xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 1c2f87c2)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/gfp.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dma-contiguous.h>
22 #include <linux/highmem.h>
23 #include <linux/memblock.h>
24 #include <linux/slab.h>
25 #include <linux/iommu.h>
26 #include <linux/io.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/memory.h>
31 #include <asm/highmem.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mach/arch.h>
35 #include <asm/dma-iommu.h>
36 #include <asm/mach/map.h>
37 #include <asm/system_info.h>
38 #include <asm/dma-contiguous.h>
39 
40 #include "mm.h"
41 
42 /*
43  * The DMA API is built upon the notion of "buffer ownership".  A buffer
44  * is either exclusively owned by the CPU (and therefore may be accessed
45  * by it) or exclusively owned by the DMA device.  These helper functions
46  * represent the transitions between these two ownership states.
47  *
48  * Note, however, that on later ARMs, this notion does not work due to
49  * speculative prefetches.  We model our approach on the assumption that
50  * the CPU does do speculative prefetches, which means we clean caches
51  * before transfers and delay cache invalidation until transfer completion.
52  *
53  */
54 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
55 		size_t, enum dma_data_direction);
56 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
57 		size_t, enum dma_data_direction);
58 
59 /**
60  * arm_dma_map_page - map a portion of a page for streaming DMA
61  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
62  * @page: page that buffer resides in
63  * @offset: offset into page for start of buffer
64  * @size: size of buffer to map
65  * @dir: DMA transfer direction
66  *
67  * Ensure that any data held in the cache is appropriately discarded
68  * or written back.
69  *
70  * The device owns this memory once this call has completed.  The CPU
71  * can regain ownership by calling dma_unmap_page().
72  */
73 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
74 	     unsigned long offset, size_t size, enum dma_data_direction dir,
75 	     struct dma_attrs *attrs)
76 {
77 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
78 		__dma_page_cpu_to_dev(page, offset, size, dir);
79 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
80 }
81 
82 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
83 	     unsigned long offset, size_t size, enum dma_data_direction dir,
84 	     struct dma_attrs *attrs)
85 {
86 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
87 }
88 
89 /**
90  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
91  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
92  * @handle: DMA address of buffer
93  * @size: size of buffer (same as passed to dma_map_page)
94  * @dir: DMA transfer direction (same as passed to dma_map_page)
95  *
96  * Unmap a page streaming mode DMA translation.  The handle and size
97  * must match what was provided in the previous dma_map_page() call.
98  * All other usages are undefined.
99  *
100  * After this call, reads by the CPU to the buffer are guaranteed to see
101  * whatever the device wrote there.
102  */
103 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
104 		size_t size, enum dma_data_direction dir,
105 		struct dma_attrs *attrs)
106 {
107 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
108 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
109 				      handle & ~PAGE_MASK, size, dir);
110 }
111 
112 static void arm_dma_sync_single_for_cpu(struct device *dev,
113 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
114 {
115 	unsigned int offset = handle & (PAGE_SIZE - 1);
116 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
117 	__dma_page_dev_to_cpu(page, offset, size, dir);
118 }
119 
120 static void arm_dma_sync_single_for_device(struct device *dev,
121 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
122 {
123 	unsigned int offset = handle & (PAGE_SIZE - 1);
124 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
125 	__dma_page_cpu_to_dev(page, offset, size, dir);
126 }
127 
128 struct dma_map_ops arm_dma_ops = {
129 	.alloc			= arm_dma_alloc,
130 	.free			= arm_dma_free,
131 	.mmap			= arm_dma_mmap,
132 	.get_sgtable		= arm_dma_get_sgtable,
133 	.map_page		= arm_dma_map_page,
134 	.unmap_page		= arm_dma_unmap_page,
135 	.map_sg			= arm_dma_map_sg,
136 	.unmap_sg		= arm_dma_unmap_sg,
137 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
138 	.sync_single_for_device	= arm_dma_sync_single_for_device,
139 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
140 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
141 	.set_dma_mask		= arm_dma_set_mask,
142 };
143 EXPORT_SYMBOL(arm_dma_ops);
144 
145 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
146 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
147 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
148 				  dma_addr_t handle, struct dma_attrs *attrs);
149 
150 struct dma_map_ops arm_coherent_dma_ops = {
151 	.alloc			= arm_coherent_dma_alloc,
152 	.free			= arm_coherent_dma_free,
153 	.mmap			= arm_dma_mmap,
154 	.get_sgtable		= arm_dma_get_sgtable,
155 	.map_page		= arm_coherent_dma_map_page,
156 	.map_sg			= arm_dma_map_sg,
157 	.set_dma_mask		= arm_dma_set_mask,
158 };
159 EXPORT_SYMBOL(arm_coherent_dma_ops);
160 
161 static int __dma_supported(struct device *dev, u64 mask, bool warn)
162 {
163 	unsigned long max_dma_pfn;
164 
165 	/*
166 	 * If the mask allows for more memory than we can address,
167 	 * and we actually have that much memory, then we must
168 	 * indicate that DMA to this device is not supported.
169 	 */
170 	if (sizeof(mask) != sizeof(dma_addr_t) &&
171 	    mask > (dma_addr_t)~0 &&
172 	    dma_to_pfn(dev, ~0) < max_pfn) {
173 		if (warn) {
174 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
175 				 mask);
176 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
177 		}
178 		return 0;
179 	}
180 
181 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
182 
183 	/*
184 	 * Translate the device's DMA mask to a PFN limit.  This
185 	 * PFN number includes the page which we can DMA to.
186 	 */
187 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
188 		if (warn)
189 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
190 				 mask,
191 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
192 				 max_dma_pfn + 1);
193 		return 0;
194 	}
195 
196 	return 1;
197 }
198 
199 static u64 get_coherent_dma_mask(struct device *dev)
200 {
201 	u64 mask = (u64)DMA_BIT_MASK(32);
202 
203 	if (dev) {
204 		mask = dev->coherent_dma_mask;
205 
206 		/*
207 		 * Sanity check the DMA mask - it must be non-zero, and
208 		 * must be able to be satisfied by a DMA allocation.
209 		 */
210 		if (mask == 0) {
211 			dev_warn(dev, "coherent DMA mask is unset\n");
212 			return 0;
213 		}
214 
215 		if (!__dma_supported(dev, mask, true))
216 			return 0;
217 	}
218 
219 	return mask;
220 }
221 
222 static void __dma_clear_buffer(struct page *page, size_t size)
223 {
224 	/*
225 	 * Ensure that the allocated pages are zeroed, and that any data
226 	 * lurking in the kernel direct-mapped region is invalidated.
227 	 */
228 	if (PageHighMem(page)) {
229 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
230 		phys_addr_t end = base + size;
231 		while (size > 0) {
232 			void *ptr = kmap_atomic(page);
233 			memset(ptr, 0, PAGE_SIZE);
234 			dmac_flush_range(ptr, ptr + PAGE_SIZE);
235 			kunmap_atomic(ptr);
236 			page++;
237 			size -= PAGE_SIZE;
238 		}
239 		outer_flush_range(base, end);
240 	} else {
241 		void *ptr = page_address(page);
242 		memset(ptr, 0, size);
243 		dmac_flush_range(ptr, ptr + size);
244 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
245 	}
246 }
247 
248 /*
249  * Allocate a DMA buffer for 'dev' of size 'size' using the
250  * specified gfp mask.  Note that 'size' must be page aligned.
