 1932 int ret, prot, len = PAGE_ALIGN(size + offset); 1933 1934 dma_addr = __alloc_iova(mapping, len); 1935 if (dma_addr == ARM_MAPPING_ERROR) 1936 return dma_addr; 1937 1938 prot = __dma_info_to_prot(dir, attrs); 1939 1940 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1941 if (ret < 0) 1942 goto fail; 1943 1944 return dma_addr + offset; 1945 fail: 1946 __free_iova(mapping, dma_addr, len); 1947 return ARM_MAPPING_ERROR; 1948 } 1949 1950 /** 1951 * arm_iommu_map_page 1952 * @dev: valid struct device pointer 1953 * @page: page that buffer resides in 1954 * @offset: offset into page for start of buffer 1955 * @size: size of buffer to map 1956 * @dir: DMA transfer direction 1957 * 1958 * IOMMU aware version of arm_dma_map_page() 1959 */ 1960 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1961 unsigned long offset, size_t size, enum dma_data_direction dir, 1962 unsigned long attrs) 1963 { 1964 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1965 __dma_page_cpu_to_dev(page, offset, size, dir); 1966 1967 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1968 } 1969 1970 /** 1971 * arm_coherent_iommu_unmap_page 1972 * @dev: valid struct device pointer 1973 * @handle: DMA address of buffer 1974 * @size: size of buffer (same as passed to dma_map_page) 1975 * @dir: DMA transfer direction (same as passed to dma_map_page) 1976 * 1977 * Coherent IOMMU aware version of arm_dma_unmap_page() 1978 */ 1979 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1980 size_t size, enum dma_data_direction dir, unsigned long attrs) 1981 { 1982 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1983 dma_addr_t iova = handle & PAGE_MASK; 1984 int offset = handle & ~PAGE_MASK; 1985 int len = PAGE_ALIGN(size + offset); 1986 1987 if (!iova) 1988 return; 1989 1990 iommu_unmap(mapping->domain, iova, len); 1991 __free_iova(mapping, iova, len); 1992 } 1993 1994 /** 1995 * arm_iommu_unmap_page 1996 * @dev: valid struct device pointer 1997 * @handle: DMA address of buffer 1998 * @size: size of buffer (same as passed to dma_map_page) 1999 * @dir: DMA transfer direction (same as passed to dma_map_page) 2000 * 2001 * IOMMU aware version of arm_dma_unmap_page() 2002 */ 2003 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 2004 size_t size, enum dma_data_direction dir, unsigned long attrs) 2005 { 2006 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2007 dma_addr_t iova = handle & PAGE_MASK; 2008 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2009 int offset = handle & ~PAGE_MASK; 2010 int len = PAGE_ALIGN(size + offset); 2011 2012 if (!iova) 2013 return; 2014 2015 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 2016 __dma_page_dev_to_cpu(page, offset, size, dir); 2017 2018 iommu_unmap(mapping->domain, iova, len); 2019 __free_iova(mapping, iova, len); 2020 } 2021 2022 /** 2023 * arm_iommu_map_resource - map a device resource for DMA 2024 * @dev: valid struct device pointer 2025 * @phys_addr: physical address of resource 2026 * @size: size of resource to map 2027 * @dir: DMA transfer direction 2028 */ 2029 static dma_addr_t arm_iommu_map_resource(struct device *dev, 2030 phys_addr_t phys_addr, size_t size, 2031 enum dma_data_direction dir, unsigned long attrs) 2032 { 2033 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2034 dma_addr_t dma_addr; 2035 int ret, prot; 2036 phys_addr_t addr = phys_addr & PAGE_MASK; 2037 unsigned int offset = phys_addr & ~PAGE_MASK; 2038 size_t len = PAGE_ALIGN(size + offset); 2039 2040 dma_addr = __alloc_iova(mapping, len); 2041 if (dma_addr == ARM_MAPPING_ERROR) 2042 return dma_addr; 2043 2044 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; 