xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/genalloc.h>
15 #include <linux/gfp.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dma-contiguous.h>
22 #include <linux/highmem.h>
23 #include <linux/memblock.h>
24 #include <linux/slab.h>
25 #include <linux/iommu.h>
26 #include <linux/io.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sizes.h>
29 #include <linux/cma.h>
30 
31 #include <asm/memory.h>
32 #include <asm/highmem.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mach/arch.h>
36 #include <asm/dma-iommu.h>
37 #include <asm/mach/map.h>
38 #include <asm/system_info.h>
39 #include <asm/dma-contiguous.h>
40 
41 #include "dma.h"
42 #include "mm.h"
43 
44 struct arm_dma_alloc_args {
45 	struct device *dev;
46 	size_t size;
47 	gfp_t gfp;
48 	pgprot_t prot;
49 	const void *caller;
50 	bool want_vaddr;
51 	int coherent_flag;
52 };
53 
54 struct arm_dma_free_args {
55 	struct device *dev;
56 	size_t size;
57 	void *cpu_addr;
58 	struct page *page;
59 	bool want_vaddr;
60 };
61 
62 #define NORMAL	    0
63 #define COHERENT    1
64 
65 struct arm_dma_allocator {
66 	void *(*alloc)(struct arm_dma_alloc_args *args,
67 		       struct page **ret_page);
68 	void (*free)(struct arm_dma_free_args *args);
69 };
70 
71 struct arm_dma_buffer {
72 	struct list_head list;
73 	void *virt;
74 	struct arm_dma_allocator *allocator;
75 };
76 
77 static LIST_HEAD(arm_dma_bufs);
78 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
79 
80 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
81 {
82 	struct arm_dma_buffer *buf, *found = NULL;
83 	unsigned long flags;
84 
85 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
86 	list_for_each_entry(buf, &arm_dma_bufs, list) {
87 		if (buf->virt == virt) {
88 			list_del(&buf->list);
89 			found = buf;
90 			break;
91 		}
92 	}
93 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
94 	return found;
95 }
96 
97 /*
98  * The DMA API is built upon the notion of "buffer ownership".  A buffer
99  * is either exclusively owned by the CPU (and therefore may be accessed
100  * by it) or exclusively owned by the DMA device.  These helper functions
101  * represent the transitions between these two ownership states.
102  *
103  * Note, however, that on later ARMs, this notion does not work due to
104  * speculative prefetches.  We model our approach on the assumption that
105  * the CPU does do speculative prefetches, which means we clean caches
106  * before transfers and delay cache invalidation until transfer completion.
107  *
108  */
109 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
110 		size_t, enum dma_data_direction);
111 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
112 		size_t, enum dma_data_direction);
113 
114 /**
115  * arm_dma_map_page - map a portion of a page for streaming DMA
116  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
117  * @page: page that buffer resides in
118  * @offset: offset into page for start of buffer
119  * @size: size of buffer to map
120  * @dir: DMA transfer direction
121  *
122  * Ensure that any data held in the cache is appropriately discarded
123  * or written back.
124  *
125  * The device owns this memory once this call has completed.  The CPU
126  * can regain ownership by calling dma_unmap_page().
127  */
128 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
129 	     unsigned long offset, size_t size, enum dma_data_direction dir,
130 	     unsigned long attrs)
131 {
132 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
133 		__dma_page_cpu_to_dev(page, offset, size, dir);
134 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
135 }
136 
137 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
138 	     unsigned long offset, size_t size, enum dma_data_direction dir,
139 	     unsigned long attrs)
140 {
141 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
142 }
143 
144 /**
145  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
146  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
147  * @handle: DMA address of buffer
148  * @size: size of buffer (same as passed to dma_map_page)
149  * @dir: DMA transfer direction (same as passed to dma_map_page)
150  *
151  * Unmap a page streaming mode DMA translation.  The handle and size
152  * must match what was provided in the previous dma_map_page() call.
153  * All other usages are undefined.
154  *
155  * After this call, reads by the CPU to the buffer are guaranteed to see
156  * whatever the device wrote there.
157  */
158 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
159 		size_t size, enum dma_data_direction dir, unsigned long attrs)
160 {
161 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
162 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
163 				      handle & ~PAGE_MASK, size, dir);
164 }
165 
166 static void arm_dma_sync_single_for_cpu(struct device *dev,
167 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
168 {
169 	unsigned int offset = handle & (PAGE_SIZE - 1);
170 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
171 	__dma_page_dev_to_cpu(page, offset, size, dir);
172 }
173 
174 static void arm_dma_sync_single_for_device(struct device *dev,
175 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
176 {
177 	unsigned int offset = handle & (PAGE_SIZE - 1);
178 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
179 	__dma_page_cpu_to_dev(page, offset, size, dir);
180 }
181 
182 static int arm_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
183 {
184 	return dma_addr == ARM_MAPPING_ERROR;
185 }
186 
187 const struct dma_map_ops arm_dma_ops = {
188 	.alloc			= arm_dma_alloc,
189 	.free			= arm_dma_free,
190 	.mmap			= arm_dma_mmap,
191 	.get_sgtable		= arm_dma_get_sgtable,
192 	.map_page		= arm_dma_map_page,
193 	.unmap_page		= arm_dma_unmap_page,
194 	.map_sg			= arm_dma_map_sg,
195 	.unmap_sg		= arm_dma_unmap_sg,
196 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
197 	.sync_single_for_device	= arm_dma_sync_single_for_device,
198 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
199 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
200 	.mapping_error		= arm_dma_mapping_error,
201 	.dma_supported		= arm_dma_supported,
202 };
203 EXPORT_SYMBOL(arm_dma_ops);
204 
205 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
206 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
207 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
208 				  dma_addr_t handle, unsigned long attrs);
209 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
210 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
211 		 unsigned long attrs);
212 
213 const struct dma_map_ops arm_coherent_dma_ops = {
214 	.alloc			= arm_coherent_dma_alloc,
215 	.free			= arm_coherent_dma_free,
216 	.mmap			= arm_coherent_dma_mmap,
217 	.get_sgtable		= arm_dma_get_sgtable,
218 	.map_page		= arm_coherent_dma_map_page,
219 	.map_sg			= arm_dma_map_sg,
220 	.mapping_error		= arm_dma_mapping_error,
221 	.dma_supported		= arm_dma_supported,
222 };
223 EXPORT_SYMBOL(arm_coherent_dma_ops);
224 
225 static int __dma_supported(struct device *dev, u64 mask, bool warn)
226 {
227 	unsigned long max_dma_pfn;
228 
229 	/*
230 	 * If the mask allows for more memory than we can address,
231 	 * and we actually have that much memory, then we must
232 	 * indicate that DMA to this device is not supported.
233 	 */
234 	if (sizeof(mask) != sizeof(dma_addr_t) &&
235 	    mask > (dma_addr_t)~0 &&
236 	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
237 		if (warn) {
238 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
239 				 mask);
240 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
241 		}
242 		return 0;
243 	}
244 
245 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
246 
247 	/*
248 	 * Translate the device's DMA mask to a PFN limit.  This
249 	 * PFN number includes the page which we can DMA to.
250 	 */
251 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
252 		if (warn)
253 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
254 				 mask,
255 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
256 				 max_dma_pfn + 1);
257 		return 0;
258 	}
259 
260 	return 1;
261 }
262 
263 static u64 get_coherent_dma_mask(struct device *dev)
264 {
265 	u64 mask = (u64)DMA_BIT_MASK(32);
266 
267 	if (dev) {
268 		mask = dev->coherent_dma_mask;
269 
270 		/*
271 		 * Sanity check the DMA mask - it must be non-zero, and
272 		 * must be able to be satisfied by a DMA allocation.
273 		 */
274 		if (mask == 0) {
275 			dev_warn(dev, "coherent DMA mask is unset\n");
276 			return 0;
277 		}
278 
279 		if (!__dma_supported(dev, mask, true))
280 			return 0;
281 	}
282 
283 	return mask;
284 }
285 
286 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
287 {
288 	/*
289 	 * Ensure that the allocated pages are zeroed, and that any data
290 	 * lurking in the kernel direct-mapped region is invalidated.
