1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/dma-mapping.c 4 * 5 * Copyright (C) 2000-2004 Russell King 6 * 7 * DMA uncached mapping support. 8 */ 9 #include <linux/module.h> 10 #include <linux/mm.h> 11 #include <linux/genalloc.h> 12 #include <linux/gfp.h> 13 #include <linux/errno.h> 14 #include <linux/list.h> 15 #include <linux/init.h> 16 #include <linux/device.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/dma-contiguous.h> 19 #include <linux/highmem.h> 20 #include <linux/memblock.h> 21 #include <linux/slab.h> 22 #include <linux/iommu.h> 23 #include <linux/io.h> 24 #include <linux/vmalloc.h> 25 #include <linux/sizes.h> 26 #include <linux/cma.h> 27 28 #include <asm/memory.h> 29 #include <asm/highmem.h> 30 #include <asm/cacheflush.h> 31 #include <asm/tlbflush.h> 32 #include <asm/mach/arch.h> 33 #include <asm/dma-iommu.h> 34 #include <asm/mach/map.h> 35 #include <asm/system_info.h> 36 #include <asm/dma-contiguous.h> 37 38 #include "dma.h" 39 #include "mm.h" 40 41 struct arm_dma_alloc_args { 42 struct device *dev; 43 size_t size; 44 gfp_t gfp; 45 pgprot_t prot; 46 const void *caller; 47 bool want_vaddr; 48 int coherent_flag; 49 }; 50 51 struct arm_dma_free_args { 52 struct device *dev; 53 size_t size; 54 void *cpu_addr; 55 struct page *page; 56 bool want_vaddr; 57 }; 58 59 #define NORMAL 0 60 #define COHERENT 1 61 62 struct arm_dma_allocator { 63 void *(*alloc)(struct arm_dma_alloc_args *args, 64 struct page **ret_page); 65 void (*free)(struct arm_dma_free_args *args); 66 }; 67 68 struct arm_dma_buffer { 69 struct list_head list; 70 void *virt; 71 struct arm_dma_allocator *allocator; 72 }; 73 74 static LIST_HEAD(arm_dma_bufs); 75 static DEFINE_SPINLOCK(arm_dma_bufs_lock); 76 77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) 78 { 79 struct arm_dma_buffer *buf, *found = NULL; 80 unsigned long flags; 81 82 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 83 list_for_each_entry(buf, &arm_dma_bufs, list) { 84 if (buf->virt == virt) { 85 list_del(&buf->list); 86 found = buf; 87 break; 88 } 89 } 90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 91 return found; 92 } 93 94 /* 95 * The DMA API is built upon the notion of "buffer ownership". A buffer 96 * is either exclusively owned by the CPU (and therefore may be accessed 97 * by it) or exclusively owned by the DMA device. These helper functions 98 * represent the transitions between these two ownership states. 99 * 100 * Note, however, that on later ARMs, this notion does not work due to 101 * speculative prefetches. We model our approach on the assumption that 102 * the CPU does do speculative prefetches, which means we clean caches 103 * before transfers and delay cache invalidation until transfer completion. 104 * 105 */ 106 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 107 size_t, enum dma_data_direction); 108 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 109 size_t, enum dma_data_direction); 110 111 /** 112 * arm_dma_map_page - map a portion of a page for streaming DMA 113 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 114 * @page: page that buffer resides in 115 * @offset: offset into page for start of buffer 116 * @size: size of buffer to map 117 * @dir: DMA transfer direction 118 * 119 * Ensure that any data held in the cache is appropriately discarded 120 * or written back. 121 * 122 * The device owns this memory once this call has completed. The CPU 123 * can regain ownership by calling dma_unmap_page(). 124 */ 125 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 126 unsigned long offset, size_t size, enum dma_data_direction dir, 127 unsigned long attrs) 128 { 129 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 130 __dma_page_cpu_to_dev(page, offset, size, dir); 131 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 132 } 133 134 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 135 unsigned long offset, size_t size, enum dma_data_direction dir, 136 unsigned long attrs) 137 { 138 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 139 } 140 141 /** 142 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 143 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 144 * @handle: DMA address of buffer 145 * @size: size of buffer (same as passed to dma_map_page) 146 * @dir: DMA transfer direction (same as passed to dma_map_page) 147 * 148 * Unmap a page streaming mode DMA translation. The handle and size 149 * must match what was provided in the previous dma_map_page() call. 150 * All other usages are undefined. 151 * 152 * After this call, reads by the CPU to the buffer are guaranteed to see 153 * whatever the device wrote there. 154 */ 155 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 156 size_t size, enum dma_data_direction dir, unsigned long attrs) 157 { 158 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 159 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 160 handle & ~PAGE_MASK, size, dir); 161 } 162 163 static void arm_dma_sync_single_for_cpu(struct device *dev, 164 dma_addr_t handle, size_t size, enum dma_data_direction dir) 165 { 166 unsigned int offset = handle & (PAGE_SIZE - 1); 167 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 168 __dma_page_dev_to_cpu(page, offset, size, dir); 169 } 170 171 static void arm_dma_sync_single_for_device(struct device *dev, 172 dma_addr_t handle, size_t size, enum dma_data_direction dir) 173 { 174 unsigned int offset = handle & (PAGE_SIZE - 1); 175 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 176 __dma_page_cpu_to_dev(page, offset, size, dir); 177 } 178 179 const struct dma_map_ops arm_dma_ops = { 180 .alloc = arm_dma_alloc, 181 .free = arm_dma_free, 182 .mmap = arm_dma_mmap, 183 .get_sgtable = arm_dma_get_sgtable, 184 .map_page = arm_dma_map_page, 185 .unmap_page = arm_dma_unmap_page, 186 .map_sg = arm_dma_map_sg, 187 .unmap_sg = arm_dma_unmap_sg, 188 .map_resource = dma_direct_map_resource, 189 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 190 .sync_single_for_device = arm_dma_sync_single_for_device, 191 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 192 .sync_sg_for_device = arm_dma_sync_sg_for_device, 193 .dma_supported = arm_dma_supported, 194 }; 195 EXPORT_SYMBOL(arm_dma_ops); 196 197 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 198 dma_addr_t *handle, gfp_t gfp, unsigned long attrs); 199 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 200 dma_addr_t handle, unsigned long attrs); 201 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 202 void *cpu_addr, dma_addr_t dma_addr, size_t size, 203 unsigned long attrs); 204 205 const struct dma_map_ops arm_coherent_dma_ops = { 206 .alloc = arm_coherent_dma_alloc, 207 .free = arm_coherent_dma_free, 208 .mmap = arm_coherent_dma_mmap, 209 .get_sgtable = arm_dma_get_sgtable, 210 .map_page = arm_coherent_dma_map_page, 211 .map_sg = arm_dma_map_sg, 212 .map_resource = dma_direct_map_resource, 213 .dma_supported = arm_dma_supported, 214 }; 215 EXPORT_SYMBOL(arm_coherent_dma_ops); 216 217 static int __dma_supported(struct device *dev, u64 mask, bool warn) 218 { 219 unsigned long max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); 220 221 /* 222 * Translate the device's DMA mask to a PFN limit. This 223 * PFN number includes the page which we can DMA to. 224 */ 225 if (dma_to_pfn(dev, mask) < max_dma_pfn) { 226 if (warn) 227 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", 228 mask, 229 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, 230 max_dma_pfn + 1); 231 return 0; 232 } 233 234 return 1; 235 } 236 237 static u64 get_coherent_dma_mask(struct device *dev) 238 { 239 u64 mask = (u64)DMA_BIT_MASK(32); 240 241 if (dev) { 242 mask = dev->coherent_dma_mask; 243 244 /* 245 * Sanity check the DMA mask - it must be non-zero, and 246 * must be able to be satisfied by a DMA allocation. 247 */ 248 if (mask == 0) { 249 dev_warn(dev, "coherent DMA mask is unset\n"); 250 return 0; 251 } 252 253 if (!__dma_supported(dev, mask, true)) 254 return 0; 255 } 256 257 return mask; 258 } 259 260 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) 261 { 262 /* 263 * Ensure that the allocated pages are zeroed, and that any data 264 * lurking in the kernel direct-mapped region is invalidated. 