1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/module.h> 13 #include <linux/mm.h> 14 #include <linux/gfp.h> 15 #include <linux/errno.h> 16 #include <linux/list.h> 17 #include <linux/init.h> 18 #include <linux/device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/dma-contiguous.h> 21 #include <linux/highmem.h> 22 #include <linux/memblock.h> 23 #include <linux/slab.h> 24 #include <linux/iommu.h> 25 #include <linux/io.h> 26 #include <linux/vmalloc.h> 27 #include <linux/sizes.h> 28 29 #include <asm/memory.h> 30 #include <asm/highmem.h> 31 #include <asm/cacheflush.h> 32 #include <asm/tlbflush.h> 33 #include <asm/mach/arch.h> 34 #include <asm/dma-iommu.h> 35 #include <asm/mach/map.h> 36 #include <asm/system_info.h> 37 #include <asm/dma-contiguous.h> 38 39 #include "mm.h" 40 41 /* 42 * The DMA API is built upon the notion of "buffer ownership". A buffer 43 * is either exclusively owned by the CPU (and therefore may be accessed 44 * by it) or exclusively owned by the DMA device. These helper functions 45 * represent the transitions between these two ownership states. 46 * 47 * Note, however, that on later ARMs, this notion does not work due to 48 * speculative prefetches. We model our approach on the assumption that 49 * the CPU does do speculative prefetches, which means we clean caches 50 * before transfers and delay cache invalidation until transfer completion. 51 * 52 */ 53 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 54 size_t, enum dma_data_direction); 55 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 56 size_t, enum dma_data_direction); 57 58 /** 59 * arm_dma_map_page - map a portion of a page for streaming DMA 60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 61 * @page: page that buffer resides in 62 * @offset: offset into page for start of buffer 63 * @size: size of buffer to map 64 * @dir: DMA transfer direction 65 * 66 * Ensure that any data held in the cache is appropriately discarded 67 * or written back. 68 * 69 * The device owns this memory once this call has completed. The CPU 70 * can regain ownership by calling dma_unmap_page(). 71 */ 72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 73 unsigned long offset, size_t size, enum dma_data_direction dir, 74 struct dma_attrs *attrs) 75 { 76 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 77 __dma_page_cpu_to_dev(page, offset, size, dir); 78 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 79 } 80 81 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 82 unsigned long offset, size_t size, enum dma_data_direction dir, 83 struct dma_attrs *attrs) 84 { 85 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 86 } 87 88 /** 89 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 90 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 91 * @handle: DMA address of buffer 92 * @size: size of buffer (same as passed to dma_map_page) 93 * @dir: DMA transfer direction (same as passed to dma_map_page) 94 * 95 * Unmap a page streaming mode DMA translation. The handle and size 96 * must match what was provided in the previous dma_map_page() call. 97 * All other usages are undefined. 98 * 99 * After this call, reads by the CPU to the buffer are guaranteed to see 100 * whatever the device wrote there. 101 */ 102 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 103 size_t size, enum dma_data_direction dir, 104 struct dma_attrs *attrs) 105 { 106 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 107 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 108 handle & ~PAGE_MASK, size, dir); 109 } 110 111 static void arm_dma_sync_single_for_cpu(struct device *dev, 112 dma_addr_t handle, size_t size, enum dma_data_direction dir) 113 { 114 unsigned int offset = handle & (PAGE_SIZE - 1); 115 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 116 __dma_page_dev_to_cpu(page, offset, size, dir); 117 } 118 119 static void arm_dma_sync_single_for_device(struct device *dev, 120 dma_addr_t handle, size_t size, enum dma_data_direction dir) 121 { 122 unsigned int offset = handle & (PAGE_SIZE - 1); 123 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 124 __dma_page_cpu_to_dev(page, offset, size, dir); 125 } 126 127 static int arm_dma_set_mask(struct device *dev, u64 dma_mask); 128 129 struct dma_map_ops arm_dma_ops = { 130 .alloc = arm_dma_alloc, 131 .free = arm_dma_free, 132 .mmap = arm_dma_mmap, 133 .get_sgtable = arm_dma_get_sgtable, 134 .map_page = arm_dma_map_page, 135 .unmap_page = arm_dma_unmap_page, 136 .map_sg = arm_dma_map_sg, 137 .unmap_sg = arm_dma_unmap_sg, 138 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 139 .sync_single_for_device = arm_dma_sync_single_for_device, 140 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 141 .sync_sg_for_device = arm_dma_sync_sg_for_device, 142 .set_dma_mask = arm_dma_set_mask, 143 }; 144 EXPORT_SYMBOL(arm_dma_ops); 145 146 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 147 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs); 148 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 149 dma_addr_t handle, struct dma_attrs *attrs); 150 151 struct dma_map_ops arm_coherent_dma_ops = { 152 .alloc = arm_coherent_dma_alloc, 153 .free = arm_coherent_dma_free, 154 .mmap = arm_dma_mmap, 155 .get_sgtable = arm_dma_get_sgtable, 156 .map_page = arm_coherent_dma_map_page, 157 .map_sg = arm_dma_map_sg, 158 .set_dma_mask = arm_dma_set_mask, 159 }; 160 EXPORT_SYMBOL(arm_coherent_dma_ops); 161 162 static u64 get_coherent_dma_mask(struct device *dev) 163 { 164 u64 mask = (u64)arm_dma_limit; 165 166 if (dev) { 167 mask = dev->coherent_dma_mask; 168 169 /* 170 * Sanity check the DMA mask - it must be non-zero, and 171 * must be able to be satisfied by a DMA allocation. 172 */ 173 if (mask == 0) { 174 dev_warn(dev, "coherent DMA mask is unset\n"); 175 return 0; 176 } 177 178 if ((~mask) & (u64)arm_dma_limit) { 179 dev_warn(dev, "coherent DMA mask %#llx is smaller " 180 "than system GFP_DMA mask %#llx\n", 181 mask, (u64)arm_dma_limit); 182 return 0; 183 } 184 } 185 186 return mask; 187 } 188 189 static void __dma_clear_buffer(struct page *page, size_t size) 190 { 191 void *ptr; 192 /* 193 * Ensure that the allocated pages are zeroed, and that any data 194 * lurking in the kernel direct-mapped region is invalidated. 195 */ 196 ptr = page_address(page); 197 if (ptr) { 198 memset(ptr, 0, size); 199 dmac_flush_range(ptr, ptr + size); 200 outer_flush_range(__pa(ptr), __pa(ptr) + size); 201 } 202 } 203 204 /* 205 * Allocate a DMA buffer for 'dev' of size 'size' using the 206 * specified gfp mask. Note that 'size' must be page aligned. 