xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 0a0f0d8b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/dma-mapping.c
4  *
5  *  Copyright (C) 2000-2004 Russell King
6  *
7  *  DMA uncached mapping support.
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dma-map-ops.h>
19 #include <linux/dma-noncoherent.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28 #include <linux/cma.h>
29 
30 #include <asm/memory.h>
31 #include <asm/highmem.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mach/arch.h>
35 #include <asm/dma-iommu.h>
36 #include <asm/mach/map.h>
37 #include <asm/system_info.h>
38 #include <asm/dma-contiguous.h>
39 #include <xen/swiotlb-xen.h>
40 
41 #include "dma.h"
42 #include "mm.h"
43 
44 struct arm_dma_alloc_args {
45 	struct device *dev;
46 	size_t size;
47 	gfp_t gfp;
48 	pgprot_t prot;
49 	const void *caller;
50 	bool want_vaddr;
51 	int coherent_flag;
52 };
53 
54 struct arm_dma_free_args {
55 	struct device *dev;
56 	size_t size;
57 	void *cpu_addr;
58 	struct page *page;
59 	bool want_vaddr;
60 };
61 
62 #define NORMAL	    0
63 #define COHERENT    1
64 
65 struct arm_dma_allocator {
66 	void *(*alloc)(struct arm_dma_alloc_args *args,
67 		       struct page **ret_page);
68 	void (*free)(struct arm_dma_free_args *args);
69 };
70 
71 struct arm_dma_buffer {
72 	struct list_head list;
73 	void *virt;
74 	struct arm_dma_allocator *allocator;
75 };
76 
77 static LIST_HEAD(arm_dma_bufs);
78 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
79 
80 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
81 {
82 	struct arm_dma_buffer *buf, *found = NULL;
83 	unsigned long flags;
84 
85 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
86 	list_for_each_entry(buf, &arm_dma_bufs, list) {
87 		if (buf->virt == virt) {
88 			list_del(&buf->list);
89 			found = buf;
90 			break;
91 		}
92 	}
93 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
94 	return found;
95 }
96 
97 /*
98  * The DMA API is built upon the notion of "buffer ownership".  A buffer
99  * is either exclusively owned by the CPU (and therefore may be accessed
100  * by it) or exclusively owned by the DMA device.  These helper functions
101  * represent the transitions between these two ownership states.
102  *
103  * Note, however, that on later ARMs, this notion does not work due to
104  * speculative prefetches.  We model our approach on the assumption that
105  * the CPU does do speculative prefetches, which means we clean caches
106  * before transfers and delay cache invalidation until transfer completion.
107  *
108  */
109 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
110 		size_t, enum dma_data_direction);
111 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
112 		size_t, enum dma_data_direction);
113 
114 /**
115  * arm_dma_map_page - map a portion of a page for streaming DMA
116  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
117  * @page: page that buffer resides in
118  * @offset: offset into page for start of buffer
119  * @size: size of buffer to map
120  * @dir: DMA transfer direction
121  *
122  * Ensure that any data held in the cache is appropriately discarded
123  * or written back.
124  *
125  * The device owns this memory once this call has completed.  The CPU
126  * can regain ownership by calling dma_unmap_page().
127  */
128 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
129 	     unsigned long offset, size_t size, enum dma_data_direction dir,
130 	     unsigned long attrs)
131 {
132 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
133 		__dma_page_cpu_to_dev(page, offset, size, dir);
134 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
135 }
136 
137 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
138 	     unsigned long offset, size_t size, enum dma_data_direction dir,
139 	     unsigned long attrs)
140 {
141 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
142 }
143 
144 /**
145  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
146  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
147  * @handle: DMA address of buffer
148  * @size: size of buffer (same as passed to dma_map_page)
149  * @dir: DMA transfer direction (same as passed to dma_map_page)
150  *
151  * Unmap a page streaming mode DMA translation.  The handle and size
152  * must match what was provided in the previous dma_map_page() call.
153  * All other usages are undefined.
154  *
155  * After this call, reads by the CPU to the buffer are guaranteed to see
156  * whatever the device wrote there.
157  */
158 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
159 		size_t size, enum dma_data_direction dir, unsigned long attrs)
160 {
161 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
162 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
163 				      handle & ~PAGE_MASK, size, dir);
164 }
165 
166 static void arm_dma_sync_single_for_cpu(struct device *dev,
167 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
168 {
169 	unsigned int offset = handle & (PAGE_SIZE - 1);
170 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
171 	__dma_page_dev_to_cpu(page, offset, size, dir);
172 }
173 
174 static void arm_dma_sync_single_for_device(struct device *dev,
175 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
176 {
177 	unsigned int offset = handle & (PAGE_SIZE - 1);
178 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
179 	__dma_page_cpu_to_dev(page, offset, size, dir);
180 }
181 
182 /*
183  * Return whether the given device DMA address mask can be supported
184  * properly.  For example, if your device can only drive the low 24-bits
185  * during bus mastering, then you would pass 0x00ffffff as the mask
186  * to this function.
187  */
188 static int arm_dma_supported(struct device *dev, u64 mask)
189 {
190 	unsigned long max_dma_pfn = min(max_pfn - 1, arm_dma_pfn_limit);
191 
192 	/*
193 	 * Translate the device's DMA mask to a PFN limit.  This
194 	 * PFN number includes the page which we can DMA to.
195 	 */
196 	return dma_to_pfn(dev, mask) >= max_dma_pfn;
197 }
198 
199 const struct dma_map_ops arm_dma_ops = {
200 	.alloc			= arm_dma_alloc,
201 	.free			= arm_dma_free,
202 	.alloc_pages		= dma_direct_alloc_pages,
203 	.free_pages		= dma_direct_free_pages,
204 	.mmap			= arm_dma_mmap,
205 	.get_sgtable		= arm_dma_get_sgtable,
206 	.map_page		= arm_dma_map_page,
207 	.unmap_page		= arm_dma_unmap_page,
208 	.map_sg			= arm_dma_map_sg,
209 	.unmap_sg		= arm_dma_unmap_sg,
210 	.map_resource		= dma_direct_map_resource,
211 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
212 	.sync_single_for_device	= arm_dma_sync_single_for_device,
213 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
214 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
215 	.dma_supported		= arm_dma_supported,
216 	.get_required_mask	= dma_direct_get_required_mask,
217 };
218 EXPORT_SYMBOL(arm_dma_ops);
219 
220 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
221 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
222 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
223 				  dma_addr_t handle, unsigned long attrs);
224 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
225 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
226 		 unsigned long attrs);
227 
228 const struct dma_map_ops arm_coherent_dma_ops = {
229 	.alloc			= arm_coherent_dma_alloc,
230 	.free			= arm_coherent_dma_free,
231 	.alloc_pages		= dma_direct_alloc_pages,
232 	.free_pages		= dma_direct_free_pages,
233 	.mmap			= arm_coherent_dma_mmap,
234 	.get_sgtable		= arm_dma_get_sgtable,
235 	.map_page		= arm_coherent_dma_map_page,
236 	.map_sg			= arm_dma_map_sg,
237 	.map_resource		= dma_direct_map_resource,
238 	.dma_supported		= arm_dma_supported,
239 	.get_required_mask	= dma_direct_get_required_mask,
240 };
241 EXPORT_SYMBOL(arm_coherent_dma_ops);
242 
243 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
244 {
245 	/*
246 	 * Ensure that the allocated pages are zeroed, and that any data
247 	 * lurking in the kernel direct-mapped region is invalidated.
248 	 */
249 	if (PageHighMem(page)) {
250 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
251 		phys_addr_t end = base + size;
252 		while (size > 0) {
253 			void *ptr = kmap_atomic(page);
254 			memset(ptr, 0, PAGE_SIZE);
255 			if (coherent_flag != COHERENT)
256 				dmac_flush_range(ptr, ptr + PAGE_SIZE);
257 			kunmap_atomic(ptr);
258 			page++;
259 			size -= PAGE_SIZE;
260 		}
261 		if (coherent_flag != COHERENT)
262 			outer_flush_range(base, end);
263 	} else {
264 		void *ptr = page_address(page);
265 		memset(ptr, 0, size);
266 		if (coherent_flag != COHERENT) {
267 			dmac_flush_range(ptr, ptr + size);
268 			outer_flush_range(__pa(ptr), __pa(ptr) + size);
269 		}
270 	}
271 }
272 
273 /*
274  * Allocate a DMA buffer for 'dev' of size 'size' using the
275  * specified gfp mask.  Note that 'size' must be page aligned.
