xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/genalloc.h>
15 #include <linux/gfp.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dma-contiguous.h>
22 #include <linux/highmem.h>
23 #include <linux/memblock.h>
24 #include <linux/slab.h>
25 #include <linux/iommu.h>
26 #include <linux/io.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sizes.h>
29 #include <linux/cma.h>
30 
31 #include <asm/memory.h>
32 #include <asm/highmem.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mach/arch.h>
36 #include <asm/dma-iommu.h>
37 #include <asm/mach/map.h>
38 #include <asm/system_info.h>
39 #include <asm/dma-contiguous.h>
40 
41 #include "dma.h"
42 #include "mm.h"
43 
44 struct arm_dma_alloc_args {
45 	struct device *dev;
46 	size_t size;
47 	gfp_t gfp;
48 	pgprot_t prot;
49 	const void *caller;
50 	bool want_vaddr;
51 	int coherent_flag;
52 };
53 
54 struct arm_dma_free_args {
55 	struct device *dev;
56 	size_t size;
57 	void *cpu_addr;
58 	struct page *page;
59 	bool want_vaddr;
60 };
61 
62 #define NORMAL	    0
63 #define COHERENT    1
64 
65 struct arm_dma_allocator {
66 	void *(*alloc)(struct arm_dma_alloc_args *args,
67 		       struct page **ret_page);
68 	void (*free)(struct arm_dma_free_args *args);
69 };
70 
71 struct arm_dma_buffer {
72 	struct list_head list;
73 	void *virt;
74 	struct arm_dma_allocator *allocator;
75 };
76 
77 static LIST_HEAD(arm_dma_bufs);
78 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
79 
80 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
81 {
82 	struct arm_dma_buffer *buf, *found = NULL;
83 	unsigned long flags;
84 
85 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
86 	list_for_each_entry(buf, &arm_dma_bufs, list) {
87 		if (buf->virt == virt) {
88 			list_del(&buf->list);
89 			found = buf;
90 			break;
91 		}
92 	}
93 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
94 	return found;
95 }
96 
97 /*
98  * The DMA API is built upon the notion of "buffer ownership".  A buffer
99  * is either exclusively owned by the CPU (and therefore may be accessed
100  * by it) or exclusively owned by the DMA device.  These helper functions
101  * represent the transitions between these two ownership states.
102  *
103  * Note, however, that on later ARMs, this notion does not work due to
104  * speculative prefetches.  We model our approach on the assumption that
105  * the CPU does do speculative prefetches, which means we clean caches
106  * before transfers and delay cache invalidation until transfer completion.
107  *
108  */
109 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
110 		size_t, enum dma_data_direction);
111 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
112 		size_t, enum dma_data_direction);
113 
114 /**
115  * arm_dma_map_page - map a portion of a page for streaming DMA
116  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
117  * @page: page that buffer resides in
118  * @offset: offset into page for start of buffer
119  * @size: size of buffer to map
120  * @dir: DMA transfer direction
121  *
122  * Ensure that any data held in the cache is appropriately discarded
123  * or written back.
124  *
125  * The device owns this memory once this call has completed.  The CPU
126  * can regain ownership by calling dma_unmap_page().
127  */
128 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
129 	     unsigned long offset, size_t size, enum dma_data_direction dir,
130 	     unsigned long attrs)
131 {
132 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
133 		__dma_page_cpu_to_dev(page, offset, size, dir);
134 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
135 }
136 
137 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
138 	     unsigned long offset, size_t size, enum dma_data_direction dir,
139 	     unsigned long attrs)
140 {
141 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
142 }
143 
144 /**
145  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
146  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
147  * @handle: DMA address of buffer
148  * @size: size of buffer (same as passed to dma_map_page)
149  * @dir: DMA transfer direction (same as passed to dma_map_page)
150  *
151  * Unmap a page streaming mode DMA translation.  The handle and size
152  * must match what was provided in the previous dma_map_page() call.
153  * All other usages are undefined.
154  *
155  * After this call, reads by the CPU to the buffer are guaranteed to see
156  * whatever the device wrote there.
157  */
158 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
159 		size_t size, enum dma_data_direction dir, unsigned long attrs)
160 {
161 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
162 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
163 				      handle & ~PAGE_MASK, size, dir);
164 }
165 
166 static void arm_dma_sync_single_for_cpu(struct device *dev,
167 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
168 {
169 	unsigned int offset = handle & (PAGE_SIZE - 1);
170 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
171 	__dma_page_dev_to_cpu(page, offset, size, dir);
172 }
173 
174 static void arm_dma_sync_single_for_device(struct device *dev,
175 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
176 {
177 	unsigned int offset = handle & (PAGE_SIZE - 1);
178 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
179 	__dma_page_cpu_to_dev(page, offset, size, dir);
180 }
181 
182 const struct dma_map_ops arm_dma_ops = {
183 	.alloc			= arm_dma_alloc,
184 	.free			= arm_dma_free,
185 	.mmap			= arm_dma_mmap,
186 	.get_sgtable		= arm_dma_get_sgtable,
187 	.map_page		= arm_dma_map_page,
188 	.unmap_page		= arm_dma_unmap_page,
189 	.map_sg			= arm_dma_map_sg,
190 	.unmap_sg		= arm_dma_unmap_sg,
191 	.map_resource		= dma_direct_map_resource,
192 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
193 	.sync_single_for_device	= arm_dma_sync_single_for_device,
194 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
195 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
196 	.dma_supported		= arm_dma_supported,
197 };
198 EXPORT_SYMBOL(arm_dma_ops);
199 
200 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
201 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
202 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
203 				  dma_addr_t handle, unsigned long attrs);
204 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
205 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
206 		 unsigned long attrs);
207 
208 const struct dma_map_ops arm_coherent_dma_ops = {
209 	.alloc			= arm_coherent_dma_alloc,
210 	.free			= arm_coherent_dma_free,
211 	.mmap			= arm_coherent_dma_mmap,
212 	.get_sgtable		= arm_dma_get_sgtable,
213 	.map_page		= arm_coherent_dma_map_page,
214 	.map_sg			= arm_dma_map_sg,
215 	.map_resource		= dma_direct_map_resource,
216 	.dma_supported		= arm_dma_supported,
217 };
218 EXPORT_SYMBOL(arm_coherent_dma_ops);
219 
220 static int __dma_supported(struct device *dev, u64 mask, bool warn)
221 {
222 	unsigned long max_dma_pfn;
223 
224 	/*
225 	 * If the mask allows for more memory than we can address,
226 	 * and we actually have that much memory, then we must
227 	 * indicate that DMA to this device is not supported.