207 */ 208 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) 209 { 210 unsigned long order = get_order(size); 211 struct page *page, *p, *e; 212 213 page = alloc_pages(gfp, order); 214 if (!page) 215 return NULL; 216 217 /* 218 * Now split the huge page and free the excess pages 219 */ 220 split_page(page, order); 221 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 222 __free_page(p); 223 224 __dma_clear_buffer(page, size); 225 226 return page; 227 } 228 229 /* 230 * Free a DMA buffer. 'size' must be page aligned. 231 */ 232 static void __dma_free_buffer(struct page *page, size_t size) 233 { 234 struct page *e = page + (size >> PAGE_SHIFT); 235 236 while (page < e) { 237 __free_page(page); 238 page++; 239 } 240 } 241 242 #ifdef CONFIG_MMU 243 #ifdef CONFIG_HUGETLB_PAGE 244 #error ARM Coherent DMA allocator does not (yet) support huge TLB 245 #endif 246 247 static void *__alloc_from_contiguous(struct device *dev, size_t size, 248 pgprot_t prot, struct page **ret_page); 249 250 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 251 pgprot_t prot, struct page **ret_page, 252 const void *caller); 253 254 static void * 255 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 256 const void *caller) 257 { 258 struct vm_struct *area; 259 unsigned long addr; 260 261 /* 262 * DMA allocation can be mapped to user space, so lets 263 * set VM_USERMAP flags too. 264 */ 265 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP, 266 caller); 267 if (!area) 268 return NULL; 269 addr = (unsigned long)area->addr; 270 area->phys_addr = __pfn_to_phys(page_to_pfn(page)); 271 272 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) { 273 vunmap((void *)addr); 274 return NULL; 275 } 276 return (void *)addr; 277 } 278 279 static void __dma_free_remap(void *cpu_addr, size_t size) 280 { 281 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP; 282 struct vm_struct *area = find_vm_area(cpu_addr); 283 if (!area || (area->flags & flags) != flags) { 284 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 285 return; 286 } 287 unmap_kernel_range((unsigned long)cpu_addr, size); 288 vunmap(cpu_addr); 289 } 290 291 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 292 293 struct dma_pool { 294 size_t size; 295 spinlock_t lock; 296 unsigned long *bitmap; 297 unsigned long nr_pages; 298 void *vaddr; 299 struct page **pages; 300 }; 301 302 static struct dma_pool atomic_pool = { 303 .size = DEFAULT_DMA_COHERENT_POOL_SIZE, 304 }; 305 306 static int __init early_coherent_pool(char *p) 307 { 308 atomic_pool.size = memparse(p, &p); 309 return 0; 310 } 311 early_param("coherent_pool", early_coherent_pool); 312 313 void __init init_dma_coherent_pool_size(unsigned long size) 314 { 315 /* 316 * Catch any attempt to set the pool size too late. 317 */ 318 BUG_ON(atomic_pool.vaddr); 319 320 /* 321 * Set architecture specific coherent pool size only if 322 * it has not been changed by kernel command line parameter. 323 */ 324 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE) 325 atomic_pool.size = size; 326 } 327 328 /* 329 * Initialise the coherent pool for atomic allocations. 330 */ 331 static int __init atomic_pool_init(void) 332 { 333 struct dma_pool *pool = &atomic_pool; 334 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel); 335 unsigned long nr_pages = pool->size >> PAGE_SHIFT; 336 unsigned long *bitmap; 337 struct page *page; 338 struct page **pages; 339 void *ptr; 340 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long); 341 342 bitmap = kzalloc(bitmap_size, GFP_KERNEL); 343 if (!bitmap) 344 goto no_bitmap; 345 346 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL); 347 if (!pages) 348 goto no_pages; 349 350 if (IS_ENABLED(CONFIG_CMA)) 351 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page); 352 else 353 ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot, 354 &page, NULL); 355 if (ptr) { 356 int i; 357 358 for (i = 0; i < nr_pages; i++) 359 pages[i] = page + i; 360 361 spin_lock_init(&pool->lock); 362 pool->vaddr = ptr; 363 pool->pages = pages; 364 pool->bitmap = bitmap; 365 pool->nr_pages = nr_pages; 366 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n", 367 (unsigned)pool->size / 1024); 368 return 0; 369 } 370 371 kfree(pages); 372 no_pages: 373 kfree(bitmap); 374 no_bitmap: 375 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n", 376 (unsigned)pool->size / 1024); 377 return -ENOMEM; 378 } 379 /* 380 * CMA is activated by core_initcall, so we must be called after it. 381 */ 382 postcore_initcall(atomic_pool_init); 383 384 struct dma_contig_early_reserve { 385 phys_addr_t base; 386 unsigned long size; 387 }; 388 389 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 390 391 static int dma_mmu_remap_num __initdata; 392 393 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 394 { 395 dma_mmu_remap[dma_mmu_remap_num].base = base; 396 dma_mmu_remap[dma_mmu_remap_num].size = size; 397 dma_mmu_remap_num++; 398 } 399 400 void __init dma_contiguous_remap(void) 401 { 402 int i; 403 for (i = 0; i < dma_mmu_remap_num; i++) { 404 phys_addr_t start = dma_mmu_remap[i].base; 405 phys_addr_t end = start + dma_mmu_remap[i].size; 406 struct map_desc map; 407 unsigned long addr; 408 409 if (end > arm_lowmem_limit) 410 end = arm_lowmem_limit; 411 if (start >= end) 412 continue; 413 414 map.pfn = __phys_to_pfn(start); 415 map.virtual = __phys_to_virt(start); 416 map.length = end - start; 417 map.type = MT_MEMORY_DMA_READY; 418 419 /* 420 * Clear previous low-memory mapping 421 */ 422 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 423 addr += PMD_SIZE) 424 pmd_clear(pmd_off_k(addr)); 425 426 iotable_init(&map, 1); 427 } 428 } 429 430 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 431 void *data) 432 { 433 struct page *page = virt_to_page(addr); 434 pgprot_t prot = *(pgprot_t *)data; 435 436 set_pte_ext(pte, mk_pte(page, prot), 0); 437 return 0; 438 } 439 440 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 441 { 442 unsigned long start = (unsigned long) page_address(page); 443 unsigned end = start + size; 444 445 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 446 dsb(); 447 flush_tlb_kernel_range(start, end); 448 } 449 450 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 451 pgprot_t prot, struct page **ret_page, 452 const void *caller) 453 { 454 struct page *page; 455 void *ptr; 456 page = __dma_alloc_buffer(dev, size, gfp); 457 if (!page) 458 return NULL; 459 460 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 461 if (!ptr) { 462 __dma_free_buffer(page, size); 463 return NULL; 464 } 465 466 *ret_page = page; 467 return ptr; 468 } 469 470 static void *__alloc_from_pool(size_t size, struct page **ret_page) 471 { 472 struct dma_pool *pool = &atomic_pool; 473 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 474 unsigned int pageno; 475 unsigned long flags; 476 void *ptr = NULL; 477 unsigned long align_mask; 478 479 if (!pool->vaddr) { 480 WARN(1, "coherent pool not initialised!