276  */
277 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
278 				       gfp_t gfp, int coherent_flag)
279 {
280 	unsigned long order = get_order(size);
281 	struct page *page, *p, *e;
282 
283 	page = alloc_pages(gfp, order);
284 	if (!page)
285 		return NULL;
286 
287 	/*
288 	 * Now split the huge page and free the excess pages
289 	 */
290 	split_page(page, order);
291 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
292 		__free_page(p);
293 
294 	__dma_clear_buffer(page, size, coherent_flag);
295 
296 	return page;
297 }
298 
299 /*
300  * Free a DMA buffer.  'size' must be page aligned.
301  */
302 static void __dma_free_buffer(struct page *page, size_t size)
303 {
304 	struct page *e = page + (size >> PAGE_SHIFT);
305 
306 	while (page < e) {
307 		__free_page(page);
308 		page++;
309 	}
310 }
311 
312 static void *__alloc_from_contiguous(struct device *dev, size_t size,
313 				     pgprot_t prot, struct page **ret_page,
314 				     const void *caller, bool want_vaddr,
315 				     int coherent_flag, gfp_t gfp);
316 
317 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
318 				 pgprot_t prot, struct page **ret_page,
319 				 const void *caller, bool want_vaddr);
320 
321 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
322 static struct gen_pool *atomic_pool __ro_after_init;
323 
324 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
325 
326 static int __init early_coherent_pool(char *p)
327 {
328 	atomic_pool_size = memparse(p, &p);
329 	return 0;
330 }
331 early_param("coherent_pool", early_coherent_pool);
332 
333 /*
334  * Initialise the coherent pool for atomic allocations.
335  */
336 static int __init atomic_pool_init(void)
337 {
338 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
339 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
340 	struct page *page;
341 	void *ptr;
342 
343 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
344 	if (!atomic_pool)
345 		goto out;
346 	/*
347 	 * The atomic pool is only used for non-coherent allocations
348 	 * so we must pass NORMAL for coherent_flag.
349 	 */
350 	if (dev_get_cma_area(NULL))
351 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
352 				      &page, atomic_pool_init, true, NORMAL,
353 				      GFP_KERNEL);
354 	else
355 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
356 					   &page, atomic_pool_init, true);
357 	if (ptr) {
358 		int ret;
359 
360 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
361 					page_to_phys(page),
362 					atomic_pool_size, -1);
363 		if (ret)
364 			goto destroy_genpool;
365 
366 		gen_pool_set_algo(atomic_pool,
367 				gen_pool_first_fit_order_align,
368 				NULL);
369 		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
370 		       atomic_pool_size / 1024);
371 		return 0;
372 	}
373 
374 destroy_genpool:
375 	gen_pool_destroy(atomic_pool);
376 	atomic_pool = NULL;
377 out:
378 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
379 	       atomic_pool_size / 1024);
380 	return -ENOMEM;
381 }
382 /*
383  * CMA is activated by core_initcall, so we must be called after it.
384  */
385 postcore_initcall(atomic_pool_init);
386 
387 struct dma_contig_early_reserve {
388 	phys_addr_t base;
389 	unsigned long size;
390 };
391 
392 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
393 
394 static int dma_mmu_remap_num __initdata;
395 
396 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
397 {
398 	dma_mmu_remap[dma_mmu_remap_num].base = base;
399 	dma_mmu_remap[dma_mmu_remap_num].size = size;
400 	dma_mmu_remap_num++;
401 }
402 
403 void __init dma_contiguous_remap(void)
404 {
405 	int i;
406 	for (i = 0; i < dma_mmu_remap_num; i++) {
407 		phys_addr_t start = dma_mmu_remap[i].base;
408 		phys_addr_t end = start + dma_mmu_remap[i].size;
409 		struct map_desc map;
410 		unsigned long addr;
411 
412 		if (end > arm_lowmem_limit)
413 			end = arm_lowmem_limit;
414 		if (start >= end)
415 			continue;
416 
417 		map.pfn = __phys_to_pfn(start);
418 		map.virtual = __phys_to_virt(start);
419 		map.length = end - start;
420 		map.type = MT_MEMORY_DMA_READY;
421 
422 		/*
423 		 * Clear previous low-memory mapping to ensure that the
424 		 * TLB does not see any conflicting entries, then flush
425 		 * the TLB of the old entries before creating new mappings.
426 		 *
427 		 * This ensures that any speculatively loaded TLB entries
428 		 * (even though they may be rare) can not cause any problems,
429 		 * and ensures that this code is architecturally compliant.
430 		 */
431 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
432 		     addr += PMD_SIZE)
433 			pmd_clear(pmd_off_k(addr));
434 
435 		flush_tlb_kernel_range(__phys_to_virt(start),
436 				       __phys_to_virt(end));
437 
438 		iotable_init(&map, 1);
439 	}
440 }
441 
442 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
443 {
444 	struct page *page = virt_to_page(addr);
445 	pgprot_t prot = *(pgprot_t *)data;
446 
447 	set_pte_ext(pte, mk_pte(page, prot), 0);
448 	return 0;
449 }
450 
451 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
452 {
453 	unsigned long start = (unsigned long) page_address(page);
454 	unsigned end = start + size;
455 
456 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
457 	flush_tlb_kernel_range(start, end);
458 }
459 
460 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
461 				 pgprot_t prot, struct page **ret_page,
462 				 const void *caller, bool want_vaddr)
463 {
464 	struct page *page;
465 	void *ptr = NULL;
466 	/*
467 	 * __alloc_remap_buffer is only called when the device is
468 	 * non-coherent
469 	 */
470 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
471 	if (!page)
472 		return NULL;
473 	if (!want_vaddr)
474 		goto out;
475 
476 	ptr = dma_common_contiguous_remap(page, size, prot, caller);
477 	if (!ptr) {
478 		__dma_free_buffer(page, size);
479 		return NULL;
480 	}
481 
482  out:
483 	*ret_page = page;
484 	return ptr;
485 }
486 
487 static void *__alloc_from_pool(size_t size, struct page **ret_page)
488 {
489 	unsigned long val;
490 	void *ptr = NULL;
491 
492 	if (!atomic_pool) {
493 		WARN(1, "coherent pool not initialised!\n");
494 		return NULL;
495 	}
496 
497 	val = gen_pool_alloc(atomic_pool, size);
498 	if (val) {
499 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
500 
501 		*ret_page = phys_to_page(phys);
502 		ptr = (void *)val;
503 	}
504 
505 	return ptr;
506 }
507 
508 static bool __in_atomic_pool(void *start, size_t size)
509 {
510 	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
511 }
512 
513 static int __free_from_pool(void *start, size_t size)
514 {
515 	if (!__in_atomic_pool(start, size))
516 		return 0;
517 
518 	gen_pool_free(atomic_pool, (unsigned long)start, size);
519 
520 	return 1;
521 }
522 
523 static void *__alloc_from_contiguous(struct device *dev, size_t size,
524 				     pgprot_t prot, struct page **ret_page,
525 				     const void *caller, bool want_vaddr,
526 				     int coherent_flag, gfp_t gfp)
527 {
528 	unsigned long order = get_order(size);
529 	size_t count = size >> PAGE_SHIFT;
530 	struct page *page;
531 	void *ptr = NULL;
532 
533 	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
534 	if (!page)
535 		return NULL;
536 
537 	__dma_clear_buffer(page, size, coherent_flag);
538 
539 	if (!want_vaddr)
540 		goto out;
541 
542 	if (PageHighMem(page)) {
543 		ptr = dma_common_contiguous_remap(page, size, prot, caller);
544 		if (!ptr) {
545 			dma_release_from_contiguous(dev, page, count);
546 			return NULL;
547 		}
548 	} else {
549 		__dma_remap(page, size, prot);
550 		ptr = page_address(page);
551 	}
552 
553  out:
554 	*ret_page = page;
555 	return ptr;
556 }
557 
558 static void __free_from_contiguous(struct device *dev, struct page *page,
559 				   void *cpu_addr, size_t size, bool want_vaddr)
560 {
561 	if (want_vaddr) {
562 		if (PageHighMem(page))
563 			dma_common_free_remap(cpu_addr, size);
564 		else
565 			__dma_remap(page, size, PAGE_KERNEL);
566 	}
567 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
568 }
569 
570 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
571 {
572 	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
573 			pgprot_writecombine(prot) :
574 			pgprot_dmacoherent(prot);
575 	return prot;
576 }
577 
578 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
579 				   struct page **ret_page)
580 {
581 	struct page *page;
582 	/* __alloc_simple_buffer is only called when the device is coherent */
583 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
584 	if (!page)
585 		return NULL;
586 
587 	*ret_page = page;