228 	 */
229 	if (sizeof(mask) != sizeof(dma_addr_t) &&
230 	    mask > (dma_addr_t)~0 &&
231 	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
232 		if (warn) {
233 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
234 				 mask);
235 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
236 		}
237 		return 0;
238 	}
239 
240 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
241 
242 	/*
243 	 * Translate the device's DMA mask to a PFN limit.  This
244 	 * PFN number includes the page which we can DMA to.
245 	 */
246 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
247 		if (warn)
248 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
249 				 mask,
250 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
251 				 max_dma_pfn + 1);
252 		return 0;
253 	}
254 
255 	return 1;
256 }
257 
258 static u64 get_coherent_dma_mask(struct device *dev)
259 {
260 	u64 mask = (u64)DMA_BIT_MASK(32);
261 
262 	if (dev) {
263 		mask = dev->coherent_dma_mask;
264 
265 		/*
266 		 * Sanity check the DMA mask - it must be non-zero, and
267 		 * must be able to be satisfied by a DMA allocation.
268 		 */
269 		if (mask == 0) {
270 			dev_warn(dev, "coherent DMA mask is unset\n");
271 			return 0;
272 		}
273 
274 		if (!__dma_supported(dev, mask, true))
275 			return 0;
276 	}
277 
278 	return mask;
279 }
280 
281 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
282 {
283 	/*
284 	 * Ensure that the allocated pages are zeroed, and that any data
285 	 * lurking in the kernel direct-mapped region is invalidated.
286 	 */
287 	if (PageHighMem(page)) {
288 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
289 		phys_addr_t end = base + size;
290 		while (size > 0) {
291 			void *ptr = kmap_atomic(page);
292 			memset(ptr, 0, PAGE_SIZE);
293 			if (coherent_flag != COHERENT)
294 				dmac_flush_range(ptr, ptr + PAGE_SIZE);
295 			kunmap_atomic(ptr);
296 			page++;
297 			size -= PAGE_SIZE;
298 		}
299 		if (coherent_flag != COHERENT)
300 			outer_flush_range(base, end);
301 	} else {
302 		void *ptr = page_address(page);
303 		memset(ptr, 0, size);
304 		if (coherent_flag != COHERENT) {
305 			dmac_flush_range(ptr, ptr + size);
306 			outer_flush_range(__pa(ptr), __pa(ptr) + size);
307 		}
308 	}
309 }
310 
311 /*
312  * Allocate a DMA buffer for 'dev' of size 'size' using the
313  * specified gfp mask.  Note that 'size' must be page aligned.
314  */
315 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
316 				       gfp_t gfp, int coherent_flag)
317 {
318 	unsigned long order = get_order(size);
319 	struct page *page, *p, *e;
320 
321 	page = alloc_pages(gfp, order);
322 	if (!page)
323 		return NULL;
324 
325 	/*
326 	 * Now split the huge page and free the excess pages
327 	 */
328 	split_page(page, order);
329 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
330 		__free_page(p);
331 
332 	__dma_clear_buffer(page, size, coherent_flag);
333 
334 	return page;
335 }
336 
337 /*
338  * Free a DMA buffer.  'size' must be page aligned.
339  */
340 static void __dma_free_buffer(struct page *page, size_t size)
341 {
342 	struct page *e = page + (size >> PAGE_SHIFT);
343 
344 	while (page < e) {
345 		__free_page(page);
346 		page++;
347 	}
348 }
349 
350 static void *__alloc_from_contiguous(struct device *dev, size_t size,
351 				     pgprot_t prot, struct page **ret_page,
352 				     const void *caller, bool want_vaddr,
353 				     int coherent_flag, gfp_t gfp);
354 
355 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
356 				 pgprot_t prot, struct page **ret_page,
357 				 const void *caller, bool want_vaddr);
358 
359 static void *
360 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
361 	const void *caller)
362 {
363 	/*
364 	 * DMA allocation can be mapped to user space, so lets
365 	 * set VM_USERMAP flags too.
366 	 */
367 	return dma_common_contiguous_remap(page, size,
368 			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
369 			prot, caller);
370 }
371 
372 static void __dma_free_remap(void *cpu_addr, size_t size)
373 {
374 	dma_common_free_remap(cpu_addr, size,
375 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
376 }
377 
378 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
379 static struct gen_pool *atomic_pool __ro_after_init;
380 
381 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
382 
383 static int __init early_coherent_pool(char *p)
384 {
385 	atomic_pool_size = memparse(p, &p);
386 	return 0;
387 }
388 early_param("coherent_pool", early_coherent_pool);
389 
390 /*
391  * Initialise the coherent pool for atomic allocations.
392  */
393 static int __init atomic_pool_init(void)
394 {
395 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
396 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
397 	struct page *page;
398 	void *ptr;
399 
400 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
401 	if (!atomic_pool)
402 		goto out;
403 	/*
404 	 * The atomic pool is only used for non-coherent allocations
405 	 * so we must pass NORMAL for coherent_flag.
406 	 */
407 	if (dev_get_cma_area(NULL))
408 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
409 				      &page, atomic_pool_init, true, NORMAL,
410 				      GFP_KERNEL);
411 	else
412 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
413 					   &page, atomic_pool_init, true);
414 	if (ptr) {
415 		int ret;
416 
417 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
418 					page_to_phys(page),
419 					atomic_pool_size, -1);
420 		if (ret)
421 			goto destroy_genpool;
422 
423 		gen_pool_set_algo(atomic_pool,
424 				gen_pool_first_fit_order_align,
425 				NULL);
426 		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
427 		       atomic_pool_size / 1024);
428 		return 0;
429 	}
430 
431 destroy_genpool:
432 	gen_pool_destroy(atomic_pool);
433 	atomic_pool = NULL;
434 out:
435 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
436 	       atomic_pool_size / 1024);
437 	return -ENOMEM;
438 }
439 /*
440  * CMA is activated by core_initcall, so we must be called after it.