2045 2046 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot); 2047 if (ret < 0) 2048 goto fail; 2049 2050 return dma_addr + offset; 2051 fail: 2052 __free_iova(mapping, dma_addr, len); 2053 return ARM_MAPPING_ERROR; 2054 } 2055 2056 /** 2057 * arm_iommu_unmap_resource - unmap a device DMA resource 2058 * @dev: valid struct device pointer 2059 * @dma_handle: DMA address to resource 2060 * @size: size of resource to map 2061 * @dir: DMA transfer direction 2062 */ 2063 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, 2064 size_t size, enum dma_data_direction dir, 2065 unsigned long attrs) 2066 { 2067 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2068 dma_addr_t iova = dma_handle & PAGE_MASK; 2069 unsigned int offset = dma_handle & ~PAGE_MASK; 2070 size_t len = PAGE_ALIGN(size + offset); 2071 2072 if (!iova) 2073 return; 2074 2075 iommu_unmap(mapping->domain, iova, len); 2076 __free_iova(mapping, iova, len); 2077 } 2078 2079 static void arm_iommu_sync_single_for_cpu(struct device *dev, 2080 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2081 { 2082 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2083 dma_addr_t iova = handle & PAGE_MASK; 2084 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2085 unsigned int offset = handle & ~PAGE_MASK; 2086 2087 if (!iova) 2088 return; 2089 2090 __dma_page_dev_to_cpu(page, offset, size, dir); 2091 } 2092 2093 static void arm_iommu_sync_single_for_device(struct device *dev, 2094 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2095 { 2096 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2097 dma_addr_t iova = handle & PAGE_MASK; 2098 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2099 unsigned int offset = handle & ~PAGE_MASK; 2100 2101 if (!iova) 2102 return; 2103 2104 __dma_page_cpu_to_dev(page, offset, size, dir); 2105 } 2106 2107 const struct dma_map_ops iommu_ops = { 2108 .alloc = arm_iommu_alloc_attrs, 2109 .free = arm_iommu_free_attrs, 2110 .mmap = arm_iommu_mmap_attrs, 2111 .get_sgtable = arm_iommu_get_sgtable, 2112 2113 .map_page = arm_iommu_map_page, 2114 .unmap_page = arm_iommu_unmap_page, 2115 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 2116 .sync_single_for_device = arm_iommu_sync_single_for_device, 2117 2118 .map_sg = arm_iommu_map_sg, 2119 .unmap_sg = arm_iommu_unmap_sg, 2120 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 2121 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 2122 2123 .map_resource = arm_iommu_map_resource, 2124 .unmap_resource = arm_iommu_unmap_resource, 2125 2126 .mapping_error = arm_dma_mapping_error, 2127 .dma_supported = arm_dma_supported, 2128 }; 2129 2130 const struct dma_map_ops iommu_coherent_ops = { 2131 .alloc = arm_coherent_iommu_alloc_attrs, 2132 .free = arm_coherent_iommu_free_attrs, 2133 .mmap = arm_coherent_iommu_mmap_attrs, 2134 .get_sgtable = arm_iommu_get_sgtable, 2135 2136 .map_page = arm_coherent_iommu_map_page, 2137 .unmap_page = arm_coherent_iommu_unmap_page, 2138 2139 .map_sg = arm_coherent_iommu_map_sg, 2140 .unmap_sg = arm_coherent_iommu_unmap_sg, 2141 2142 .map_resource = arm_iommu_map_resource, 2143 .unmap_resource = arm_iommu_unmap_resource, 2144 2145 .mapping_error = arm_dma_mapping_error, 2146 .dma_supported = arm_dma_supported, 2147 }; 2148 2149 /** 2150 * arm_iommu_create_mapping 2151 * @bus: pointer to the bus holding the client device (for IOMMU calls) 2152 * @base: start address of the valid IO address space 2153 * @size: maximum size of the valid IO address space 2154 * 2155 * Creates a mapping structure which holds information about used/unused 2156 * IO address ranges, which is required to perform memory allocation and 2157 * mapping with IOMMU aware functions. 