251  */
252 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
253 {
254 	unsigned long order = get_order(size);
255 	struct page *page, *p, *e;
256 
257 	page = alloc_pages(gfp, order);
258 	if (!page)
259 		return NULL;
260 
261 	/*
262 	 * Now split the huge page and free the excess pages
263 	 */
264 	split_page(page, order);
265 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
266 		__free_page(p);
267 
268 	__dma_clear_buffer(page, size);
269 
270 	return page;
271 }
272 
273 /*
274  * Free a DMA buffer.  'size' must be page aligned.
275  */
276 static void __dma_free_buffer(struct page *page, size_t size)
277 {
278 	struct page *e = page + (size >> PAGE_SHIFT);
279 
280 	while (page < e) {
281 		__free_page(page);
282 		page++;
283 	}
284 }
285 
286 #ifdef CONFIG_MMU
287 
288 static void *__alloc_from_contiguous(struct device *dev, size_t size,
289 				     pgprot_t prot, struct page **ret_page,
290 				     const void *caller);
291 
292 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
293 				 pgprot_t prot, struct page **ret_page,
294 				 const void *caller);
295 
296 static void *
297 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
298 	const void *caller)
299 {
300 	struct vm_struct *area;
301 	unsigned long addr;
302 
303 	/*
304 	 * DMA allocation can be mapped to user space, so lets
305 	 * set VM_USERMAP flags too.
306 	 */
307 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
308 				  caller);
309 	if (!area)
310 		return NULL;
311 	addr = (unsigned long)area->addr;
312 	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
313 
314 	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
315 		vunmap((void *)addr);
316 		return NULL;
317 	}
318 	return (void *)addr;
319 }
320 
321 static void __dma_free_remap(void *cpu_addr, size_t size)
322 {
323 	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
324 	struct vm_struct *area = find_vm_area(cpu_addr);
325 	if (!area || (area->flags & flags) != flags) {
326 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
327 		return;
328 	}
329 	unmap_kernel_range((unsigned long)cpu_addr, size);
330 	vunmap(cpu_addr);
331 }
332 
333 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
334 
335 struct dma_pool {
336 	size_t size;
337 	spinlock_t lock;
338 	unsigned long *bitmap;
339 	unsigned long nr_pages;
340 	void *vaddr;
341 	struct page **pages;
342 };
343 
344 static struct dma_pool atomic_pool = {
345 	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
346 };
347 
348 static int __init early_coherent_pool(char *p)
349 {
350 	atomic_pool.size = memparse(p, &p);
351 	return 0;
352 }
353 early_param("coherent_pool", early_coherent_pool);
354 
355 void __init init_dma_coherent_pool_size(unsigned long size)
356 {
357 	/*
358 	 * Catch any attempt to set the pool size too late.
359 	 */
360 	BUG_ON(atomic_pool.vaddr);
361 
362 	/*
363 	 * Set architecture specific coherent pool size only if
364 	 * it has not been changed by kernel command line parameter.
365 	 */
366 	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
367 		atomic_pool.size = size;
368 }
369 
370 /*
371  * Initialise the coherent pool for atomic allocations.
372  */
373 static int __init atomic_pool_init(void)
374 {
375 	struct dma_pool *pool = &atomic_pool;
376 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
377 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
378 	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
379 	unsigned long *bitmap;
380 	struct page *page;
381 	struct page **pages;
382 	void *ptr;
383 	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
384 
385 	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
386 	if (!bitmap)
387 		goto no_bitmap;
388 
389 	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
390 	if (!pages)
391 		goto no_pages;
392 
393 	if (IS_ENABLED(CONFIG_DMA_CMA))
394 		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
395 					      atomic_pool_init);
396 	else
397 		ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
398 					   atomic_pool_init);
399 	if (ptr) {
400 		int i;
401 
402 		for (i = 0; i < nr_pages; i++)
403 			pages[i] = page + i;
404 
405 		spin_lock_init(&pool->lock);
406 		pool->vaddr = ptr;
407 		pool->pages = pages;
408 		pool->bitmap = bitmap;
409 		pool->nr_pages = nr_pages;
410 		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
411 		       (unsigned)pool->size / 1024);
412 		return 0;
413 	}
414 
415 	kfree(pages);
416 no_pages:
417 	kfree(bitmap);
418 no_bitmap:
419 	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
420 	       (unsigned)pool->size / 1024);
421 	return -ENOMEM;
422 }
423 /*
424  * CMA is activated by core_initcall, so we must be called after it.
425  */
426 postcore_initcall(atomic_pool_init);
427 
428 struct dma_contig_early_reserve {
429 	phys_addr_t base;
430 	unsigned long size;
431 };
432 
433 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
434 
435 static int dma_mmu_remap_num __initdata;
436 
437 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
438 {
439 	dma_mmu_remap[dma_mmu_remap_num].base = base;
440 	dma_mmu_remap[dma_mmu_remap_num].size = size;
441 	dma_mmu_remap_num++;
442 }
443 
444 void __init dma_contiguous_remap(void)
445 {
446 	int i;
447 	for (i = 0; i < dma_mmu_remap_num; i++) {
448 		phys_addr_t start = dma_mmu_remap[i].base;
449 		phys_addr_t end = start + dma_mmu_remap[i].size;
450 		struct map_desc map;
451 		unsigned long addr;
452 
453 		if (end > arm_lowmem_limit)
454 			end = arm_lowmem_limit;
455 		if (start >= end)
456 			continue;
457 
458 		map.pfn = __phys_to_pfn(start);
459 		map.virtual = __phys_to_virt(start);
460 		map.length = end - start;
461 		map.type = MT_MEMORY_DMA_READY;
462 
463 		/*
464 		 * Clear previous low-memory mapping
465 		 */
466 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
467 		     addr += PMD_SIZE)
468 			pmd_clear(pmd_off_k(addr));
469 
470 		iotable_init(&map, 1);
471 	}
472 }
473 
474 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
475 			    void *data)
476 {
477 	struct page *page = virt_to_page(addr);
478 	pgprot_t prot = *(pgprot_t *)data;
479 
480 	set_pte_ext(pte, mk_pte(page, prot), 0);
481 	return 0;
482 }
483 
484 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
485 {
486 	unsigned long start = (unsigned long) page_address(page);
487 	unsigned end = start + size;
488 
489 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
490 	flush_tlb_kernel_range(start, end);
491 }
492 
493 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
494 				 pgprot_t prot, struct page **ret_page,
495 				 const void *caller)
496 {
497 	struct page *page;
498 	void *ptr;
499 	page = __dma_alloc_buffer(dev, size, gfp);
500 	if (!page)
501 		return NULL;
502 
503 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
504 	if (!ptr) {
505 		__dma_free_buffer(page, size);
506 		return NULL;
507 	}
508 
509 	*ret_page = page;
510 	return ptr;
511 }
512 
513 static void *__alloc_from_pool(size_t size, struct page **ret_page)
514 {
515 	struct dma_pool *pool = &atomic_pool;
516 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
517 	unsigned int pageno;
518 	unsigned long flags;
519 	void *ptr = NULL;
520 	unsigned long align_mask;
521 
522 	if (!pool->vaddr) {
523 		WARN(1, "coherent pool not initialised!\n");
524 		return NULL;
525 	}
526 
527 	/*
528 	 * Align the region allocation - allocations from pool are rather
529 	 * small, so align them to their order in pages, minimum is a page
530 	 * size. This helps reduce fragmentation of the DMA space.