441  */
442 postcore_initcall(atomic_pool_init);
443 
444 struct dma_contig_early_reserve {
445 	phys_addr_t base;
446 	unsigned long size;
447 };
448 
449 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
450 
451 static int dma_mmu_remap_num __initdata;
452 
453 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
454 {
455 	dma_mmu_remap[dma_mmu_remap_num].base = base;
456 	dma_mmu_remap[dma_mmu_remap_num].size = size;
457 	dma_mmu_remap_num++;
458 }
459 
460 void __init dma_contiguous_remap(void)
461 {
462 	int i;
463 	for (i = 0; i < dma_mmu_remap_num; i++) {
464 		phys_addr_t start = dma_mmu_remap[i].base;
465 		phys_addr_t end = start + dma_mmu_remap[i].size;
466 		struct map_desc map;
467 		unsigned long addr;
468 
469 		if (end > arm_lowmem_limit)
470 			end = arm_lowmem_limit;
471 		if (start >= end)
472 			continue;
473 
474 		map.pfn = __phys_to_pfn(start);
475 		map.virtual = __phys_to_virt(start);
476 		map.length = end - start;
477 		map.type = MT_MEMORY_DMA_READY;
478 
479 		/*
480 		 * Clear previous low-memory mapping to ensure that the
481 		 * TLB does not see any conflicting entries, then flush
482 		 * the TLB of the old entries before creating new mappings.
483 		 *
484 		 * This ensures that any speculatively loaded TLB entries
485 		 * (even though they may be rare) can not cause any problems,
486 		 * and ensures that this code is architecturally compliant.
487 		 */
488 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
489 		     addr += PMD_SIZE)
490 			pmd_clear(pmd_off_k(addr));
491 
492 		flush_tlb_kernel_range(__phys_to_virt(start),
493 				       __phys_to_virt(end));
494 
495 		iotable_init(&map, 1);
496 	}
497 }
498 
499 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
500 			    void *data)
501 {
502 	struct page *page = virt_to_page(addr);
503 	pgprot_t prot = *(pgprot_t *)data;
504 
505 	set_pte_ext(pte, mk_pte(page, prot), 0);
506 	return 0;
507 }
508 
509 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
510 {
511 	unsigned long start = (unsigned long) page_address(page);
512 	unsigned end = start + size;
513 
514 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
515 	flush_tlb_kernel_range(start, end);
516 }
517 
518 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
519 				 pgprot_t prot, struct page **ret_page,
520 				 const void *caller, bool want_vaddr)
521 {
522 	struct page *page;
523 	void *ptr = NULL;
524 	/*
525 	 * __alloc_remap_buffer is only called when the device is
526 	 * non-coherent
527 	 */
528 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
529 	if (!page)
530 		return NULL;
531 	if (!want_vaddr)
532 		goto out;
533 
534 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
535 	if (!ptr) {
536 		__dma_free_buffer(page, size);
537 		return NULL;
538 	}
539 
540  out:
541 	*ret_page = page;
542 	return ptr;
543 }
544 
545 static void *__alloc_from_pool(size_t size, struct page **ret_page)
546 {
547 	unsigned long val;
548 	void *ptr = NULL;
549 
550 	if (!atomic_pool) {
551 		WARN(1, "coherent pool not initialised!\n");
552 		return NULL;
553 	}
554 
555 	val = gen_pool_alloc(atomic_pool, size);
556 	if (val) {
557 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
558 
559 		*ret_page = phys_to_page(phys);
560 		ptr = (void *)val;
561 	}
562 
563 	return ptr;
564 }
565 
566 static bool __in_atomic_pool(void *start, size_t size)
567 {
568 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
569 }
570 
571 static int __free_from_pool(void *start, size_t size)
572 {
573 	if (!__in_atomic_pool(start, size))
574 		return 0;
575 
576 	gen_pool_free(atomic_pool, (unsigned long)start, size);
577 
578 	return 1;
579 }
580 
581 static void *__alloc_from_contiguous(struct device *dev, size_t size,
582 				     pgprot_t prot, struct page **ret_page,
583 				     const void *caller, bool want_vaddr,
584 				     int coherent_flag, gfp_t gfp)
585 {
586 	unsigned long order = get_order(size);
587 	size_t count = size >> PAGE_SHIFT;
588 	struct page *page;
589 	void *ptr = NULL;
590 
591 	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
592 	if (!page)
593 		return NULL;
594 
595 	__dma_clear_buffer(page, size, coherent_flag);
596 
597 	if (!want_vaddr)
598 		goto out;
599 
600 	if (PageHighMem(page)) {
601 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
602 		if (!ptr) {
603 			dma_release_from_contiguous(dev, page, count);
604 			return NULL;
605 		}
606 	} else {
607 		__dma_remap(page, size, prot);
608 		ptr = page_address(page);
609 	}
610 
611  out:
612 	*ret_page = page;
613 	return ptr;
614 }
615 
616 static void __free_from_contiguous(struct device *dev, struct page *page,
617 				   void *cpu_addr, size_t size, bool want_vaddr)
618 {
619 	if (want_vaddr) {
620 		if (PageHighMem(page))
621 			__dma_free_remap(cpu_addr, size);
622 		else
623 			__dma_remap(page, size, PAGE_KERNEL);
624 	}
625 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
626 }
627 
628 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
629 {
630 	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
631 			pgprot_writecombine(prot) :
632 			pgprot_dmacoherent(prot);
633 	return prot;
634 }
635 
636 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
637 				   struct page **ret_page)
638 {
639 	struct page *page;
640 	/* __alloc_simple_buffer is only called when the device is coherent */
641 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
642 	if (!page)
643 		return NULL;
644 
645 	*ret_page = page;
646 	return page_address(page);
647 }
648 
649 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
650 				    struct page **ret_page)
651 {
652 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
653 				     ret_page);
654 }
655 
656 static void simple_allocator_free(struct arm_dma_free_args *args)
657 {
658 	__dma_free_buffer(args->page, args->size);
659 }
660 
661 static struct arm_dma_allocator simple_allocator = {
662 	.alloc = simple_allocator_alloc,
663 	.free = simple_allocator_free,
664 };
665 
666 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
667 				 struct page **ret_page)
668 {
669 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
670 				       ret_page, args->caller,
671 				       args->want_vaddr, args->coherent_flag,
672 				       args->gfp);
673 }
674 
675 static void cma_allocator_free(struct arm_dma_free_args *args)
676 {
677 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
678 			       args->size, args->want_vaddr);
679 }
680 
681 static struct arm_dma_allocator cma_allocator = {
682 	.alloc = cma_allocator_alloc,
683 	.free = cma_allocator_free,
684 };
685 
686 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
687 				  struct page **ret_page)
688 {
689 	return __alloc_from_pool(args->size, ret_page);