265 */ 266 if (PageHighMem(page)) { 267 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 268 phys_addr_t end = base + size; 269 while (size > 0) { 270 void *ptr = kmap_atomic(page); 271 memset(ptr, 0, PAGE_SIZE); 272 if (coherent_flag != COHERENT) 273 dmac_flush_range(ptr, ptr + PAGE_SIZE); 274 kunmap_atomic(ptr); 275 page++; 276 size -= PAGE_SIZE; 277 } 278 if (coherent_flag != COHERENT) 279 outer_flush_range(base, end); 280 } else { 281 void *ptr = page_address(page); 282 memset(ptr, 0, size); 283 if (coherent_flag != COHERENT) { 284 dmac_flush_range(ptr, ptr + size); 285 outer_flush_range(__pa(ptr), __pa(ptr) + size); 286 } 287 } 288 } 289 290 /* 291 * Allocate a DMA buffer for 'dev' of size 'size' using the 292 * specified gfp mask. Note that 'size' must be page aligned. 293 */ 294 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, 295 gfp_t gfp, int coherent_flag) 296 { 297 unsigned long order = get_order(size); 298 struct page *page, *p, *e; 299 300 page = alloc_pages(gfp, order); 301 if (!page) 302 return NULL; 303 304 /* 305 * Now split the huge page and free the excess pages 306 */ 307 split_page(page, order); 308 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 309 __free_page(p); 310 311 __dma_clear_buffer(page, size, coherent_flag); 312 313 return page; 314 } 315 316 /* 317 * Free a DMA buffer. 'size' must be page aligned. 318 */ 319 static void __dma_free_buffer(struct page *page, size_t size) 320 { 321 struct page *e = page + (size >> PAGE_SHIFT); 322 323 while (page < e) { 324 __free_page(page); 325 page++; 326 } 327 } 328 329 static void *__alloc_from_contiguous(struct device *dev, size_t size, 330 pgprot_t prot, struct page **ret_page, 331 const void *caller, bool want_vaddr, 332 int coherent_flag, gfp_t gfp); 333 334 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 335 pgprot_t prot, struct page **ret_page, 336 const void *caller, bool want_vaddr); 337 338 static void * 339 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 340 const void *caller) 341 { 342 /* 343 * DMA allocation can be mapped to user space, so lets 344 * set VM_USERMAP flags too. 345 */ 346 return dma_common_contiguous_remap(page, size, 347 VM_ARM_DMA_CONSISTENT | VM_USERMAP, 348 prot, caller); 349 } 350 351 static void __dma_free_remap(void *cpu_addr, size_t size) 352 { 353 dma_common_free_remap(cpu_addr, size, 354 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 355 } 356 357 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 358 static struct gen_pool *atomic_pool __ro_after_init; 359 360 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 361 362 static int __init early_coherent_pool(char *p) 363 { 364 atomic_pool_size = memparse(p, &p); 365 return 0; 366 } 367 early_param("coherent_pool", early_coherent_pool); 368 369 /* 370 * Initialise the coherent pool for atomic allocations. 371 */ 372 static int __init atomic_pool_init(void) 373 { 374 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 375 gfp_t gfp = GFP_KERNEL | GFP_DMA; 376 struct page *page; 377 void *ptr; 378 379 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 380 if (!atomic_pool) 381 goto out; 382 /* 383 * The atomic pool is only used for non-coherent allocations 384 * so we must pass NORMAL for coherent_flag. 385 */ 386 if (dev_get_cma_area(NULL)) 387 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, 388 &page, atomic_pool_init, true, NORMAL, 389 GFP_KERNEL); 390 else 391 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, 392 &page, atomic_pool_init, true); 393 if (ptr) { 394 int ret; 395 396 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, 397 page_to_phys(page), 398 atomic_pool_size, -1); 399 if (ret) 400 goto destroy_genpool; 401 402 gen_pool_set_algo(atomic_pool, 403 gen_pool_first_fit_order_align, 404 NULL); 405 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", 406 atomic_pool_size / 1024); 407 return 0; 408 } 409 410 destroy_genpool: 411 gen_pool_destroy(atomic_pool); 412 atomic_pool = NULL; 413 out: 414 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 415 atomic_pool_size / 1024); 416 return -ENOMEM; 417 } 418 /* 419 * CMA is activated by core_initcall, so we must be called after it. 420 */ 421 postcore_initcall(atomic_pool_init); 422 423 struct dma_contig_early_reserve { 424 phys_addr_t base; 425 unsigned long size; 426 }; 427 428 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 429 430 static int dma_mmu_remap_num __initdata; 431 432 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 433 { 434 dma_mmu_remap[dma_mmu_remap_num].base = base; 435 dma_mmu_remap[dma_mmu_remap_num].size = size; 436 dma_mmu_remap_num++; 437 } 438 439 void __init dma_contiguous_remap(void) 440 { 441 int i; 442 for (i = 0; i < dma_mmu_remap_num; i++) { 443 phys_addr_t start = dma_mmu_remap[i].base; 444 phys_addr_t end = start + dma_mmu_remap[i].size; 445 struct map_desc map; 446 unsigned long addr; 447 448 if (end > arm_lowmem_limit) 449 end = arm_lowmem_limit; 450 if (start >= end) 451 continue; 452 453 map.pfn = __phys_to_pfn(start); 454 map.virtual = __phys_to_virt(start); 455 map.length = end - start; 456 map.type = MT_MEMORY_DMA_READY; 457 458 /* 459 * Clear previous low-memory mapping to ensure that the 460 * TLB does not see any conflicting entries, then flush 461 * the TLB of the old entries before creating new mappings. 462 * 463 * This ensures that any speculatively loaded TLB entries 464 * (even though they may be rare) can not cause any problems, 465 * and ensures that this code is architecturally compliant. 466 */ 467 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 468 addr += PMD_SIZE) 469 pmd_clear(pmd_off_k(addr)); 470 471 flush_tlb_kernel_range(__phys_to_virt(start), 472 __phys_to_virt(end)); 473 474 iotable_init(&map, 1); 475 } 476 } 477 478 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data) 479 { 480 struct page *page = virt_to_page(addr); 481 pgprot_t prot = *(pgprot_t *)data; 482 483 set_pte_ext(pte, mk_pte(page, prot), 0); 484 return 0; 485 } 486 487 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 488 { 489 unsigned long start = (unsigned long) page_address(page); 490 unsigned end = start + size; 491 492 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 493 flush_tlb_kernel_range(start, end); 494 } 495 496 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 497 pgprot_t prot, struct page **ret_page, 498 const void *caller, bool want_vaddr) 499 { 500 struct page *page; 501 void *ptr = NULL; 502 /* 503 * __alloc_remap_buffer is only called when the device is 504 * non-coherent 505 */ 506 page = __dma_alloc_buffer(dev, size, gfp, NORMAL); 507 if (!page) 508 return NULL; 509 if (!want_vaddr) 510 goto out; 511 512 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 513 if (!ptr) { 514 __dma_free_buffer(page, size); 515 return NULL; 516 } 517 518 out: 519 *ret_page = page; 520 return ptr; 521 } 522 523 static void *__alloc_from_pool(size_t size, struct page **ret_page) 524 { 525 unsigned long val; 526 void *ptr = NULL; 527 528 if (!atomic_pool) { 529 WARN(1, "coherent pool not initialised!\n"); 530 return NULL; 531 } 532 533 val = gen_pool_alloc(atomic_pool, size); 534 if (val) { 535 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 536 537 *ret_page = phys_to_page(phys); 538 ptr = (void *)val; 539 } 540 541 return ptr; 542 } 543 544 static bool __in_atomic_pool(void *start, size_t size) 545 { 546 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 547 } 548 549 static int __free_from_pool(void *start, size_t size) 550 { 551 if (!__in_atomic_pool(start, size)) 552 return 0; 553 554 gen_pool_free(atomic_pool, (unsigned long)start, size); 555 556 return 1; 557 } 558 559 static void *__alloc_from_contiguous(struct device *dev, size_t size, 560 pgprot_t prot, struct page **ret_page, 561 const void *caller, bool want_vaddr, 562 int coherent_flag, gfp_t gfp) 563 { 564 unsigned long order = get_order(size); 565 size_t count = size >> PAGE_SHIFT; 566 struct page *page; 567 void *ptr = NULL; 568 569 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN); 570 if (!page) 571 return NULL; 572 573 __dma_clear_buffer(page, size, coherent_flag); 574 575 if (!want_vaddr) 576 goto out; 577 578 if (PageHighMem(page)) { 579 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 580 if (!ptr) { 581 dma_release_from_contiguous(dev, page, count); 582 return NULL; 583 } 584 } else { 585 __dma_remap(page, size, prot); 586 ptr = page_address(page); 587 } 588 589 out: 590 *ret_page = page; 591 return ptr; 592 } 593 594 static void __free_from_contiguous(struct device *dev, struct page *page, 595 void *cpu_addr, size_t size, bool want_vaddr) 596 { 597 if (want_vaddr) { 598 if (PageHighMem(page)) 599 __dma_free_remap(cpu_addr, size); 600 else 601 __dma_remap(page, size, PAGE_KERNEL); 602 } 603 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 604 } 605 606 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) 607 { 608 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? 