291 	 */
292 	if (PageHighMem(page)) {
293 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
294 		phys_addr_t end = base + size;
295 		while (size > 0) {
296 			void *ptr = kmap_atomic(page);
297 			memset(ptr, 0, PAGE_SIZE);
298 			if (coherent_flag != COHERENT)
299 				dmac_flush_range(ptr, ptr + PAGE_SIZE);
300 			kunmap_atomic(ptr);
301 			page++;
302 			size -= PAGE_SIZE;
303 		}
304 		if (coherent_flag != COHERENT)
305 			outer_flush_range(base, end);
306 	} else {
307 		void *ptr = page_address(page);
308 		memset(ptr, 0, size);
309 		if (coherent_flag != COHERENT) {
310 			dmac_flush_range(ptr, ptr + size);
311 			outer_flush_range(__pa(ptr), __pa(ptr) + size);
312 		}
313 	}
314 }
315 
316 /*
317  * Allocate a DMA buffer for 'dev' of size 'size' using the
318  * specified gfp mask.  Note that 'size' must be page aligned.
319  */
320 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
321 				       gfp_t gfp, int coherent_flag)
322 {
323 	unsigned long order = get_order(size);
324 	struct page *page, *p, *e;
325 
326 	page = alloc_pages(gfp, order);
327 	if (!page)
328 		return NULL;
329 
330 	/*
331 	 * Now split the huge page and free the excess pages
332 	 */
333 	split_page(page, order);
334 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
335 		__free_page(p);
336 
337 	__dma_clear_buffer(page, size, coherent_flag);
338 
339 	return page;
340 }
341 
342 /*
343  * Free a DMA buffer.  'size' must be page aligned.
344  */
345 static void __dma_free_buffer(struct page *page, size_t size)
346 {
347 	struct page *e = page + (size >> PAGE_SHIFT);
348 
349 	while (page < e) {
350 		__free_page(page);
351 		page++;
352 	}
353 }
354 
355 static void *__alloc_from_contiguous(struct device *dev, size_t size,
356 				     pgprot_t prot, struct page **ret_page,
357 				     const void *caller, bool want_vaddr,
358 				     int coherent_flag, gfp_t gfp);
359 
360 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
361 				 pgprot_t prot, struct page **ret_page,
362 				 const void *caller, bool want_vaddr);
363 
364 static void *
365 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
366 	const void *caller)
367 {
368 	/*
369 	 * DMA allocation can be mapped to user space, so lets
370 	 * set VM_USERMAP flags too.
371 	 */
372 	return dma_common_contiguous_remap(page, size,
373 			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
374 			prot, caller);
375 }
376 
377 static void __dma_free_remap(void *cpu_addr, size_t size)
378 {
379 	dma_common_free_remap(cpu_addr, size,
380 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
381 }
382 
383 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
384 static struct gen_pool *atomic_pool __ro_after_init;
385 
386 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
387 
388 static int __init early_coherent_pool(char *p)
389 {
390 	atomic_pool_size = memparse(p, &p);
391 	return 0;
392 }
393 early_param("coherent_pool", early_coherent_pool);
394 
395 /*
396  * Initialise the coherent pool for atomic allocations.
397  */
398 static int __init atomic_pool_init(void)
399 {
400 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
401 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
402 	struct page *page;
403 	void *ptr;
404 
405 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
406 	if (!atomic_pool)
407 		goto out;
408 	/*
409 	 * The atomic pool is only used for non-coherent allocations
410 	 * so we must pass NORMAL for coherent_flag.
411 	 */
412 	if (dev_get_cma_area(NULL))
413 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
414 				      &page, atomic_pool_init, true, NORMAL,
415 				      GFP_KERNEL);
416 	else
417 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
418 					   &page, atomic_pool_init, true);
419 	if (ptr) {
420 		int ret;
421 
422 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
423 					page_to_phys(page),
424 					atomic_pool_size, -1);
425 		if (ret)
426 			goto destroy_genpool;
427 
428 		gen_pool_set_algo(atomic_pool,
429 				gen_pool_first_fit_order_align,
430 				NULL);
431 		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
432 		       atomic_pool_size / 1024);
433 		return 0;
434 	}
435 
436 destroy_genpool:
437 	gen_pool_destroy(atomic_pool);
438 	atomic_pool = NULL;
439 out:
440 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
441 	       atomic_pool_size / 1024);
442 	return -ENOMEM;
443 }
444 /*
445  * CMA is activated by core_initcall, so we must be called after it.
446  */
447 postcore_initcall(atomic_pool_init);
448 
449 struct dma_contig_early_reserve {
450 	phys_addr_t base;
451 	unsigned long size;
452 };
453 
454 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
455 
456 static int dma_mmu_remap_num __initdata;
457 
458 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
459 {
460 	dma_mmu_remap[dma_mmu_remap_num].base = base;
461 	dma_mmu_remap[dma_mmu_remap_num].size = size;
462 	dma_mmu_remap_num++;
463 }
464 
465 void __init dma_contiguous_remap(void)
466 {
467 	int i;
468 	for (i = 0; i < dma_mmu_remap_num; i++) {
469 		phys_addr_t start = dma_mmu_remap[i].base;
470 		phys_addr_t end = start + dma_mmu_remap[i].size;
471 		struct map_desc map;
472 		unsigned long addr;
473 
474 		if (end > arm_lowmem_limit)
475 			end = arm_lowmem_limit;
476 		if (start >= end)
477 			continue;
478 
479 		map.pfn = __phys_to_pfn(start);
480 		map.virtual = __phys_to_virt(start);
481 		map.length = end - start;
482 		map.type = MT_MEMORY_DMA_READY;
483 
484 		/*
485 		 * Clear previous low-memory mapping to ensure that the
486 		 * TLB does not see any conflicting entries, then flush
487 		 * the TLB of the old entries before creating new mappings.
488 		 *
489 		 * This ensures that any speculatively loaded TLB entries
490 		 * (even though they may be rare) can not cause any problems,
491 		 * and ensures that this code is architecturally compliant.
492 		 */
493 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
494 		     addr += PMD_SIZE)
495 			pmd_clear(pmd_off_k(addr));
496 
497 		flush_tlb_kernel_range(__phys_to_virt(start),
498 				       __phys_to_virt(end));
499 
500 		iotable_init(&map, 1);
501 	}
502 }
503 
504 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
505 			    void *data)
506 {
507 	struct page *page = virt_to_page(addr);
508 	pgprot_t prot = *(pgprot_t *)data;
509 
510 	set_pte_ext(pte, mk_pte(page, prot), 0);
511 	return 0;
512 }
513 
514 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
515 {
516 	unsigned long start = (unsigned long) page_address(page);
517 	unsigned end = start + size;
518 
519 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
520 	flush_tlb_kernel_range(start, end);
521 }
522 
523 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
524 				 pgprot_t prot, struct page **ret_page,
525 				 const void *caller, bool want_vaddr)
526 {
527 	struct page *page;
528 	void *ptr = NULL;
529 	/*
530 	 * __alloc_remap_buffer is only called when the device is
531 	 * non-coherent
532 	 */
533 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
534 	if (!page)
535 		return NULL;
536 	if (!want_vaddr)
537 		goto out;
538 
539 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
540 	if (!ptr) {
541 		__dma_free_buffer(page, size);
542 		return NULL;
543 	}
544 
545  out:
546 	*ret_page = page;
547 	return ptr;
548 }
549 
550 static void *__alloc_from_pool(size_t size, struct page **ret_page)
551 {
552 	unsigned long val;
553 	void *ptr = NULL;
554 
555 	if (!atomic_pool) {
556 		WARN(1, "coherent pool not initialised!\n");
557 		return NULL;
558 	}
559 
560 	val = gen_pool_alloc(atomic_pool, size);
561 	if (val) {
562 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
563 
564 		*ret_page = phys_to_page(phys);
565 		ptr = (void *)val;
566 	}
567 
568 	return ptr;
569 }
570 
571 static bool __in_atomic_pool(void *start, size_t size)
572 {
573 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
574 }
575 
576 static int __free_from_pool(void *start, size_t size)
577 {
578 	if (!__in_atomic_pool(start, size))
579 		return 0;
580 
581 	gen_pool_free(atomic_pool, (unsigned long)start, size);
582 
583 	return 1;
584 }
585 
586 static void *__alloc_from_contiguous(struct device *dev, size_t size,
587 				     pgprot_t prot, struct page **ret_page,
588 				     const void *caller, bool want_vaddr,
589 				     int coherent_flag, gfp_t gfp)
590 {
591 	unsigned long order = get_order(size);
592 	size_t count = size >> PAGE_SHIFT;
593 	struct page *page;
594 	void *ptr = NULL;
595 
596 	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
597 	if (!page)
598 		return NULL;
599 
600 	__dma_clear_buffer(page, size, coherent_flag);
601 
602 	if (!want_vaddr)
603 		goto out;
604 
605 	if (PageHighMem(page)) {
606 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
607 		if (!ptr) {
608 			dma_release_from_contiguous(dev, page, count);
609 			return NULL;
610 		}
611 	} else {
612 		__dma_remap(page, size, prot);
613 		ptr = page_address(page);