690 }
691 
692 static void pool_allocator_free(struct arm_dma_free_args *args)
693 {
694 	__free_from_pool(args->cpu_addr, args->size);
695 }
696 
697 static struct arm_dma_allocator pool_allocator = {
698 	.alloc = pool_allocator_alloc,
699 	.free = pool_allocator_free,
700 };
701 
702 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
703 				   struct page **ret_page)
704 {
705 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
706 				    args->prot, ret_page, args->caller,
707 				    args->want_vaddr);
708 }
709 
710 static void remap_allocator_free(struct arm_dma_free_args *args)
711 {
712 	if (args->want_vaddr)
713 		__dma_free_remap(args->cpu_addr, args->size);
714 
715 	__dma_free_buffer(args->page, args->size);
716 }
717 
718 static struct arm_dma_allocator remap_allocator = {
719 	.alloc = remap_allocator_alloc,
720 	.free = remap_allocator_free,
721 };
722 
723 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
724 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
725 			 unsigned long attrs, const void *caller)
726 {
727 	u64 mask = get_coherent_dma_mask(dev);
728 	struct page *page = NULL;
729 	void *addr;
730 	bool allowblock, cma;
731 	struct arm_dma_buffer *buf;
732 	struct arm_dma_alloc_args args = {
733 		.dev = dev,
734 		.size = PAGE_ALIGN(size),
735 		.gfp = gfp,
736 		.prot = prot,
737 		.caller = caller,
738 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
739 		.coherent_flag = is_coherent ? COHERENT : NORMAL,
740 	};
741 
742 #ifdef CONFIG_DMA_API_DEBUG
743 	u64 limit = (mask + 1) & ~mask;
744 	if (limit && size >= limit) {
745 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
746 			size, mask);
747 		return NULL;
748 	}
749 #endif
750 
751 	if (!mask)
752 		return NULL;
753 
754 	buf = kzalloc(sizeof(*buf),
755 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
756 	if (!buf)
757 		return NULL;
758 
759 	if (mask < 0xffffffffULL)
760 		gfp |= GFP_DMA;
761 
762 	/*
763 	 * Following is a work-around (a.k.a. hack) to prevent pages
764 	 * with __GFP_COMP being passed to split_page() which cannot
765 	 * handle them.  The real problem is that this flag probably
766 	 * should be 0 on ARM as it is not supported on this
767 	 * platform; see CONFIG_HUGETLBFS.
768 	 */
769 	gfp &= ~(__GFP_COMP);
770 	args.gfp = gfp;
771 
772 	*handle = DMA_MAPPING_ERROR;
773 	allowblock = gfpflags_allow_blocking(gfp);
774 	cma = allowblock ? dev_get_cma_area(dev) : false;
775 
776 	if (cma)
777 		buf->allocator = &cma_allocator;
778 	else if (is_coherent)
779 		buf->allocator = &simple_allocator;
780 	else if (allowblock)
781 		buf->allocator = &remap_allocator;
782 	else
783 		buf->allocator = &pool_allocator;
784 
785 	addr = buf->allocator->alloc(&args, &page);
786 
787 	if (page) {
788 		unsigned long flags;
789 
790 		*handle = pfn_to_dma(dev, page_to_pfn(page));
791 		buf->virt = args.want_vaddr ? addr : page;
792 
793 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
794 		list_add(&buf->list, &arm_dma_bufs);
795 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
796 	} else {
797 		kfree(buf);
798 	}
799 
800 	return args.want_vaddr ? addr : page;
801 }
802 
803 /*
804  * Allocate DMA-coherent memory space and return both the kernel remapped
805  * virtual and bus address for that space.
806  */
807 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
808 		    gfp_t gfp, unsigned long attrs)
809 {
810 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
811 
812 	return __dma_alloc(dev, size, handle, gfp, prot, false,
813 			   attrs, __builtin_return_address(0));
814 }
815 
816 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
817 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
818 {
819 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
820 			   attrs, __builtin_return_address(0));
821 }
822 
823 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
824 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
825 		 unsigned long attrs)
826 {
827 	int ret = -ENXIO;
828 	unsigned long nr_vma_pages = vma_pages(vma);
829 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
830 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
831 	unsigned long off = vma->vm_pgoff;
832 
833 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
834 		return ret;
835 
836 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
837 		ret = remap_pfn_range(vma, vma->vm_start,
838 				      pfn + off,
839 				      vma->vm_end - vma->vm_start,
840 				      vma->vm_page_prot);
841 	}
842 
843 	return ret;
844 }
845 
846 /*
847  * Create userspace mapping for the DMA-coherent memory.
848  */
849 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
850 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
851 		 unsigned long attrs)
852 {
853 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
854 }
855 
856 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
857 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
858 		 unsigned long attrs)
859 {
860 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
861 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
862 }
863 
864 /*
865  * Free a buffer as defined by the above mapping.
866  */
867 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
868 			   dma_addr_t handle, unsigned long attrs,
869 			   bool is_coherent)
870 {
871 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
872 	struct arm_dma_buffer *buf;
873 	struct arm_dma_free_args args = {
874 		.dev = dev,
875 		.size = PAGE_ALIGN(size),
876 		.cpu_addr = cpu_addr,
877 		.page = page,
878 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
879 	};
880 
881 	buf = arm_dma_buffer_find(cpu_addr);
882 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
883 		return;
884 
885 	buf->allocator->free(&args);
886 	kfree(buf);
887 }
888 
889 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
890 		  dma_addr_t handle, unsigned long attrs)
891 {
892 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
893 }
894 
895 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
896 				  dma_addr_t handle, unsigned long attrs)
897 {
898 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
899 }
900 
901 /*
902  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
903  * that the intention is to allow exporting memory allocated via the
904  * coherent DMA APIs through the dma_buf API, which only accepts a
905  * scattertable.  This presents a couple of problems:
906  * 1. Not all memory allocated via the coherent DMA APIs is backed by
907  *    a struct page
908  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
909  *    as we will try to flush the memory through a different alias to that
910  *    actually being used (and the flushes are redundant.)