588 	return page_address(page);
589 }
590 
591 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
592 				    struct page **ret_page)
593 {
594 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
595 				     ret_page);
596 }
597 
598 static void simple_allocator_free(struct arm_dma_free_args *args)
599 {
600 	__dma_free_buffer(args->page, args->size);
601 }
602 
603 static struct arm_dma_allocator simple_allocator = {
604 	.alloc = simple_allocator_alloc,
605 	.free = simple_allocator_free,
606 };
607 
608 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
609 				 struct page **ret_page)
610 {
611 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
612 				       ret_page, args->caller,
613 				       args->want_vaddr, args->coherent_flag,
614 				       args->gfp);
615 }
616 
617 static void cma_allocator_free(struct arm_dma_free_args *args)
618 {
619 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
620 			       args->size, args->want_vaddr);
621 }
622 
623 static struct arm_dma_allocator cma_allocator = {
624 	.alloc = cma_allocator_alloc,
625 	.free = cma_allocator_free,
626 };
627 
628 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
629 				  struct page **ret_page)
630 {
631 	return __alloc_from_pool(args->size, ret_page);
632 }
633 
634 static void pool_allocator_free(struct arm_dma_free_args *args)
635 {
636 	__free_from_pool(args->cpu_addr, args->size);
637 }
638 
639 static struct arm_dma_allocator pool_allocator = {
640 	.alloc = pool_allocator_alloc,
641 	.free = pool_allocator_free,
642 };
643 
644 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
645 				   struct page **ret_page)
646 {
647 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
648 				    args->prot, ret_page, args->caller,
649 				    args->want_vaddr);
650 }
651 
652 static void remap_allocator_free(struct arm_dma_free_args *args)
653 {
654 	if (args->want_vaddr)
655 		dma_common_free_remap(args->cpu_addr, args->size);
656 
657 	__dma_free_buffer(args->page, args->size);
658 }
659 
660 static struct arm_dma_allocator remap_allocator = {
661 	.alloc = remap_allocator_alloc,
662 	.free = remap_allocator_free,
663 };
664 
665 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
666 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
667 			 unsigned long attrs, const void *caller)
668 {
669 	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
670 	struct page *page = NULL;
671 	void *addr;
672 	bool allowblock, cma;
673 	struct arm_dma_buffer *buf;
674 	struct arm_dma_alloc_args args = {
675 		.dev = dev,
676 		.size = PAGE_ALIGN(size),
677 		.gfp = gfp,
678 		.prot = prot,
679 		.caller = caller,
680 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
681 		.coherent_flag = is_coherent ? COHERENT : NORMAL,
682 	};
683 
684 #ifdef CONFIG_DMA_API_DEBUG
685 	u64 limit = (mask + 1) & ~mask;
686 	if (limit && size >= limit) {
687 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
688 			size, mask);
689 		return NULL;
690 	}
691 #endif
692 
693 	buf = kzalloc(sizeof(*buf),
694 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
695 	if (!buf)
696 		return NULL;
697 
698 	if (mask < 0xffffffffULL)
699 		gfp |= GFP_DMA;
700 
701 	/*
702 	 * Following is a work-around (a.k.a. hack) to prevent pages
703 	 * with __GFP_COMP being passed to split_page() which cannot
704 	 * handle them.  The real problem is that this flag probably
705 	 * should be 0 on ARM as it is not supported on this
706 	 * platform; see CONFIG_HUGETLBFS.
707 	 */
708 	gfp &= ~(__GFP_COMP);
709 	args.gfp = gfp;
710 
711 	*handle = DMA_MAPPING_ERROR;
712 	allowblock = gfpflags_allow_blocking(gfp);
713 	cma = allowblock ? dev_get_cma_area(dev) : false;
714 
715 	if (cma)
716 		buf->allocator = &cma_allocator;
717 	else if (is_coherent)
718 		buf->allocator = &simple_allocator;
719 	else if (allowblock)
720 		buf->allocator = &remap_allocator;
721 	else
722 		buf->allocator = &pool_allocator;
723 
724 	addr = buf->allocator->alloc(&args, &page);
725 
726 	if (page) {
727 		unsigned long flags;
728 
729 		*handle = pfn_to_dma(dev, page_to_pfn(page));
730 		buf->virt = args.want_vaddr ? addr : page;
731 
732 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
733 		list_add(&buf->list, &arm_dma_bufs);
734 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
735 	} else {
736 		kfree(buf);
737 	}
738 
739 	return args.want_vaddr ? addr : page;
740 }
741 
742 /*
743  * Allocate DMA-coherent memory space and return both the kernel remapped
744  * virtual and bus address for that space.
745  */
746 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
747 		    gfp_t gfp, unsigned long attrs)
748 {
749 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
750 
751 	return __dma_alloc(dev, size, handle, gfp, prot, false,
752 			   attrs, __builtin_return_address(0));
753 }
754 
755 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
756 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
757 {
758 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
759 			   attrs, __builtin_return_address(0));
760 }
761 
762 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
763 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
764 		 unsigned long attrs)
765 {
766 	int ret = -ENXIO;
767 	unsigned long nr_vma_pages = vma_pages(vma);
768 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
769 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
770 	unsigned long off = vma->vm_pgoff;
771 
772 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
773 		return ret;
774 
775 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
776 		ret = remap_pfn_range(vma, vma->vm_start,
777 				      pfn + off,
778 				      vma->vm_end - vma->vm_start,
779 				      vma->vm_page_prot);
780 	}
781 
782 	return ret;
783 }
784 
785 /*
786  * Create userspace mapping for the DMA-coherent memory.
787  */
788 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
789 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
790 		 unsigned long attrs)
791 {
792 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
793 }
794 
795 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
796 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
797 		 unsigned long attrs)
798 {
799 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
800 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
801 }
802 
803 /*
804  * Free a buffer as defined by the above mapping.
805  */
806 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
807 			   dma_addr_t handle, unsigned long attrs,
808 			   bool is_coherent)
809 {
810 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
811 	struct arm_dma_buffer *buf;
812 	struct arm_dma_free_args args = {
813 		.dev = dev,
814 		.size = PAGE_ALIGN(size),
815 		.cpu_addr = cpu_addr,
816 		.page = page,
817 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
818 	};
819 
820 	buf = arm_dma_buffer_find(cpu_addr);
821 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
822 		return;
823 
824 	buf->allocator->free(&args);
825 	kfree(buf);
826 }
827 
828 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
829 		  dma_addr_t handle, unsigned long attrs)
830 {
831 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
832 }
833 
834 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
835 				  dma_addr_t handle, unsigned long attrs)
836 {
837 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
838 }
839 
840 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
841 		 void *cpu_addr, dma_addr_t handle, size_t size,
842 		 unsigned long attrs)
843 {
844 	unsigned long pfn = dma_to_pfn(dev, handle);
845 	struct page *page;
846 	int ret;
847 
848 	/* If the PFN is not valid, we do not have a struct page */
849 	if (!pfn_valid(pfn))
850 		return -ENXIO;
851 
852 	page = pfn_to_page(pfn);
853 
854 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
855 	if (unlikely(ret))
856 		return ret;
857 
858 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
859 	return 0;
860 }
861 
862 static void dma_cache_maint_page(struct page *page, unsigned long offset,
863 	size_t size, enum dma_data_direction dir,
864 	void (*op)(const void *, size_t, int))
865 {
866 	unsigned long pfn;
867 	size_t left = size;
868 
869 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
870 	offset %= PAGE_SIZE;
871 
872 	/*
873 	 * A single sg entry may refer to multiple physically contiguous
874 	 * pages.  But we still need to process highmem pages individually.
875 	 * If highmem is not configured then the bulk of this loop gets
876 	 * optimized out.