614 	}
615 
616  out:
617 	*ret_page = page;
618 	return ptr;
619 }
620 
621 static void __free_from_contiguous(struct device *dev, struct page *page,
622 				   void *cpu_addr, size_t size, bool want_vaddr)
623 {
624 	if (want_vaddr) {
625 		if (PageHighMem(page))
626 			__dma_free_remap(cpu_addr, size);
627 		else
628 			__dma_remap(page, size, PAGE_KERNEL);
629 	}
630 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
631 }
632 
633 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
634 {
635 	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
636 			pgprot_writecombine(prot) :
637 			pgprot_dmacoherent(prot);
638 	return prot;
639 }
640 
641 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
642 				   struct page **ret_page)
643 {
644 	struct page *page;
645 	/* __alloc_simple_buffer is only called when the device is coherent */
646 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
647 	if (!page)
648 		return NULL;
649 
650 	*ret_page = page;
651 	return page_address(page);
652 }
653 
654 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
655 				    struct page **ret_page)
656 {
657 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
658 				     ret_page);
659 }
660 
661 static void simple_allocator_free(struct arm_dma_free_args *args)
662 {
663 	__dma_free_buffer(args->page, args->size);
664 }
665 
666 static struct arm_dma_allocator simple_allocator = {
667 	.alloc = simple_allocator_alloc,
668 	.free = simple_allocator_free,
669 };
670 
671 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
672 				 struct page **ret_page)
673 {
674 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
675 				       ret_page, args->caller,
676 				       args->want_vaddr, args->coherent_flag,
677 				       args->gfp);
678 }
679 
680 static void cma_allocator_free(struct arm_dma_free_args *args)
681 {
682 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
683 			       args->size, args->want_vaddr);
684 }
685 
686 static struct arm_dma_allocator cma_allocator = {
687 	.alloc = cma_allocator_alloc,
688 	.free = cma_allocator_free,
689 };
690 
691 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
692 				  struct page **ret_page)
693 {
694 	return __alloc_from_pool(args->size, ret_page);
695 }
696 
697 static void pool_allocator_free(struct arm_dma_free_args *args)
698 {
699 	__free_from_pool(args->cpu_addr, args->size);
700 }
701 
702 static struct arm_dma_allocator pool_allocator = {
703 	.alloc = pool_allocator_alloc,
704 	.free = pool_allocator_free,
705 };
706 
707 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
708 				   struct page **ret_page)
709 {
710 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
711 				    args->prot, ret_page, args->caller,
712 				    args->want_vaddr);
713 }
714 
715 static void remap_allocator_free(struct arm_dma_free_args *args)
716 {
717 	if (args->want_vaddr)
718 		__dma_free_remap(args->cpu_addr, args->size);
719 
720 	__dma_free_buffer(args->page, args->size);
721 }
722 
723 static struct arm_dma_allocator remap_allocator = {
724 	.alloc = remap_allocator_alloc,
725 	.free = remap_allocator_free,
726 };
727 
728 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
729 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
730 			 unsigned long attrs, const void *caller)
731 {
732 	u64 mask = get_coherent_dma_mask(dev);
733 	struct page *page = NULL;
734 	void *addr;
735 	bool allowblock, cma;
736 	struct arm_dma_buffer *buf;
737 	struct arm_dma_alloc_args args = {
738 		.dev = dev,
739 		.size = PAGE_ALIGN(size),
740 		.gfp = gfp,
741 		.prot = prot,
742 		.caller = caller,
743 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
744 		.coherent_flag = is_coherent ? COHERENT : NORMAL,
745 	};
746 
747 #ifdef CONFIG_DMA_API_DEBUG
748 	u64 limit = (mask + 1) & ~mask;
749 	if (limit && size >= limit) {
750 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
751 			size, mask);
752 		return NULL;
753 	}
754 #endif
755 
756 	if (!mask)
757 		return NULL;
758 
759 	buf = kzalloc(sizeof(*buf),
760 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
761 	if (!buf)
762 		return NULL;
763 
764 	if (mask < 0xffffffffULL)
765 		gfp |= GFP_DMA;
766 
767 	/*
768 	 * Following is a work-around (a.k.a. hack) to prevent pages
769 	 * with __GFP_COMP being passed to split_page() which cannot
770 	 * handle them.  The real problem is that this flag probably
771 	 * should be 0 on ARM as it is not supported on this
772 	 * platform; see CONFIG_HUGETLBFS.
773 	 */
774 	gfp &= ~(__GFP_COMP);
775 	args.gfp = gfp;
776 
777 	*handle = ARM_MAPPING_ERROR;
778 	allowblock = gfpflags_allow_blocking(gfp);
779 	cma = allowblock ? dev_get_cma_area(dev) : false;
780 
781 	if (cma)
782 		buf->allocator = &cma_allocator;
783 	else if (is_coherent)
784 		buf->allocator = &simple_allocator;
785 	else if (allowblock)
786 		buf->allocator = &remap_allocator;
787 	else
788 		buf->allocator = &pool_allocator;
789 
790 	addr = buf->allocator->alloc(&args, &page);
791 
792 	if (page) {
793 		unsigned long flags;
794 
795 		*handle = pfn_to_dma(dev, page_to_pfn(page));
796 		buf->virt = args.want_vaddr ? addr : page;
797 
798 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
799 		list_add(&buf->list, &arm_dma_bufs);
800 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
801 	} else {
802 		kfree(buf);
803 	}
804 
805 	return args.want_vaddr ? addr : page;
806 }
807 
808 /*
809  * Allocate DMA-coherent memory space and return both the kernel remapped
810  * virtual and bus address for that space.
811  */
812 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
813 		    gfp_t gfp, unsigned long attrs)
814 {
815 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
816 
817 	return __dma_alloc(dev, size, handle, gfp, prot, false,
818 			   attrs, __builtin_return_address(0));
819 }
820 
821 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
822 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
823 {
824 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
825 			   attrs, __builtin_return_address(0));
826 }
827 
828 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
829 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
830 		 unsigned long attrs)
831 {
832 	int ret = -ENXIO;
833 	unsigned long nr_vma_pages = vma_pages(vma);
834 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
835 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
836 	unsigned long off = vma->vm_pgoff;
837 
838 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
839 		return ret;
840 
841 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
842 		ret = remap_pfn_range(vma, vma->vm_start,
843 				      pfn + off,
844 				      vma->vm_end - vma->vm_start,
845 				      vma->vm_page_prot);
846 	}
847 
848 	return ret;
849 }
850 
851 /*
852  * Create userspace mapping for the DMA-coherent memory.
853  */
854 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
855 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
856 		 unsigned long attrs)
857 {
858 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
859 }
860 
861 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
862 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
863 		 unsigned long attrs)
864 {
865 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
866 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
867 }
868 
869 /*
870  * Free a buffer as defined by the above mapping.
871  */
872 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
873 			   dma_addr_t handle, unsigned long attrs,
874 			   bool is_coherent)
875 {
876 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
877 	struct arm_dma_buffer *buf;
878 	struct arm_dma_free_args args = {
879 		.dev = dev,
880 		.size = PAGE_ALIGN(size),
881 		.cpu_addr = cpu_addr,
882 		.page = page,
883 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
884 	};
885 
886 	buf = arm_dma_buffer_find(cpu_addr);
887 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
888 		return;
889 
890 	buf->allocator->free(&args);
891 	kfree(buf);
892 }
893 
894 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
895 		  dma_addr_t handle, unsigned long attrs)
896 {
897 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
898 }
899 
900 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
901 				  dma_addr_t handle, unsigned long attrs)
902 {
903 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
904 }
905 
906 /*
907  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
908  * that the intention is to allow exporting memory allocated via the
909  * coherent DMA APIs through the dma_buf API, which only accepts a
910  * scattertable.  This presents a couple of problems:
911  * 1. Not all memory allocated via the coherent DMA APIs is backed by
912  *    a struct page
913  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
914  *    as we will try to flush the memory through a different alias to that
915  *    actually being used (and the flushes are redundant.)