911  */
912 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
913 		 void *cpu_addr, dma_addr_t handle, size_t size,
914 		 unsigned long attrs)
915 {
916 	unsigned long pfn = dma_to_pfn(dev, handle);
917 	struct page *page;
918 	int ret;
919 
920 	/* If the PFN is not valid, we do not have a struct page */
921 	if (!pfn_valid(pfn))
922 		return -ENXIO;
923 
924 	page = pfn_to_page(pfn);
925 
926 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
927 	if (unlikely(ret))
928 		return ret;
929 
930 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
931 	return 0;
932 }
933 
934 static void dma_cache_maint_page(struct page *page, unsigned long offset,
935 	size_t size, enum dma_data_direction dir,
936 	void (*op)(const void *, size_t, int))
937 {
938 	unsigned long pfn;
939 	size_t left = size;
940 
941 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
942 	offset %= PAGE_SIZE;
943 
944 	/*
945 	 * A single sg entry may refer to multiple physically contiguous
946 	 * pages.  But we still need to process highmem pages individually.
947 	 * If highmem is not configured then the bulk of this loop gets
948 	 * optimized out.
949 	 */
950 	do {
951 		size_t len = left;
952 		void *vaddr;
953 
954 		page = pfn_to_page(pfn);
955 
956 		if (PageHighMem(page)) {
957 			if (len + offset > PAGE_SIZE)
958 				len = PAGE_SIZE - offset;
959 
960 			if (cache_is_vipt_nonaliasing()) {
961 				vaddr = kmap_atomic(page);
962 				op(vaddr + offset, len, dir);
963 				kunmap_atomic(vaddr);
964 			} else {
965 				vaddr = kmap_high_get(page);
966 				if (vaddr) {
967 					op(vaddr + offset, len, dir);
968 					kunmap_high(page);
969 				}
970 			}
971 		} else {
972 			vaddr = page_address(page) + offset;
973 			op(vaddr, len, dir);
974 		}
975 		offset = 0;
976 		pfn++;
977 		left -= len;
978 	} while (left);
979 }
980 
981 /*
982  * Make an area consistent for devices.
983  * Note: Drivers should NOT use this function directly, as it will break
984  * platforms with CONFIG_DMABOUNCE.
985  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
986  */
987 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
988 	size_t size, enum dma_data_direction dir)
989 {
990 	phys_addr_t paddr;
991 
992 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
993 
994 	paddr = page_to_phys(page) + off;
995 	if (dir == DMA_FROM_DEVICE) {
996 		outer_inv_range(paddr, paddr + size);
997 	} else {
998 		outer_clean_range(paddr, paddr + size);
999 	}
1000 	/* FIXME: non-speculating: flush on bidirectional mappings? */
1001 }
1002 
1003 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1004 	size_t size, enum dma_data_direction dir)
1005 {
1006 	phys_addr_t paddr = page_to_phys(page) + off;
1007 
1008 	/* FIXME: non-speculating: not required */
1009 	/* in any case, don't bother invalidating if DMA to device */
1010 	if (dir != DMA_TO_DEVICE) {
1011 		outer_inv_range(paddr, paddr + size);
1012 
1013 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1014 	}
1015 
1016 	/*
1017 	 * Mark the D-cache clean for these pages to avoid extra flushing.
1018 	 */
1019 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1020 		unsigned long pfn;
1021 		size_t left = size;
1022 
1023 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
1024 		off %= PAGE_SIZE;
1025 		if (off) {
1026 			pfn++;
1027 			left -= PAGE_SIZE - off;
1028 		}
1029 		while (left >= PAGE_SIZE) {
1030 			page = pfn_to_page(pfn++);
1031 			set_bit(PG_dcache_clean, &page->flags);
1032 			left -= PAGE_SIZE;
1033 		}
1034 	}
1035 }
1036 
1037 /**
1038  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1039  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1040  * @sg: list of buffers
1041  * @nents: number of buffers to map
1042  * @dir: DMA transfer direction
1043  *
1044  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1045  * This is the scatter-gather version of the dma_map_single interface.
1046  * Here the scatter gather list elements are each tagged with the
1047  * appropriate dma address and length.  They are obtained via
1048  * sg_dma_{address,length}.
1049  *
1050  * Device ownership issues as mentioned for dma_map_single are the same
1051  * here.
1052  */
1053 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1054 		enum dma_data_direction dir, unsigned long attrs)
1055 {
1056 	const struct dma_map_ops *ops = get_dma_ops(dev);
1057 	struct scatterlist *s;
1058 	int i, j;
1059 
1060 	for_each_sg(sg, s, nents, i) {
1061 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1062 		s->dma_length = s->length;
1063 #endif
1064 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1065 						s->length, dir, attrs);
1066 		if (dma_mapping_error(dev, s->dma_address))
1067 			goto bad_mapping;
1068 	}
1069 	return nents;
1070 
1071  bad_mapping:
1072 	for_each_sg(sg, s, i, j)
1073 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1074 	return 0;
1075 }
1076 
1077 /**
1078  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1079  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1080  * @sg: list of buffers
1081  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1082  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1083  *
1084  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1085  * rules concerning calls here are the same as for dma_unmap_single().
1086  */
1087 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1088 		enum dma_data_direction dir, unsigned long attrs)
1089 {
1090 	const struct dma_map_ops *ops = get_dma_ops(dev);
1091 	struct scatterlist *s;
1092 
1093 	int i;
1094 
1095 	for_each_sg(sg, s, nents, i)
1096 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1097 }
1098 
1099 /**
1100  * arm_dma_sync_sg_for_cpu
1101  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1102  * @sg: list of buffers
1103  * @nents: number of buffers to map (returned from dma_map_sg)
1104  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1105  */
1106 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1107 			int nents, enum dma_data_direction dir)
1108 {
1109 	const struct dma_map_ops *ops = get_dma_ops(dev);
1110 	struct scatterlist *s;
1111 	int i;
1112 
1113 	for_each_sg(sg, s, nents, i)
1114 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1115 					 dir);
1116 }
1117 
1118 /**
1119  * arm_dma_sync_sg_for_device
1120  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1121  * @sg: list of buffers
1122  * @nents: number of buffers to map (returned from dma_map_sg)
1123  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1124  */
1125 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1126 			int nents, enum dma_data_direction dir)
1127 {
1128 	const struct dma_map_ops *ops = get_dma_ops(dev);
1129 	struct scatterlist *s;
1130 	int i;
1131 
1132 	for_each_sg(sg, s, nents, i)
1133 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1134 					    dir);
1135 }
1136 
1137 /*
1138  * Return whether the given device DMA address mask can be supported
1139  * properly.  For example, if your device can only drive the low 24-bits
1140  * during bus mastering, then you would pass 0x00ffffff as the mask
1141  * to this function.