531 	 */
532 	align_mask = (1 << get_order(size)) - 1;
533 
534 	spin_lock_irqsave(&pool->lock, flags);
535 	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
536 					    0, count, align_mask);
537 	if (pageno < pool->nr_pages) {
538 		bitmap_set(pool->bitmap, pageno, count);
539 		ptr = pool->vaddr + PAGE_SIZE * pageno;
540 		*ret_page = pool->pages[pageno];
541 	} else {
542 		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
543 			    "Please increase it with coherent_pool= kernel parameter!\n",
544 			    (unsigned)pool->size / 1024);
545 	}
546 	spin_unlock_irqrestore(&pool->lock, flags);
547 
548 	return ptr;
549 }
550 
551 static bool __in_atomic_pool(void *start, size_t size)
552 {
553 	struct dma_pool *pool = &atomic_pool;
554 	void *end = start + size;
555 	void *pool_start = pool->vaddr;
556 	void *pool_end = pool->vaddr + pool->size;
557 
558 	if (start < pool_start || start >= pool_end)
559 		return false;
560 
561 	if (end <= pool_end)
562 		return true;
563 
564 	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
565 	     start, end - 1, pool_start, pool_end - 1);
566 
567 	return false;
568 }
569 
570 static int __free_from_pool(void *start, size_t size)
571 {
572 	struct dma_pool *pool = &atomic_pool;
573 	unsigned long pageno, count;
574 	unsigned long flags;
575 
576 	if (!__in_atomic_pool(start, size))
577 		return 0;
578 
579 	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
580 	count = size >> PAGE_SHIFT;
581 
582 	spin_lock_irqsave(&pool->lock, flags);
583 	bitmap_clear(pool->bitmap, pageno, count);
584 	spin_unlock_irqrestore(&pool->lock, flags);
585 
586 	return 1;
587 }
588 
589 static void *__alloc_from_contiguous(struct device *dev, size_t size,
590 				     pgprot_t prot, struct page **ret_page,
591 				     const void *caller)
592 {
593 	unsigned long order = get_order(size);
594 	size_t count = size >> PAGE_SHIFT;
595 	struct page *page;
596 	void *ptr;
597 
598 	page = dma_alloc_from_contiguous(dev, count, order);
599 	if (!page)
600 		return NULL;
601 
602 	__dma_clear_buffer(page, size);
603 
604 	if (PageHighMem(page)) {
605 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
606 		if (!ptr) {
607 			dma_release_from_contiguous(dev, page, count);
608 			return NULL;
609 		}
610 	} else {
611 		__dma_remap(page, size, prot);
612 		ptr = page_address(page);
613 	}
614 	*ret_page = page;
615 	return ptr;
616 }
617 
618 static void __free_from_contiguous(struct device *dev, struct page *page,
619 				   void *cpu_addr, size_t size)
620 {
621 	if (PageHighMem(page))
622 		__dma_free_remap(cpu_addr, size);
623 	else
624 		__dma_remap(page, size, PAGE_KERNEL);
625 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
626 }
627 
628 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
629 {
630 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
631 			    pgprot_writecombine(prot) :
632 			    pgprot_dmacoherent(prot);
633 	return prot;
634 }
635 
636 #define nommu() 0
637 
638 #else	/* !CONFIG_MMU */
639 
640 #define nommu() 1
641 
642 #define __get_dma_pgprot(attrs, prot)	__pgprot(0)
643 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
644 #define __alloc_from_pool(size, ret_page)			NULL
645 #define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
646 #define __free_from_pool(cpu_addr, size)			0
647 #define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
648 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
649 
650 #endif	/* CONFIG_MMU */
651 
652 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
653 				   struct page **ret_page)
654 {
655 	struct page *page;
656 	page = __dma_alloc_buffer(dev, size, gfp);
657 	if (!page)
658 		return NULL;
659 
660 	*ret_page = page;
661 	return page_address(page);
662 }
663 
664 
665 
666 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
667 			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
668 {
669 	u64 mask = get_coherent_dma_mask(dev);
670 	struct page *page = NULL;
671 	void *addr;
672 
673 #ifdef CONFIG_DMA_API_DEBUG
674 	u64 limit = (mask + 1) & ~mask;
675 	if (limit && size >= limit) {
676 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
677 			size, mask);
678 		return NULL;
679 	}
680 #endif
681 
682 	if (!mask)
683 		return NULL;
684 
685 	if (mask < 0xffffffffULL)
686 		gfp |= GFP_DMA;
687 
688 	/*
689 	 * Following is a work-around (a.k.a. hack) to prevent pages
690 	 * with __GFP_COMP being passed to split_page() which cannot
691 	 * handle them.  The real problem is that this flag probably
692 	 * should be 0 on ARM as it is not supported on this
693 	 * platform; see CONFIG_HUGETLBFS.
694 	 */
695 	gfp &= ~(__GFP_COMP);
696 
697 	*handle = DMA_ERROR_CODE;
698 	size = PAGE_ALIGN(size);
699 
700 	if (is_coherent || nommu())
701 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
702 	else if (!(gfp & __GFP_WAIT))
703 		addr = __alloc_from_pool(size, &page);
704 	else if (!IS_ENABLED(CONFIG_DMA_CMA))
705 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
706 	else
707 		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
708 
709 	if (addr)
710 		*handle = pfn_to_dma(dev, page_to_pfn(page));
711 
712 	return addr;
713 }
714 
715 /*
716  * Allocate DMA-coherent memory space and return both the kernel remapped
717  * virtual and bus address for that space.
718  */
719 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
720 		    gfp_t gfp, struct dma_attrs *attrs)
721 {
722 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
723 	void *memory;
724 
725 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
726 		return memory;
727 
728 	return __dma_alloc(dev, size, handle, gfp, prot, false,
729 			   __builtin_return_address(0));
730 }
731 
732 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
733 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
734 {
735 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
736 	void *memory;
737 
738 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
739 		return memory;
740 
741 	return __dma_alloc(dev, size, handle, gfp, prot, true,
742 			   __builtin_return_address(0));
743 }
744 
745 /*
746  * Create userspace mapping for the DMA-coherent memory.
747  */
748 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
749 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
750 		 struct dma_attrs *attrs)
751 {
752 	int ret = -ENXIO;
753 #ifdef CONFIG_MMU
754 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
755 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
756 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
757 	unsigned long off = vma->vm_pgoff;
758 
759 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
760 
761 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
762 		return ret;
763 
764 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
765 		ret = remap_pfn_range(vma, vma->vm_start,
766 				      pfn + off,
767 				      vma->vm_end - vma->vm_start,
768 				      vma->vm_page_prot);
769 	}
770 #endif	/* CONFIG_MMU */
771 
772 	return ret;
773 }
774 
775 /*
776  * Free a buffer as defined by the above mapping.