916  */
917 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
918 		 void *cpu_addr, dma_addr_t handle, size_t size,
919 		 unsigned long attrs)
920 {
921 	unsigned long pfn = dma_to_pfn(dev, handle);
922 	struct page *page;
923 	int ret;
924 
925 	/* If the PFN is not valid, we do not have a struct page */
926 	if (!pfn_valid(pfn))
927 		return -ENXIO;
928 
929 	page = pfn_to_page(pfn);
930 
931 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
932 	if (unlikely(ret))
933 		return ret;
934 
935 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
936 	return 0;
937 }
938 
939 static void dma_cache_maint_page(struct page *page, unsigned long offset,
940 	size_t size, enum dma_data_direction dir,
941 	void (*op)(const void *, size_t, int))
942 {
943 	unsigned long pfn;
944 	size_t left = size;
945 
946 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
947 	offset %= PAGE_SIZE;
948 
949 	/*
950 	 * A single sg entry may refer to multiple physically contiguous
951 	 * pages.  But we still need to process highmem pages individually.
952 	 * If highmem is not configured then the bulk of this loop gets
953 	 * optimized out.
954 	 */
955 	do {
956 		size_t len = left;
957 		void *vaddr;
958 
959 		page = pfn_to_page(pfn);
960 
961 		if (PageHighMem(page)) {
962 			if (len + offset > PAGE_SIZE)
963 				len = PAGE_SIZE - offset;
964 
965 			if (cache_is_vipt_nonaliasing()) {
966 				vaddr = kmap_atomic(page);
967 				op(vaddr + offset, len, dir);
968 				kunmap_atomic(vaddr);
969 			} else {
970 				vaddr = kmap_high_get(page);
971 				if (vaddr) {
972 					op(vaddr + offset, len, dir);
973 					kunmap_high(page);
974 				}
975 			}
976 		} else {
977 			vaddr = page_address(page) + offset;
978 			op(vaddr, len, dir);
979 		}
980 		offset = 0;
981 		pfn++;
982 		left -= len;
983 	} while (left);
984 }
985 
986 /*
987  * Make an area consistent for devices.
988  * Note: Drivers should NOT use this function directly, as it will break
989  * platforms with CONFIG_DMABOUNCE.
990  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
991  */
992 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
993 	size_t size, enum dma_data_direction dir)
994 {
995 	phys_addr_t paddr;
996 
997 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
998 
999 	paddr = page_to_phys(page) + off;
1000 	if (dir == DMA_FROM_DEVICE) {
1001 		outer_inv_range(paddr, paddr + size);
1002 	} else {
1003 		outer_clean_range(paddr, paddr + size);
1004 	}
1005 	/* FIXME: non-speculating: flush on bidirectional mappings? */
1006 }
1007 
1008 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1009 	size_t size, enum dma_data_direction dir)
1010 {
1011 	phys_addr_t paddr = page_to_phys(page) + off;
1012 
1013 	/* FIXME: non-speculating: not required */
1014 	/* in any case, don't bother invalidating if DMA to device */
1015 	if (dir != DMA_TO_DEVICE) {
1016 		outer_inv_range(paddr, paddr + size);
1017 
1018 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1019 	}
1020 
1021 	/*
1022 	 * Mark the D-cache clean for these pages to avoid extra flushing.
1023 	 */
1024 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1025 		unsigned long pfn;
1026 		size_t left = size;
1027 
1028 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
1029 		off %= PAGE_SIZE;
1030 		if (off) {
1031 			pfn++;
1032 			left -= PAGE_SIZE - off;
1033 		}
1034 		while (left >= PAGE_SIZE) {
1035 			page = pfn_to_page(pfn++);
1036 			set_bit(PG_dcache_clean, &page->flags);
1037 			left -= PAGE_SIZE;
1038 		}
1039 	}
1040 }
1041 
1042 /**
1043  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1044  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1045  * @sg: list of buffers
1046  * @nents: number of buffers to map
1047  * @dir: DMA transfer direction
1048  *
1049  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1050  * This is the scatter-gather version of the dma_map_single interface.
1051  * Here the scatter gather list elements are each tagged with the
1052  * appropriate dma address and length.  They are obtained via
1053  * sg_dma_{address,length}.
1054  *
1055  * Device ownership issues as mentioned for dma_map_single are the same
1056  * here.
1057  */
1058 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1059 		enum dma_data_direction dir, unsigned long attrs)
1060 {
1061 	const struct dma_map_ops *ops = get_dma_ops(dev);
1062 	struct scatterlist *s;
1063 	int i, j;
1064 
1065 	for_each_sg(sg, s, nents, i) {
1066 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1067 		s->dma_length = s->length;
1068 #endif
1069 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1070 						s->length, dir, attrs);
1071 		if (dma_mapping_error(dev, s->dma_address))
1072 			goto bad_mapping;
1073 	}
1074 	return nents;
1075 
1076  bad_mapping:
1077 	for_each_sg(sg, s, i, j)
1078 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1079 	return 0;
1080 }
1081 
1082 /**
1083  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1084  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1085  * @sg: list of buffers
1086  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1087  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1088  *
1089  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1090  * rules concerning calls here are the same as for dma_unmap_single().
1091  */
1092 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1093 		enum dma_data_direction dir, unsigned long attrs)
1094 {
1095 	const struct dma_map_ops *ops = get_dma_ops(dev);
1096 	struct scatterlist *s;
1097 
1098 	int i;
1099 
1100 	for_each_sg(sg, s, nents, i)
1101 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1102 }
1103 
1104 /**
1105  * arm_dma_sync_sg_for_cpu
1106  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1107  * @sg: list of buffers
1108  * @nents: number of buffers to map (returned from dma_map_sg)
1109  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1110  */
1111 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1112 			int nents, enum dma_data_direction dir)
1113 {
1114 	const struct dma_map_ops *ops = get_dma_ops(dev);
1115 	struct scatterlist *s;
1116 	int i;
1117 
1118 	for_each_sg(sg, s, nents, i)
1119 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1120 					 dir);
1121 }
1122 
1123 /**
1124  * arm_dma_sync_sg_for_device
1125  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1126  * @sg: list of buffers
1127  * @nents: number of buffers to map (returned from dma_map_sg)
1128  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1129  */
1130 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1131 			int nents, enum dma_data_direction dir)
1132 {
1133 	const struct dma_map_ops *ops = get_dma_ops(dev);
1134 	struct scatterlist *s;
1135 	int i;
1136 
1137 	for_each_sg(sg, s, nents, i)
1138 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1139 					    dir);
1140 }
1141 
1142 /*
1143  * Return whether the given device DMA address mask can be supported
1144  * properly.  For example, if your device can only drive the low 24-bits
1145  * during bus mastering, then you would pass 0x00ffffff as the mask
1146  * to this function.
1147  */
1148 int arm_dma_supported(struct device *dev, u64 mask)
1149 {
1150 	return __dma_supported(dev, mask, false);
1151 }
1152 
1153 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1154 {
1155 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1156 }
1157 
1158 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1159 
1160 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1161 {
1162 	int prot = 0;
1163 
1164 	if (attrs & DMA_ATTR_PRIVILEGED)
1165 		prot |= IOMMU_PRIV;
1166 
1167 	switch (dir) {
1168 	case DMA_BIDIRECTIONAL:
1169 		return prot | IOMMU_READ | IOMMU_WRITE;
1170 	case DMA_TO_DEVICE:
1171 		return prot | IOMMU_READ;
1172 	case DMA_FROM_DEVICE:
1173 		return prot | IOMMU_WRITE;
1174 	default:
1175 		return prot;
1176 	}
1177 }
1178 
1179 /* IOMMU */
1180 
1181 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1182 
1183 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1184 				      size_t size)
1185 {
1186 	unsigned int order = get_order(size);
1187 	unsigned int align = 0;
1188 	unsigned int count, start;
1189 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1190 	unsigned long flags;
1191 	dma_addr_t iova;
1192 	int i;
1193 
1194 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1195 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1196 
1197 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1198 	align = (1 << order) - 1;
1199 
1200 	spin_lock_irqsave(&mapping->lock, flags);
1201 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1202 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1203 				mapping->bits, 0, count, align);
1204 
1205 		if (start > mapping->bits)
1206 			continue;
1207 
1208 		bitmap_set(mapping->bitmaps[i], start, count);
1209 		break;
1210 	}
1211 
1212 	/*
1213 	 * No unused range found. Try to extend the existing mapping
1214 	 * and perform a second attempt to reserve an IO virtual
1215 	 * address range of size bytes.