609 pgprot_writecombine(prot) : 610 pgprot_dmacoherent(prot); 611 return prot; 612 } 613 614 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 615 struct page **ret_page) 616 { 617 struct page *page; 618 /* __alloc_simple_buffer is only called when the device is coherent */ 619 page = __dma_alloc_buffer(dev, size, gfp, COHERENT); 620 if (!page) 621 return NULL; 622 623 *ret_page = page; 624 return page_address(page); 625 } 626 627 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, 628 struct page **ret_page) 629 { 630 return __alloc_simple_buffer(args->dev, args->size, args->gfp, 631 ret_page); 632 } 633 634 static void simple_allocator_free(struct arm_dma_free_args *args) 635 { 636 __dma_free_buffer(args->page, args->size); 637 } 638 639 static struct arm_dma_allocator simple_allocator = { 640 .alloc = simple_allocator_alloc, 641 .free = simple_allocator_free, 642 }; 643 644 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, 645 struct page **ret_page) 646 { 647 return __alloc_from_contiguous(args->dev, args->size, args->prot, 648 ret_page, args->caller, 649 args->want_vaddr, args->coherent_flag, 650 args->gfp); 651 } 652 653 static void cma_allocator_free(struct arm_dma_free_args *args) 654 { 655 __free_from_contiguous(args->dev, args->page, args->cpu_addr, 656 args->size, args->want_vaddr); 657 } 658 659 static struct arm_dma_allocator cma_allocator = { 660 .alloc = cma_allocator_alloc, 661 .free = cma_allocator_free, 662 }; 663 664 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, 665 struct page **ret_page) 666 { 667 return __alloc_from_pool(args->size, ret_page); 668 } 669 670 static void pool_allocator_free(struct arm_dma_free_args *args) 671 { 672 __free_from_pool(args->cpu_addr, args->size); 673 } 674 675 static struct arm_dma_allocator pool_allocator = { 676 .alloc = pool_allocator_alloc, 677 .free = pool_allocator_free, 678 }; 679 680 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, 681 struct page **ret_page) 682 { 683 return __alloc_remap_buffer(args->dev, args->size, args->gfp, 684 args->prot, ret_page, args->caller, 685 args->want_vaddr); 686 } 687 688 static void remap_allocator_free(struct arm_dma_free_args *args) 689 { 690 if (args->want_vaddr) 691 __dma_free_remap(args->cpu_addr, args->size); 692 693 __dma_free_buffer(args->page, args->size); 694 } 695 696 static struct arm_dma_allocator remap_allocator = { 697 .alloc = remap_allocator_alloc, 698 .free = remap_allocator_free, 699 }; 700 701 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 702 gfp_t gfp, pgprot_t prot, bool is_coherent, 703 unsigned long attrs, const void *caller) 704 { 705 u64 mask = get_coherent_dma_mask(dev); 706 struct page *page = NULL; 707 void *addr; 708 bool allowblock, cma; 709 struct arm_dma_buffer *buf; 710 struct arm_dma_alloc_args args = { 711 .dev = dev, 712 .size = PAGE_ALIGN(size), 713 .gfp = gfp, 714 .prot = prot, 715 .caller = caller, 716 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 717 .coherent_flag = is_coherent ? COHERENT : NORMAL, 718 }; 719 720 #ifdef CONFIG_DMA_API_DEBUG 721 u64 limit = (mask + 1) & ~mask; 722 if (limit && size >= limit) { 723 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 724 size, mask); 725 return NULL; 726 } 727 #endif 728 729 if (!mask) 730 return NULL; 731 732 buf = kzalloc(sizeof(*buf), 733 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); 734 if (!buf) 735 return NULL; 736 737 if (mask < 0xffffffffULL) 738 gfp |= GFP_DMA; 739 740 /* 741 * Following is a work-around (a.k.a. hack) to prevent pages 742 * with __GFP_COMP being passed to split_page() which cannot 743 * handle them. The real problem is that this flag probably 744 * should be 0 on ARM as it is not supported on this 745 * platform; see CONFIG_HUGETLBFS. 746 */ 747 gfp &= ~(__GFP_COMP); 748 args.gfp = gfp; 749 750 *handle = DMA_MAPPING_ERROR; 751 allowblock = gfpflags_allow_blocking(gfp); 752 cma = allowblock ? dev_get_cma_area(dev) : false; 753 754 if (cma) 755 buf->allocator = &cma_allocator; 756 else if (is_coherent) 757 buf->allocator = &simple_allocator; 758 else if (allowblock) 759 buf->allocator = &remap_allocator; 760 else 761 buf->allocator = &pool_allocator; 762 763 addr = buf->allocator->alloc(&args, &page); 764 765 if (page) { 766 unsigned long flags; 767 768 *handle = pfn_to_dma(dev, page_to_pfn(page)); 769 buf->virt = args.want_vaddr ? addr : page; 770 771 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 772 list_add(&buf->list, &arm_dma_bufs); 773 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 774 } else { 775 kfree(buf); 776 } 777 778 return args.want_vaddr ? addr : page; 779 } 780 781 /* 782 * Allocate DMA-coherent memory space and return both the kernel remapped 783 * virtual and bus address for that space. 784 */ 785 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 786 gfp_t gfp, unsigned long attrs) 787 { 788 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 789 790 return __dma_alloc(dev, size, handle, gfp, prot, false, 791 attrs, __builtin_return_address(0)); 792 } 793 794 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 795 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 796 { 797 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true, 798 attrs, __builtin_return_address(0)); 799 } 800 801 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 802 void *cpu_addr, dma_addr_t dma_addr, size_t size, 803 unsigned long attrs) 804 { 805 int ret = -ENXIO; 806 unsigned long nr_vma_pages = vma_pages(vma); 807 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 808 unsigned long pfn = dma_to_pfn(dev, dma_addr); 809 unsigned long off = vma->vm_pgoff; 810 811 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 812 return ret; 813 814 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 815 ret = remap_pfn_range(vma, vma->vm_start, 816 pfn + off, 817 vma->vm_end - vma->vm_start, 818 vma->vm_page_prot); 819 } 820 821 return ret; 822 } 823 824 /* 825 * Create userspace mapping for the DMA-coherent memory. 826 */ 827 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 828 void *cpu_addr, dma_addr_t dma_addr, size_t size, 829 unsigned long attrs) 830 { 831 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 832 } 833 834 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 835 void *cpu_addr, dma_addr_t dma_addr, size_t size, 836 unsigned long attrs) 837 { 838 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 839 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 840 } 841 842 /* 843 * Free a buffer as defined by the above mapping. 844 */ 845 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 846 dma_addr_t handle, unsigned long attrs, 847 bool is_coherent) 848 { 849 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 850 struct arm_dma_buffer *buf; 851 struct arm_dma_free_args args = { 852 .dev = dev, 853 .size = PAGE_ALIGN(size), 854 .cpu_addr = cpu_addr, 855 .page = page, 856 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 857 }; 858 859 buf = arm_dma_buffer_find(cpu_addr); 860 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) 861 return; 862 863 buf->allocator->free(&args); 864 kfree(buf); 865 } 866 867 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 868 dma_addr_t handle, unsigned long attrs) 869 { 870 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 871 } 872 873 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 874 dma_addr_t handle, unsigned long attrs) 875 { 876 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 877 } 878 879 /* 880 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems 881 * that the intention is to allow exporting memory allocated via the 882 * coherent DMA APIs through the dma_buf API, which only accepts a 883 * scattertable. This presents a couple of problems: 884 * 1. Not all memory allocated via the coherent DMA APIs is backed by 885 * a struct page 886 * 2. Passing coherent DMA memory into the streaming APIs is not allowed 887 * as we will try to flush the memory through a different alias to that 888 * actually being used (and the flushes are redundant.) 