777  */
778 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
779 			   dma_addr_t handle, struct dma_attrs *attrs,
780 			   bool is_coherent)
781 {
782 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
783 
784 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
785 		return;
786 
787 	size = PAGE_ALIGN(size);
788 
789 	if (is_coherent || nommu()) {
790 		__dma_free_buffer(page, size);
791 	} else if (__free_from_pool(cpu_addr, size)) {
792 		return;
793 	} else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
794 		__dma_free_remap(cpu_addr, size);
795 		__dma_free_buffer(page, size);
796 	} else {
797 		/*
798 		 * Non-atomic allocations cannot be freed with IRQs disabled
799 		 */
800 		WARN_ON(irqs_disabled());
801 		__free_from_contiguous(dev, page, cpu_addr, size);
802 	}
803 }
804 
805 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
806 		  dma_addr_t handle, struct dma_attrs *attrs)
807 {
808 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
809 }
810 
811 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
812 				  dma_addr_t handle, struct dma_attrs *attrs)
813 {
814 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
815 }
816 
817 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
818 		 void *cpu_addr, dma_addr_t handle, size_t size,
819 		 struct dma_attrs *attrs)
820 {
821 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
822 	int ret;
823 
824 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
825 	if (unlikely(ret))
826 		return ret;
827 
828 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
829 	return 0;
830 }
831 
832 static void dma_cache_maint_page(struct page *page, unsigned long offset,
833 	size_t size, enum dma_data_direction dir,
834 	void (*op)(const void *, size_t, int))
835 {
836 	unsigned long pfn;
837 	size_t left = size;
838 
839 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
840 	offset %= PAGE_SIZE;
841 
842 	/*
843 	 * A single sg entry may refer to multiple physically contiguous
844 	 * pages.  But we still need to process highmem pages individually.
845 	 * If highmem is not configured then the bulk of this loop gets
846 	 * optimized out.
847 	 */
848 	do {
849 		size_t len = left;
850 		void *vaddr;
851 
852 		page = pfn_to_page(pfn);
853 
854 		if (PageHighMem(page)) {
855 			if (len + offset > PAGE_SIZE)
856 				len = PAGE_SIZE - offset;
857 
858 			if (cache_is_vipt_nonaliasing()) {
859 				vaddr = kmap_atomic(page);
860 				op(vaddr + offset, len, dir);
861 				kunmap_atomic(vaddr);
862 			} else {
863 				vaddr = kmap_high_get(page);
864 				if (vaddr) {
865 					op(vaddr + offset, len, dir);
866 					kunmap_high(page);
867 				}
868 			}
869 		} else {
870 			vaddr = page_address(page) + offset;
871 			op(vaddr, len, dir);
872 		}
873 		offset = 0;
874 		pfn++;
875 		left -= len;
876 	} while (left);
877 }
878 
879 /*
880  * Make an area consistent for devices.
881  * Note: Drivers should NOT use this function directly, as it will break
882  * platforms with CONFIG_DMABOUNCE.
883  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
884  */
885 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
886 	size_t size, enum dma_data_direction dir)
887 {
888 	unsigned long paddr;
889 
890 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
891 
892 	paddr = page_to_phys(page) + off;
893 	if (dir == DMA_FROM_DEVICE) {
894 		outer_inv_range(paddr, paddr + size);
895 	} else {
896 		outer_clean_range(paddr, paddr + size);
897 	}
898 	/* FIXME: non-speculating: flush on bidirectional mappings? */
899 }
900 
901 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
902 	size_t size, enum dma_data_direction dir)
903 {
904 	unsigned long paddr = page_to_phys(page) + off;
905 
906 	/* FIXME: non-speculating: not required */
907 	/* in any case, don't bother invalidating if DMA to device */
908 	if (dir != DMA_TO_DEVICE) {
909 		outer_inv_range(paddr, paddr + size);
910 
911 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
912 	}
913 
914 	/*
915 	 * Mark the D-cache clean for these pages to avoid extra flushing.
916 	 */
917 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
918 		unsigned long pfn;
919 		size_t left = size;
920 
921 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
922 		off %= PAGE_SIZE;
923 		if (off) {
924 			pfn++;
925 			left -= PAGE_SIZE - off;
926 		}
927 		while (left >= PAGE_SIZE) {
928 			page = pfn_to_page(pfn++);
929 			set_bit(PG_dcache_clean, &page->flags);
930 			left -= PAGE_SIZE;
931 		}
932 	}
933 }
934 
935 /**
936  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
937  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
938  * @sg: list of buffers
939  * @nents: number of buffers to map
940  * @dir: DMA transfer direction
941  *
942  * Map a set of buffers described by scatterlist in streaming mode for DMA.
943  * This is the scatter-gather version of the dma_map_single interface.
944  * Here the scatter gather list elements are each tagged with the
945  * appropriate dma address and length.  They are obtained via
946  * sg_dma_{address,length}.
947  *
948  * Device ownership issues as mentioned for dma_map_single are the same
949  * here.
950  */
951 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
952 		enum dma_data_direction dir, struct dma_attrs *attrs)
953 {
954 	struct dma_map_ops *ops = get_dma_ops(dev);
955 	struct scatterlist *s;
956 	int i, j;
957 
958 	for_each_sg(sg, s, nents, i) {
959 #ifdef CONFIG_NEED_SG_DMA_LENGTH
960 		s->dma_length = s->length;
961 #endif
962 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
963 						s->length, dir, attrs);
964 		if (dma_mapping_error(dev, s->dma_address))
965 			goto bad_mapping;
966 	}
967 	return nents;
968 
969  bad_mapping:
970 	for_each_sg(sg, s, i, j)
971 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
972 	return 0;
973 }
974 
975 /**
976  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
977  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
978  * @sg: list of buffers
979  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
980  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
981  *
982  * Unmap a set of streaming mode DMA translations.  Again, CPU access
983  * rules concerning calls here are the same as for dma_unmap_single().
984  */
985 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
986 		enum dma_data_direction dir, struct dma_attrs *attrs)
987 {
988 	struct dma_map_ops *ops = get_dma_ops(dev);
989 	struct scatterlist *s;
990 
991 	int i;
992 
993 	for_each_sg(sg, s, nents, i)
994 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
995 }
996 
997 /**
998  * arm_dma_sync_sg_for_cpu
999  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1000  * @sg: list of buffers
1001  * @nents: number of buffers to map (returned from dma_map_sg)
1002  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1003  */
1004 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1005 			int nents, enum dma_data_direction dir)
1006 {
1007 	struct dma_map_ops *ops = get_dma_ops(dev);
1008 	struct scatterlist *s;
1009 	int i;
1010 
1011 	for_each_sg(sg, s, nents, i)
1012 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1013 					 dir);
1014 }
1015 
1016 /**
1017  * arm_dma_sync_sg_for_device
1018  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1019  * @sg: list of buffers
1020  * @nents: number of buffers to map (returned from dma_map_sg)
1021  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1022  */
1023 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1024 			int nents, enum dma_data_direction dir)
1025 {
1026 	struct dma_map_ops *ops = get_dma_ops(dev);
1027 	struct scatterlist *s;
1028 	int i;
1029 
1030 	for_each_sg(sg, s, nents, i)
1031 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1032 					    dir);
1033 }
1034 
1035 /*
1036  * Return whether the given device DMA address mask can be supported
1037  * properly.  For example, if your device can only drive the low 24-bits
1038  * during bus mastering, then you would pass 0x00ffffff as the mask
1039  * to this function.