\n"); 481 return NULL; 482 } 483 484 /* 485 * Align the region allocation - allocations from pool are rather 486 * small, so align them to their order in pages, minimum is a page 487 * size. This helps reduce fragmentation of the DMA space. 488 */ 489 align_mask = (1 << get_order(size)) - 1; 490 491 spin_lock_irqsave(&pool->lock, flags); 492 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages, 493 0, count, align_mask); 494 if (pageno < pool->nr_pages) { 495 bitmap_set(pool->bitmap, pageno, count); 496 ptr = pool->vaddr + PAGE_SIZE * pageno; 497 *ret_page = pool->pages[pageno]; 498 } else { 499 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n" 500 "Please increase it with coherent_pool= kernel parameter!\n", 501 (unsigned)pool->size / 1024); 502 } 503 spin_unlock_irqrestore(&pool->lock, flags); 504 505 return ptr; 506 } 507 508 static bool __in_atomic_pool(void *start, size_t size) 509 { 510 struct dma_pool *pool = &atomic_pool; 511 void *end = start + size; 512 void *pool_start = pool->vaddr; 513 void *pool_end = pool->vaddr + pool->size; 514 515 if (start < pool_start || start >= pool_end) 516 return false; 517 518 if (end <= pool_end) 519 return true; 520 521 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n", 522 start, end - 1, pool_start, pool_end - 1); 523 524 return false; 525 } 526 527 static int __free_from_pool(void *start, size_t size) 528 { 529 struct dma_pool *pool = &atomic_pool; 530 unsigned long pageno, count; 531 unsigned long flags; 532 533 if (!__in_atomic_pool(start, size)) 534 return 0; 535 536 pageno = (start - pool->vaddr) >> PAGE_SHIFT; 537 count = size >> PAGE_SHIFT; 538 539 spin_lock_irqsave(&pool->lock, flags); 540 bitmap_clear(pool->bitmap, pageno, count); 541 spin_unlock_irqrestore(&pool->lock, flags); 542 543 return 1; 544 } 545 546 static void *__alloc_from_contiguous(struct device *dev, size_t size, 547 pgprot_t prot, struct page **ret_page) 548 { 549 unsigned long order = get_order(size); 550 size_t count = size >> PAGE_SHIFT; 551 struct page *page; 552 553 page = dma_alloc_from_contiguous(dev, count, order); 554 if (!page) 555 return NULL; 556 557 __dma_clear_buffer(page, size); 558 __dma_remap(page, size, prot); 559 560 *ret_page = page; 561 return page_address(page); 562 } 563 564 static void __free_from_contiguous(struct device *dev, struct page *page, 565 size_t size) 566 { 567 __dma_remap(page, size, pgprot_kernel); 568 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 569 } 570 571 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot) 572 { 573 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ? 574 pgprot_writecombine(prot) : 575 pgprot_dmacoherent(prot); 576 return prot; 577 } 578 579 #define nommu() 0 580 581 #else /* !CONFIG_MMU */ 582 583 #define nommu() 1 584 585 #define __get_dma_pgprot(attrs, prot) __pgprot(0) 586 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL 587 #define __alloc_from_pool(size, ret_page) NULL 588 #define __alloc_from_contiguous(dev, size, prot, ret) NULL 589 #define __free_from_pool(cpu_addr, size) 0 590 #define __free_from_contiguous(dev, page, size) do { } while (0) 591 #define __dma_free_remap(cpu_addr, size) do { } while (0) 592 593 #endif /* CONFIG_MMU */ 594 595 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 596 struct page **ret_page) 597 { 598 struct page *page; 599 page = __dma_alloc_buffer(dev, size, gfp); 600 if (!page) 601 return NULL; 602 603 *ret_page = page; 604 return page_address(page); 605 } 606 607 608 609 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 610 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller) 611 { 612 u64 mask = get_coherent_dma_mask(dev); 613 struct page *page = NULL; 614 void *addr; 615 616 #ifdef CONFIG_DMA_API_DEBUG 617 u64 limit = (mask + 1) & ~mask; 618 if (limit && size >= limit) { 619 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 620 size, mask); 621 return NULL; 622 } 623 #endif 624 625 if (!mask) 626 return NULL; 627 628 if (mask < 0xffffffffULL) 629 gfp |= GFP_DMA; 630 631 /* 632 * Following is a work-around (a.k.a. hack) to prevent pages 633 * with __GFP_COMP being passed to split_page() which cannot 634 * handle them. The real problem is that this flag probably 635 * should be 0 on ARM as it is not supported on this 636 * platform; see CONFIG_HUGETLBFS. 637 */ 638 gfp &= ~(__GFP_COMP); 639 640 *handle = DMA_ERROR_CODE; 641 size = PAGE_ALIGN(size); 642 643 if (is_coherent || nommu()) 644 addr = __alloc_simple_buffer(dev, size, gfp, &page); 645 else if (gfp & GFP_ATOMIC) 646 addr = __alloc_from_pool(size, &page); 647 else if (!IS_ENABLED(CONFIG_CMA)) 648 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller); 649 else 650 addr = __alloc_from_contiguous(dev, size, prot, &page); 651 652 if (addr) 653 *handle = pfn_to_dma(dev, page_to_pfn(page)); 654 655 return addr; 656 } 657 658 /* 659 * Allocate DMA-coherent memory space and return both the kernel remapped 660 * virtual and bus address for that space. 661 */ 662 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 663 gfp_t gfp, struct dma_attrs *attrs) 664 { 665 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 666 void *memory; 667 668 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 669 return memory; 670 671 return __dma_alloc(dev, size, handle, gfp, prot, false, 672 __builtin_return_address(0)); 673 } 674 675 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 676 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 677 { 678 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 679 void *memory; 680 681 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 682 return memory; 683 684 return __dma_alloc(dev, size, handle, gfp, prot, true, 685 __builtin_return_address(0)); 686 } 687 688 /* 689 * Create userspace mapping for the DMA-coherent memory. 