2158 * 2159 * The client device need to be attached to the mapping with 2160 * arm_iommu_attach_device function. 2161 */ 2162 struct dma_iommu_mapping * 2163 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) 2164 { 2165 unsigned int bits = size >> PAGE_SHIFT; 2166 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 2167 struct dma_iommu_mapping *mapping; 2168 int extensions = 1; 2169 int err = -ENOMEM; 2170 2171 /* currently only 32-bit DMA address space is supported */ 2172 if (size > DMA_BIT_MASK(32) + 1) 2173 return ERR_PTR(-ERANGE); 2174 2175 if (!bitmap_size) 2176 return ERR_PTR(-EINVAL); 2177 2178 if (bitmap_size > PAGE_SIZE) { 2179 extensions = bitmap_size / PAGE_SIZE; 2180 bitmap_size = PAGE_SIZE; 2181 } 2182 2183 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 2184 if (!mapping) 2185 goto err; 2186 2187 mapping->bitmap_size = bitmap_size; 2188 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *), 2189 GFP_KERNEL); 2190 if (!mapping->bitmaps) 2191 goto err2; 2192 2193 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 2194 if (!mapping->bitmaps[0]) 2195 goto err3; 2196 2197 mapping->nr_bitmaps = 1; 2198 mapping->extensions = extensions; 2199 mapping->base = base; 2200 mapping->bits = BITS_PER_BYTE * bitmap_size; 2201 2202 spin_lock_init(&mapping->lock); 2203 2204 mapping->domain = iommu_domain_alloc(bus); 2205 if (!mapping->domain) 2206 goto err4; 2207 2208 kref_init(&mapping->kref); 2209 return mapping; 2210 err4: 2211 kfree(mapping->bitmaps[0]); 2212 err3: 2213 kfree(mapping->bitmaps); 2214 err2: 2215 kfree(mapping); 2216 err: 2217 return ERR_PTR(err); 2218 } 2219 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 2220 2221 static void release_iommu_mapping(struct kref *kref) 2222 { 2223 int i; 2224 struct dma_iommu_mapping *mapping = 2225 container_of(kref, struct dma_iommu_mapping, kref); 2226 2227 iommu_domain_free(mapping->domain); 2228 for (i = 0; i < mapping->nr_bitmaps; i++) 2229 kfree(mapping->bitmaps[i]); 2230 kfree(mapping->bitmaps); 2231 kfree(mapping); 2232 } 2233 2234 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 2235 { 2236 int next_bitmap; 2237 2238 if (mapping->nr_bitmaps >= mapping->extensions) 2239 return -EINVAL; 2240 2241 next_bitmap = mapping->nr_bitmaps; 2242 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 2243 GFP_ATOMIC); 2244 if (!mapping->bitmaps[next_bitmap]) 2245 return -ENOMEM; 2246 2247 mapping->nr_bitmaps++; 2248 2249 return 0; 2250 } 2251 2252 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 2253 { 2254 if (mapping) 2255 kref_put(&mapping->kref, release_iommu_mapping); 2256 } 2257 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 2258 2259 static int __arm_iommu_attach_device(struct device *dev, 2260 struct dma_iommu_mapping *mapping) 2261 { 2262 int err; 2263 2264 err = iommu_attach_device(mapping->domain, dev); 2265 if (err) 2266 return err; 2267 2268 kref_get(&mapping->kref); 2269 to_dma_iommu_mapping(dev) = mapping; 2270 2271 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 2272 return 0; 2273 } 2274 2275 /** 2276 * arm_iommu_attach_device 2277 * @dev: valid struct device pointer 2278 * @mapping: io address space mapping structure (returned from 2279 * arm_iommu_create_mapping) 2280 * 2281 * Attaches specified io address space mapping to the provided device. 2282 * This replaces the dma operations (dma_map_ops pointer) with the 2283 * IOMMU aware version. 2284 * 2285 * More than one client might be attached to the same io address space 2286 * mapping. 