1142  */
1143 int arm_dma_supported(struct device *dev, u64 mask)
1144 {
1145 	return __dma_supported(dev, mask, false);
1146 }
1147 
1148 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1149 {
1150 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1151 }
1152 
1153 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1154 
1155 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1156 {
1157 	int prot = 0;
1158 
1159 	if (attrs & DMA_ATTR_PRIVILEGED)
1160 		prot |= IOMMU_PRIV;
1161 
1162 	switch (dir) {
1163 	case DMA_BIDIRECTIONAL:
1164 		return prot | IOMMU_READ | IOMMU_WRITE;
1165 	case DMA_TO_DEVICE:
1166 		return prot | IOMMU_READ;
1167 	case DMA_FROM_DEVICE:
1168 		return prot | IOMMU_WRITE;
1169 	default:
1170 		return prot;
1171 	}
1172 }
1173 
1174 /* IOMMU */
1175 
1176 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1177 
1178 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1179 				      size_t size)
1180 {
1181 	unsigned int order = get_order(size);
1182 	unsigned int align = 0;
1183 	unsigned int count, start;
1184 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1185 	unsigned long flags;
1186 	dma_addr_t iova;
1187 	int i;
1188 
1189 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1190 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1191 
1192 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1193 	align = (1 << order) - 1;
1194 
1195 	spin_lock_irqsave(&mapping->lock, flags);
1196 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1197 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1198 				mapping->bits, 0, count, align);
1199 
1200 		if (start > mapping->bits)
1201 			continue;
1202 
1203 		bitmap_set(mapping->bitmaps[i], start, count);
1204 		break;
1205 	}
1206 
1207 	/*
1208 	 * No unused range found. Try to extend the existing mapping
1209 	 * and perform a second attempt to reserve an IO virtual
1210 	 * address range of size bytes.
1211 	 */
1212 	if (i == mapping->nr_bitmaps) {
1213 		if (extend_iommu_mapping(mapping)) {
1214 			spin_unlock_irqrestore(&mapping->lock, flags);
1215 			return DMA_MAPPING_ERROR;
1216 		}
1217 
1218 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1219 				mapping->bits, 0, count, align);
1220 
1221 		if (start > mapping->bits) {
1222 			spin_unlock_irqrestore(&mapping->lock, flags);
1223 			return DMA_MAPPING_ERROR;
1224 		}
1225 
1226 		bitmap_set(mapping->bitmaps[i], start, count);
1227 	}
1228 	spin_unlock_irqrestore(&mapping->lock, flags);
1229 
1230 	iova = mapping->base + (mapping_size * i);
1231 	iova += start << PAGE_SHIFT;
1232 
1233 	return iova;
1234 }
1235 
1236 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1237 			       dma_addr_t addr, size_t size)
1238 {
1239 	unsigned int start, count;
1240 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1241 	unsigned long flags;
1242 	dma_addr_t bitmap_base;
1243 	u32 bitmap_index;
1244 
1245 	if (!size)
1246 		return;
1247 
1248 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1249 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1250 
1251 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1252 
1253 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1254 
1255 	if (addr + size > bitmap_base + mapping_size) {
1256 		/*
1257 		 * The address range to be freed reaches into the iova
1258 		 * range of the next bitmap. This should not happen as
1259 		 * we don't allow this in __alloc_iova (at the
1260 		 * moment).
1261 		 */
1262 		BUG();
1263 	} else
1264 		count = size >> PAGE_SHIFT;
1265 
1266 	spin_lock_irqsave(&mapping->lock, flags);
1267 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1268 	spin_unlock_irqrestore(&mapping->lock, flags);
1269 }
1270 
1271 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1272 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1273 
1274 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1275 					  gfp_t gfp, unsigned long attrs,
1276 					  int coherent_flag)
1277 {
1278 	struct page **pages;
1279 	int count = size >> PAGE_SHIFT;
1280 	int array_size = count * sizeof(struct page *);
1281 	int i = 0;
1282 	int order_idx = 0;
1283 
1284 	if (array_size <= PAGE_SIZE)
1285 		pages = kzalloc(array_size, GFP_KERNEL);
1286 	else
1287 		pages = vzalloc(array_size);
1288 	if (!pages)
1289 		return NULL;
1290 
1291 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1292 	{
1293 		unsigned long order = get_order(size);
1294 		struct page *page;
1295 
1296 		page = dma_alloc_from_contiguous(dev, count, order,
1297 						 gfp & __GFP_NOWARN);
1298 		if (!page)
1299 			goto error;
1300 
1301 		__dma_clear_buffer(page, size, coherent_flag);
1302 
1303 		for (i = 0; i < count; i++)
1304 			pages[i] = page + i;
1305 
1306 		return pages;
1307 	}
1308 
1309 	/* Go straight to 4K chunks if caller says it's OK. */
1310 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1311 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1312 
1313 	/*
1314 	 * IOMMU can map any pages, so himem can also be used here
1315 	 */
1316 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1317 
1318 	while (count) {
1319 		int j, order;
1320 
1321 		order = iommu_order_array[order_idx];
1322 
1323 		/* Drop down when we get small */
1324 		if (__fls(count) < order) {
1325 			order_idx++;
1326 			continue;
1327 		}
1328 
1329 		if (order) {
1330 			/* See if it's easy to allocate a high-order chunk */
1331 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1332 
1333 			/* Go down a notch at first sign of pressure */
1334 			if (!pages[i]) {
1335 				order_idx++;
1336 				continue;
1337 			}
1338 		} else {
1339 			pages[i] = alloc_pages(gfp, 0);
1340 			if (!pages[i])
1341 				goto error;
1342 		}
1343 
1344 		if (order) {
1345 			split_page(pages[i], order);
1346 			j = 1 << order;
1347 			while (--j)
1348 				pages[i + j] = pages[i] + j;
1349 		}
1350 
1351 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1352 		i += 1 << order;
1353 		count -= 1 << order;
1354 	}
1355 
1356 	return pages;
1357 error:
1358 	while (i--)
1359 		if (pages[i])
1360 			__free_pages(pages[i], 0);
1361 	kvfree(pages);
1362 	return NULL;
1363 }
1364 
1365 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1366 			       size_t size, unsigned long attrs)
1367 {
1368 	int count = size >> PAGE_SHIFT;
1369 	int i;
1370 
1371 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1372 		dma_release_from_contiguous(dev, pages[0], count);
1373 	} else {
1374 		for (i = 0; i < count; i++)
1375 			if (pages[i])
1376 				__free_pages(pages[i], 0);
1377 	}
1378 
1379 	kvfree(pages);
1380 	return 0;
1381 }
1382 
1383 /*
1384  * Create a CPU mapping for a specified pages
1385  */
1386 static void *
1387 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1388 		    const void *caller)
1389 {
1390 	return dma_common_pages_remap(pages, size,