690 */ 691 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 692 void *cpu_addr, dma_addr_t dma_addr, size_t size, 693 struct dma_attrs *attrs) 694 { 695 int ret = -ENXIO; 696 #ifdef CONFIG_MMU 697 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 698 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 699 unsigned long pfn = dma_to_pfn(dev, dma_addr); 700 unsigned long off = vma->vm_pgoff; 701 702 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 703 704 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 705 return ret; 706 707 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 708 ret = remap_pfn_range(vma, vma->vm_start, 709 pfn + off, 710 vma->vm_end - vma->vm_start, 711 vma->vm_page_prot); 712 } 713 #endif /* CONFIG_MMU */ 714 715 return ret; 716 } 717 718 /* 719 * Free a buffer as defined by the above mapping. 720 */ 721 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 722 dma_addr_t handle, struct dma_attrs *attrs, 723 bool is_coherent) 724 { 725 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 726 727 if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) 728 return; 729 730 size = PAGE_ALIGN(size); 731 732 if (is_coherent || nommu()) { 733 __dma_free_buffer(page, size); 734 } else if (__free_from_pool(cpu_addr, size)) { 735 return; 736 } else if (!IS_ENABLED(CONFIG_CMA)) { 737 __dma_free_remap(cpu_addr, size); 738 __dma_free_buffer(page, size); 739 } else { 740 /* 741 * Non-atomic allocations cannot be freed with IRQs disabled 742 */ 743 WARN_ON(irqs_disabled()); 744 __free_from_contiguous(dev, page, size); 745 } 746 } 747 748 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 749 dma_addr_t handle, struct dma_attrs *attrs) 750 { 751 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 752 } 753 754 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 755 dma_addr_t handle, struct dma_attrs *attrs) 756 { 757 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 758 } 759 760 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 761 void *cpu_addr, dma_addr_t handle, size_t size, 762 struct dma_attrs *attrs) 763 { 764 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 765 int ret; 766 767 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 768 if (unlikely(ret)) 769 return ret; 770 771 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 772 return 0; 773 } 774 775 static void dma_cache_maint_page(struct page *page, unsigned long offset, 776 size_t size, enum dma_data_direction dir, 777 void (*op)(const void *, size_t, int)) 778 { 779 /* 780 * A single sg entry may refer to multiple physically contiguous 781 * pages. But we still need to process highmem pages individually. 782 * If highmem is not configured then the bulk of this loop gets 783 * optimized out. 784 */ 785 size_t left = size; 786 do { 787 size_t len = left; 788 void *vaddr; 789 790 if (PageHighMem(page)) { 791 if (len + offset > PAGE_SIZE) { 792 if (offset >= PAGE_SIZE) { 793 page += offset / PAGE_SIZE; 794 offset %= PAGE_SIZE; 795 } 796 len = PAGE_SIZE - offset; 797 } 798 vaddr = kmap_high_get(page); 799 if (vaddr) { 800 vaddr += offset; 801 op(vaddr, len, dir); 802 kunmap_high(page); 803 } else if (cache_is_vipt()) { 804 /* unmapped pages might still be cached */ 805 vaddr = kmap_atomic(page); 806 op(vaddr + offset, len, dir); 807 kunmap_atomic(vaddr); 808 } 809 } else { 810 vaddr = page_address(page) + offset; 811 op(vaddr, len, dir); 812 } 813 offset = 0; 814 page++; 815 left -= len; 816 } while (left); 817 } 818 819 /* 820 * Make an area consistent for devices. 821 * Note: Drivers should NOT use this function directly, as it will break 822 * platforms with CONFIG_DMABOUNCE. 823 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 824 */ 825 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 826 size_t size, enum dma_data_direction dir) 827 { 828 unsigned long paddr; 829 830 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 831 832 paddr = page_to_phys(page) + off; 833 if (dir == DMA_FROM_DEVICE) { 834 outer_inv_range(paddr, paddr + size); 835 } else { 836 outer_clean_range(paddr, paddr + size); 837 } 838 /* FIXME: non-speculating: flush on bidirectional mappings? */ 839 } 840 841 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 842 size_t size, enum dma_data_direction dir) 843 { 844 unsigned long paddr = page_to_phys(page) + off; 845 846 /* FIXME: non-speculating: not required */ 847 /* don't bother invalidating if DMA to device */ 848 if (dir != DMA_TO_DEVICE) 849 outer_inv_range(paddr, paddr + size); 850 851 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 852 853 /* 854 * Mark the D-cache clean for this page to avoid extra flushing. 855 */ 856 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE) 857 set_bit(PG_dcache_clean, &page->flags); 858 } 859 860 /** 861 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 862 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 863 * @sg: list of buffers 864 * @nents: number of buffers to map 865 * @dir: DMA transfer direction 866 * 867 * Map a set of buffers described by scatterlist in streaming mode for DMA. 868 * This is the scatter-gather version of the dma_map_single interface. 869 * Here the scatter gather list elements are each tagged with the 870 * appropriate dma address and length. They are obtained via 871 * sg_dma_{address,length}. 872 * 873 * Device ownership issues as mentioned for dma_map_single are the same 874 * here. 875 */ 876 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 877 enum dma_data_direction dir, struct dma_attrs *attrs) 878 { 879 struct dma_map_ops *ops = get_dma_ops(dev); 880 struct scatterlist *s; 881 int i, j; 882 883 for_each_sg(sg, s, nents, i) { 884 #ifdef CONFIG_NEED_SG_DMA_LENGTH 885 s->dma_length = s->length; 886 #endif 887 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 888 s->length, dir, attrs); 889 if (dma_mapping_error(dev, s->dma_address)) 890 goto bad_mapping; 891 } 892 return nents; 893 894 bad_mapping: 895 for_each_sg(sg, s, i, j) 896 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 897 return 0; 898 } 899 900 /** 901 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 902 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 903 * @sg: list of buffers 904 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 905 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 906 * 907 * Unmap a set of streaming mode DMA translations. Again, CPU access 908 * rules concerning calls here are the same as for dma_unmap_single(). 