877 	 */
878 	do {
879 		size_t len = left;
880 		void *vaddr;
881 
882 		page = pfn_to_page(pfn);
883 
884 		if (PageHighMem(page)) {
885 			if (len + offset > PAGE_SIZE)
886 				len = PAGE_SIZE - offset;
887 
888 			if (cache_is_vipt_nonaliasing()) {
889 				vaddr = kmap_atomic(page);
890 				op(vaddr + offset, len, dir);
891 				kunmap_atomic(vaddr);
892 			} else {
893 				vaddr = kmap_high_get(page);
894 				if (vaddr) {
895 					op(vaddr + offset, len, dir);
896 					kunmap_high(page);
897 				}
898 			}
899 		} else {
900 			vaddr = page_address(page) + offset;
901 			op(vaddr, len, dir);
902 		}
903 		offset = 0;
904 		pfn++;
905 		left -= len;
906 	} while (left);
907 }
908 
909 /*
910  * Make an area consistent for devices.
911  * Note: Drivers should NOT use this function directly, as it will break
912  * platforms with CONFIG_DMABOUNCE.
913  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
914  */
915 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
916 	size_t size, enum dma_data_direction dir)
917 {
918 	phys_addr_t paddr;
919 
920 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
921 
922 	paddr = page_to_phys(page) + off;
923 	if (dir == DMA_FROM_DEVICE) {
924 		outer_inv_range(paddr, paddr + size);
925 	} else {
926 		outer_clean_range(paddr, paddr + size);
927 	}
928 	/* FIXME: non-speculating: flush on bidirectional mappings? */
929 }
930 
931 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
932 	size_t size, enum dma_data_direction dir)
933 {
934 	phys_addr_t paddr = page_to_phys(page) + off;
935 
936 	/* FIXME: non-speculating: not required */
937 	/* in any case, don't bother invalidating if DMA to device */
938 	if (dir != DMA_TO_DEVICE) {
939 		outer_inv_range(paddr, paddr + size);
940 
941 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
942 	}
943 
944 	/*
945 	 * Mark the D-cache clean for these pages to avoid extra flushing.
946 	 */
947 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
948 		unsigned long pfn;
949 		size_t left = size;
950 
951 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
952 		off %= PAGE_SIZE;
953 		if (off) {
954 			pfn++;
955 			left -= PAGE_SIZE - off;
956 		}
957 		while (left >= PAGE_SIZE) {
958 			page = pfn_to_page(pfn++);
959 			set_bit(PG_dcache_clean, &page->flags);
960 			left -= PAGE_SIZE;
961 		}
962 	}
963 }
964 
965 /**
966  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
967  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
968  * @sg: list of buffers
969  * @nents: number of buffers to map
970  * @dir: DMA transfer direction
971  *
972  * Map a set of buffers described by scatterlist in streaming mode for DMA.
973  * This is the scatter-gather version of the dma_map_single interface.
974  * Here the scatter gather list elements are each tagged with the
975  * appropriate dma address and length.  They are obtained via
976  * sg_dma_{address,length}.
977  *
978  * Device ownership issues as mentioned for dma_map_single are the same
979  * here.
980  */
981 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
982 		enum dma_data_direction dir, unsigned long attrs)
983 {
984 	const struct dma_map_ops *ops = get_dma_ops(dev);
985 	struct scatterlist *s;
986 	int i, j;
987 
988 	for_each_sg(sg, s, nents, i) {
989 #ifdef CONFIG_NEED_SG_DMA_LENGTH
990 		s->dma_length = s->length;
991 #endif
992 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
993 						s->length, dir, attrs);
994 		if (dma_mapping_error(dev, s->dma_address))
995 			goto bad_mapping;
996 	}
997 	return nents;
998 
999  bad_mapping:
1000 	for_each_sg(sg, s, i, j)
1001 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1002 	return 0;
1003 }
1004 
1005 /**
1006  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1007  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1008  * @sg: list of buffers
1009  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1010  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1011  *
1012  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1013  * rules concerning calls here are the same as for dma_unmap_single().
1014  */
1015 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1016 		enum dma_data_direction dir, unsigned long attrs)
1017 {
1018 	const struct dma_map_ops *ops = get_dma_ops(dev);
1019 	struct scatterlist *s;
1020 
1021 	int i;
1022 
1023 	for_each_sg(sg, s, nents, i)
1024 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1025 }
1026 
1027 /**
1028  * arm_dma_sync_sg_for_cpu
1029  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1030  * @sg: list of buffers
1031  * @nents: number of buffers to map (returned from dma_map_sg)
1032  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1033  */
1034 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1035 			int nents, enum dma_data_direction dir)
1036 {
1037 	const struct dma_map_ops *ops = get_dma_ops(dev);
1038 	struct scatterlist *s;
1039 	int i;
1040 
1041 	for_each_sg(sg, s, nents, i)
1042 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1043 					 dir);
1044 }
1045 
1046 /**
1047  * arm_dma_sync_sg_for_device
1048  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1049  * @sg: list of buffers
1050  * @nents: number of buffers to map (returned from dma_map_sg)
1051  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1052  */
1053 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1054 			int nents, enum dma_data_direction dir)
1055 {
1056 	const struct dma_map_ops *ops = get_dma_ops(dev);
1057 	struct scatterlist *s;
1058 	int i;
1059 
1060 	for_each_sg(sg, s, nents, i)
1061 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1062 					    dir);
1063 }
1064 
1065 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1066 {
1067 	/*
1068 	 * When CONFIG_ARM_LPAE is set, physical address can extend above
1069 	 * 32-bits, which then can't be addressed by devices that only support
1070 	 * 32-bit DMA.
1071 	 * Use the generic dma-direct / swiotlb ops code in that case, as that
1072 	 * handles bounce buffering for us.
1073 	 */
1074 	if (IS_ENABLED(CONFIG_ARM_LPAE))
1075 		return NULL;
1076 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1077 }
1078 
1079 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1080 
1081 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1082 {
1083 	int prot = 0;
1084 
1085 	if (attrs & DMA_ATTR_PRIVILEGED)
1086 		prot |= IOMMU_PRIV;
1087 
1088 	switch (dir) {
1089 	case DMA_BIDIRECTIONAL:
1090 		return prot | IOMMU_READ | IOMMU_WRITE;
1091 	case DMA_TO_DEVICE:
1092 		return prot | IOMMU_READ;
1093 	case DMA_FROM_DEVICE:
1094 		return prot | IOMMU_WRITE;
1095 	default:
1096 		return prot;
1097 	}
1098 }
1099 
1100 /* IOMMU */
1101 
1102 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1103 
1104 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1105 				      size_t size)
1106 {
1107 	unsigned int order = get_order(size);
1108 	unsigned int align = 0;
1109 	unsigned int count, start;
1110 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1111 	unsigned long flags;
1112 	dma_addr_t iova;
1113 	int i;
1114 
1115 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1116 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1117 
1118 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1119 	align = (1 << order) - 1;
1120 
1121 	spin_lock_irqsave(&mapping->lock, flags);
1122 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1123 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1124 				mapping->bits, 0, count, align);
1125 
1126 		if (start > mapping->bits)
1127 			continue;
1128 
1129 		bitmap_set(mapping->bitmaps[i], start, count);
1130 		break;
1131 	}
1132 
1133 	/*
1134 	 * No unused range found. Try to extend the existing mapping
1135 	 * and perform a second attempt to reserve an IO virtual
1136 	 * address range of size bytes.
1137 	 */
1138 	if (i == mapping->nr_bitmaps) {
1139 		if (extend_iommu_mapping(mapping)) {
1140 			spin_unlock_irqrestore(&mapping->lock, flags);
1141 			return DMA_MAPPING_ERROR;
1142 		}
1143 
1144 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1145 				mapping->bits, 0, count, align);
1146 
1147 		if (start > mapping->bits) {
1148 			spin_unlock_irqrestore(&mapping->lock, flags);
1149 			return DMA_MAPPING_ERROR;
1150 		}
1151 
1152 		bitmap_set(mapping->bitmaps[i], start, count);
1153 	}
1154 	spin_unlock_irqrestore(&mapping->lock, flags);
1155 
1156 	iova = mapping->base + (mapping_size * i);
1157 	iova += start << PAGE_SHIFT;
1158 
1159 	return iova;
1160 }
1161 
1162 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1163 			       dma_addr_t addr, size_t size)
1164 {
1165 	unsigned int start, count;
1166 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1167 	unsigned long flags;
1168 	dma_addr_t bitmap_base;
1169 	u32 bitmap_index;
1170 
1171 	if (!size)
1172 		return;
1173 
1174 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1175 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1176 
1177 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1178 
1179 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1180 
1181 	if (addr + size > bitmap_base + mapping_size) {
1182 		/*
1183 		 * The address range to be freed reaches into the iova
1184 		 * range of the next bitmap. This should not happen as
1185 		 * we don't allow this in __alloc_iova (at the
1186 		 * moment).