1216 	 */
1217 	if (i == mapping->nr_bitmaps) {
1218 		if (extend_iommu_mapping(mapping)) {
1219 			spin_unlock_irqrestore(&mapping->lock, flags);
1220 			return ARM_MAPPING_ERROR;
1221 		}
1222 
1223 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1224 				mapping->bits, 0, count, align);
1225 
1226 		if (start > mapping->bits) {
1227 			spin_unlock_irqrestore(&mapping->lock, flags);
1228 			return ARM_MAPPING_ERROR;
1229 		}
1230 
1231 		bitmap_set(mapping->bitmaps[i], start, count);
1232 	}
1233 	spin_unlock_irqrestore(&mapping->lock, flags);
1234 
1235 	iova = mapping->base + (mapping_size * i);
1236 	iova += start << PAGE_SHIFT;
1237 
1238 	return iova;
1239 }
1240 
1241 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1242 			       dma_addr_t addr, size_t size)
1243 {
1244 	unsigned int start, count;
1245 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1246 	unsigned long flags;
1247 	dma_addr_t bitmap_base;
1248 	u32 bitmap_index;
1249 
1250 	if (!size)
1251 		return;
1252 
1253 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1254 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1255 
1256 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1257 
1258 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1259 
1260 	if (addr + size > bitmap_base + mapping_size) {
1261 		/*
1262 		 * The address range to be freed reaches into the iova
1263 		 * range of the next bitmap. This should not happen as
1264 		 * we don't allow this in __alloc_iova (at the
1265 		 * moment).
1266 		 */
1267 		BUG();
1268 	} else
1269 		count = size >> PAGE_SHIFT;
1270 
1271 	spin_lock_irqsave(&mapping->lock, flags);
1272 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1273 	spin_unlock_irqrestore(&mapping->lock, flags);
1274 }
1275 
1276 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1277 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1278 
1279 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1280 					  gfp_t gfp, unsigned long attrs,
1281 					  int coherent_flag)
1282 {
1283 	struct page **pages;
1284 	int count = size >> PAGE_SHIFT;
1285 	int array_size = count * sizeof(struct page *);
1286 	int i = 0;
1287 	int order_idx = 0;
1288 
1289 	if (array_size <= PAGE_SIZE)
1290 		pages = kzalloc(array_size, GFP_KERNEL);
1291 	else
1292 		pages = vzalloc(array_size);
1293 	if (!pages)
1294 		return NULL;
1295 
1296 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1297 	{
1298 		unsigned long order = get_order(size);
1299 		struct page *page;
1300 
1301 		page = dma_alloc_from_contiguous(dev, count, order,
1302 						 gfp & __GFP_NOWARN);
1303 		if (!page)
1304 			goto error;
1305 
1306 		__dma_clear_buffer(page, size, coherent_flag);
1307 
1308 		for (i = 0; i < count; i++)
1309 			pages[i] = page + i;
1310 
1311 		return pages;
1312 	}
1313 
1314 	/* Go straight to 4K chunks if caller says it's OK. */
1315 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1316 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1317 
1318 	/*
1319 	 * IOMMU can map any pages, so himem can also be used here
1320 	 */
1321 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1322 
1323 	while (count) {
1324 		int j, order;
1325 
1326 		order = iommu_order_array[order_idx];
1327 
1328 		/* Drop down when we get small */
1329 		if (__fls(count) < order) {
1330 			order_idx++;
1331 			continue;
1332 		}
1333 
1334 		if (order) {
1335 			/* See if it's easy to allocate a high-order chunk */
1336 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1337 
1338 			/* Go down a notch at first sign of pressure */
1339 			if (!pages[i]) {
1340 				order_idx++;
1341 				continue;
1342 			}
1343 		} else {
1344 			pages[i] = alloc_pages(gfp, 0);
1345 			if (!pages[i])
1346 				goto error;
1347 		}
1348 
1349 		if (order) {
1350 			split_page(pages[i], order);
1351 			j = 1 << order;
1352 			while (--j)
1353 				pages[i + j] = pages[i] + j;
1354 		}
1355 
1356 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1357 		i += 1 << order;
1358 		count -= 1 << order;
1359 	}
1360 
1361 	return pages;
1362 error:
1363 	while (i--)
1364 		if (pages[i])
1365 			__free_pages(pages[i], 0);
1366 	kvfree(pages);
1367 	return NULL;
1368 }
1369 
1370 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1371 			       size_t size, unsigned long attrs)
1372 {
1373 	int count = size >> PAGE_SHIFT;
1374 	int i;
1375 
1376 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1377 		dma_release_from_contiguous(dev, pages[0], count);
1378 	} else {
1379 		for (i = 0; i < count; i++)
1380 			if (pages[i])
1381 				__free_pages(pages[i], 0);
1382 	}
1383 
1384 	kvfree(pages);
1385 	return 0;
1386 }
1387 
1388 /*
1389  * Create a CPU mapping for a specified pages
1390  */
1391 static void *
1392 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1393 		    const void *caller)
1394 {
1395 	return dma_common_pages_remap(pages, size,
1396 			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1397 }
1398 
1399 /*
1400  * Create a mapping in device IO address space for specified pages
1401  */
1402 static dma_addr_t
1403 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1404 		       unsigned long attrs)
1405 {
1406 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1407 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1408 	dma_addr_t dma_addr, iova;
1409 	int i;
1410 
1411 	dma_addr = __alloc_iova(mapping, size);
1412 	if (dma_addr == ARM_MAPPING_ERROR)
1413 		return dma_addr;
1414 
1415 	iova = dma_addr;
1416 	for (i = 0; i < count; ) {
1417 		int ret;
1418 
1419 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1420 		phys_addr_t phys = page_to_phys(pages[i]);
1421 		unsigned int len, j;
1422 
1423 		for (j = i + 1; j < count; j++, next_pfn++)
1424 			if (page_to_pfn(pages[j]) != next_pfn)
1425 				break;
1426 
1427 		len = (j - i) << PAGE_SHIFT;
1428 		ret = iommu_map(mapping->domain, iova, phys, len,
1429 				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1430 		if (ret < 0)
1431 			goto fail;
1432 		iova += len;
1433 		i = j;
1434 	}
1435 	return dma_addr;
1436 fail:
1437 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1438 	__free_iova(mapping, dma_addr, size);
1439 	return ARM_MAPPING_ERROR;
1440 }
1441 
1442 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1443 {
1444 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1445 
1446 	/*
1447 	 * add optional in-page offset from iova to size and align
1448 	 * result to page size
1449 	 */
1450 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1451 	iova &= PAGE_MASK;
1452 
1453 	iommu_unmap(mapping->domain, iova, size);
1454 	__free_iova(mapping, iova, size);
1455 	return 0;
1456 }
1457 
1458 static struct page **__atomic_get_pages(void *addr)
1459 {
1460 	struct page *page;
1461 	phys_addr_t phys;
1462 
1463 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1464 	page = phys_to_page(phys);
1465 
1466 	return (struct page **)page;
1467 }
1468 
1469 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1470 {
1471 	struct vm_struct *area;
1472 
1473 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1474 		return __atomic_get_pages(cpu_addr);
1475 
1476 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1477 		return cpu_addr;
1478 
1479 	area = find_vm_area(cpu_addr);
1480 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1481 		return area->pages;
1482 	return NULL;
1483 }
1484 
1485 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1486 				  dma_addr_t *handle, int coherent_flag,
1487 				  unsigned long attrs)
1488 {
1489 	struct page *page;
1490 	void *addr;
1491 
1492 	if (coherent_flag  == COHERENT)
1493 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1494 	else
1495 		addr = __alloc_from_pool(size, &page);
1496 	if (!addr)
1497 		return NULL;
1498 
1499 	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1500 	if (*handle == ARM_MAPPING_ERROR)
1501 		goto err_mapping;
1502 
1503 	return addr;
1504 
1505 err_mapping:
1506 	__free_from_pool(addr, size);
1507 	return NULL;
1508 }
1509 
1510 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1511 			dma_addr_t handle, size_t size, int coherent_flag)
1512 {
1513 	__iommu_remove_mapping(dev, handle, size);
1514 	if (coherent_flag == COHERENT)
1515 		__dma_free_buffer(virt_to_page(cpu_addr), size);
1516 	else
1517 		__free_from_pool(cpu_addr, size);
1518 }
1519 
1520 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1521 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1522 	    int coherent_flag)
1523 {
1524 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1525 	struct page **pages;
1526 	void *addr = NULL;
1527 
1528 	*handle = ARM_MAPPING_ERROR;
1529 	size = PAGE_ALIGN(size);
1530 
1531 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1532 		return __iommu_alloc_simple(dev, size, gfp, handle,
1533 					    coherent_flag, attrs);
1534 
1535 	/*
1536 	 * Following is a work-around (a.k.a. hack) to prevent pages
1537 	 * with __GFP_COMP being passed to split_page() which cannot
1538 	 * handle them.  The real problem is that this flag probably
1539 	 * should be 0 on ARM as it is not supported on this
1540 	 * platform; see CONFIG_HUGETLBFS.