909 */ 910 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 911 enum dma_data_direction dir, struct dma_attrs *attrs) 912 { 913 struct dma_map_ops *ops = get_dma_ops(dev); 914 struct scatterlist *s; 915 916 int i; 917 918 for_each_sg(sg, s, nents, i) 919 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 920 } 921 922 /** 923 * arm_dma_sync_sg_for_cpu 924 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 925 * @sg: list of buffers 926 * @nents: number of buffers to map (returned from dma_map_sg) 927 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 928 */ 929 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 930 int nents, enum dma_data_direction dir) 931 { 932 struct dma_map_ops *ops = get_dma_ops(dev); 933 struct scatterlist *s; 934 int i; 935 936 for_each_sg(sg, s, nents, i) 937 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 938 dir); 939 } 940 941 /** 942 * arm_dma_sync_sg_for_device 943 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 944 * @sg: list of buffers 945 * @nents: number of buffers to map (returned from dma_map_sg) 946 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 947 */ 948 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 949 int nents, enum dma_data_direction dir) 950 { 951 struct dma_map_ops *ops = get_dma_ops(dev); 952 struct scatterlist *s; 953 int i; 954 955 for_each_sg(sg, s, nents, i) 956 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 957 dir); 958 } 959 960 /* 961 * Return whether the given device DMA address mask can be supported 962 * properly. For example, if your device can only drive the low 24-bits 963 * during bus mastering, then you would pass 0x00ffffff as the mask 964 * to this function. 965 */ 966 int dma_supported(struct device *dev, u64 mask) 967 { 968 if (mask < (u64)arm_dma_limit) 969 return 0; 970 return 1; 971 } 972 EXPORT_SYMBOL(dma_supported); 973 974 static int arm_dma_set_mask(struct device *dev, u64 dma_mask) 975 { 976 if (!dev->dma_mask || !dma_supported(dev, dma_mask)) 977 return -EIO; 978 979 *dev->dma_mask = dma_mask; 980 981 return 0; 982 } 983 984 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 985 986 static int __init dma_debug_do_init(void) 987 { 988 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 989 return 0; 990 } 991 fs_initcall(dma_debug_do_init); 992 993 #ifdef CONFIG_ARM_DMA_USE_IOMMU 994 995 /* IOMMU */ 996 997 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 998 size_t size) 999 { 1000 unsigned int order = get_order(size); 1001 unsigned int align = 0; 1002 unsigned int count, start; 1003 unsigned long flags; 1004 1005 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) + 1006 (1 << mapping->order) - 1) >> mapping->order; 1007 1008 if (order > mapping->order) 1009 align = (1 << (order - mapping->order)) - 1; 1010 1011 spin_lock_irqsave(&mapping->lock, flags); 1012 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0, 1013 count, align); 1014 if (start > mapping->bits) { 1015 spin_unlock_irqrestore(&mapping->lock, flags); 1016 return DMA_ERROR_CODE; 1017 } 1018 1019 bitmap_set(mapping->bitmap, start, count); 1020 spin_unlock_irqrestore(&mapping->lock, flags); 1021 1022 return mapping->base + (start << (mapping->order + PAGE_SHIFT)); 1023 } 1024 1025 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1026 dma_addr_t addr, size_t size) 1027 { 1028 unsigned int start = (addr - mapping->base) >> 1029 (mapping->order + PAGE_SHIFT); 1030 unsigned int count = ((size >> PAGE_SHIFT) + 1031 (1 << mapping->order) - 1) >> mapping->order; 1032 unsigned long flags; 1033 1034 spin_lock_irqsave(&mapping->lock, flags); 1035 bitmap_clear(mapping->bitmap, start, count); 1036 spin_unlock_irqrestore(&mapping->lock, flags); 1037 } 1038 1039 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) 1040 { 1041 struct page **pages; 1042 int count = size >> PAGE_SHIFT; 1043 int array_size = count * sizeof(struct page *); 1044 int i = 0; 1045 1046 if (array_size <= PAGE_SIZE) 1047 pages = kzalloc(array_size, gfp); 1048 else 1049 pages = vzalloc(array_size); 1050 if (!pages) 1051 return NULL; 1052 1053 while (count) { 1054 int j, order = __fls(count); 1055 1056 pages[i] = alloc_pages(gfp | __GFP_NOWARN, order); 1057 while (!pages[i] && order) 1058 pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order); 1059 if (!pages[i]) 1060 goto error; 1061 1062 if (order) { 1063 split_page(pages[i], order); 1064 j = 1 << order; 1065 while (--j) 1066 pages[i + j] = pages[i] + j; 1067 } 1068 1069 __dma_clear_buffer(pages[i], PAGE_SIZE << order); 1070 i += 1 << order; 1071 count -= 1 << order; 1072 } 1073 1074 return pages; 1075 error: 1076 while (i--) 1077 if (pages[i]) 1078 __free_pages(pages[i], 0); 1079 if (array_size <= PAGE_SIZE) 1080 kfree(pages); 1081 else 1082 vfree(pages); 1083 return NULL; 1084 } 1085 1086 static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size) 1087 { 1088 int count = size >> PAGE_SHIFT; 1089 int array_size = count * sizeof(struct page *); 1090 int i; 1091 for (i = 0; i < count; i++) 1092 if (pages[i]) 1093 __free_pages(pages[i], 0); 1094 if (array_size <= PAGE_SIZE) 1095 kfree(pages); 1096 else 1097 vfree(pages); 1098 return 0; 1099 } 1100 1101 /* 1102 * Create a CPU mapping for a specified pages 1103 */ 1104 static void * 1105 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1106 const void *caller) 1107 { 1108 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1109 struct vm_struct *area; 1110 unsigned long p; 1111 1112 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP, 1113 caller); 1114 if (!area) 1115 return NULL; 1116 1117 area->pages = pages; 1118 area->nr_pages = nr_pages; 1119 p = (unsigned long)area->addr; 1120 1121 for (i = 0; i < nr_pages; i++) { 1122 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i])); 1123 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot)) 1124 goto err; 1125 p += PAGE_SIZE; 1126 } 1127 return area->addr; 1128 err: 1129 unmap_kernel_range((unsigned long)area->addr, size); 1130 vunmap(area->addr); 1131 return NULL; 1132 } 1133 1134 /* 1135 * Create a mapping in device IO address space for specified pages 1136 */ 1137 static dma_addr_t 1138 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size) 1139 { 1140 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1141 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1142 dma_addr_t dma_addr, iova; 1143 int i, ret = DMA_ERROR_CODE; 1144 1145 dma_addr = __alloc_iova(mapping, size); 1146 if (dma_addr == DMA_ERROR_CODE) 1147 return dma_addr; 1148 1149 iova = dma_addr; 1150 for (i = 0; i < count; ) { 1151 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1152 phys_addr_t phys = page_to_phys(pages[i]); 1153 unsigned int len, j; 1154 1155 for (j = i + 1; j < count; j++, next_pfn++) 1156 if (page_to_pfn(pages[j]) != next_pfn) 1157 break; 1158 1159 len = (j - i) << PAGE_SHIFT; 1160 ret = iommu_map(mapping->domain, iova, phys, len, 0); 1161 if (ret < 0) 1162 goto fail; 