1040  */
1041 int dma_supported(struct device *dev, u64 mask)
1042 {
1043 	return __dma_supported(dev, mask, false);
1044 }
1045 EXPORT_SYMBOL(dma_supported);
1046 
1047 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1048 {
1049 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1050 		return -EIO;
1051 
1052 	*dev->dma_mask = dma_mask;
1053 
1054 	return 0;
1055 }
1056 
1057 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1058 
1059 static int __init dma_debug_do_init(void)
1060 {
1061 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1062 	return 0;
1063 }
1064 fs_initcall(dma_debug_do_init);
1065 
1066 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1067 
1068 /* IOMMU */
1069 
1070 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1071 
1072 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1073 				      size_t size)
1074 {
1075 	unsigned int order = get_order(size);
1076 	unsigned int align = 0;
1077 	unsigned int count, start;
1078 	unsigned long flags;
1079 	dma_addr_t iova;
1080 	int i;
1081 
1082 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1083 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1084 
1085 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1086 	align = (1 << order) - 1;
1087 
1088 	spin_lock_irqsave(&mapping->lock, flags);
1089 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1090 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1091 				mapping->bits, 0, count, align);
1092 
1093 		if (start > mapping->bits)
1094 			continue;
1095 
1096 		bitmap_set(mapping->bitmaps[i], start, count);
1097 		break;
1098 	}
1099 
1100 	/*
1101 	 * No unused range found. Try to extend the existing mapping
1102 	 * and perform a second attempt to reserve an IO virtual
1103 	 * address range of size bytes.
1104 	 */
1105 	if (i == mapping->nr_bitmaps) {
1106 		if (extend_iommu_mapping(mapping)) {
1107 			spin_unlock_irqrestore(&mapping->lock, flags);
1108 			return DMA_ERROR_CODE;
1109 		}
1110 
1111 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1112 				mapping->bits, 0, count, align);
1113 
1114 		if (start > mapping->bits) {
1115 			spin_unlock_irqrestore(&mapping->lock, flags);
1116 			return DMA_ERROR_CODE;
1117 		}
1118 
1119 		bitmap_set(mapping->bitmaps[i], start, count);
1120 	}
1121 	spin_unlock_irqrestore(&mapping->lock, flags);
1122 
1123 	iova = mapping->base + (mapping->size * i);
1124 	iova += start << PAGE_SHIFT;
1125 
1126 	return iova;
1127 }
1128 
1129 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1130 			       dma_addr_t addr, size_t size)
1131 {
1132 	unsigned int start, count;
1133 	unsigned long flags;
1134 	dma_addr_t bitmap_base;
1135 	u32 bitmap_index;
1136 
1137 	if (!size)
1138 		return;
1139 
1140 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping->size;
1141 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1142 
1143 	bitmap_base = mapping->base + mapping->size * bitmap_index;
1144 
1145 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1146 
1147 	if (addr + size > bitmap_base + mapping->size) {
1148 		/*
1149 		 * The address range to be freed reaches into the iova
1150 		 * range of the next bitmap. This should not happen as
1151 		 * we don't allow this in __alloc_iova (at the
1152 		 * moment).
1153 		 */
1154 		BUG();
1155 	} else
1156 		count = size >> PAGE_SHIFT;
1157 
1158 	spin_lock_irqsave(&mapping->lock, flags);
1159 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1160 	spin_unlock_irqrestore(&mapping->lock, flags);
1161 }
1162 
1163 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1164 					  gfp_t gfp, struct dma_attrs *attrs)
1165 {
1166 	struct page **pages;
1167 	int count = size >> PAGE_SHIFT;
1168 	int array_size = count * sizeof(struct page *);
1169 	int i = 0;
1170 
1171 	if (array_size <= PAGE_SIZE)
1172 		pages = kzalloc(array_size, gfp);
1173 	else
1174 		pages = vzalloc(array_size);
1175 	if (!pages)
1176 		return NULL;
1177 
1178 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1179 	{
1180 		unsigned long order = get_order(size);
1181 		struct page *page;
1182 
1183 		page = dma_alloc_from_contiguous(dev, count, order);
1184 		if (!page)
1185 			goto error;
1186 
1187 		__dma_clear_buffer(page, size);
1188 
1189 		for (i = 0; i < count; i++)
1190 			pages[i] = page + i;
1191 
1192 		return pages;
1193 	}
1194 
1195 	/*
1196 	 * IOMMU can map any pages, so himem can also be used here
1197 	 */
1198 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1199 
1200 	while (count) {
1201 		int j, order = __fls(count);
1202 
1203 		pages[i] = alloc_pages(gfp, order);
1204 		while (!pages[i] && order)
1205 			pages[i] = alloc_pages(gfp, --order);
1206 		if (!pages[i])
1207 			goto error;
1208 
1209 		if (order) {
1210 			split_page(pages[i], order);
1211 			j = 1 << order;
1212 			while (--j)
1213 				pages[i + j] = pages[i] + j;
1214 		}
1215 
1216 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1217 		i += 1 << order;
1218 		count -= 1 << order;
1219 	}
1220 
1221 	return pages;
1222 error:
1223 	while (i--)
1224 		if (pages[i])
1225 			__free_pages(pages[i], 0);
1226 	if (array_size <= PAGE_SIZE)
1227 		kfree(pages);
1228 	else
1229 		vfree(pages);
1230 	return NULL;
1231 }
1232 
1233 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1234 			       size_t size, struct dma_attrs *attrs)
1235 {
1236 	int count = size >> PAGE_SHIFT;
1237 	int array_size = count * sizeof(struct page *);
1238 	int i;
1239 
1240 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1241 		dma_release_from_contiguous(dev, pages[0], count);
1242 	} else {
1243 		for (i = 0; i < count; i++)
1244 			if (pages[i])
1245 				__free_pages(pages[i], 0);
1246 	}
1247 
1248 	if (array_size <= PAGE_SIZE)
1249 		kfree(pages);
1250 	else
1251 		vfree(pages);
1252 	return 0;
1253 }
1254 
1255 /*
1256  * Create a CPU mapping for a specified pages
1257  */
1258 static void *
1259 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1260 		    const void *caller)
1261 {
1262 	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1263 	struct vm_struct *area;
1264 	unsigned long p;
1265 
1266 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1267 				  caller);
1268 	if (!area)
1269 		return NULL;
1270 
1271 	area->pages = pages;
1272 	area->nr_pages = nr_pages;
1273 	p = (unsigned long)area->addr;
1274 
1275 	for (i = 0; i < nr_pages; i++) {
1276 		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1277 		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1278 			goto err;
1279 		p += PAGE_SIZE;
1280 	}
1281 	return area->addr;
1282 err:
1283 	unmap_kernel_range((unsigned long)area->addr, size);
1284 	vunmap(area->addr);
1285 	return NULL;
1286 }
1287 
1288 /*
1289  * Create a mapping in device IO address space for specified pages
1290  */
1291 static dma_addr_t
1292 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1293 {
1294 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1295 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1296 	dma_addr_t dma_addr, iova;
1297 	int i, ret = DMA_ERROR_CODE;
1298 
1299 	dma_addr = __alloc_iova(mapping, size);
1300 	if (dma_addr == DMA_ERROR_CODE)
1301 		return dma_addr;
1302 
1303 	iova = dma_addr;
1304 	for (i = 0; i < count; ) {
1305 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1306 		phys_addr_t phys = page_to_phys(pages[i]);
1307 		unsigned int len, j;
1308 
1309 		for (j = i + 1; j < count; j++, next_pfn++)
1310 			if (page_to_pfn(pages[j]) != next_pfn)
1311 				break;
1312 
1313 		len = (j - i) << PAGE_SHIFT;
1314 		ret = iommu_map(mapping->domain, iova, phys, len,
1315 				IOMMU_READ|IOMMU_WRITE);
1316 		if (ret < 0)
1317 			goto fail;
1318 		iova += len;
1319 		i = j;
1320 	}
1321 	return dma_addr;
1322 fail:
1323 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1324 	__free_iova(mapping, dma_addr, size);
1325 	return DMA_ERROR_CODE;
1326 }
1327 
1328 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1329 {
1330 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1331 
1332 	/*
1333 	 * add optional in-page offset from iova to size and align
1334 	 * result to page size
1335 	 */
1336 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1337 	iova &= PAGE_MASK;
1338 
1339 	iommu_unmap(mapping->domain, iova, size);
1340 	__free_iova(mapping, iova, size);
1341 	return 0;
1342 }
1343 
1344 static struct page **__atomic_get_pages(void *addr)