889 */ 890 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 891 void *cpu_addr, dma_addr_t handle, size_t size, 892 unsigned long attrs) 893 { 894 unsigned long pfn = dma_to_pfn(dev, handle); 895 struct page *page; 896 int ret; 897 898 /* If the PFN is not valid, we do not have a struct page */ 899 if (!pfn_valid(pfn)) 900 return -ENXIO; 901 902 page = pfn_to_page(pfn); 903 904 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 905 if (unlikely(ret)) 906 return ret; 907 908 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 909 return 0; 910 } 911 912 static void dma_cache_maint_page(struct page *page, unsigned long offset, 913 size_t size, enum dma_data_direction dir, 914 void (*op)(const void *, size_t, int)) 915 { 916 unsigned long pfn; 917 size_t left = size; 918 919 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 920 offset %= PAGE_SIZE; 921 922 /* 923 * A single sg entry may refer to multiple physically contiguous 924 * pages. But we still need to process highmem pages individually. 925 * If highmem is not configured then the bulk of this loop gets 926 * optimized out. 927 */ 928 do { 929 size_t len = left; 930 void *vaddr; 931 932 page = pfn_to_page(pfn); 933 934 if (PageHighMem(page)) { 935 if (len + offset > PAGE_SIZE) 936 len = PAGE_SIZE - offset; 937 938 if (cache_is_vipt_nonaliasing()) { 939 vaddr = kmap_atomic(page); 940 op(vaddr + offset, len, dir); 941 kunmap_atomic(vaddr); 942 } else { 943 vaddr = kmap_high_get(page); 944 if (vaddr) { 945 op(vaddr + offset, len, dir); 946 kunmap_high(page); 947 } 948 } 949 } else { 950 vaddr = page_address(page) + offset; 951 op(vaddr, len, dir); 952 } 953 offset = 0; 954 pfn++; 955 left -= len; 956 } while (left); 957 } 958 959 /* 960 * Make an area consistent for devices. 961 * Note: Drivers should NOT use this function directly, as it will break 962 * platforms with CONFIG_DMABOUNCE. 963 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 964 */ 965 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 966 size_t size, enum dma_data_direction dir) 967 { 968 phys_addr_t paddr; 969 970 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 971 972 paddr = page_to_phys(page) + off; 973 if (dir == DMA_FROM_DEVICE) { 974 outer_inv_range(paddr, paddr + size); 975 } else { 976 outer_clean_range(paddr, paddr + size); 977 } 978 /* FIXME: non-speculating: flush on bidirectional mappings? */ 979 } 980 981 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 982 size_t size, enum dma_data_direction dir) 983 { 984 phys_addr_t paddr = page_to_phys(page) + off; 985 986 /* FIXME: non-speculating: not required */ 987 /* in any case, don't bother invalidating if DMA to device */ 988 if (dir != DMA_TO_DEVICE) { 989 outer_inv_range(paddr, paddr + size); 990 991 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 992 } 993 994 /* 995 * Mark the D-cache clean for these pages to avoid extra flushing. 996 */ 997 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 998 unsigned long pfn; 999 size_t left = size; 1000 1001 pfn = page_to_pfn(page) + off / PAGE_SIZE; 1002 off %= PAGE_SIZE; 1003 if (off) { 1004 pfn++; 1005 left -= PAGE_SIZE - off; 1006 } 1007 while (left >= PAGE_SIZE) { 1008 page = pfn_to_page(pfn++); 1009 set_bit(PG_dcache_clean, &page->flags); 1010 left -= PAGE_SIZE; 1011 } 1012 } 1013 } 1014 1015 /** 1016 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 1017 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1018 * @sg: list of buffers 1019 * @nents: number of buffers to map 1020 * @dir: DMA transfer direction 1021 * 1022 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1023 * This is the scatter-gather version of the dma_map_single interface. 1024 * Here the scatter gather list elements are each tagged with the 1025 * appropriate dma address and length. They are obtained via 1026 * sg_dma_{address,length}. 1027 * 1028 * Device ownership issues as mentioned for dma_map_single are the same 1029 * here. 1030 */ 1031 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1032 enum dma_data_direction dir, unsigned long attrs) 1033 { 1034 const struct dma_map_ops *ops = get_dma_ops(dev); 1035 struct scatterlist *s; 1036 int i, j; 1037 1038 for_each_sg(sg, s, nents, i) { 1039 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1040 s->dma_length = s->length; 1041 #endif 1042 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 1043 s->length, dir, attrs); 1044 if (dma_mapping_error(dev, s->dma_address)) 1045 goto bad_mapping; 1046 } 1047 return nents; 1048 1049 bad_mapping: 1050 for_each_sg(sg, s, i, j) 1051 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1052 return 0; 1053 } 1054 1055 /** 1056 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1057 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1058 * @sg: list of buffers 1059 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1060 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1061 * 1062 * Unmap a set of streaming mode DMA translations. Again, CPU access 1063 * rules concerning calls here are the same as for dma_unmap_single(). 1064 */ 1065 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1066 enum dma_data_direction dir, unsigned long attrs) 1067 { 1068 const struct dma_map_ops *ops = get_dma_ops(dev); 1069 struct scatterlist *s; 1070 1071 int i; 1072 1073 for_each_sg(sg, s, nents, i) 1074 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1075 } 1076 1077 /** 1078 * arm_dma_sync_sg_for_cpu 1079 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1080 * @sg: list of buffers 1081 * @nents: number of buffers to map (returned from dma_map_sg) 1082 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1083 */ 1084 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1085 int nents, enum dma_data_direction dir) 1086 { 1087 const struct dma_map_ops *ops = get_dma_ops(dev); 1088 struct scatterlist *s; 1089 int i; 1090 1091 for_each_sg(sg, s, nents, i) 1092 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 1093 dir); 1094 } 1095 1096 /** 1097 * arm_dma_sync_sg_for_device 1098 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1099 * @sg: list of buffers 1100 * @nents: number of buffers to map (returned from dma_map_sg) 1101 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1102 */ 1103 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1104 int nents, enum dma_data_direction dir) 1105 { 1106 const struct dma_map_ops *ops = get_dma_ops(dev); 1107 struct scatterlist *s; 1108 int i; 1109 1110 for_each_sg(sg, s, nents, i) 1111 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 1112 dir); 1113 } 1114 1115 /* 1116 * Return whether the given device DMA address mask can be supported 1117 * properly. For example, if your device can only drive the low 24-bits 1118 * during bus mastering, then you would pass 0x00ffffff as the mask 1119 * to this function. 1120 */ 1121 int arm_dma_supported(struct device *dev, u64 mask) 1122 { 1123 return __dma_supported(dev, mask, false); 1124 } 1125 1126 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent) 1127 { 1128 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; 1129 } 1130 1131 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1132 1133 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) 1134 { 1135 int prot = 0; 1136 1137 if (attrs & DMA_ATTR_PRIVILEGED) 1138 prot |= IOMMU_PRIV; 1139 1140 switch (dir) { 1141 case DMA_BIDIRECTIONAL: 1142 return prot | IOMMU_READ | IOMMU_WRITE; 1143 case DMA_TO_DEVICE: 1144 return prot | IOMMU_READ; 1145 case DMA_FROM_DEVICE: 1146 return prot | IOMMU_WRITE; 1147 default: 1148 return prot; 1149 } 1150 } 1151 1152 /* IOMMU */ 1153 1154 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 1155 1156 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1157 size_t size) 1158 { 1159 unsigned int order = get_order(size); 1160 unsigned int align = 0; 1161 unsigned int count, start; 1162 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1163 unsigned long flags; 1164 dma_addr_t iova; 1165 int i; 1166 1167 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1168 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1169 1170 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1171 align = (1 << order) - 1; 1172 1173 spin_lock_irqsave(&mapping->lock, flags); 1174 for (i = 0; i < mapping->nr_bitmaps; i++) { 1175 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1176 mapping->bits, 0, count, align); 1177 1178 if (start > mapping->bits) 1179 continue; 1180 1181 bitmap_set(mapping->bitmaps[i], start, count); 1182 break; 1183 } 1184 1185 /* 1186 * No unused range found. Try to extend the existing mapping 1187 * and perform a second attempt to reserve an IO virtual 1188 * address range of size bytes. 