1163 iova += len; 1164 i = j; 1165 } 1166 return dma_addr; 1167 fail: 1168 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1169 __free_iova(mapping, dma_addr, size); 1170 return DMA_ERROR_CODE; 1171 } 1172 1173 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1174 { 1175 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1176 1177 /* 1178 * add optional in-page offset from iova to size and align 1179 * result to page size 1180 */ 1181 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1182 iova &= PAGE_MASK; 1183 1184 iommu_unmap(mapping->domain, iova, size); 1185 __free_iova(mapping, iova, size); 1186 return 0; 1187 } 1188 1189 static struct page **__atomic_get_pages(void *addr) 1190 { 1191 struct dma_pool *pool = &atomic_pool; 1192 struct page **pages = pool->pages; 1193 int offs = (addr - pool->vaddr) >> PAGE_SHIFT; 1194 1195 return pages + offs; 1196 } 1197 1198 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs) 1199 { 1200 struct vm_struct *area; 1201 1202 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1203 return __atomic_get_pages(cpu_addr); 1204 1205 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1206 return cpu_addr; 1207 1208 area = find_vm_area(cpu_addr); 1209 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1210 return area->pages; 1211 return NULL; 1212 } 1213 1214 static void *__iommu_alloc_atomic(struct device *dev, size_t size, 1215 dma_addr_t *handle) 1216 { 1217 struct page *page; 1218 void *addr; 1219 1220 addr = __alloc_from_pool(size, &page); 1221 if (!addr) 1222 return NULL; 1223 1224 *handle = __iommu_create_mapping(dev, &page, size); 1225 if (*handle == DMA_ERROR_CODE) 1226 goto err_mapping; 1227 1228 return addr; 1229 1230 err_mapping: 1231 __free_from_pool(addr, size); 1232 return NULL; 1233 } 1234 1235 static void __iommu_free_atomic(struct device *dev, struct page **pages, 1236 dma_addr_t handle, size_t size) 1237 { 1238 __iommu_remove_mapping(dev, handle, size); 1239 __free_from_pool(page_address(pages[0]), size); 1240 } 1241 1242 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1243 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 1244 { 1245 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 1246 struct page **pages; 1247 void *addr = NULL; 1248 1249 *handle = DMA_ERROR_CODE; 1250 size = PAGE_ALIGN(size); 1251 1252 if (gfp & GFP_ATOMIC) 1253 return __iommu_alloc_atomic(dev, size, handle); 1254 1255 pages = __iommu_alloc_buffer(dev, size, gfp); 1256 if (!pages) 1257 return NULL; 1258 1259 *handle = __iommu_create_mapping(dev, pages, size); 1260 if (*handle == DMA_ERROR_CODE) 1261 goto err_buffer; 1262 1263 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1264 return pages; 1265 1266 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1267 __builtin_return_address(0)); 1268 if (!addr) 1269 goto err_mapping; 1270 1271 return addr; 1272 1273 err_mapping: 1274 __iommu_remove_mapping(dev, *handle, size); 1275 err_buffer: 1276 __iommu_free_buffer(dev, pages, size); 1277 return NULL; 1278 } 1279 1280 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1281 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1282 struct dma_attrs *attrs) 1283 { 1284 unsigned long uaddr = vma->vm_start; 1285 unsigned long usize = vma->vm_end - vma->vm_start; 1286 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1287 1288 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1289 1290 if (!pages) 1291 return -ENXIO; 1292 1293 do { 1294 int ret = vm_insert_page(vma, uaddr, *pages++); 1295 if (ret) { 1296 pr_err("Remapping memory failed: %d\n", ret); 1297 return ret; 1298 } 1299 uaddr += PAGE_SIZE; 1300 usize -= PAGE_SIZE; 1301 } while (usize > 0); 1302 1303 return 0; 1304 } 1305 1306 /* 1307 * free a page as defined by the above mapping. 1308 * Must not be called with IRQs disabled. 1309 */ 1310 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1311 dma_addr_t handle, struct dma_attrs *attrs) 1312 { 1313 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1314 size = PAGE_ALIGN(size); 1315 1316 if (!pages) { 1317 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1318 return; 1319 } 1320 1321 if (__in_atomic_pool(cpu_addr, size)) { 1322 __iommu_free_atomic(dev, pages, handle, size); 1323 return; 1324 } 1325 1326 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) { 1327 unmap_kernel_range((unsigned long)cpu_addr, size); 1328 vunmap(cpu_addr); 1329 } 1330 1331 __iommu_remove_mapping(dev, handle, size); 1332 __iommu_free_buffer(dev, pages, size); 1333 } 1334 1335 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1336 void *cpu_addr, dma_addr_t dma_addr, 1337 size_t size, struct dma_attrs *attrs) 1338 { 1339 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1340 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1341 1342 if (!pages) 1343 return -ENXIO; 1344 1345 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1346 GFP_KERNEL); 1347 } 1348 1349 /* 1350 * Map a part of the scatter-gather list into contiguous io address space 1351 */ 1352 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1353 size_t size, dma_addr_t *handle, 1354 enum dma_data_direction dir, struct dma_attrs *attrs, 1355 bool is_coherent) 1356 { 1357 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1358 dma_addr_t iova, iova_base; 1359 int ret = 0; 1360 unsigned int count; 1361 struct scatterlist *s; 1362 1363 size = PAGE_ALIGN(size); 1364 *handle = DMA_ERROR_CODE; 1365 1366 iova_base = iova = __alloc_iova(mapping, size); 1367 if (iova == DMA_ERROR_CODE) 1368 return -ENOMEM; 1369 1370 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1371 phys_addr_t phys = page_to_phys(sg_page(s)); 1372 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1373 1374 if (!is_coherent && 1375 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1376 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1377 1378 ret = iommu_map(mapping->domain, iova, phys, len, 0); 1379 if (ret < 0) 1380 goto fail; 1381 count += len >> PAGE_SHIFT; 1382 iova += len; 1383 } 1384 *handle = iova_base; 1385 1386 return 0; 1387 fail: 1388 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1389 __free_iova(mapping, iova_base, size); 1390 return ret; 1391 } 1392 1393 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1394 enum dma_data_direction dir, struct dma_attrs *attrs, 1395 bool is_coherent) 1396 { 1397 struct scatterlist *s = sg, *dma = sg, *start = sg; 1398 int i, count = 0; 1399 unsigned int offset = s->offset; 1400 unsigned int size = s->offset + s->length; 1401 unsigned int max = dma_get_max_seg_size(dev); 1402 