1187 		 */
1188 		BUG();
1189 	} else
1190 		count = size >> PAGE_SHIFT;
1191 
1192 	spin_lock_irqsave(&mapping->lock, flags);
1193 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1194 	spin_unlock_irqrestore(&mapping->lock, flags);
1195 }
1196 
1197 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1198 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1199 
1200 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1201 					  gfp_t gfp, unsigned long attrs,
1202 					  int coherent_flag)
1203 {
1204 	struct page **pages;
1205 	int count = size >> PAGE_SHIFT;
1206 	int array_size = count * sizeof(struct page *);
1207 	int i = 0;
1208 	int order_idx = 0;
1209 
1210 	if (array_size <= PAGE_SIZE)
1211 		pages = kzalloc(array_size, GFP_KERNEL);
1212 	else
1213 		pages = vzalloc(array_size);
1214 	if (!pages)
1215 		return NULL;
1216 
1217 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1218 	{
1219 		unsigned long order = get_order(size);
1220 		struct page *page;
1221 
1222 		page = dma_alloc_from_contiguous(dev, count, order,
1223 						 gfp & __GFP_NOWARN);
1224 		if (!page)
1225 			goto error;
1226 
1227 		__dma_clear_buffer(page, size, coherent_flag);
1228 
1229 		for (i = 0; i < count; i++)
1230 			pages[i] = page + i;
1231 
1232 		return pages;
1233 	}
1234 
1235 	/* Go straight to 4K chunks if caller says it's OK. */
1236 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1237 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1238 
1239 	/*
1240 	 * IOMMU can map any pages, so himem can also be used here
1241 	 */
1242 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1243 
1244 	while (count) {
1245 		int j, order;
1246 
1247 		order = iommu_order_array[order_idx];
1248 
1249 		/* Drop down when we get small */
1250 		if (__fls(count) < order) {
1251 			order_idx++;
1252 			continue;
1253 		}
1254 
1255 		if (order) {
1256 			/* See if it's easy to allocate a high-order chunk */
1257 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1258 
1259 			/* Go down a notch at first sign of pressure */
1260 			if (!pages[i]) {
1261 				order_idx++;
1262 				continue;
1263 			}
1264 		} else {
1265 			pages[i] = alloc_pages(gfp, 0);
1266 			if (!pages[i])
1267 				goto error;
1268 		}
1269 
1270 		if (order) {
1271 			split_page(pages[i], order);
1272 			j = 1 << order;
1273 			while (--j)
1274 				pages[i + j] = pages[i] + j;
1275 		}
1276 
1277 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1278 		i += 1 << order;
1279 		count -= 1 << order;
1280 	}
1281 
1282 	return pages;
1283 error:
1284 	while (i--)
1285 		if (pages[i])
1286 			__free_pages(pages[i], 0);
1287 	kvfree(pages);
1288 	return NULL;
1289 }
1290 
1291 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1292 			       size_t size, unsigned long attrs)
1293 {
1294 	int count = size >> PAGE_SHIFT;
1295 	int i;
1296 
1297 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1298 		dma_release_from_contiguous(dev, pages[0], count);
1299 	} else {
1300 		for (i = 0; i < count; i++)
1301 			if (pages[i])
1302 				__free_pages(pages[i], 0);
1303 	}
1304 
1305 	kvfree(pages);
1306 	return 0;
1307 }
1308 
1309 /*
1310  * Create a mapping in device IO address space for specified pages
1311  */
1312 static dma_addr_t
1313 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1314 		       unsigned long attrs)
1315 {
1316 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1317 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1318 	dma_addr_t dma_addr, iova;
1319 	int i;
1320 
1321 	dma_addr = __alloc_iova(mapping, size);
1322 	if (dma_addr == DMA_MAPPING_ERROR)
1323 		return dma_addr;
1324 
1325 	iova = dma_addr;
1326 	for (i = 0; i < count; ) {
1327 		int ret;
1328 
1329 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1330 		phys_addr_t phys = page_to_phys(pages[i]);
1331 		unsigned int len, j;
1332 
1333 		for (j = i + 1; j < count; j++, next_pfn++)
1334 			if (page_to_pfn(pages[j]) != next_pfn)
1335 				break;
1336 
1337 		len = (j - i) << PAGE_SHIFT;
1338 		ret = iommu_map(mapping->domain, iova, phys, len,
1339 				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1340 		if (ret < 0)
1341 			goto fail;
1342 		iova += len;
1343 		i = j;
1344 	}
1345 	return dma_addr;
1346 fail:
1347 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1348 	__free_iova(mapping, dma_addr, size);
1349 	return DMA_MAPPING_ERROR;
1350 }
1351 
1352 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1353 {
1354 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1355 
1356 	/*
1357 	 * add optional in-page offset from iova to size and align
1358 	 * result to page size
1359 	 */
1360 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1361 	iova &= PAGE_MASK;
1362 
1363 	iommu_unmap(mapping->domain, iova, size);
1364 	__free_iova(mapping, iova, size);
1365 	return 0;
1366 }
1367 
1368 static struct page **__atomic_get_pages(void *addr)
1369 {
1370 	struct page *page;
1371 	phys_addr_t phys;
1372 
1373 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1374 	page = phys_to_page(phys);
1375 
1376 	return (struct page **)page;
1377 }
1378 
1379 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1380 {
1381 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1382 		return __atomic_get_pages(cpu_addr);
1383 
1384 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1385 		return cpu_addr;
1386 
1387 	return dma_common_find_pages(cpu_addr);
1388 }
1389 
1390 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1391 				  dma_addr_t *handle, int coherent_flag,
1392 				  unsigned long attrs)
1393 {
1394 	struct page *page;
1395 	void *addr;
1396 
1397 	if (coherent_flag  == COHERENT)
1398 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1399 	else
1400 		addr = __alloc_from_pool(size, &page);
1401 	if (!addr)
1402 		return NULL;
1403 
1404 	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1405 	if (*handle == DMA_MAPPING_ERROR)
1406 		goto err_mapping;
1407 
1408 	return addr;
1409 
1410 err_mapping:
1411 	__free_from_pool(addr, size);
1412 	return NULL;
1413 }
1414 
1415 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1416 			dma_addr_t handle, size_t size, int coherent_flag)
1417 {
1418 	__iommu_remove_mapping(dev, handle, size);
1419 	if (coherent_flag == COHERENT)
1420 		__dma_free_buffer(virt_to_page(cpu_addr), size);
1421 	else
1422 		__free_from_pool(cpu_addr, size);
1423 }
1424 
1425 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1426 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1427 	    int coherent_flag)
1428 {
1429 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1430 	struct page **pages;
1431 	void *addr = NULL;
1432 
1433 	*handle = DMA_MAPPING_ERROR;
1434 	size = PAGE_ALIGN(size);
1435 
1436 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1437 		return __iommu_alloc_simple(dev, size, gfp, handle,
1438 					    coherent_flag, attrs);
1439 
1440 	/*
1441 	 * Following is a work-around (a.k.a. hack) to prevent pages
1442 	 * with __GFP_COMP being passed to split_page() which cannot
1443 	 * handle them.  The real problem is that this flag probably
1444 	 * should be 0 on ARM as it is not supported on this
1445 	 * platform; see CONFIG_HUGETLBFS.