1345 {
1346 	struct dma_pool *pool = &atomic_pool;
1347 	struct page **pages = pool->pages;
1348 	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1349 
1350 	return pages + offs;
1351 }
1352 
1353 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1354 {
1355 	struct vm_struct *area;
1356 
1357 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1358 		return __atomic_get_pages(cpu_addr);
1359 
1360 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1361 		return cpu_addr;
1362 
1363 	area = find_vm_area(cpu_addr);
1364 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1365 		return area->pages;
1366 	return NULL;
1367 }
1368 
1369 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1370 				  dma_addr_t *handle)
1371 {
1372 	struct page *page;
1373 	void *addr;
1374 
1375 	addr = __alloc_from_pool(size, &page);
1376 	if (!addr)
1377 		return NULL;
1378 
1379 	*handle = __iommu_create_mapping(dev, &page, size);
1380 	if (*handle == DMA_ERROR_CODE)
1381 		goto err_mapping;
1382 
1383 	return addr;
1384 
1385 err_mapping:
1386 	__free_from_pool(addr, size);
1387 	return NULL;
1388 }
1389 
1390 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1391 				dma_addr_t handle, size_t size)
1392 {
1393 	__iommu_remove_mapping(dev, handle, size);
1394 	__free_from_pool(cpu_addr, size);
1395 }
1396 
1397 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1398 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1399 {
1400 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1401 	struct page **pages;
1402 	void *addr = NULL;
1403 
1404 	*handle = DMA_ERROR_CODE;
1405 	size = PAGE_ALIGN(size);
1406 
1407 	if (!(gfp & __GFP_WAIT))
1408 		return __iommu_alloc_atomic(dev, size, handle);
1409 
1410 	/*
1411 	 * Following is a work-around (a.k.a. hack) to prevent pages
1412 	 * with __GFP_COMP being passed to split_page() which cannot
1413 	 * handle them.  The real problem is that this flag probably
1414 	 * should be 0 on ARM as it is not supported on this
1415 	 * platform; see CONFIG_HUGETLBFS.
1416 	 */
1417 	gfp &= ~(__GFP_COMP);
1418 
1419 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1420 	if (!pages)
1421 		return NULL;
1422 
1423 	*handle = __iommu_create_mapping(dev, pages, size);
1424 	if (*handle == DMA_ERROR_CODE)
1425 		goto err_buffer;
1426 
1427 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1428 		return pages;
1429 
1430 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1431 				   __builtin_return_address(0));
1432 	if (!addr)
1433 		goto err_mapping;
1434 
1435 	return addr;
1436 
1437 err_mapping:
1438 	__iommu_remove_mapping(dev, *handle, size);
1439 err_buffer:
1440 	__iommu_free_buffer(dev, pages, size, attrs);
1441 	return NULL;
1442 }
1443 
1444 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1445 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1446 		    struct dma_attrs *attrs)
1447 {
1448 	unsigned long uaddr = vma->vm_start;
1449 	unsigned long usize = vma->vm_end - vma->vm_start;
1450 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1451 
1452 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1453 
1454 	if (!pages)
1455 		return -ENXIO;
1456 
1457 	do {
1458 		int ret = vm_insert_page(vma, uaddr, *pages++);
1459 		if (ret) {
1460 			pr_err("Remapping memory failed: %d\n", ret);
1461 			return ret;
1462 		}
1463 		uaddr += PAGE_SIZE;
1464 		usize -= PAGE_SIZE;
1465 	} while (usize > 0);
1466 
1467 	return 0;
1468 }
1469 
1470 /*
1471  * free a page as defined by the above mapping.
1472  * Must not be called with IRQs disabled.
1473  */
1474 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1475 			  dma_addr_t handle, struct dma_attrs *attrs)
1476 {
1477 	struct page **pages;
1478 	size = PAGE_ALIGN(size);
1479 
1480 	if (__in_atomic_pool(cpu_addr, size)) {
1481 		__iommu_free_atomic(dev, cpu_addr, handle, size);
1482 		return;
1483 	}
1484 
1485 	pages = __iommu_get_pages(cpu_addr, attrs);
1486 	if (!pages) {
1487 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1488 		return;
1489 	}
1490 
1491 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1492 		unmap_kernel_range((unsigned long)cpu_addr, size);
1493 		vunmap(cpu_addr);
1494 	}
1495 
1496 	__iommu_remove_mapping(dev, handle, size);
1497 	__iommu_free_buffer(dev, pages, size, attrs);
1498 }
1499 
1500 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1501 				 void *cpu_addr, dma_addr_t dma_addr,
1502 				 size_t size, struct dma_attrs *attrs)
1503 {
1504 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1505 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1506 
1507 	if (!pages)
1508 		return -ENXIO;
1509 
1510 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1511 					 GFP_KERNEL);
1512 }
1513 
1514 static int __dma_direction_to_prot(enum dma_data_direction dir)
1515 {
1516 	int prot;
1517 
1518 	switch (dir) {
1519 	case DMA_BIDIRECTIONAL:
1520 		prot = IOMMU_READ | IOMMU_WRITE;
1521 		break;
1522 	case DMA_TO_DEVICE:
1523 		prot = IOMMU_READ;
1524 		break;
1525 	case DMA_FROM_DEVICE:
1526 		prot = IOMMU_WRITE;
1527 		break;
1528 	default:
1529 		prot = 0;
1530 	}
1531 
1532 	return prot;
1533 }
1534 
1535 /*
1536  * Map a part of the scatter-gather list into contiguous io address space
1537  */
1538 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1539 			  size_t size, dma_addr_t *handle,
1540 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1541 			  bool is_coherent)
1542 {
1543 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1544 	dma_addr_t iova, iova_base;
1545 	int ret = 0;
1546 	unsigned int count;
1547 	struct scatterlist *s;
1548 	int prot;
1549 
1550 	size = PAGE_ALIGN(size);
1551 	*handle = DMA_ERROR_CODE;
1552 
1553 	iova_base = iova = __alloc_iova(mapping, size);
1554 	if (iova == DMA_ERROR_CODE)
1555 		return -ENOMEM;
1556 
1557 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1558 		phys_addr_t phys = page_to_phys(sg_page(s));
1559 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1560 
1561 		if (!is_coherent &&
1562 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1563 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1564 
1565 		prot = __dma_direction_to_prot(dir);
1566 
1567 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1568 		if (ret < 0)
1569 			goto fail;
1570 		count += len >> PAGE_SHIFT;
1571 		iova += len;
1572 	}
1573 	*handle = iova_base;
1574 
1575 	return 0;
1576 fail:
1577 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1578 	__free_iova(mapping, iova_base, size);
1579 	return ret;
1580 }
1581 
1582 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1583 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1584 		     bool is_coherent)
1585 {
1586 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1587 	int i, count = 0;
1588 	unsigned int offset = s->offset;
1589 	unsigned int size = s->offset + s->length;
1590 	unsigned int max = dma_get_max_seg_size(dev);
1591 
1592 	for (i = 1; i < nents; i++) {
1593 		s = sg_next(s);
1594 
1595 		s->dma_address = DMA_ERROR_CODE;
1596 		s->dma_length = 0;
1597 
1598 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1599 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1600 			    dir, attrs, is_coherent) < 0)
1601 				goto bad_mapping;
1602 
1603 			dma->dma_address += offset;
1604 			dma->dma_length = size - offset;
1605 
1606 			size = offset = s->offset;
1607 			start = s;
1608 			dma = sg_next(dma);
1609 			count += 1;
1610 		}
1611 		size += s->length;
1612 	}
1613 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1614 		is_coherent) < 0)
1615 		goto bad_mapping;
1616 
1617 	dma->dma_address += offset;
1618 	dma->dma_length = size - offset;
1619 
1620 	return count+1;
1621 
1622 bad_mapping:
1623 	for_each_sg(sg, s, count, i)
1624 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1625 	return 0;
1626 }
1627 
1628 /**
1629  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1630  * @dev: valid struct device pointer
1631  * @sg: list of buffers
1632  * @nents: number of buffers to map
1633  * @dir: DMA transfer direction
1634  *
1635  * Map a set of i/o coherent buffers described by scatterlist in streaming
1636  * mode for DMA. The scatter gather list elements are merged together (if
1637  * possible) and tagged with the appropriate dma address and length. They are
1638  * obtained via sg_dma_{address,length}.