1403 for (i = 1; i < nents; i++) { 1404 s = sg_next(s); 1405 1406 s->dma_address = DMA_ERROR_CODE; 1407 s->dma_length = 0; 1408 1409 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1410 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1411 dir, attrs, is_coherent) < 0) 1412 goto bad_mapping; 1413 1414 dma->dma_address += offset; 1415 dma->dma_length = size - offset; 1416 1417 size = offset = s->offset; 1418 start = s; 1419 dma = sg_next(dma); 1420 count += 1; 1421 } 1422 size += s->length; 1423 } 1424 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1425 is_coherent) < 0) 1426 goto bad_mapping; 1427 1428 dma->dma_address += offset; 1429 dma->dma_length = size - offset; 1430 1431 return count+1; 1432 1433 bad_mapping: 1434 for_each_sg(sg, s, count, i) 1435 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1436 return 0; 1437 } 1438 1439 /** 1440 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1441 * @dev: valid struct device pointer 1442 * @sg: list of buffers 1443 * @nents: number of buffers to map 1444 * @dir: DMA transfer direction 1445 * 1446 * Map a set of i/o coherent buffers described by scatterlist in streaming 1447 * mode for DMA. The scatter gather list elements are merged together (if 1448 * possible) and tagged with the appropriate dma address and length. They are 1449 * obtained via sg_dma_{address,length}. 1450 */ 1451 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1452 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1453 { 1454 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1455 } 1456 1457 /** 1458 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1459 * @dev: valid struct device pointer 1460 * @sg: list of buffers 1461 * @nents: number of buffers to map 1462 * @dir: DMA transfer direction 1463 * 1464 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1465 * The scatter gather list elements are merged together (if possible) and 1466 * tagged with the appropriate dma address and length. They are obtained via 1467 * sg_dma_{address,length}. 1468 */ 1469 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1470 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1471 { 1472 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1473 } 1474 1475 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1476 int nents, enum dma_data_direction dir, struct dma_attrs *attrs, 1477 bool is_coherent) 1478 { 1479 struct scatterlist *s; 1480 int i; 1481 1482 for_each_sg(sg, s, nents, i) { 1483 if (sg_dma_len(s)) 1484 __iommu_remove_mapping(dev, sg_dma_address(s), 1485 sg_dma_len(s)); 1486 if (!is_coherent && 1487 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1488 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1489 s->length, dir); 1490 } 1491 } 1492 1493 /** 1494 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1495 * @dev: valid struct device pointer 1496 * @sg: list of buffers 1497 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1498 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1499 * 1500 * Unmap a set of streaming mode DMA translations. Again, CPU access 1501 * rules concerning calls here are the same as for dma_unmap_single(). 1502 */ 1503 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1504 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1505 { 1506 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1507 } 1508 1509 /** 1510 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1511 * @dev: valid struct device pointer 1512 * @sg: list of buffers 1513 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1514 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1515 * 1516 * Unmap a set of streaming mode DMA translations. Again, CPU access 1517 * rules concerning calls here are the same as for dma_unmap_single(). 1518 */ 1519 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1520 enum dma_data_direction dir, struct dma_attrs *attrs) 1521 { 1522 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1523 } 1524 1525 /** 1526 * arm_iommu_sync_sg_for_cpu 1527 * @dev: valid struct device pointer 1528 * @sg: list of buffers 1529 * @nents: number of buffers to map (returned from dma_map_sg) 1530 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1531 */ 1532 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1533 int nents, enum dma_data_direction dir) 1534 { 1535 struct scatterlist *s; 1536 int i; 1537 1538 for_each_sg(sg, s, nents, i) 1539 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1540 1541 } 1542 1543 /** 1544 * arm_iommu_sync_sg_for_device 1545 * @dev: valid struct device pointer 1546 * @sg: list of buffers 1547 * @nents: number of buffers to map (returned from dma_map_sg) 1548 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1549 */ 1550 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1551 int nents, enum dma_data_direction dir) 1552 { 1553 struct scatterlist *s; 1554 int i; 1555 1556 for_each_sg(sg, s, nents, i) 1557 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1558 } 1559 1560 1561 /** 1562 * arm_coherent_iommu_map_page 1563 * @dev: valid struct device pointer 1564 * @page: page that buffer resides in 1565 * @offset: offset into page for start of buffer 1566 * @size: size of buffer to map 1567 * @dir: DMA transfer direction 1568 * 1569 * Coherent IOMMU aware version of arm_dma_map_page() 1570 */ 1571 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1572 unsigned long offset, size_t size, enum dma_data_direction dir, 1573 struct dma_attrs *attrs) 1574 { 1575 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1576 dma_addr_t dma_addr; 1577 int ret, len = PAGE_ALIGN(size + offset); 1578 1579 dma_addr = __alloc_iova(mapping, len); 1580 if (dma_addr == DMA_ERROR_CODE) 1581 return dma_addr; 1582 1583 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0); 1584 if (ret < 0) 1585 goto fail; 1586 1587 return dma_addr + offset; 1588 fail: 1589 __free_iova(mapping, dma_addr, len); 1590 return DMA_ERROR_CODE; 1591 } 1592 1593 /** 1594 * arm_iommu_map_page 1595 * @dev: valid struct device pointer 1596 * @page: page that buffer resides in 1597 * @offset: offset into page for start of buffer 1598 * @size: size of buffer to map 1599 * @dir: DMA transfer direction 1600 * 1601 * IOMMU aware version of arm_dma_map_page() 1602 */ 1603 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1604 unsigned long offset, size_t size, enum dma_data_direction dir, 1605 struct dma_attrs *attrs) 1606 { 1607 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1608 __dma_page_cpu_to_dev(page, offset, size, dir); 1609 1610 