1189 */ 1190 if (i == mapping->nr_bitmaps) { 1191 if (extend_iommu_mapping(mapping)) { 1192 spin_unlock_irqrestore(&mapping->lock, flags); 1193 return DMA_MAPPING_ERROR; 1194 } 1195 1196 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1197 mapping->bits, 0, count, align); 1198 1199 if (start > mapping->bits) { 1200 spin_unlock_irqrestore(&mapping->lock, flags); 1201 return DMA_MAPPING_ERROR; 1202 } 1203 1204 bitmap_set(mapping->bitmaps[i], start, count); 1205 } 1206 spin_unlock_irqrestore(&mapping->lock, flags); 1207 1208 iova = mapping->base + (mapping_size * i); 1209 iova += start << PAGE_SHIFT; 1210 1211 return iova; 1212 } 1213 1214 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1215 dma_addr_t addr, size_t size) 1216 { 1217 unsigned int start, count; 1218 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1219 unsigned long flags; 1220 dma_addr_t bitmap_base; 1221 u32 bitmap_index; 1222 1223 if (!size) 1224 return; 1225 1226 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; 1227 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 1228 1229 bitmap_base = mapping->base + mapping_size * bitmap_index; 1230 1231 start = (addr - bitmap_base) >> PAGE_SHIFT; 1232 1233 if (addr + size > bitmap_base + mapping_size) { 1234 /* 1235 * The address range to be freed reaches into the iova 1236 * range of the next bitmap. This should not happen as 1237 * we don't allow this in __alloc_iova (at the 1238 * moment). 1239 */ 1240 BUG(); 1241 } else 1242 count = size >> PAGE_SHIFT; 1243 1244 spin_lock_irqsave(&mapping->lock, flags); 1245 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 1246 spin_unlock_irqrestore(&mapping->lock, flags); 1247 } 1248 1249 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ 1250 static const int iommu_order_array[] = { 9, 8, 4, 0 }; 1251 1252 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1253 gfp_t gfp, unsigned long attrs, 1254 int coherent_flag) 1255 { 1256 struct page **pages; 1257 int count = size >> PAGE_SHIFT; 1258 int array_size = count * sizeof(struct page *); 1259 int i = 0; 1260 int order_idx = 0; 1261 1262 if (array_size <= PAGE_SIZE) 1263 pages = kzalloc(array_size, GFP_KERNEL); 1264 else 1265 pages = vzalloc(array_size); 1266 if (!pages) 1267 return NULL; 1268 1269 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) 1270 { 1271 unsigned long order = get_order(size); 1272 struct page *page; 1273 1274 page = dma_alloc_from_contiguous(dev, count, order, 1275 gfp & __GFP_NOWARN); 1276 if (!page) 1277 goto error; 1278 1279 __dma_clear_buffer(page, size, coherent_flag); 1280 1281 for (i = 0; i < count; i++) 1282 pages[i] = page + i; 1283 1284 return pages; 1285 } 1286 1287 /* Go straight to 4K chunks if caller says it's OK. */ 1288 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 1289 order_idx = ARRAY_SIZE(iommu_order_array) - 1; 1290 1291 /* 1292 * IOMMU can map any pages, so himem can also be used here 1293 */ 1294 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1295 1296 while (count) { 1297 int j, order; 1298 1299 order = iommu_order_array[order_idx]; 1300 1301 /* Drop down when we get small */ 1302 if (__fls(count) < order) { 1303 order_idx++; 1304 continue; 1305 } 1306 1307 if (order) { 1308 /* See if it's easy to allocate a high-order chunk */ 1309 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); 1310 1311 /* Go down a notch at first sign of pressure */ 1312 if (!pages[i]) { 1313 order_idx++; 1314 continue; 1315 } 1316 } else { 1317 pages[i] = alloc_pages(gfp, 0); 1318 if (!pages[i]) 1319 goto error; 1320 } 1321 1322 if (order) { 1323 split_page(pages[i], order); 1324 j = 1 << order; 1325 while (--j) 1326 pages[i + j] = pages[i] + j; 1327 } 1328 1329 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); 1330 i += 1 << order; 1331 count -= 1 << order; 1332 } 1333 1334 return pages; 1335 error: 1336 while (i--) 1337 if (pages[i]) 1338 __free_pages(pages[i], 0); 1339 kvfree(pages); 1340 return NULL; 1341 } 1342 1343 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1344 size_t size, unsigned long attrs) 1345 { 1346 int count = size >> PAGE_SHIFT; 1347 int i; 1348 1349 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 1350 dma_release_from_contiguous(dev, pages[0], count); 1351 } else { 1352 for (i = 0; i < count; i++) 1353 if (pages[i]) 1354 __free_pages(pages[i], 0); 1355 } 1356 1357 kvfree(pages); 1358 return 0; 1359 } 1360 1361 /* 1362 * Create a CPU mapping for a specified pages 1363 */ 1364 static void * 1365 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1366 const void *caller) 1367 { 1368 return dma_common_pages_remap(pages, size, 1369 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller); 1370 } 1371 1372 /* 1373 * Create a mapping in device IO address space for specified pages 1374 */ 1375 static dma_addr_t 1376 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, 1377 unsigned long attrs) 1378 { 1379 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1380 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1381 dma_addr_t dma_addr, iova; 1382 int i; 1383 1384 dma_addr = __alloc_iova(mapping, size); 1385 if (dma_addr == DMA_MAPPING_ERROR) 1386 return dma_addr; 1387 1388 iova = dma_addr; 1389 for (i = 0; i < count; ) { 1390 int ret; 1391 1392 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1393 phys_addr_t phys = page_to_phys(pages[i]); 1394 unsigned int len, j; 1395 1396 for (j = i + 1; j < count; j++, next_pfn++) 1397 if (page_to_pfn(pages[j]) != next_pfn) 1398 break; 1399 1400 len = (j - i) << PAGE_SHIFT; 1401 ret = iommu_map(mapping->domain, iova, phys, len, 1402 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs)); 1403 if (ret < 0) 1404 goto fail; 1405 iova += len; 1406 i = j; 1407 } 1408 return dma_addr; 1409 fail: 1410 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1411 __free_iova(mapping, dma_addr, size); 1412 return DMA_MAPPING_ERROR; 1413 } 1414 1415 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1416 { 1417 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1418 1419 /* 1420 * add optional in-page offset from iova to size and align 1421 * result to page size 1422 */ 1423 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1424 iova &= PAGE_MASK; 1425 1426 iommu_unmap(mapping->domain, iova, size); 1427 __free_iova(mapping, iova, size); 1428 return 0; 1429 } 1430 1431 static struct page **__atomic_get_pages(void *addr) 1432 { 1433 struct page *page; 1434 phys_addr_t phys; 1435 1436 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); 1437 page = phys_to_page(phys); 1438 1439 return (struct page **)page; 1440 } 1441 1442 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) 1443 { 1444 struct vm_struct *area; 1445 1446 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1447 return __atomic_get_pages(cpu_addr); 1448 1449 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1450 return cpu_addr; 1451 1452 area = find_vm_area(cpu_addr); 1453 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1454 return area->pages; 1455 return NULL; 1456 } 1457 1458 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, 1459 dma_addr_t *handle, int coherent_flag, 1460 unsigned long attrs) 1461 { 1462 struct page *page; 1463 void *addr; 1464 1465 if (coherent_flag == COHERENT) 1466 addr = __alloc_simple_buffer(dev, size, gfp, &page); 1467 else 1468 addr = __alloc_from_pool(size, &page); 1469 if (!addr) 1470 return NULL; 1471 1472 *handle = __iommu_create_mapping(dev, &page, size, attrs); 1473 if (*handle == DMA_MAPPING_ERROR) 1474 goto err_mapping; 1475 1476 return addr; 1477 1478 err_mapping: 1479 __free_from_pool(addr, size); 1480 return NULL; 1481 } 1482 1483 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1484 dma_addr_t handle, size_t size, int coherent_flag) 1485 { 1486 __iommu_remove_mapping(dev, handle, size); 1487 if (coherent_flag == COHERENT) 1488 __dma_free_buffer(virt_to_page(cpu_addr), size); 1489 else 1490 __free_from_pool(cpu_addr, size); 1491 } 1492 1493 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size, 1494 dma_addr_t *handle, gfp_t gfp, unsigned long attrs, 1495 int coherent_flag) 1496 { 1497 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1498 struct page **pages; 1499 void *addr = NULL; 1500 1501 *handle = DMA_MAPPING_ERROR; 1502 size = PAGE_ALIGN(size); 1503 1504 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp)) 1505 return __iommu_alloc_simple(dev, size, gfp, handle, 1506 coherent_flag, attrs); 1507 1508 /* 1509 * Following is a work-around (a.k.a. hack) to prevent pages 1510 * with __GFP_COMP being passed to split_page() which cannot 1511 * handle them. The real problem is that this flag probably 1512 * should be 0 on ARM as it is not supported on this 1513 * platform; see CONFIG_HUGETLBFS. 