1541 	 */
1542 	gfp &= ~(__GFP_COMP);
1543 
1544 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1545 	if (!pages)
1546 		return NULL;
1547 
1548 	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1549 	if (*handle == ARM_MAPPING_ERROR)
1550 		goto err_buffer;
1551 
1552 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1553 		return pages;
1554 
1555 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1556 				   __builtin_return_address(0));
1557 	if (!addr)
1558 		goto err_mapping;
1559 
1560 	return addr;
1561 
1562 err_mapping:
1563 	__iommu_remove_mapping(dev, *handle, size);
1564 err_buffer:
1565 	__iommu_free_buffer(dev, pages, size, attrs);
1566 	return NULL;
1567 }
1568 
1569 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1570 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1571 {
1572 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1573 }
1574 
1575 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1576 		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1577 {
1578 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1579 }
1580 
1581 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1582 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1583 		    unsigned long attrs)
1584 {
1585 	unsigned long uaddr = vma->vm_start;
1586 	unsigned long usize = vma->vm_end - vma->vm_start;
1587 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1588 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1589 	unsigned long off = vma->vm_pgoff;
1590 
1591 	if (!pages)
1592 		return -ENXIO;
1593 
1594 	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1595 		return -ENXIO;
1596 
1597 	pages += off;
1598 
1599 	do {
1600 		int ret = vm_insert_page(vma, uaddr, *pages++);
1601 		if (ret) {
1602 			pr_err("Remapping memory failed: %d\n", ret);
1603 			return ret;
1604 		}
1605 		uaddr += PAGE_SIZE;
1606 		usize -= PAGE_SIZE;
1607 	} while (usize > 0);
1608 
1609 	return 0;
1610 }
1611 static int arm_iommu_mmap_attrs(struct device *dev,
1612 		struct vm_area_struct *vma, void *cpu_addr,
1613 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1614 {
1615 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1616 
1617 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1618 }
1619 
1620 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1621 		struct vm_area_struct *vma, void *cpu_addr,
1622 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1623 {
1624 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1625 }
1626 
1627 /*
1628  * free a page as defined by the above mapping.
1629  * Must not be called with IRQs disabled.
1630  */
1631 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1632 	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1633 {
1634 	struct page **pages;
1635 	size = PAGE_ALIGN(size);
1636 
1637 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1638 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1639 		return;
1640 	}
1641 
1642 	pages = __iommu_get_pages(cpu_addr, attrs);
1643 	if (!pages) {
1644 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1645 		return;
1646 	}
1647 
1648 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1649 		dma_common_free_remap(cpu_addr, size,
1650 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1651 	}
1652 
1653 	__iommu_remove_mapping(dev, handle, size);
1654 	__iommu_free_buffer(dev, pages, size, attrs);
1655 }
1656 
1657 void arm_iommu_free_attrs(struct device *dev, size_t size,
1658 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1659 {
1660 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1661 }
1662 
1663 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1664 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1665 {
1666 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1667 }
1668 
1669 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1670 				 void *cpu_addr, dma_addr_t dma_addr,
1671 				 size_t size, unsigned long attrs)
1672 {
1673 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1674 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1675 
1676 	if (!pages)
1677 		return -ENXIO;
1678 
1679 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1680 					 GFP_KERNEL);
1681 }
1682 
1683 /*
1684  * Map a part of the scatter-gather list into contiguous io address space
1685  */
1686 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1687 			  size_t size, dma_addr_t *handle,
1688 			  enum dma_data_direction dir, unsigned long attrs,
1689 			  bool is_coherent)
1690 {
1691 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1692 	dma_addr_t iova, iova_base;
1693 	int ret = 0;
1694 	unsigned int count;
1695 	struct scatterlist *s;
1696 	int prot;
1697 
1698 	size = PAGE_ALIGN(size);
1699 	*handle = ARM_MAPPING_ERROR;
1700 
1701 	iova_base = iova = __alloc_iova(mapping, size);
1702 	if (iova == ARM_MAPPING_ERROR)
1703 		return -ENOMEM;
1704 
1705 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1706 		phys_addr_t phys = page_to_phys(sg_page(s));
1707 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1708 
1709 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1710 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1711 
1712 		prot = __dma_info_to_prot(dir, attrs);
1713 
1714 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1715 		if (ret < 0)
1716 			goto fail;
1717 		count += len >> PAGE_SHIFT;
1718 		iova += len;
1719 	}
1720 	*handle = iova_base;
1721 
1722 	return 0;
1723 fail:
1724 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1725 	__free_iova(mapping, iova_base, size);
1726 	return ret;
1727 }
1728 
1729 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1730 		     enum dma_data_direction dir, unsigned long attrs,
1731 		     bool is_coherent)
1732 {
1733 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1734 	int i, count = 0;
1735 	unsigned int offset = s->offset;
1736 	unsigned int size = s->offset + s->length;
1737 	unsigned int max = dma_get_max_seg_size(dev);
1738 
1739 	for (i = 1; i < nents; i++) {
1740 		s = sg_next(s);
1741 
1742 		s->dma_address = ARM_MAPPING_ERROR;
1743 		s->dma_length = 0;
1744 
1745 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1746 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1747 			    dir, attrs, is_coherent) < 0)
1748 				goto bad_mapping;
1749 
1750 			dma->dma_address += offset;
1751 			dma->dma_length = size - offset;
1752 
1753 			size = offset = s->offset;
1754 			start = s;
1755 			dma = sg_next(dma);
1756 			count += 1;
1757 		}
1758 		size += s->length;
1759 	}
1760 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1761 		is_coherent) < 0)
1762 		goto bad_mapping;
1763 
1764 	dma->dma_address += offset;
1765 	dma->dma_length = size - offset;
1766 
1767 	return count+1;
1768 
1769 bad_mapping:
1770 	for_each_sg(sg, s, count, i)
1771 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1772 	return 0;
1773 }
1774 
1775 /**
1776  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1777  * @dev: valid struct device pointer
1778  * @sg: list of buffers
1779  * @nents: number of buffers to map
1780  * @dir: DMA transfer direction
1781  *
1782  * Map a set of i/o coherent buffers described by scatterlist in streaming
1783  * mode for DMA. The scatter gather list elements are merged together (if
1784  * possible) and tagged with the appropriate dma address and length. They are
1785  * obtained via sg_dma_{address,length}.
1786  */
1787 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1788 		int nents, enum dma_data_direction dir, unsigned long attrs)
1789 {
1790 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1791 }
1792 
1793 /**
1794  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1795  * @dev: valid struct device pointer
1796  * @sg: list of buffers
1797  * @nents: number of buffers to map
1798  * @dir: DMA transfer direction
1799  *
1800  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1801  * The scatter gather list elements are merged together (if possible) and
1802  * tagged with the appropriate dma address and length. They are obtained via
1803  * sg_dma_{address,length}.
1804  */
1805 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1806 		int nents, enum dma_data_direction dir, unsigned long attrs)
1807 {
1808 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1809 }
1810 
1811 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1812 		int nents, enum dma_data_direction dir,
1813 		unsigned long attrs, bool is_coherent)
1814 {
1815 	struct scatterlist *s;
1816 	int i;
1817 
1818 	for_each_sg(sg, s, nents, i) {
1819 		if (sg_dma_len(s))
1820 			__iommu_remove_mapping(dev, sg_dma_address(s),
1821 					       sg_dma_len(s));
1822 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1823 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1824 					      s->length, dir);
1825 	}
1826 }
1827 
1828 /**
1829  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1830  * @dev: valid struct device pointer
1831  * @sg: list of buffers
1832  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1833  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1834  *
1835  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1836  * rules concerning calls here are the same as for dma_unmap_single().
1837  */
1838 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1839 		int nents, enum dma_data_direction dir,
1840 		unsigned long attrs)
1841 {
1842 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1843 }
1844 
1845 /**
1846  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1847  * @dev: valid struct device pointer
1848  * @sg: list of buffers
1849  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1850  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1851  *
1852  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1853  * rules concerning calls here are the same as for dma_unmap_single().