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1611 } 1612 1613 /** 1614 * arm_coherent_iommu_unmap_page 1615 * @dev: valid struct device pointer 1616 * @handle: DMA address of buffer 1617 * @size: size of buffer (same as passed to dma_map_page) 1618 * @dir: DMA transfer direction (same as passed to dma_map_page) 1619 * 1620 * Coherent IOMMU aware version of arm_dma_unmap_page() 1621 */ 1622 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1623 size_t size, enum dma_data_direction dir, 1624 struct dma_attrs *attrs) 1625 { 1626 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1627 dma_addr_t iova = handle & PAGE_MASK; 1628 int offset = handle & ~PAGE_MASK; 1629 int len = PAGE_ALIGN(size + offset); 1630 1631 if (!iova) 1632 return; 1633 1634 iommu_unmap(mapping->domain, iova, len); 1635 __free_iova(mapping, iova, len); 1636 } 1637 1638 /** 1639 * arm_iommu_unmap_page 1640 * @dev: valid struct device pointer 1641 * @handle: DMA address of buffer 1642 * @size: size of buffer (same as passed to dma_map_page) 1643 * @dir: DMA transfer direction (same as passed to dma_map_page) 1644 * 1645 * IOMMU aware version of arm_dma_unmap_page() 1646 */ 1647 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1648 size_t size, enum dma_data_direction dir, 1649 struct dma_attrs *attrs) 1650 { 1651 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1652 dma_addr_t iova = handle & PAGE_MASK; 1653 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1654 int offset = handle & ~PAGE_MASK; 1655 int len = PAGE_ALIGN(size + offset); 1656 1657 if (!iova) 1658 return; 1659 1660 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1661 __dma_page_dev_to_cpu(page, offset, size, dir); 1662 1663 iommu_unmap(mapping->domain, iova, len); 1664 __free_iova(mapping, iova, len); 1665 } 1666 1667 static void arm_iommu_sync_single_for_cpu(struct device *dev, 1668 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1669 { 1670 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1671 dma_addr_t iova = handle & PAGE_MASK; 1672 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1673 unsigned int offset = handle & ~PAGE_MASK; 1674 1675 if (!iova) 1676 return; 1677 1678 __dma_page_dev_to_cpu(page, offset, size, dir); 1679 } 1680 1681 static void arm_iommu_sync_single_for_device(struct device *dev, 1682 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1683 { 1684 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1685 dma_addr_t iova = handle & PAGE_MASK; 1686 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1687 unsigned int offset = handle & ~PAGE_MASK; 1688 1689 if (!iova) 1690 return; 1691 1692 __dma_page_cpu_to_dev(page, offset, size, dir); 1693 } 1694 1695 struct dma_map_ops iommu_ops = { 1696 .alloc = arm_iommu_alloc_attrs, 1697 .free = arm_iommu_free_attrs, 1698 .mmap = arm_iommu_mmap_attrs, 1699 .get_sgtable = arm_iommu_get_sgtable, 1700 1701 .map_page = arm_iommu_map_page, 1702 .unmap_page = arm_iommu_unmap_page, 1703 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 1704 .sync_single_for_device = arm_iommu_sync_single_for_device, 1705 1706 .map_sg = arm_iommu_map_sg, 1707 .unmap_sg = arm_iommu_unmap_sg, 1708 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 1709 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 1710 }; 1711 1712 struct dma_map_ops iommu_coherent_ops = { 1713 .alloc = arm_iommu_alloc_attrs, 1714 .free = arm_iommu_free_attrs, 1715 .mmap = arm_iommu_mmap_attrs, 1716 .get_sgtable = arm_iommu_get_sgtable, 1717 1718 .map_page = arm_coherent_iommu_map_page, 1719 .unmap_page = arm_coherent_iommu_unmap_page, 1720 1721 .map_sg = arm_coherent_iommu_map_sg, 1722 .unmap_sg = arm_coherent_iommu_unmap_sg, 1723 }; 1724 1725 /** 1726 * arm_iommu_create_mapping 1727 * @bus: pointer to the bus holding the client device (for IOMMU calls) 1728 * @base: start address of the valid IO address space 1729 * @size: size of the valid IO address space 1730 * @order: accuracy of the IO addresses allocations 1731 * 1732 * Creates a mapping structure which holds information about used/unused 1733 * IO address ranges, which is required to perform memory allocation and 1734 * mapping with IOMMU aware functions. 1735 * 1736 * The client device need to be attached to the mapping with 1737 * arm_iommu_attach_device function. 1738 */ 1739 struct dma_iommu_mapping * 1740 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size, 1741 int order) 1742 { 1743 unsigned int count = size >> (PAGE_SHIFT + order); 1744 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long); 1745 struct dma_iommu_mapping *mapping; 1746 int err = -ENOMEM; 1747 1748 if (!count) 1749 return ERR_PTR(-EINVAL); 1750 1751 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 1752 if (!mapping) 1753 goto err; 1754 1755 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1756 if (!mapping->bitmap) 1757 goto err2; 1758 1759 mapping->base = base; 1760 mapping->bits = BITS_PER_BYTE * bitmap_size; 1761 mapping->order = order; 1762 spin_lock_init(&mapping->lock); 1763 1764 mapping->domain = iommu_domain_alloc(bus); 1765 if (!mapping->domain) 1766 goto err3; 1767 1768 kref_init(&mapping->kref); 1769 return mapping; 1770 err3: 1771 kfree(mapping->bitmap); 1772 err2: 1773 kfree(mapping); 1774 err: 1775 return ERR_PTR(err); 1776 } 1777 1778 static void release_iommu_mapping(struct kref *kref) 1779 { 1780 struct dma_iommu_mapping *mapping = 1781 container_of(kref, struct dma_iommu_mapping, kref); 1782 1783 iommu_domain_free(mapping->domain); 1784 kfree(mapping->bitmap); 1785 kfree(mapping); 1786 } 1787 1788 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 1789 { 1790 if (mapping) 1791 kref_put(&mapping->kref, release_iommu_mapping); 1792 } 1793 1794 /** 1795 * arm_iommu_attach_device 1796 * @dev: valid struct device pointer 1797 * @mapping: io address space mapping structure (returned from 1798 * arm_iommu_create_mapping) 1799 * 1800 * Attaches specified io address space mapping to the provided device, 1801 * this replaces the dma operations (dma_map_ops pointer) with the 1802 * IOMMU aware version. More than one client might be attached to 1803 * the same io address space mapping. 1804 */ 1805 int arm_iommu_attach_device(struct device *dev, 1806 struct dma_iommu_mapping *mapping) 1807 { 1808 int err; 1809 1810 err = iommu_attach_device(mapping->domain, dev); 1811 if (err) 1812 return err; 1813 1814 kref_get(&mapping->kref); 1815 dev->archdata.mapping = mapping; 1816 set_dma_ops(dev, &iommu_ops); 1817 1818 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 1819 return 0; 1820 } 1821 1822 #endif 1823