1391 			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1392 }
1393 
1394 /*
1395  * Create a mapping in device IO address space for specified pages
1396  */
1397 static dma_addr_t
1398 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1399 		       unsigned long attrs)
1400 {
1401 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1402 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1403 	dma_addr_t dma_addr, iova;
1404 	int i;
1405 
1406 	dma_addr = __alloc_iova(mapping, size);
1407 	if (dma_addr == DMA_MAPPING_ERROR)
1408 		return dma_addr;
1409 
1410 	iova = dma_addr;
1411 	for (i = 0; i < count; ) {
1412 		int ret;
1413 
1414 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1415 		phys_addr_t phys = page_to_phys(pages[i]);
1416 		unsigned int len, j;
1417 
1418 		for (j = i + 1; j < count; j++, next_pfn++)
1419 			if (page_to_pfn(pages[j]) != next_pfn)
1420 				break;
1421 
1422 		len = (j - i) << PAGE_SHIFT;
1423 		ret = iommu_map(mapping->domain, iova, phys, len,
1424 				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1425 		if (ret < 0)
1426 			goto fail;
1427 		iova += len;
1428 		i = j;
1429 	}
1430 	return dma_addr;
1431 fail:
1432 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1433 	__free_iova(mapping, dma_addr, size);
1434 	return DMA_MAPPING_ERROR;
1435 }
1436 
1437 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1438 {
1439 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1440 
1441 	/*
1442 	 * add optional in-page offset from iova to size and align
1443 	 * result to page size
1444 	 */
1445 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1446 	iova &= PAGE_MASK;
1447 
1448 	iommu_unmap(mapping->domain, iova, size);
1449 	__free_iova(mapping, iova, size);
1450 	return 0;
1451 }
1452 
1453 static struct page **__atomic_get_pages(void *addr)
1454 {
1455 	struct page *page;
1456 	phys_addr_t phys;
1457 
1458 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1459 	page = phys_to_page(phys);
1460 
1461 	return (struct page **)page;
1462 }
1463 
1464 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1465 {
1466 	struct vm_struct *area;
1467 
1468 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1469 		return __atomic_get_pages(cpu_addr);
1470 
1471 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1472 		return cpu_addr;
1473 
1474 	area = find_vm_area(cpu_addr);
1475 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1476 		return area->pages;
1477 	return NULL;
1478 }
1479 
1480 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1481 				  dma_addr_t *handle, int coherent_flag,
1482 				  unsigned long attrs)
1483 {
1484 	struct page *page;
1485 	void *addr;
1486 
1487 	if (coherent_flag  == COHERENT)
1488 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1489 	else
1490 		addr = __alloc_from_pool(size, &page);
1491 	if (!addr)
1492 		return NULL;
1493 
1494 	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1495 	if (*handle == DMA_MAPPING_ERROR)
1496 		goto err_mapping;
1497 
1498 	return addr;
1499 
1500 err_mapping:
1501 	__free_from_pool(addr, size);
1502 	return NULL;
1503 }
1504 
1505 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1506 			dma_addr_t handle, size_t size, int coherent_flag)
1507 {
1508 	__iommu_remove_mapping(dev, handle, size);
1509 	if (coherent_flag == COHERENT)
1510 		__dma_free_buffer(virt_to_page(cpu_addr), size);
1511 	else
1512 		__free_from_pool(cpu_addr, size);
1513 }
1514 
1515 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1516 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1517 	    int coherent_flag)
1518 {
1519 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1520 	struct page **pages;
1521 	void *addr = NULL;
1522 
1523 	*handle = DMA_MAPPING_ERROR;
1524 	size = PAGE_ALIGN(size);
1525 
1526 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1527 		return __iommu_alloc_simple(dev, size, gfp, handle,
1528 					    coherent_flag, attrs);
1529 
1530 	/*
1531 	 * Following is a work-around (a.k.a. hack) to prevent pages
1532 	 * with __GFP_COMP being passed to split_page() which cannot
1533 	 * handle them.  The real problem is that this flag probably
1534 	 * should be 0 on ARM as it is not supported on this
1535 	 * platform; see CONFIG_HUGETLBFS.
1536 	 */
1537 	gfp &= ~(__GFP_COMP);
1538 
1539 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1540 	if (!pages)
1541 		return NULL;
1542 
1543 	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1544 	if (*handle == DMA_MAPPING_ERROR)
1545 		goto err_buffer;
1546 
1547 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1548 		return pages;
1549 
1550 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1551 				   __builtin_return_address(0));
1552 	if (!addr)
1553 		goto err_mapping;
1554 
1555 	return addr;
1556 
1557 err_mapping:
1558 	__iommu_remove_mapping(dev, *handle, size);
1559 err_buffer:
1560 	__iommu_free_buffer(dev, pages, size, attrs);
1561 	return NULL;
1562 }
1563 
1564 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1565 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1566 {
1567 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1568 }
1569 
1570 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1571 		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1572 {
1573 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1574 }
1575 
1576 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1577 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1578 		    unsigned long attrs)
1579 {
1580 	unsigned long uaddr = vma->vm_start;
1581 	unsigned long usize = vma->vm_end - vma->vm_start;
1582 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1583 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1584 	unsigned long off = vma->vm_pgoff;
1585 
1586 	if (!pages)
1587 		return -ENXIO;
1588 
1589 	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1590 		return -ENXIO;
1591 
1592 	pages += off;
1593 
1594 	do {
1595 		int ret = vm_insert_page(vma, uaddr, *pages++);
1596 		if (ret) {
1597 			pr_err("Remapping memory failed: %d\n", ret);
1598 			return ret;
1599 		}
1600 		uaddr += PAGE_SIZE;
1601 		usize -= PAGE_SIZE;
1602 	} while (usize > 0);
1603 
1604 	return 0;
1605 }
1606 static int arm_iommu_mmap_attrs(struct device *dev,
1607 		struct vm_area_struct *vma, void *cpu_addr,
1608 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1609 {
1610 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1611 
1612 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1613 }
1614 
1615 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1616 		struct vm_area_struct *vma, void *cpu_addr,
1617 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1618 {
1619 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1620 }
1621 
1622 /*
1623  * free a page as defined by the above mapping.