1854  */
1855 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1856 			enum dma_data_direction dir,
1857 			unsigned long attrs)
1858 {
1859 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1860 }
1861 
1862 /**
1863  * arm_iommu_sync_sg_for_cpu
1864  * @dev: valid struct device pointer
1865  * @sg: list of buffers
1866  * @nents: number of buffers to map (returned from dma_map_sg)
1867  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1868  */
1869 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1870 			int nents, enum dma_data_direction dir)
1871 {
1872 	struct scatterlist *s;
1873 	int i;
1874 
1875 	for_each_sg(sg, s, nents, i)
1876 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1877 
1878 }
1879 
1880 /**
1881  * arm_iommu_sync_sg_for_device
1882  * @dev: valid struct device pointer
1883  * @sg: list of buffers
1884  * @nents: number of buffers to map (returned from dma_map_sg)
1885  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1886  */
1887 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1888 			int nents, enum dma_data_direction dir)
1889 {
1890 	struct scatterlist *s;
1891 	int i;
1892 
1893 	for_each_sg(sg, s, nents, i)
1894 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1895 }
1896 
1897 
1898 /**
1899  * arm_coherent_iommu_map_page
1900  * @dev: valid struct device pointer
1901  * @page: page that buffer resides in
1902  * @offset: offset into page for start of buffer
1903  * @size: size of buffer to map
1904  * @dir: DMA transfer direction
1905  *
1906  * Coherent IOMMU aware version of arm_dma_map_page()
1907  */
1908 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1909 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1910 	     unsigned long attrs)
1911 {
1912 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1913 	dma_addr_t dma_addr;
1914 	int ret, prot, len = PAGE_ALIGN(size + offset);
1915 
1916 	dma_addr = __alloc_iova(mapping, len);
1917 	if (dma_addr == ARM_MAPPING_ERROR)
1918 		return dma_addr;
1919 
1920 	prot = __dma_info_to_prot(dir, attrs);
1921 
1922 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1923 	if (ret < 0)
1924 		goto fail;
1925 
1926 	return dma_addr + offset;
1927 fail:
1928 	__free_iova(mapping, dma_addr, len);
1929 	return ARM_MAPPING_ERROR;
1930 }
1931 
1932 /**
1933  * arm_iommu_map_page
1934  * @dev: valid struct device pointer
1935  * @page: page that buffer resides in
1936  * @offset: offset into page for start of buffer
1937  * @size: size of buffer to map
1938  * @dir: DMA transfer direction
1939  *
1940  * IOMMU aware version of arm_dma_map_page()
1941  */
1942 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1943 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1944 	     unsigned long attrs)
1945 {
1946 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1947 		__dma_page_cpu_to_dev(page, offset, size, dir);
1948 
1949 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1950 }
1951 
1952 /**
1953  * arm_coherent_iommu_unmap_page
1954  * @dev: valid struct device pointer
1955  * @handle: DMA address of buffer
1956  * @size: size of buffer (same as passed to dma_map_page)
1957  * @dir: DMA transfer direction (same as passed to dma_map_page)
1958  *
1959  * Coherent IOMMU aware version of arm_dma_unmap_page()
1960  */
1961 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1962 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1963 {
1964 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1965 	dma_addr_t iova = handle & PAGE_MASK;
1966 	int offset = handle & ~PAGE_MASK;
1967 	int len = PAGE_ALIGN(size + offset);
1968 
1969 	if (!iova)
1970 		return;
1971 
1972 	iommu_unmap(mapping->domain, iova, len);
1973 	__free_iova(mapping, iova, len);
1974 }
1975 
1976 /**
1977  * arm_iommu_unmap_page
1978  * @dev: valid struct device pointer
1979  * @handle: DMA address of buffer
1980  * @size: size of buffer (same as passed to dma_map_page)
1981  * @dir: DMA transfer direction (same as passed to dma_map_page)
1982  *
1983  * IOMMU aware version of arm_dma_unmap_page()
1984  */
1985 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1986 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1987 {
1988 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1989 	dma_addr_t iova = handle & PAGE_MASK;
1990 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1991 	int offset = handle & ~PAGE_MASK;
1992 	int len = PAGE_ALIGN(size + offset);
1993 
1994 	if (!iova)
1995 		return;
1996 
1997 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1998 		__dma_page_dev_to_cpu(page, offset, size, dir);
1999 
2000 	iommu_unmap(mapping->domain, iova, len);
2001 	__free_iova(mapping, iova, len);
2002 }
2003 
2004 /**
2005  * arm_iommu_map_resource - map a device resource for DMA
2006  * @dev: valid struct device pointer
2007  * @phys_addr: physical address of resource
2008  * @size: size of resource to map
2009  * @dir: DMA transfer direction
2010  */
2011 static dma_addr_t arm_iommu_map_resource(struct device *dev,
2012 		phys_addr_t phys_addr, size_t size,
2013 		enum dma_data_direction dir, unsigned long attrs)
2014 {
2015 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2016 	dma_addr_t dma_addr;
2017 	int ret, prot;
2018 	phys_addr_t addr = phys_addr & PAGE_MASK;
2019 	unsigned int offset = phys_addr & ~PAGE_MASK;
2020 	size_t len = PAGE_ALIGN(size + offset);
2021 
2022 	dma_addr = __alloc_iova(mapping, len);
2023 	if (dma_addr == ARM_MAPPING_ERROR)
2024 		return dma_addr;
2025 
2026 	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
2027 
2028 	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2029 	if (ret < 0)
2030 		goto fail;
2031 
2032 	return dma_addr + offset;
2033 fail:
2034 	__free_iova(mapping, dma_addr, len);
2035 	return ARM_MAPPING_ERROR;
2036 }
2037 
2038 /**
2039  * arm_iommu_unmap_resource - unmap a device DMA resource
2040  * @dev: valid struct device pointer
2041  * @dma_handle: DMA address to resource
2042  * @size: size of resource to map
2043  * @dir: DMA transfer direction
2044  */
2045 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2046 		size_t size, enum dma_data_direction dir,
2047 		unsigned long attrs)
2048 {
2049 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2050 	dma_addr_t iova = dma_handle & PAGE_MASK;
2051 	unsigned int offset = dma_handle & ~PAGE_MASK;
2052 	size_t len = PAGE_ALIGN(size + offset);
2053 
2054 	if (!iova)
2055 		return;
2056 
2057 	iommu_unmap(mapping->domain, iova, len);
2058 	__free_iova(mapping, iova, len);
2059 }
2060 
2061 static void arm_iommu_sync_single_for_cpu(struct device *dev,
2062 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2063 {
2064 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2065 	dma_addr_t iova = handle & PAGE_MASK;
2066 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2067 	unsigned int offset = handle & ~PAGE_MASK;
2068 
2069 	if (!iova)
2070 		return;
2071 
2072 	__dma_page_dev_to_cpu(page, offset, size, dir);
2073 }
2074 
2075 static void arm_iommu_sync_single_for_device(struct device *dev,
2076 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2077 {
2078 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2079 	dma_addr_t iova = handle & PAGE_MASK;
2080 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2081 	unsigned int offset = handle & ~PAGE_MASK;
2082 
2083 	if (!iova)
2084 		return;
2085 
2086 	__dma_page_cpu_to_dev(page, offset, size, dir);
2087 }
2088 
2089 const struct dma_map_ops iommu_ops = {
2090 	.alloc		= arm_iommu_alloc_attrs,
2091 	.free		= arm_iommu_free_attrs,
2092 	.mmap		= arm_iommu_mmap_attrs,
2093 	.get_sgtable	= arm_iommu_get_sgtable,
2094 
2095 	.map_page		= arm_iommu_map_page,
2096 	.unmap_page		= arm_iommu_unmap_page,
2097 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2098 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2099 
2100 	.map_sg			= arm_iommu_map_sg,
2101 	.unmap_sg		= arm_iommu_unmap_sg,
2102 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2103 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2104 
2105 	.map_resource		= arm_iommu_map_resource,
2106 	.unmap_resource		= arm_iommu_unmap_resource,
2107 
2108 	.mapping_error		= arm_dma_mapping_error,
2109 	.dma_supported		= arm_dma_supported,
2110 };
2111 
2112 const struct dma_map_ops iommu_coherent_ops = {
2113 	.alloc		= arm_coherent_iommu_alloc_attrs,
2114 	.free		= arm_coherent_iommu_free_attrs,
2115 	.mmap		= arm_coherent_iommu_mmap_attrs,
2116 	.get_sgtable	= arm_iommu_get_sgtable,
2117 
2118 	.map_page	= arm_coherent_iommu_map_page,
2119 	.unmap_page	= arm_coherent_iommu_unmap_page,
2120 
2121 	.map_sg		= arm_coherent_iommu_map_sg,
2122 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2123 
2124 	.map_resource	= arm_iommu_map_resource,
2125 	.unmap_resource	= arm_iommu_unmap_resource,
2126 
2127 	.mapping_error		= arm_dma_mapping_error,
2128 	.dma_supported		= arm_dma_supported,
2129 };
2130 
2131 /**
2132  * arm_iommu_create_mapping
2133  * @bus: pointer to the bus holding the client device (for IOMMU calls)
2134  * @base: start address of the valid IO address space
2135  * @size: maximum size of the valid IO address space
2136  *
2137  * Creates a mapping structure which holds information about used/unused
2138  * IO address ranges, which is required to perform memory allocation and
2139  * mapping with IOMMU aware functions.