2287 */ 2288 int arm_iommu_attach_device(struct device *dev, 2289 struct dma_iommu_mapping *mapping) 2290 { 2291 int err; 2292 2293 err = __arm_iommu_attach_device(dev, mapping); 2294 if (err) 2295 return err; 2296 2297 set_dma_ops(dev, &iommu_ops); 2298 return 0; 2299 } 2300 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 2301 2302 /** 2303 * arm_iommu_detach_device 2304 * @dev: valid struct device pointer 2305 * 2306 * Detaches the provided device from a previously attached map. 2307 * This voids the dma operations (dma_map_ops pointer) 2308 */ 2309 void arm_iommu_detach_device(struct device *dev) 2310 { 2311 struct dma_iommu_mapping *mapping; 2312 2313 mapping = to_dma_iommu_mapping(dev); 2314 if (!mapping) { 2315 dev_warn(dev, "Not attached\n"); 2316 return; 2317 } 2318 2319 iommu_detach_device(mapping->domain, dev); 2320 kref_put(&mapping->kref, release_iommu_mapping); 2321 to_dma_iommu_mapping(dev) = NULL; 2322 set_dma_ops(dev, NULL); 2323 2324 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 2325 } 2326 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 2327 2328 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) 2329 { 2330 return coherent ? &iommu_coherent_ops : &iommu_ops; 2331 } 2332 2333 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2334 const struct iommu_ops *iommu) 2335 { 2336 struct dma_iommu_mapping *mapping; 2337 2338 if (!iommu) 2339 return false; 2340 2341 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); 2342 if (IS_ERR(mapping)) { 2343 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", 2344 size, dev_name(dev)); 2345 return false; 2346 } 2347 2348 if (__arm_iommu_attach_device(dev, mapping)) { 2349 pr_warn("Failed to attached device %s to IOMMU_mapping\n", 2350 dev_name(dev)); 2351 arm_iommu_release_mapping(mapping); 2352 return false; 2353 } 2354 2355 return true; 2356 } 2357 2358 static void arm_teardown_iommu_dma_ops(struct device *dev) 2359 { 2360 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2361 2362 if (!mapping) 2363 return; 2364 2365 arm_iommu_detach_device(dev); 2366 arm_iommu_release_mapping(mapping); 2367 } 2368 2369 #else 2370 2371 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2372 const struct iommu_ops *iommu) 2373 { 2374 return false; 2375 } 2376 2377 static void arm_teardown_iommu_dma_ops(struct device *dev) { } 2378 2379 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops 2380 2381 #endif /* CONFIG_ARM_DMA_USE_IOMMU */ 2382 2383 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent) 2384 { 2385 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; 2386 } 2387 2388 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 2389 const struct iommu_ops *iommu, bool coherent) 2390 { 2391 const struct dma_map_ops *dma_ops; 2392 2393 dev->archdata.dma_coherent = coherent; 2394 2395 /* 2396 * Don't override the dma_ops if they have already been set. Ideally 2397 * this should be the only location where dma_ops are set, remove this 2398 * check when all other callers of set_dma_ops will have disappeared. 2399 */ 2400 if (dev->dma_ops) 2401 return; 2402 2403 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) 2404 dma_ops = arm_get_iommu_dma_map_ops(coherent); 2405 else 2406 dma_ops = arm_get_dma_map_ops(coherent); 2407 2408 set_dma_ops(dev, dma_ops); 2409 2410 #ifdef CONFIG_XEN 2411 if (xen_initial_domain()) { 2412 dev->archdata.dev_dma_ops = dev->dma_ops; 2413 dev->dma_ops = xen_dma_ops; 2414 } 2415 #endif 2416 dev->archdata.dma_ops_setup = true; 2417 } 2418 2419 void arch_teardown_dma_ops(struct device *dev) 2420 { 2421 if (!dev->archdata.dma_ops_setup) 2422 return; 2423 2424 arm_teardown_iommu_dma_ops(dev); 2425 } 2426