1446 	 */
1447 	gfp &= ~(__GFP_COMP);
1448 
1449 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1450 	if (!pages)
1451 		return NULL;
1452 
1453 	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1454 	if (*handle == DMA_MAPPING_ERROR)
1455 		goto err_buffer;
1456 
1457 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1458 		return pages;
1459 
1460 	addr = dma_common_pages_remap(pages, size, prot,
1461 				   __builtin_return_address(0));
1462 	if (!addr)
1463 		goto err_mapping;
1464 
1465 	return addr;
1466 
1467 err_mapping:
1468 	__iommu_remove_mapping(dev, *handle, size);
1469 err_buffer:
1470 	__iommu_free_buffer(dev, pages, size, attrs);
1471 	return NULL;
1472 }
1473 
1474 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1475 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1476 {
1477 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1478 }
1479 
1480 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1481 		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1482 {
1483 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1484 }
1485 
1486 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1487 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1488 		    unsigned long attrs)
1489 {
1490 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1491 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1492 	int err;
1493 
1494 	if (!pages)
1495 		return -ENXIO;
1496 
1497 	if (vma->vm_pgoff >= nr_pages)
1498 		return -ENXIO;
1499 
1500 	err = vm_map_pages(vma, pages, nr_pages);
1501 	if (err)
1502 		pr_err("Remapping memory failed: %d\n", err);
1503 
1504 	return err;
1505 }
1506 static int arm_iommu_mmap_attrs(struct device *dev,
1507 		struct vm_area_struct *vma, void *cpu_addr,
1508 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1509 {
1510 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1511 
1512 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1513 }
1514 
1515 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1516 		struct vm_area_struct *vma, void *cpu_addr,
1517 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1518 {
1519 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1520 }
1521 
1522 /*
1523  * free a page as defined by the above mapping.
1524  * Must not be called with IRQs disabled.
1525  */
1526 static void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1527 	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1528 {
1529 	struct page **pages;
1530 	size = PAGE_ALIGN(size);
1531 
1532 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1533 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1534 		return;
1535 	}
1536 
1537 	pages = __iommu_get_pages(cpu_addr, attrs);
1538 	if (!pages) {
1539 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1540 		return;
1541 	}
1542 
1543 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1544 		dma_common_free_remap(cpu_addr, size);
1545 
1546 	__iommu_remove_mapping(dev, handle, size);
1547 	__iommu_free_buffer(dev, pages, size, attrs);
1548 }
1549 
1550 static void arm_iommu_free_attrs(struct device *dev, size_t size,
1551 				 void *cpu_addr, dma_addr_t handle,
1552 				 unsigned long attrs)
1553 {
1554 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1555 }
1556 
1557 static void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1558 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1559 {
1560 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1561 }
1562 
1563 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1564 				 void *cpu_addr, dma_addr_t dma_addr,
1565 				 size_t size, unsigned long attrs)
1566 {
1567 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1568 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1569 
1570 	if (!pages)
1571 		return -ENXIO;
1572 
1573 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1574 					 GFP_KERNEL);
1575 }
1576 
1577 /*
1578  * Map a part of the scatter-gather list into contiguous io address space
1579  */
1580 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1581 			  size_t size, dma_addr_t *handle,
1582 			  enum dma_data_direction dir, unsigned long attrs,
1583 			  bool is_coherent)
1584 {
1585 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1586 	dma_addr_t iova, iova_base;
1587 	int ret = 0;
1588 	unsigned int count;
1589 	struct scatterlist *s;
1590 	int prot;
1591 
1592 	size = PAGE_ALIGN(size);
1593 	*handle = DMA_MAPPING_ERROR;
1594 
1595 	iova_base = iova = __alloc_iova(mapping, size);
1596 	if (iova == DMA_MAPPING_ERROR)
1597 		return -ENOMEM;
1598 
1599 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1600 		phys_addr_t phys = page_to_phys(sg_page(s));
1601 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1602 
1603 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1604 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1605 
1606 		prot = __dma_info_to_prot(dir, attrs);
1607 
1608 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1609 		if (ret < 0)
1610 			goto fail;
1611 		count += len >> PAGE_SHIFT;
1612 		iova += len;
1613 	}
1614 	*handle = iova_base;
1615 
1616 	return 0;
1617 fail:
1618 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1619 	__free_iova(mapping, iova_base, size);
1620 	return ret;
1621 }
1622 
1623 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1624 		     enum dma_data_direction dir, unsigned long attrs,
1625 		     bool is_coherent)
1626 {
1627 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1628 	int i, count = 0;
1629 	unsigned int offset = s->offset;
1630 	unsigned int size = s->offset + s->length;
1631 	unsigned int max = dma_get_max_seg_size(dev);
1632 
1633 	for (i = 1; i < nents; i++) {
1634 		s = sg_next(s);
1635 
1636 		s->dma_address = DMA_MAPPING_ERROR;
1637 		s->dma_length = 0;
1638 
1639 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1640 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1641 			    dir, attrs, is_coherent) < 0)
1642 				goto bad_mapping;
1643 
1644 			dma->dma_address += offset;
1645 			dma->dma_length = size - offset;
1646 
1647 			size = offset = s->offset;
1648 			start = s;
1649 			dma = sg_next(dma);
1650 			count += 1;
1651 		}
1652 		size += s->length;
1653 	}
1654 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1655 		is_coherent) < 0)
1656 		goto bad_mapping;
1657 
1658 	dma->dma_address += offset;
1659 	dma->dma_length = size - offset;
1660 
1661 	return count+1;
1662 
1663 bad_mapping:
1664 	for_each_sg(sg, s, count, i)
1665 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1666 	return 0;
1667 }
1668 
1669 /**
1670  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1671  * @dev: valid struct device pointer
1672  * @sg: list of buffers
1673  * @nents: number of buffers to map
1674  * @dir: DMA transfer direction
1675  *
1676  * Map a set of i/o coherent buffers described by scatterlist in streaming
1677  * mode for DMA. The scatter gather list elements are merged together (if
1678  * possible) and tagged with the appropriate dma address and length. They are
1679  * obtained via sg_dma_{address,length}.
1680  */
1681 static int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1682 		int nents, enum dma_data_direction dir, unsigned long attrs)
1683 {
1684 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1685 }
1686 
1687 /**
1688  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1689  * @dev: valid struct device pointer
1690  * @sg: list of buffers
1691  * @nents: number of buffers to map
1692  * @dir: DMA transfer direction
1693  *
1694  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1695  * The scatter gather list elements are merged together (if possible) and
1696  * tagged with the appropriate dma address and length. They are obtained via
1697  * sg_dma_{address,length}.
1698  */
1699 static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1700 		int nents, enum dma_data_direction dir, unsigned long attrs)
1701 {
1702 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1703 }
1704 
1705 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1706 		int nents, enum dma_data_direction dir,
1707 		unsigned long attrs, bool is_coherent)
1708 {
1709 	struct scatterlist *s;
1710 	int i;
1711 
1712 	for_each_sg(sg, s, nents, i) {
1713 		if (sg_dma_len(s))
1714 			__iommu_remove_mapping(dev, sg_dma_address(s),
1715 					       sg_dma_len(s));
1716 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1717 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1718 					      s->length, dir);
1719 	}
1720 }
1721 
1722 /**
1723  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1724  * @dev: valid struct device pointer
1725  * @sg: list of buffers
1726  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1727  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1728  *
1729  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1730  * rules concerning calls here are the same as for dma_unmap_single().
1731  */
1732 static void arm_coherent_iommu_unmap_sg(struct device *dev,
1733 		struct scatterlist *sg, int nents, enum dma_data_direction dir,
1734 		unsigned long attrs)
1735 {
1736 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1737 }
1738 
1739 /**
1740  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1741  * @dev: valid struct device pointer
1742  * @sg: list of buffers
1743  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1744  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1745  *
1746  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1747  * rules concerning calls here are the same as for dma_unmap_single().