2140  *
2141  * The client device need to be attached to the mapping with
2142  * arm_iommu_attach_device function.
2143  */
2144 struct dma_iommu_mapping *
2145 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2146 {
2147 	unsigned int bits = size >> PAGE_SHIFT;
2148 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2149 	struct dma_iommu_mapping *mapping;
2150 	int extensions = 1;
2151 	int err = -ENOMEM;
2152 
2153 	/* currently only 32-bit DMA address space is supported */
2154 	if (size > DMA_BIT_MASK(32) + 1)
2155 		return ERR_PTR(-ERANGE);
2156 
2157 	if (!bitmap_size)
2158 		return ERR_PTR(-EINVAL);
2159 
2160 	if (bitmap_size > PAGE_SIZE) {
2161 		extensions = bitmap_size / PAGE_SIZE;
2162 		bitmap_size = PAGE_SIZE;
2163 	}
2164 
2165 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2166 	if (!mapping)
2167 		goto err;
2168 
2169 	mapping->bitmap_size = bitmap_size;
2170 	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2171 				   GFP_KERNEL);
2172 	if (!mapping->bitmaps)
2173 		goto err2;
2174 
2175 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2176 	if (!mapping->bitmaps[0])
2177 		goto err3;
2178 
2179 	mapping->nr_bitmaps = 1;
2180 	mapping->extensions = extensions;
2181 	mapping->base = base;
2182 	mapping->bits = BITS_PER_BYTE * bitmap_size;
2183 
2184 	spin_lock_init(&mapping->lock);
2185 
2186 	mapping->domain = iommu_domain_alloc(bus);
2187 	if (!mapping->domain)
2188 		goto err4;
2189 
2190 	kref_init(&mapping->kref);
2191 	return mapping;
2192 err4:
2193 	kfree(mapping->bitmaps[0]);
2194 err3:
2195 	kfree(mapping->bitmaps);
2196 err2:
2197 	kfree(mapping);
2198 err:
2199 	return ERR_PTR(err);
2200 }
2201 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2202 
2203 static void release_iommu_mapping(struct kref *kref)
2204 {
2205 	int i;
2206 	struct dma_iommu_mapping *mapping =
2207 		container_of(kref, struct dma_iommu_mapping, kref);
2208 
2209 	iommu_domain_free(mapping->domain);
2210 	for (i = 0; i < mapping->nr_bitmaps; i++)
2211 		kfree(mapping->bitmaps[i]);
2212 	kfree(mapping->bitmaps);
2213 	kfree(mapping);
2214 }
2215 
2216 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2217 {
2218 	int next_bitmap;
2219 
2220 	if (mapping->nr_bitmaps >= mapping->extensions)
2221 		return -EINVAL;
2222 
2223 	next_bitmap = mapping->nr_bitmaps;
2224 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2225 						GFP_ATOMIC);
2226 	if (!mapping->bitmaps[next_bitmap])
2227 		return -ENOMEM;
2228 
2229 	mapping->nr_bitmaps++;
2230 
2231 	return 0;
2232 }
2233 
2234 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2235 {
2236 	if (mapping)
2237 		kref_put(&mapping->kref, release_iommu_mapping);
2238 }
2239 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2240 
2241 static int __arm_iommu_attach_device(struct device *dev,
2242 				     struct dma_iommu_mapping *mapping)
2243 {
2244 	int err;
2245 
2246 	err = iommu_attach_device(mapping->domain, dev);
2247 	if (err)
2248 		return err;
2249 
2250 	kref_get(&mapping->kref);
2251 	to_dma_iommu_mapping(dev) = mapping;
2252 
2253 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2254 	return 0;
2255 }
2256 
2257 /**
2258  * arm_iommu_attach_device
2259  * @dev: valid struct device pointer
2260  * @mapping: io address space mapping structure (returned from
2261  *	arm_iommu_create_mapping)
2262  *
2263  * Attaches specified io address space mapping to the provided device.
2264  * This replaces the dma operations (dma_map_ops pointer) with the
2265  * IOMMU aware version.
2266  *
2267  * More than one client might be attached to the same io address space
2268  * mapping.
2269  */
2270 int arm_iommu_attach_device(struct device *dev,
2271 			    struct dma_iommu_mapping *mapping)
2272 {
2273 	int err;
2274 
2275 	err = __arm_iommu_attach_device(dev, mapping);
2276 	if (err)
2277 		return err;
2278 
2279 	set_dma_ops(dev, &iommu_ops);
2280 	return 0;
2281 }
2282 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2283 
2284 /**
2285  * arm_iommu_detach_device
2286  * @dev: valid struct device pointer
2287  *
2288  * Detaches the provided device from a previously attached map.
2289  * This voids the dma operations (dma_map_ops pointer)
2290  */
2291 void arm_iommu_detach_device(struct device *dev)
2292 {
2293 	struct dma_iommu_mapping *mapping;
2294 
2295 	mapping = to_dma_iommu_mapping(dev);
2296 	if (!mapping) {
2297 		dev_warn(dev, "Not attached\n");
2298 		return;
2299 	}
2300 
2301 	iommu_detach_device(mapping->domain, dev);
2302 	kref_put(&mapping->kref, release_iommu_mapping);
2303 	to_dma_iommu_mapping(dev) = NULL;
2304 	set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2305 
2306 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2307 }
2308 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2309 
2310 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2311 {
2312 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2313 }
2314 
2315 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2316 				    const struct iommu_ops *iommu)
2317 {
2318 	struct dma_iommu_mapping *mapping;
2319 
2320 	if (!iommu)
2321 		return false;
2322 
2323 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2324 	if (IS_ERR(mapping)) {
2325 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2326 				size, dev_name(dev));
2327 		return false;
2328 	}
2329 
2330 	if (__arm_iommu_attach_device(dev, mapping)) {
2331 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2332 				dev_name(dev));
2333 		arm_iommu_release_mapping(mapping);
2334 		return false;
2335 	}
2336 
2337 	return true;
2338 }
2339 
2340 static void arm_teardown_iommu_dma_ops(struct device *dev)
2341 {
2342 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2343 
2344 	if (!mapping)
2345 		return;
2346 
2347 	arm_iommu_detach_device(dev);
2348 	arm_iommu_release_mapping(mapping);
2349 }
2350 
2351 #else
2352 
2353 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2354 				    const struct iommu_ops *iommu)
2355 {
2356 	return false;
2357 }
2358 
2359 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2360 
2361 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2362 
2363 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2364 
2365 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2366 			const struct iommu_ops *iommu, bool coherent)
2367 {
2368 	const struct dma_map_ops *dma_ops;
2369 
2370 	dev->archdata.dma_coherent = coherent;
2371 
2372 	/*
2373 	 * Don't override the dma_ops if they have already been set. Ideally
2374 	 * this should be the only location where dma_ops are set, remove this
2375 	 * check when all other callers of set_dma_ops will have disappeared.
2376 	 */
2377 	if (dev->dma_ops)
2378 		return;
2379 
2380 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2381 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2382 	else
2383 		dma_ops = arm_get_dma_map_ops(coherent);
2384 
2385 	set_dma_ops(dev, dma_ops);
2386 
2387 #ifdef CONFIG_XEN
2388 	if (xen_initial_domain()) {
2389 		dev->archdata.dev_dma_ops = dev->dma_ops;
2390 		dev->dma_ops = xen_dma_ops;
2391 	}
2392 #endif
2393 	dev->archdata.dma_ops_setup = true;
2394 }
2395 
2396 void arch_teardown_dma_ops(struct device *dev)
2397 {
2398 	if (!dev->archdata.dma_ops_setup)
2399 		return;
2400 
2401 	arm_teardown_iommu_dma_ops(dev);
2402 }
2403