1639  */
1640 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1641 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1642 {
1643 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1644 }
1645 
1646 /**
1647  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1648  * @dev: valid struct device pointer
1649  * @sg: list of buffers
1650  * @nents: number of buffers to map
1651  * @dir: DMA transfer direction
1652  *
1653  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1654  * The scatter gather list elements are merged together (if possible) and
1655  * tagged with the appropriate dma address and length. They are obtained via
1656  * sg_dma_{address,length}.
1657  */
1658 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1659 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1660 {
1661 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1662 }
1663 
1664 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1665 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1666 		bool is_coherent)
1667 {
1668 	struct scatterlist *s;
1669 	int i;
1670 
1671 	for_each_sg(sg, s, nents, i) {
1672 		if (sg_dma_len(s))
1673 			__iommu_remove_mapping(dev, sg_dma_address(s),
1674 					       sg_dma_len(s));
1675 		if (!is_coherent &&
1676 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1677 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1678 					      s->length, dir);
1679 	}
1680 }
1681 
1682 /**
1683  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1684  * @dev: valid struct device pointer
1685  * @sg: list of buffers
1686  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1687  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1688  *
1689  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1690  * rules concerning calls here are the same as for dma_unmap_single().
1691  */
1692 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1693 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1694 {
1695 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1696 }
1697 
1698 /**
1699  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1700  * @dev: valid struct device pointer
1701  * @sg: list of buffers
1702  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1703  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1704  *
1705  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1706  * rules concerning calls here are the same as for dma_unmap_single().
1707  */
1708 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1709 			enum dma_data_direction dir, struct dma_attrs *attrs)
1710 {
1711 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1712 }
1713 
1714 /**
1715  * arm_iommu_sync_sg_for_cpu
1716  * @dev: valid struct device pointer
1717  * @sg: list of buffers
1718  * @nents: number of buffers to map (returned from dma_map_sg)
1719  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1720  */
1721 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1722 			int nents, enum dma_data_direction dir)
1723 {
1724 	struct scatterlist *s;
1725 	int i;
1726 
1727 	for_each_sg(sg, s, nents, i)
1728 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1729 
1730 }
1731 
1732 /**
1733  * arm_iommu_sync_sg_for_device
1734  * @dev: valid struct device pointer
1735  * @sg: list of buffers
1736  * @nents: number of buffers to map (returned from dma_map_sg)
1737  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1738  */
1739 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1740 			int nents, enum dma_data_direction dir)
1741 {
1742 	struct scatterlist *s;
1743 	int i;
1744 
1745 	for_each_sg(sg, s, nents, i)
1746 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1747 }
1748 
1749 
1750 /**
1751  * arm_coherent_iommu_map_page
1752  * @dev: valid struct device pointer
1753  * @page: page that buffer resides in
1754  * @offset: offset into page for start of buffer
1755  * @size: size of buffer to map
1756  * @dir: DMA transfer direction
1757  *
1758  * Coherent IOMMU aware version of arm_dma_map_page()
1759  */
1760 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1761 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1762 	     struct dma_attrs *attrs)
1763 {
1764 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1765 	dma_addr_t dma_addr;
1766 	int ret, prot, len = PAGE_ALIGN(size + offset);
1767 
1768 	dma_addr = __alloc_iova(mapping, len);
1769 	if (dma_addr == DMA_ERROR_CODE)
1770 		return dma_addr;
1771 
1772 	prot = __dma_direction_to_prot(dir);
1773 
1774 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1775 	if (ret < 0)
1776 		goto fail;
1777 
1778 	return dma_addr + offset;
1779 fail:
1780 	__free_iova(mapping, dma_addr, len);
1781 	return DMA_ERROR_CODE;
1782 }
1783 
1784 /**
1785  * arm_iommu_map_page
1786  * @dev: valid struct device pointer
1787  * @page: page that buffer resides in
1788  * @offset: offset into page for start of buffer
1789  * @size: size of buffer to map
1790  * @dir: DMA transfer direction
1791  *
1792  * IOMMU aware version of arm_dma_map_page()
1793  */
1794 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1795 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1796 	     struct dma_attrs *attrs)
1797 {
1798 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1799 		__dma_page_cpu_to_dev(page, offset, size, dir);
1800 
1801 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1802 }
1803 
1804 /**
1805  * arm_coherent_iommu_unmap_page
1806  * @dev: valid struct device pointer
1807  * @handle: DMA address of buffer
1808  * @size: size of buffer (same as passed to dma_map_page)
1809  * @dir: DMA transfer direction (same as passed to dma_map_page)
1810  *
1811  * Coherent IOMMU aware version of arm_dma_unmap_page()
1812  */
1813 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1814 		size_t size, enum dma_data_direction dir,
1815 		struct dma_attrs *attrs)
1816 {
1817 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1818 	dma_addr_t iova = handle & PAGE_MASK;
1819 	int offset = handle & ~PAGE_MASK;
1820 	int len = PAGE_ALIGN(size + offset);
1821 
1822 	if (!iova)
1823 		return;
1824 
1825 	iommu_unmap(mapping->domain, iova, len);
1826 	__free_iova(mapping, iova, len);
1827 }
1828 
1829 /**
1830  * arm_iommu_unmap_page
1831  * @dev: valid struct device pointer
1832  * @handle: DMA address of buffer
1833  * @size: size of buffer (same as passed to dma_map_page)
1834  * @dir: DMA transfer direction (same as passed to dma_map_page)
1835  *
1836  * IOMMU aware version of arm_dma_unmap_page()
1837  */
1838 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1839 		size_t size, enum dma_data_direction dir,
1840 		struct dma_attrs *attrs)
1841 {
1842 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1843 	dma_addr_t iova = handle & PAGE_MASK;
1844 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1845 	int offset = handle & ~PAGE_MASK;
1846 	int len = PAGE_ALIGN(size + offset);
1847 
1848 	if (!iova)
1849 		return;
1850 
1851 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1852 		__dma_page_dev_to_cpu(page, offset, size, dir);