1748  */
1749 static void arm_iommu_unmap_sg(struct device *dev,
1750 			       struct scatterlist *sg, int nents,
1751 			       enum dma_data_direction dir,
1752 			       unsigned long attrs)
1753 {
1754 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1755 }
1756 
1757 /**
1758  * arm_iommu_sync_sg_for_cpu
1759  * @dev: valid struct device pointer
1760  * @sg: list of buffers
1761  * @nents: number of buffers to map (returned from dma_map_sg)
1762  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1763  */
1764 static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1765 			struct scatterlist *sg,
1766 			int nents, enum dma_data_direction dir)
1767 {
1768 	struct scatterlist *s;
1769 	int i;
1770 
1771 	for_each_sg(sg, s, nents, i)
1772 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1773 
1774 }
1775 
1776 /**
1777  * arm_iommu_sync_sg_for_device
1778  * @dev: valid struct device pointer
1779  * @sg: list of buffers
1780  * @nents: number of buffers to map (returned from dma_map_sg)
1781  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1782  */
1783 static void arm_iommu_sync_sg_for_device(struct device *dev,
1784 			struct scatterlist *sg,
1785 			int nents, enum dma_data_direction dir)
1786 {
1787 	struct scatterlist *s;
1788 	int i;
1789 
1790 	for_each_sg(sg, s, nents, i)
1791 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1792 }
1793 
1794 
1795 /**
1796  * arm_coherent_iommu_map_page
1797  * @dev: valid struct device pointer
1798  * @page: page that buffer resides in
1799  * @offset: offset into page for start of buffer
1800  * @size: size of buffer to map
1801  * @dir: DMA transfer direction
1802  *
1803  * Coherent IOMMU aware version of arm_dma_map_page()
1804  */
1805 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1806 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1807 	     unsigned long attrs)
1808 {
1809 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1810 	dma_addr_t dma_addr;
1811 	int ret, prot, len = PAGE_ALIGN(size + offset);
1812 
1813 	dma_addr = __alloc_iova(mapping, len);
1814 	if (dma_addr == DMA_MAPPING_ERROR)
1815 		return dma_addr;
1816 
1817 	prot = __dma_info_to_prot(dir, attrs);
1818 
1819 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1820 	if (ret < 0)
1821 		goto fail;
1822 
1823 	return dma_addr + offset;
1824 fail:
1825 	__free_iova(mapping, dma_addr, len);
1826 	return DMA_MAPPING_ERROR;
1827 }
1828 
1829 /**
1830  * arm_iommu_map_page
1831  * @dev: valid struct device pointer
1832  * @page: page that buffer resides in
1833  * @offset: offset into page for start of buffer
1834  * @size: size of buffer to map
1835  * @dir: DMA transfer direction
1836  *
1837  * IOMMU aware version of arm_dma_map_page()
1838  */
1839 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1840 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1841 	     unsigned long attrs)
1842 {
1843 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1844 		__dma_page_cpu_to_dev(page, offset, size, dir);
1845 
1846 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1847 }
1848 
1849 /**
1850  * arm_coherent_iommu_unmap_page
1851  * @dev: valid struct device pointer
1852  * @handle: DMA address of buffer
1853  * @size: size of buffer (same as passed to dma_map_page)
1854  * @dir: DMA transfer direction (same as passed to dma_map_page)
1855  *
1856  * Coherent IOMMU aware version of arm_dma_unmap_page()
1857  */
1858 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1859 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1860 {
1861 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1862 	dma_addr_t iova = handle & PAGE_MASK;
1863 	int offset = handle & ~PAGE_MASK;
1864 	int len = PAGE_ALIGN(size + offset);
1865 
1866 	if (!iova)
1867 		return;
1868 
1869 	iommu_unmap(mapping->domain, iova, len);
1870 	__free_iova(mapping, iova, len);
1871 }
1872 
1873 /**
1874  * arm_iommu_unmap_page
1875  * @dev: valid struct device pointer
1876  * @handle: DMA address of buffer
1877  * @size: size of buffer (same as passed to dma_map_page)
1878  * @dir: DMA transfer direction (same as passed to dma_map_page)
1879  *
1880  * IOMMU aware version of arm_dma_unmap_page()
1881  */
1882 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1883 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1884 {
1885 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1886 	dma_addr_t iova = handle & PAGE_MASK;
1887 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1888 	int offset = handle & ~PAGE_MASK;
1889 	int len = PAGE_ALIGN(size + offset);
1890 
1891 	if (!iova)
1892 		return;
1893 
1894 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1895 		__dma_page_dev_to_cpu(page, offset, size, dir);
1896 
1897 	iommu_unmap(mapping->domain, iova, len);
1898 	__free_iova(mapping, iova, len);
1899 }
1900 
1901 /**
1902  * arm_iommu_map_resource - map a device resource for DMA
1903  * @dev: valid struct device pointer
1904  * @phys_addr: physical address of resource
1905  * @size: size of resource to map
1906  * @dir: DMA transfer direction
1907  */
1908 static dma_addr_t arm_iommu_map_resource(struct device *dev,
1909 		phys_addr_t phys_addr, size_t size,
1910 		enum dma_data_direction dir, unsigned long attrs)
1911 {
1912 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1913 	dma_addr_t dma_addr;
1914 	int ret, prot;
1915 	phys_addr_t addr = phys_addr & PAGE_MASK;
1916 	unsigned int offset = phys_addr & ~PAGE_MASK;
1917 	size_t len = PAGE_ALIGN(size + offset);
1918 
1919 	dma_addr = __alloc_iova(mapping, len);
1920 	if (dma_addr == DMA_MAPPING_ERROR)
1921 		return dma_addr;
1922 
1923 	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1924 
1925 	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1926 	if (ret < 0)
1927 		goto fail;
1928 
1929 	return dma_addr + offset;
1930 fail:
1931 	__free_iova(mapping, dma_addr, len);
1932 	return DMA_MAPPING_ERROR;
1933 }
1934 
1935 /**
1936  * arm_iommu_unmap_resource - unmap a device DMA resource
1937  * @dev: valid struct device pointer
1938  * @dma_handle: DMA address to resource
1939  * @size: size of resource to map
1940  * @dir: DMA transfer direction
1941  */
1942 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1943 		size_t size, enum dma_data_direction dir,
1944 		unsigned long attrs)
1945 {
1946 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1947 	dma_addr_t iova = dma_handle & PAGE_MASK;
1948 	unsigned int offset = dma_handle & ~PAGE_MASK;
1949 	size_t len = PAGE_ALIGN(size + offset);
1950 
1951 	if (!iova)
1952 		return;
1953 
1954 	iommu_unmap(mapping->domain, iova, len);
1955 	__free_iova(mapping, iova, len);
1956 }
1957 
1958 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1959 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1960 {
1961 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1962 	dma_addr_t iova = handle & PAGE_MASK;
1963 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1964 	unsigned int offset = handle & ~PAGE_MASK;
1965 
1966 	if (!iova)
1967 		return;
1968 
1969 	__dma_page_dev_to_cpu(page, offset, size, dir);
1970 }
1971 
1972 static void arm_iommu_sync_single_for_device(struct device *dev,
1973 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1974 {
1975 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1976 	dma_addr_t iova = handle & PAGE_MASK;
1977 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1978 	unsigned int offset = handle & ~PAGE_MASK;
1979 
1980 	if (!iova)
1981 		return;
1982 
1983 	__dma_page_cpu_to_dev(page, offset, size, dir);
1984 }
1985 
1986 static const struct dma_map_ops iommu_ops = {
1987 	.alloc		= arm_iommu_alloc_attrs,
1988 	.free		= arm_iommu_free_attrs,
1989 	.mmap		= arm_iommu_mmap_attrs,
1990 	.get_sgtable	= arm_iommu_get_sgtable,
1991 
1992 	.map_page		= arm_iommu_map_page,
1993 	.unmap_page		= arm_iommu_unmap_page,
1994 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1995 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1996 
1997 	.map_sg			= arm_iommu_map_sg,
1998 	.unmap_sg		= arm_iommu_unmap_sg,
1999 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2000 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2001 
2002 	.map_resource		= arm_iommu_map_resource,
2003 	.unmap_resource		= arm_iommu_unmap_resource,
2004 
2005 	.dma_supported		= arm_dma_supported,
2006 };
2007 
2008 static const struct dma_map_ops iommu_coherent_ops = {
2009 	.alloc		= arm_coherent_iommu_alloc_attrs,
2010 	.free		= arm_coherent_iommu_free_attrs,
2011 	.mmap		= arm_coherent_iommu_mmap_attrs,
2012 	.get_sgtable	= arm_iommu_get_sgtable,
2013 
2014 	.map_page	= arm_coherent_iommu_map_page,
2015 	.unmap_page	= arm_coherent_iommu_unmap_page,
2016 
2017 	.map_sg		= arm_coherent_iommu_map_sg,
2018 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2019 
2020 	.map_resource	= arm_iommu_map_resource,
2021 	.unmap_resource	= arm_iommu_unmap_resource,
2022 
2023 	.dma_supported		= arm_dma_supported,
2024 };
2025 
2026 /**
2027  * arm_iommu_create_mapping
2028  * @bus: pointer to the bus holding the client device (for IOMMU calls)
2029  * @base: start address of the valid IO address space
2030  * @size: maximum size of the valid IO address space
2031  *
2032  * Creates a mapping structure which holds information about used/unused
2033  * IO address ranges, which is required to perform memory allocation and
2034  * mapping with IOMMU aware functions.
2035  *
2036  * The client device need to be attached to the mapping with
2037  * arm_iommu_attach_device function.