1514 */ 1515 gfp &= ~(__GFP_COMP); 1516 1517 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); 1518 if (!pages) 1519 return NULL; 1520 1521 *handle = __iommu_create_mapping(dev, pages, size, attrs); 1522 if (*handle == DMA_MAPPING_ERROR) 1523 goto err_buffer; 1524 1525 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1526 return pages; 1527 1528 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1529 __builtin_return_address(0)); 1530 if (!addr) 1531 goto err_mapping; 1532 1533 return addr; 1534 1535 err_mapping: 1536 __iommu_remove_mapping(dev, *handle, size); 1537 err_buffer: 1538 __iommu_free_buffer(dev, pages, size, attrs); 1539 return NULL; 1540 } 1541 1542 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1543 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1544 { 1545 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL); 1546 } 1547 1548 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size, 1549 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1550 { 1551 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT); 1552 } 1553 1554 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1555 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1556 unsigned long attrs) 1557 { 1558 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1559 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1560 int err; 1561 1562 if (!pages) 1563 return -ENXIO; 1564 1565 if (vma->vm_pgoff >= nr_pages) 1566 return -ENXIO; 1567 1568 err = vm_map_pages(vma, pages, nr_pages); 1569 if (err) 1570 pr_err("Remapping memory failed: %d\n", err); 1571 1572 return err; 1573 } 1574 static int arm_iommu_mmap_attrs(struct device *dev, 1575 struct vm_area_struct *vma, void *cpu_addr, 1576 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1577 { 1578 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1579 1580 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1581 } 1582 1583 static int arm_coherent_iommu_mmap_attrs(struct device *dev, 1584 struct vm_area_struct *vma, void *cpu_addr, 1585 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1586 { 1587 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1588 } 1589 1590 /* 1591 * free a page as defined by the above mapping. 1592 * Must not be called with IRQs disabled. 1593 */ 1594 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1595 dma_addr_t handle, unsigned long attrs, int coherent_flag) 1596 { 1597 struct page **pages; 1598 size = PAGE_ALIGN(size); 1599 1600 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { 1601 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); 1602 return; 1603 } 1604 1605 pages = __iommu_get_pages(cpu_addr, attrs); 1606 if (!pages) { 1607 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1608 return; 1609 } 1610 1611 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) { 1612 dma_common_free_remap(cpu_addr, size, 1613 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 1614 } 1615 1616 __iommu_remove_mapping(dev, handle, size); 1617 __iommu_free_buffer(dev, pages, size, attrs); 1618 } 1619 1620 void arm_iommu_free_attrs(struct device *dev, size_t size, 1621 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1622 { 1623 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL); 1624 } 1625 1626 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size, 1627 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1628 { 1629 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT); 1630 } 1631 1632 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1633 void *cpu_addr, dma_addr_t dma_addr, 1634 size_t size, unsigned long attrs) 1635 { 1636 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1637 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1638 1639 if (!pages) 1640 return -ENXIO; 1641 1642 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1643 GFP_KERNEL); 1644 } 1645 1646 /* 1647 * Map a part of the scatter-gather list into contiguous io address space 1648 */ 1649 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1650 size_t size, dma_addr_t *handle, 1651 enum dma_data_direction dir, unsigned long attrs, 1652 bool is_coherent) 1653 { 1654 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1655 dma_addr_t iova, iova_base; 1656 int ret = 0; 1657 unsigned int count; 1658 struct scatterlist *s; 1659 int prot; 1660 1661 size = PAGE_ALIGN(size); 1662 *handle = DMA_MAPPING_ERROR; 1663 1664 iova_base = iova = __alloc_iova(mapping, size); 1665 if (iova == DMA_MAPPING_ERROR) 1666 return -ENOMEM; 1667 1668 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1669 phys_addr_t phys = page_to_phys(sg_page(s)); 1670 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1671 1672 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1673 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1674 1675 prot = __dma_info_to_prot(dir, attrs); 1676 1677 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1678 if (ret < 0) 1679 goto fail; 1680 count += len >> PAGE_SHIFT; 1681 iova += len; 1682 } 1683 *handle = iova_base; 1684 1685 return 0; 1686 fail: 1687 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1688 __free_iova(mapping, iova_base, size); 1689 return ret; 1690 } 1691 1692 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1693 enum dma_data_direction dir, unsigned long attrs, 1694 bool is_coherent) 1695 { 1696 struct scatterlist *s = sg, *dma = sg, *start = sg; 1697 int i, count = 0; 1698 unsigned int offset = s->offset; 1699 unsigned int size = s->offset + s->length; 1700 unsigned int max = dma_get_max_seg_size(dev); 1701 1702 for (i = 1; i < nents; i++) { 1703 s = sg_next(s); 1704 1705 s->dma_address = DMA_MAPPING_ERROR; 1706 s->dma_length = 0; 1707 1708 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1709 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1710 dir, attrs, is_coherent) < 0) 1711 goto bad_mapping; 1712 1713 dma->dma_address += offset; 1714 dma->dma_length = size - offset; 1715 1716 size = offset = s->offset; 1717 start = s; 1718 dma = sg_next(dma); 1719 count += 1; 1720 } 1721 size += s->length; 1722 } 1723 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1724 is_coherent) < 0) 1725 goto bad_mapping; 1726 1727 dma->dma_address += offset; 1728 dma->dma_length = size - offset; 1729 1730 return count+1; 1731 1732 bad_mapping: 1733 for_each_sg(sg, s, count, i) 1734 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1735 return 0; 1736 } 1737 1738 /** 1739 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1740 * @dev: valid struct device pointer 1741 * @sg: list of buffers 1742 * @nents: number of buffers to map 1743 * @dir: DMA transfer direction 1744 * 1745 * Map a set of i/o coherent buffers described by scatterlist in streaming 1746 * mode for DMA. The scatter gather list elements are merged together (if 1747 * possible) and tagged with the appropriate dma address and length. They are 1748 * obtained via sg_dma_{address,length}. 1749 */ 1750 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1751 int nents, enum dma_data_direction dir, unsigned long attrs) 1752 { 1753 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1754 } 1755 1756 /** 1757 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1758 * @dev: valid struct device pointer 1759 * @sg: list of buffers 1760 * @nents: number of buffers to map 1761 * @dir: DMA transfer direction 1762 * 1763 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1764 * The scatter gather list elements are merged together (if possible) and 1765 * tagged with the appropriate dma address and length. They are obtained via 1766 * sg_dma_{address,length}. 1767 */ 1768 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1769 int nents, enum dma_data_direction dir, unsigned long attrs) 1770 { 1771 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1772 } 1773 1774 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1775 int nents, enum dma_data_direction dir, 1776 unsigned long attrs, bool is_coherent) 1777 { 1778 struct scatterlist *s; 1779 int i; 1780 1781 for_each_sg(sg, s, nents, i) { 1782 if (sg_dma_len(s)) 1783 __iommu_remove_mapping(dev, sg_dma_address(s), 1784 sg_dma_len(s)); 1785 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1786 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1787 s->length, dir); 1788 } 1789 } 1790 1791 /** 1792 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1793 * @dev: valid struct device pointer 1794 * @sg: list of buffers 1795 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1796 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1797 * 1798 * Unmap a set of streaming mode DMA translations. Again, CPU access 1799 * rules concerning calls here are the same as for dma_unmap_single(). 