1853 
1854 	iommu_unmap(mapping->domain, iova, len);
1855 	__free_iova(mapping, iova, len);
1856 }
1857 
1858 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1859 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1860 {
1861 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1862 	dma_addr_t iova = handle & PAGE_MASK;
1863 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1864 	unsigned int offset = handle & ~PAGE_MASK;
1865 
1866 	if (!iova)
1867 		return;
1868 
1869 	__dma_page_dev_to_cpu(page, offset, size, dir);
1870 }
1871 
1872 static void arm_iommu_sync_single_for_device(struct device *dev,
1873 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1874 {
1875 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1876 	dma_addr_t iova = handle & PAGE_MASK;
1877 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1878 	unsigned int offset = handle & ~PAGE_MASK;
1879 
1880 	if (!iova)
1881 		return;
1882 
1883 	__dma_page_cpu_to_dev(page, offset, size, dir);
1884 }
1885 
1886 struct dma_map_ops iommu_ops = {
1887 	.alloc		= arm_iommu_alloc_attrs,
1888 	.free		= arm_iommu_free_attrs,
1889 	.mmap		= arm_iommu_mmap_attrs,
1890 	.get_sgtable	= arm_iommu_get_sgtable,
1891 
1892 	.map_page		= arm_iommu_map_page,
1893 	.unmap_page		= arm_iommu_unmap_page,
1894 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1895 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1896 
1897 	.map_sg			= arm_iommu_map_sg,
1898 	.unmap_sg		= arm_iommu_unmap_sg,
1899 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1900 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1901 
1902 	.set_dma_mask		= arm_dma_set_mask,
1903 };
1904 
1905 struct dma_map_ops iommu_coherent_ops = {
1906 	.alloc		= arm_iommu_alloc_attrs,
1907 	.free		= arm_iommu_free_attrs,
1908 	.mmap		= arm_iommu_mmap_attrs,
1909 	.get_sgtable	= arm_iommu_get_sgtable,
1910 
1911 	.map_page	= arm_coherent_iommu_map_page,
1912 	.unmap_page	= arm_coherent_iommu_unmap_page,
1913 
1914 	.map_sg		= arm_coherent_iommu_map_sg,
1915 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1916 
1917 	.set_dma_mask	= arm_dma_set_mask,
1918 };
1919 
1920 /**
1921  * arm_iommu_create_mapping
1922  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1923  * @base: start address of the valid IO address space
1924  * @size: maximum size of the valid IO address space
1925  *
1926  * Creates a mapping structure which holds information about used/unused
1927  * IO address ranges, which is required to perform memory allocation and
1928  * mapping with IOMMU aware functions.
1929  *
1930  * The client device need to be attached to the mapping with
1931  * arm_iommu_attach_device function.
1932  */
1933 struct dma_iommu_mapping *
1934 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1935 {
1936 	unsigned int bits = size >> PAGE_SHIFT;
1937 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1938 	struct dma_iommu_mapping *mapping;
1939 	int extensions = 1;
1940 	int err = -ENOMEM;
1941 
1942 	if (!bitmap_size)
1943 		return ERR_PTR(-EINVAL);
1944 
1945 	if (bitmap_size > PAGE_SIZE) {
1946 		extensions = bitmap_size / PAGE_SIZE;
1947 		bitmap_size = PAGE_SIZE;
1948 	}
1949 
1950 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1951 	if (!mapping)
1952 		goto err;
1953 
1954 	mapping->bitmap_size = bitmap_size;
1955 	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1956 				GFP_KERNEL);
1957 	if (!mapping->bitmaps)
1958 		goto err2;
1959 
1960 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1961 	if (!mapping->bitmaps[0])
1962 		goto err3;
1963 
1964 	mapping->nr_bitmaps = 1;
1965 	mapping->extensions = extensions;
1966 	mapping->base = base;
1967 	mapping->size = bitmap_size << PAGE_SHIFT;
1968 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1969 
1970 	spin_lock_init(&mapping->lock);
1971 
1972 	mapping->domain = iommu_domain_alloc(bus);
1973 	if (!mapping->domain)
1974 		goto err4;
1975 
1976 	kref_init(&mapping->kref);
1977 	return mapping;
1978 err4:
1979 	kfree(mapping->bitmaps[0]);
1980 err3:
1981 	kfree(mapping->bitmaps);
1982 err2:
1983 	kfree(mapping);
1984 err:
1985 	return ERR_PTR(err);
1986 }
1987 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1988 
1989 static void release_iommu_mapping(struct kref *kref)
1990 {
1991 	int i;
1992 	struct dma_iommu_mapping *mapping =
1993 		container_of(kref, struct dma_iommu_mapping, kref);
1994 
1995 	iommu_domain_free(mapping->domain);
1996 	for (i = 0; i < mapping->nr_bitmaps; i++)
1997 		kfree(mapping->bitmaps[i]);
1998 	kfree(mapping->bitmaps);
1999 	kfree(mapping);
2000 }
2001 
2002 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2003 {
2004 	int next_bitmap;
2005 
2006 	if (mapping->nr_bitmaps > mapping->extensions)
2007 		return -EINVAL;
2008 
2009 	next_bitmap = mapping->nr_bitmaps;
2010 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2011 						GFP_ATOMIC);
2012 	if (!mapping->bitmaps[next_bitmap])
2013 		return -ENOMEM;
2014 
2015 	mapping->nr_bitmaps++;
2016 
2017 	return 0;
2018 }
2019 
2020 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2021 {
2022 	if (mapping)
2023 		kref_put(&mapping->kref, release_iommu_mapping);
2024 }
2025 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2026 
2027 /**
2028  * arm_iommu_attach_device
2029  * @dev: valid struct device pointer
2030  * @mapping: io address space mapping structure (returned from
2031  *	arm_iommu_create_mapping)
2032  *
2033  * Attaches specified io address space mapping to the provided device,
2034  * this replaces the dma operations (dma_map_ops pointer) with the
2035  * IOMMU aware version. More than one client might be attached to
2036  * the same io address space mapping.
2037  */
2038 int arm_iommu_attach_device(struct device *dev,
2039 			    struct dma_iommu_mapping *mapping)
2040 {
2041 	int err;
2042 
2043 	err = iommu_attach_device(mapping->domain, dev);
2044 	if (err)
2045 		return err;
2046 
2047 	kref_get(&mapping->kref);
2048 	dev->archdata.mapping = mapping;
2049 	set_dma_ops(dev, &iommu_ops);
2050 
2051 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2052 	return 0;
2053 }
2054 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2055 
2056 /**
2057  * arm_iommu_detach_device
2058  * @dev: valid struct device pointer
2059  *
2060  * Detaches the provided device from a previously attached map.
2061  * This voids the dma operations (dma_map_ops pointer)
2062  */
2063 void arm_iommu_detach_device(struct device *dev)
2064 {
2065 	struct dma_iommu_mapping *mapping;
2066 
2067 	mapping = to_dma_iommu_mapping(dev);
2068 	if (!mapping) {
2069 		dev_warn(dev, "Not attached\n");
2070 		return;
2071 	}
2072 
2073 	iommu_detach_device(mapping->domain, dev);
2074 	kref_put(&mapping->kref, release_iommu_mapping);
2075 	dev->archdata.mapping = NULL;
2076 	set_dma_ops(dev, NULL);
2077 
2078 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2079 }
2080 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2081 
2082 #endif
2083