2038  */
2039 struct dma_iommu_mapping *
2040 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2041 {
2042 	unsigned int bits = size >> PAGE_SHIFT;
2043 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2044 	struct dma_iommu_mapping *mapping;
2045 	int extensions = 1;
2046 	int err = -ENOMEM;
2047 
2048 	/* currently only 32-bit DMA address space is supported */
2049 	if (size > DMA_BIT_MASK(32) + 1)
2050 		return ERR_PTR(-ERANGE);
2051 
2052 	if (!bitmap_size)
2053 		return ERR_PTR(-EINVAL);
2054 
2055 	if (bitmap_size > PAGE_SIZE) {
2056 		extensions = bitmap_size / PAGE_SIZE;
2057 		bitmap_size = PAGE_SIZE;
2058 	}
2059 
2060 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2061 	if (!mapping)
2062 		goto err;
2063 
2064 	mapping->bitmap_size = bitmap_size;
2065 	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2066 				   GFP_KERNEL);
2067 	if (!mapping->bitmaps)
2068 		goto err2;
2069 
2070 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2071 	if (!mapping->bitmaps[0])
2072 		goto err3;
2073 
2074 	mapping->nr_bitmaps = 1;
2075 	mapping->extensions = extensions;
2076 	mapping->base = base;
2077 	mapping->bits = BITS_PER_BYTE * bitmap_size;
2078 
2079 	spin_lock_init(&mapping->lock);
2080 
2081 	mapping->domain = iommu_domain_alloc(bus);
2082 	if (!mapping->domain)
2083 		goto err4;
2084 
2085 	kref_init(&mapping->kref);
2086 	return mapping;
2087 err4:
2088 	kfree(mapping->bitmaps[0]);
2089 err3:
2090 	kfree(mapping->bitmaps);
2091 err2:
2092 	kfree(mapping);
2093 err:
2094 	return ERR_PTR(err);
2095 }
2096 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2097 
2098 static void release_iommu_mapping(struct kref *kref)
2099 {
2100 	int i;
2101 	struct dma_iommu_mapping *mapping =
2102 		container_of(kref, struct dma_iommu_mapping, kref);
2103 
2104 	iommu_domain_free(mapping->domain);
2105 	for (i = 0; i < mapping->nr_bitmaps; i++)
2106 		kfree(mapping->bitmaps[i]);
2107 	kfree(mapping->bitmaps);
2108 	kfree(mapping);
2109 }
2110 
2111 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2112 {
2113 	int next_bitmap;
2114 
2115 	if (mapping->nr_bitmaps >= mapping->extensions)
2116 		return -EINVAL;
2117 
2118 	next_bitmap = mapping->nr_bitmaps;
2119 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2120 						GFP_ATOMIC);
2121 	if (!mapping->bitmaps[next_bitmap])
2122 		return -ENOMEM;
2123 
2124 	mapping->nr_bitmaps++;
2125 
2126 	return 0;
2127 }
2128 
2129 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2130 {
2131 	if (mapping)
2132 		kref_put(&mapping->kref, release_iommu_mapping);
2133 }
2134 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2135 
2136 static int __arm_iommu_attach_device(struct device *dev,
2137 				     struct dma_iommu_mapping *mapping)
2138 {
2139 	int err;
2140 
2141 	err = iommu_attach_device(mapping->domain, dev);
2142 	if (err)
2143 		return err;
2144 
2145 	kref_get(&mapping->kref);
2146 	to_dma_iommu_mapping(dev) = mapping;
2147 
2148 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2149 	return 0;
2150 }
2151 
2152 /**
2153  * arm_iommu_attach_device
2154  * @dev: valid struct device pointer
2155  * @mapping: io address space mapping structure (returned from
2156  *	arm_iommu_create_mapping)
2157  *
2158  * Attaches specified io address space mapping to the provided device.
2159  * This replaces the dma operations (dma_map_ops pointer) with the
2160  * IOMMU aware version.
2161  *
2162  * More than one client might be attached to the same io address space
2163  * mapping.
2164  */
2165 int arm_iommu_attach_device(struct device *dev,
2166 			    struct dma_iommu_mapping *mapping)
2167 {
2168 	int err;
2169 
2170 	err = __arm_iommu_attach_device(dev, mapping);
2171 	if (err)
2172 		return err;
2173 
2174 	set_dma_ops(dev, &iommu_ops);
2175 	return 0;
2176 }
2177 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2178 
2179 /**
2180  * arm_iommu_detach_device
2181  * @dev: valid struct device pointer
2182  *
2183  * Detaches the provided device from a previously attached map.
2184  * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2185  */
2186 void arm_iommu_detach_device(struct device *dev)
2187 {
2188 	struct dma_iommu_mapping *mapping;
2189 
2190 	mapping = to_dma_iommu_mapping(dev);
2191 	if (!mapping) {
2192 		dev_warn(dev, "Not attached\n");
2193 		return;
2194 	}
2195 
2196 	iommu_detach_device(mapping->domain, dev);
2197 	kref_put(&mapping->kref, release_iommu_mapping);
2198 	to_dma_iommu_mapping(dev) = NULL;
2199 	set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2200 
2201 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2202 }
2203 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2204 
2205 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2206 {
2207 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2208 }
2209 
2210 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2211 				    const struct iommu_ops *iommu)
2212 {
2213 	struct dma_iommu_mapping *mapping;
2214 
2215 	if (!iommu)
2216 		return false;
2217 
2218 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2219 	if (IS_ERR(mapping)) {
2220 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2221 				size, dev_name(dev));
2222 		return false;
2223 	}
2224 
2225 	if (__arm_iommu_attach_device(dev, mapping)) {
2226 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2227 				dev_name(dev));
2228 		arm_iommu_release_mapping(mapping);
2229 		return false;
2230 	}
2231 
2232 	return true;
2233 }
2234 
2235 static void arm_teardown_iommu_dma_ops(struct device *dev)
2236 {
2237 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2238 
2239 	if (!mapping)
2240 		return;
2241 
2242 	arm_iommu_detach_device(dev);
2243 	arm_iommu_release_mapping(mapping);
2244 }
2245 
2246 #else
2247 
2248 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2249 				    const struct iommu_ops *iommu)
2250 {
2251 	return false;
2252 }
2253 
2254 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2255 
2256 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2257 
2258 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2259 
2260 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2261 			const struct iommu_ops *iommu, bool coherent)
2262 {
2263 	const struct dma_map_ops *dma_ops;
2264 
2265 	dev->archdata.dma_coherent = coherent;
2266 #ifdef CONFIG_SWIOTLB
2267 	dev->dma_coherent = coherent;
2268 #endif
2269 
2270 	/*
2271 	 * Don't override the dma_ops if they have already been set. Ideally
2272 	 * this should be the only location where dma_ops are set, remove this
2273 	 * check when all other callers of set_dma_ops will have disappeared.
2274 	 */
2275 	if (dev->dma_ops)
2276 		return;
2277 
2278 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2279 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2280 	else
2281 		dma_ops = arm_get_dma_map_ops(coherent);
2282 
2283 	set_dma_ops(dev, dma_ops);
2284 
2285 #ifdef CONFIG_XEN
2286 	if (xen_initial_domain())
2287 		dev->dma_ops = &xen_swiotlb_dma_ops;
2288 #endif
2289 	dev->archdata.dma_ops_setup = true;
2290 }
2291 
2292 void arch_teardown_dma_ops(struct device *dev)
2293 {
2294 	if (!dev->archdata.dma_ops_setup)
2295 		return;
2296 
2297 	arm_teardown_iommu_dma_ops(dev);
2298 	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2299 	set_dma_ops(dev, NULL);
2300 }
2301 
2302 #ifdef CONFIG_SWIOTLB
2303 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
2304 		enum dma_data_direction dir)
2305 {
2306 	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2307 			      size, dir);
2308 }
2309 
2310 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
2311 		enum dma_data_direction dir)
2312 {
2313 	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2314 			      size, dir);
2315 }
2316 
2317 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2318 		gfp_t gfp, unsigned long attrs)
2319 {
2320 	return __dma_alloc(dev, size, dma_handle, gfp,
2321 			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2322 			   attrs, __builtin_return_address(0));
2323 }
2324 
2325 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2326 		dma_addr_t dma_handle, unsigned long attrs)
2327 {
2328 	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2329 }
2330 #endif /* CONFIG_SWIOTLB */
2331