1800 */ 1801 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1802 int nents, enum dma_data_direction dir, 1803 unsigned long attrs) 1804 { 1805 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1806 } 1807 1808 /** 1809 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1810 * @dev: valid struct device pointer 1811 * @sg: list of buffers 1812 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1813 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1814 * 1815 * Unmap a set of streaming mode DMA translations. Again, CPU access 1816 * rules concerning calls here are the same as for dma_unmap_single(). 1817 */ 1818 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1819 enum dma_data_direction dir, 1820 unsigned long attrs) 1821 { 1822 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1823 } 1824 1825 /** 1826 * arm_iommu_sync_sg_for_cpu 1827 * @dev: valid struct device pointer 1828 * @sg: list of buffers 1829 * @nents: number of buffers to map (returned from dma_map_sg) 1830 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1831 */ 1832 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1833 int nents, enum dma_data_direction dir) 1834 { 1835 struct scatterlist *s; 1836 int i; 1837 1838 for_each_sg(sg, s, nents, i) 1839 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1840 1841 } 1842 1843 /** 1844 * arm_iommu_sync_sg_for_device 1845 * @dev: valid struct device pointer 1846 * @sg: list of buffers 1847 * @nents: number of buffers to map (returned from dma_map_sg) 1848 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1849 */ 1850 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1851 int nents, enum dma_data_direction dir) 1852 { 1853 struct scatterlist *s; 1854 int i; 1855 1856 for_each_sg(sg, s, nents, i) 1857 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1858 } 1859 1860 1861 /** 1862 * arm_coherent_iommu_map_page 1863 * @dev: valid struct device pointer 1864 * @page: page that buffer resides in 1865 * @offset: offset into page for start of buffer 1866 * @size: size of buffer to map 1867 * @dir: DMA transfer direction 1868 * 1869 * Coherent IOMMU aware version of arm_dma_map_page() 1870 */ 1871 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1872 unsigned long offset, size_t size, enum dma_data_direction dir, 1873 unsigned long attrs) 1874 { 1875 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1876 dma_addr_t dma_addr; 1877 int ret, prot, len = PAGE_ALIGN(size + offset); 1878 1879 dma_addr = __alloc_iova(mapping, len); 1880 if (dma_addr == DMA_MAPPING_ERROR) 1881 return dma_addr; 1882 1883 prot = __dma_info_to_prot(dir, attrs); 1884 1885 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1886 if (ret < 0) 1887 goto fail; 1888 1889 return dma_addr + offset; 1890 fail: 1891 __free_iova(mapping, dma_addr, len); 1892 return DMA_MAPPING_ERROR; 1893 } 1894 1895 /** 1896 * arm_iommu_map_page 1897 * @dev: valid struct device pointer 1898 * @page: page that buffer resides in 1899 * @offset: offset into page for start of buffer 1900 * @size: size of buffer to map 1901 * @dir: DMA transfer direction 1902 * 1903 * IOMMU aware version of arm_dma_map_page() 1904 */ 1905 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1906 unsigned long offset, size_t size, enum dma_data_direction dir, 1907 unsigned long attrs) 1908 { 1909 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1910 __dma_page_cpu_to_dev(page, offset, size, dir); 1911 1912 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1913 } 1914 1915 /** 1916 * arm_coherent_iommu_unmap_page 1917 * @dev: valid struct device pointer 1918 * @handle: DMA address of buffer 1919 * @size: size of buffer (same as passed to dma_map_page) 1920 * @dir: DMA transfer direction (same as passed to dma_map_page) 1921 * 1922 * Coherent IOMMU aware version of arm_dma_unmap_page() 1923 */ 1924 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1925 size_t size, enum dma_data_direction dir, unsigned long attrs) 1926 { 1927 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1928 dma_addr_t iova = handle & PAGE_MASK; 1929 int offset = handle & ~PAGE_MASK; 1930 int len = PAGE_ALIGN(size + offset); 1931 1932 if (!iova) 1933 return; 1934 1935 iommu_unmap(mapping->domain, iova, len); 1936 __free_iova(mapping, iova, len); 1937 } 1938 1939 /** 1940 * arm_iommu_unmap_page 1941 * @dev: valid struct device pointer 1942 * @handle: DMA address of buffer 1943 * @size: size of buffer (same as passed to dma_map_page) 1944 * @dir: DMA transfer direction (same as passed to dma_map_page) 1945 * 1946 * IOMMU aware version of arm_dma_unmap_page() 1947 */ 1948 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1949 size_t size, enum dma_data_direction dir, unsigned long attrs) 1950 { 1951 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1952 dma_addr_t iova = handle & PAGE_MASK; 1953 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1954 int offset = handle & ~PAGE_MASK; 1955 int len = PAGE_ALIGN(size + offset); 1956 1957 if (!iova) 1958 return; 1959 1960 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1961 __dma_page_dev_to_cpu(page, offset, size, dir); 1962 1963 iommu_unmap(mapping->domain, iova, len); 1964 __free_iova(mapping, iova, len); 1965 } 1966 1967 /** 1968 * arm_iommu_map_resource - map a device resource for DMA 1969 * @dev: valid struct device pointer 1970 * @phys_addr: physical address of resource 1971 * @size: size of resource to map 1972 * @dir: DMA transfer direction 1973 */ 1974 static dma_addr_t arm_iommu_map_resource(struct device *dev, 1975 phys_addr_t phys_addr, size_t size, 1976 enum dma_data_direction dir, unsigned long attrs) 1977 { 1978 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1979 dma_addr_t dma_addr; 1980 int ret, prot; 1981 phys_addr_t addr = phys_addr & PAGE_MASK; 1982 unsigned int offset = phys_addr & ~PAGE_MASK; 1983 size_t len = PAGE_ALIGN(size + offset); 1984 1985 dma_addr = __alloc_iova(mapping, len); 1986 if (dma_addr == DMA_MAPPING_ERROR) 1987 return dma_addr; 1988 1989 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; 1990 1991 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot); 1992 if (ret < 0) 1993 goto fail; 1994 1995 return dma_addr + offset; 1996 fail: 1997 __free_iova(mapping, dma_addr, len); 1998 return DMA_MAPPING_ERROR; 1999 } 2000 2001 /** 2002 * arm_iommu_unmap_resource - unmap a device DMA resource 2003 * @dev: valid struct device pointer 2004 * @dma_handle: DMA address to resource 2005 * @size: size of resource to map 2006 * @dir: DMA transfer direction 2007 */ 2008 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, 2009 size_t size, enum dma_data_direction dir, 2010 unsigned long attrs) 2011 { 2012 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2013 dma_addr_t iova = dma_handle & PAGE_MASK; 2014 unsigned int offset = dma_handle & ~PAGE_MASK; 2015 size_t len = PAGE_ALIGN(size + offset); 2016 2017 if (!iova) 2018 return; 2019 2020 iommu_unmap(mapping->domain, iova, len); 2021 __free_iova(mapping, iova, len); 2022 } 2023 2024 static void arm_iommu_sync_single_for_cpu(struct device *dev, 2025 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2026 { 2027 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2028 dma_addr_t iova = handle & PAGE_MASK; 2029 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2030 unsigned int offset = handle & ~PAGE_MASK; 2031 2032 if (!iova) 2033 return; 2034 2035 __dma_page_dev_to_cpu(page, offset, size, dir); 2036 } 2037 2038 static void arm_iommu_sync_single_for_device(struct device *dev, 2039 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2040 { 2041 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2042 dma_addr_t iova = handle & PAGE_MASK; 2043 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2044 unsigned int offset = handle & ~PAGE_MASK; 2045 2046 if (!iova) 2047 return; 2048 2049 __dma_page_cpu_to_dev(page, offset, size, dir); 2050 } 2051 2052 const struct dma_map_ops iommu_ops = { 2053 .alloc = arm_iommu_alloc_attrs, 2054 .free = arm_iommu_free_attrs, 2055 .mmap = arm_iommu_mmap_attrs, 2056 .get_sgtable = arm_iommu_get_sgtable, 2057 2058 .map_page = arm_iommu_map_page, 2059 .unmap_page = arm_iommu_unmap_page, 2060 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 2061 .sync_single_for_device = arm_iommu_sync_single_for_device, 2062 2063 .map_sg = arm_iommu_map_sg, 2064 .unmap_sg = arm_iommu_unmap_sg, 2065 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 2066 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 2067 2068 .map_resource = arm_iommu_map_resource, 2069 .unmap_resource = arm_iommu_unmap_resource, 2070 2071 .dma_supported = arm_dma_supported, 2072 }; 2073 2074 const struct dma_map_ops iommu_coherent_ops = { 2075 .alloc = arm_coherent_iommu_alloc_attrs, 2076 .free = arm_coherent_iommu_free_attrs, 2077 .mmap = arm_coherent_iommu_mmap_attrs, 2078 .get_sgtable = arm_iommu_get_sgtable, 2079 2080 .map_page = arm_coherent_iommu_map_page, 2081 .unmap_page = arm_coherent_iommu_unmap_page, 2082 2083 .map_sg = arm_coherent_iommu_map_sg, 2084 .unmap_sg = arm_coherent_iommu_unmap_sg, 2085 2086 .map_resource = arm_iommu_map_resource, 2087 .unmap_resource = arm_iommu_unmap_resource, 2088 2089 .dma_supported = arm_dma_supported, 2090 }; 2091 2092 /** 2093 * arm_iommu_create_mapping 2094 * @bus: pointer to the bus holding the client device (for IOMMU calls) 2095 * @base: start address of the valid IO address space 2096 * @size: maximum size of the valid IO address space 2097 * 2098 * Creates a mapping structure which holds information about used/unused 2099 * IO address ranges, which is required to perform memory allocation and 2100 * mapping with IOMMU aware functions. 2101 * 2102 * The client device need to be attached to the mapping with 2103 * arm_iommu_attach_device function. 2104 */ 2105 struct dma_iommu_mapping * 2106 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) 2107 { 2108 unsigned int bits = size >> PAGE_SHIFT; 2109 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 2110 struct dma_iommu_mapping *mapping; 2111 int extensions = 1; 2112 int err = -ENOMEM; 2113 2114 /* currently only 32-bit DMA address space is supported */ 2115 if (size > DMA_BIT_MASK(32) + 1) 2116 return ERR_PTR(-ERANGE); 2117 2118 if (!bitmap_size) 2119 return ERR_PTR(-EINVAL); 2120 2121 if (bitmap_size > PAGE_SIZE) { 2122 extensions = bitmap_size / PAGE_SIZE; 2123 bitmap_size = PAGE_SIZE; 2124 } 2125 2126 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 2127 if (!mapping) 2128 goto err; 2129 2130 mapping->bitmap_size = bitmap_size; 2131 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *), 2132 GFP_KERNEL); 2133 if (!mapping->bitmaps) 2134 goto err2; 2135 2136 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 2137 if (!mapping->bitmaps[0]) 2138 goto err3; 2139 2140 mapping->nr_bitmaps = 1; 2141 mapping->extensions = extensions; 2142 mapping->base = base; 2143 mapping->bits = BITS_PER_BYTE * bitmap_size; 2144 2145 spin_lock_init(&mapping->lock); 2146 2147 mapping->domain = iommu_domain_alloc(bus); 2148 if (!mapping->domain) 2149 goto err4; 2150 2151 kref_init(&mapping->kref); 2152 return mapping; 2153 err4: 2154 kfree(mapping->bitmaps[0]); 2155 err3: 2156 kfree(mapping->bitmaps); 2157 err2: 2158 kfree(mapping); 2159 err: 2160 return ERR_PTR(err); 2161 } 2162 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 2163 2164 static void release_iommu_mapping(struct kref *kref) 2165 { 2166 int i; 2167 struct dma_iommu_mapping *mapping = 2168 container_of(kref, struct dma_iommu_mapping, kref); 2169 2170 iommu_domain_free(mapping->domain); 2171 for (i = 0; i < mapping->nr_bitmaps; i++) 2172 kfree(mapping->bitmaps[i]); 2173 kfree(mapping->bitmaps); 2174 kfree(mapping); 2175 } 2176 2177 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 2178 { 2179 int next_bitmap; 2180 2181 if (mapping->nr_bitmaps >= mapping->extensions) 2182 return -EINVAL; 2183 2184 next_bitmap = mapping->nr_bitmaps; 2185 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 2186 GFP_ATOMIC); 2187 if (!mapping->bitmaps[next_bitmap]) 2188 return -ENOMEM; 2189 2190 mapping->nr_bitmaps++; 2191 2192 return 0; 2193 } 2194 2195 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 2196 { 2197 if (mapping) 2198 kref_put(&mapping->kref, release_iommu_mapping); 2199 } 2200 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 2201 2202 static int __arm_iommu_attach_device(struct device *dev, 2203 struct dma_iommu_mapping *mapping) 2204 { 2205 int err; 2206 2207 err = iommu_attach_device(mapping->domain, dev); 2208 if (err) 2209 return err; 2210 2211 kref_get(&mapping->kref); 2212 to_dma_iommu_mapping(dev) = mapping; 2213 2214 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 2215 return 0; 2216 } 2217 2218 /** 2219 * arm_iommu_attach_device 2220 * @dev: valid struct device pointer 2221 * @mapping: io address space mapping structure (returned from 2222 * arm_iommu_create_mapping) 2223 * 2224 * Attaches specified io address space mapping to the provided device. 2225 * This replaces the dma operations (dma_map_ops pointer) with the 2226 * IOMMU aware version. 2227 * 2228 * More than one client might be attached to the same io address space 2229 * mapping. 2230 */ 2231 int arm_iommu_attach_device(struct device *dev, 2232 struct dma_iommu_mapping *mapping) 2233 { 2234 int err; 2235 2236 err = __arm_iommu_attach_device(dev, mapping); 2237 if (err) 2238 return err; 2239 2240 set_dma_ops(dev, &iommu_ops); 2241 return 0; 2242 } 2243 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 2244 2245 /** 2246 * arm_iommu_detach_device 2247 * @dev: valid struct device pointer 2248 * 2249 * Detaches the provided device from a previously attached map. 2250 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops. 2251 */ 2252 void arm_iommu_detach_device(struct device *dev) 2253 { 2254 struct dma_iommu_mapping *mapping; 2255 2256 mapping = to_dma_iommu_mapping(dev); 2257 if (!mapping) { 2258 dev_warn(dev, "Not attached\n"); 2259 return; 2260 } 2261 2262 iommu_detach_device(mapping->domain, dev); 2263 kref_put(&mapping->kref, release_iommu_mapping); 2264 to_dma_iommu_mapping(dev) = NULL; 2265 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent)); 2266 2267 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 2268 } 2269 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 2270 2271 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) 2272 { 2273 return coherent ? &iommu_coherent_ops : &iommu_ops; 2274 } 2275 2276 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2277 const struct iommu_ops *iommu) 2278 { 2279 struct dma_iommu_mapping *mapping; 2280 2281 if (!iommu) 2282 return false; 2283 2284 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); 2285 if (IS_ERR(mapping)) { 2286 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", 2287 size, dev_name(dev)); 2288 return false; 2289 } 2290 2291 if (__arm_iommu_attach_device(dev, mapping)) { 2292 pr_warn("Failed to attached device %s to IOMMU_mapping\n", 2293 dev_name(dev)); 2294 arm_iommu_release_mapping(mapping); 2295 return false; 2296 } 2297 2298 return true; 2299 } 2300 2301 static void arm_teardown_iommu_dma_ops(struct device *dev) 2302 { 2303 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2304 2305 if (!mapping) 2306 return; 2307 2308 arm_iommu_detach_device(dev); 2309 arm_iommu_release_mapping(mapping); 2310 } 2311 2312 #else 2313 2314 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2315 const struct iommu_ops *iommu) 2316 { 2317 return false; 2318 } 2319 2320 static void arm_teardown_iommu_dma_ops(struct device *dev) { } 2321 2322 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops 2323 2324 #endif /* CONFIG_ARM_DMA_USE_IOMMU */ 2325 2326 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 2327 const struct iommu_ops *iommu, bool coherent) 2328 { 2329 const struct dma_map_ops *dma_ops; 2330 2331 dev->archdata.dma_coherent = coherent; 2332 2333 /* 2334 * Don't override the dma_ops if they have already been set. Ideally 2335 * this should be the only location where dma_ops are set, remove this 2336 * check when all other callers of set_dma_ops will have disappeared. 2337 */ 2338 if (dev->dma_ops) 2339 return; 2340 2341 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) 2342 dma_ops = arm_get_iommu_dma_map_ops(coherent); 2343 else 2344 dma_ops = arm_get_dma_map_ops(coherent); 2345 2346 set_dma_ops(dev, dma_ops); 2347 2348 #ifdef CONFIG_XEN 2349 if (xen_initial_domain()) { 2350 dev->archdata.dev_dma_ops = dev->dma_ops; 2351 dev->dma_ops = xen_dma_ops; 2352 } 2353 #endif 2354 dev->archdata.dma_ops_setup = true; 2355 } 2356 2357 void arch_teardown_dma_ops(struct device *dev) 2358 { 2359 if (!dev->archdata.dma_ops_setup) 2360 return; 2361 2362 arm_teardown_iommu_dma_ops(dev); 2363 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */ 2364 set_dma_ops(dev, NULL); 2365 } 2366