1624  * Must not be called with IRQs disabled.
1625  */
1626 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1627 	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1628 {
1629 	struct page **pages;
1630 	size = PAGE_ALIGN(size);
1631 
1632 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1633 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1634 		return;
1635 	}
1636 
1637 	pages = __iommu_get_pages(cpu_addr, attrs);
1638 	if (!pages) {
1639 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1640 		return;
1641 	}
1642 
1643 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1644 		dma_common_free_remap(cpu_addr, size,
1645 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1646 	}
1647 
1648 	__iommu_remove_mapping(dev, handle, size);
1649 	__iommu_free_buffer(dev, pages, size, attrs);
1650 }
1651 
1652 void arm_iommu_free_attrs(struct device *dev, size_t size,
1653 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1654 {
1655 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1656 }
1657 
1658 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1659 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1660 {
1661 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1662 }
1663 
1664 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1665 				 void *cpu_addr, dma_addr_t dma_addr,
1666 				 size_t size, unsigned long attrs)
1667 {
1668 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1669 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1670 
1671 	if (!pages)
1672 		return -ENXIO;
1673 
1674 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1675 					 GFP_KERNEL);
1676 }
1677 
1678 /*
1679  * Map a part of the scatter-gather list into contiguous io address space
1680  */
1681 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1682 			  size_t size, dma_addr_t *handle,
1683 			  enum dma_data_direction dir, unsigned long attrs,
1684 			  bool is_coherent)
1685 {
1686 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1687 	dma_addr_t iova, iova_base;
1688 	int ret = 0;
1689 	unsigned int count;
1690 	struct scatterlist *s;
1691 	int prot;
1692 
1693 	size = PAGE_ALIGN(size);
1694 	*handle = DMA_MAPPING_ERROR;
1695 
1696 	iova_base = iova = __alloc_iova(mapping, size);
1697 	if (iova == DMA_MAPPING_ERROR)
1698 		return -ENOMEM;
1699 
1700 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1701 		phys_addr_t phys = page_to_phys(sg_page(s));
1702 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1703 
1704 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1705 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1706 
1707 		prot = __dma_info_to_prot(dir, attrs);
1708 
1709 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1710 		if (ret < 0)
1711 			goto fail;
1712 		count += len >> PAGE_SHIFT;
1713 		iova += len;
1714 	}
1715 	*handle = iova_base;
1716 
1717 	return 0;
1718 fail:
1719 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1720 	__free_iova(mapping, iova_base, size);
1721 	return ret;
1722 }
1723 
1724 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1725 		     enum dma_data_direction dir, unsigned long attrs,
1726 		     bool is_coherent)
1727 {
1728 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1729 	int i, count = 0;
1730 	unsigned int offset = s->offset;
1731 	unsigned int size = s->offset + s->length;
1732 	unsigned int max = dma_get_max_seg_size(dev);
1733 
1734 	for (i = 1; i < nents; i++) {
1735 		s = sg_next(s);
1736 
1737 		s->dma_address = DMA_MAPPING_ERROR;
1738 		s->dma_length = 0;
1739 
1740 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1741 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1742 			    dir, attrs, is_coherent) < 0)
1743 				goto bad_mapping;
1744 
1745 			dma->dma_address += offset;
1746 			dma->dma_length = size - offset;
1747 
1748 			size = offset = s->offset;
1749 			start = s;
1750 			dma = sg_next(dma);
1751 			count += 1;
1752 		}
1753 		size += s->length;
1754 	}
1755 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1756 		is_coherent) < 0)
1757 		goto bad_mapping;
1758 
1759 	dma->dma_address += offset;
1760 	dma->dma_length = size - offset;
1761 
1762 	return count+1;
1763 
1764 bad_mapping:
1765 	for_each_sg(sg, s, count, i)
1766 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1767 	return 0;
1768 }
1769 
1770 /**
1771  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1772  * @dev: valid struct device pointer
1773  * @sg: list of buffers
1774  * @nents: number of buffers to map
1775  * @dir: DMA transfer direction
1776  *
1777  * Map a set of i/o coherent buffers described by scatterlist in streaming
1778  * mode for DMA. The scatter gather list elements are merged together (if
1779  * possible) and tagged with the appropriate dma address and length. They are
1780  * obtained via sg_dma_{address,length}.
1781  */
1782 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1783 		int nents, enum dma_data_direction dir, unsigned long attrs)
1784 {
1785 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1786 }
1787 
1788 /**
1789  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1790  * @dev: valid struct device pointer
1791  * @sg: list of buffers
1792  * @nents: number of buffers to map
1793  * @dir: DMA transfer direction
1794  *
1795  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1796  * The scatter gather list elements are merged together (if possible) and
1797  * tagged with the appropriate dma address and length. They are obtained via
1798  * sg_dma_{address,length}.
1799  */
1800 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1801 		int nents, enum dma_data_direction dir, unsigned long attrs)
1802 {
1803 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1804 }
1805 
1806 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1807 		int nents, enum dma_data_direction dir,
1808 		unsigned long attrs, bool is_coherent)
1809 {
1810 	struct scatterlist *s;
1811 	int i;
1812 
1813 	for_each_sg(sg, s, nents, i) {
1814 		if (sg_dma_len(s))
1815 			__iommu_remove_mapping(dev, sg_dma_address(s),
1816 					       sg_dma_len(s));
1817 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1818 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1819 					      s->length, dir);
1820 	}
1821 }
1822 
1823 /**
1824  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1825  * @dev: valid struct device pointer
1826  * @sg: list of buffers
1827  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1828  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1829  *
1830  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1831  * rules concerning calls here are the same as for dma_unmap_single().
1832  */
1833 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1834 		int nents, enum dma_data_direction dir,
1835 		unsigned long attrs)
1836 {
1837 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1838 }
1839 
1840 /**
1841  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1842  * @dev: valid struct device pointer
1843  * @sg: list of buffers
1844  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1845  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1846  *
1847  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1848  * rules concerning calls here are the same as for dma_unmap_single().
1849  */
1850 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1851 			enum dma_data_direction dir,
1852 			unsigned long attrs)
1853 {
1854 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1855 }
1856 
1857 /**
1858  * arm_iommu_sync_sg_for_cpu
1859  * @dev: valid struct device pointer
1860  * @sg: list of buffers
1861  * @nents: number of buffers to map (returned from dma_map_sg)
1862  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1863  */
1864 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1865 			int nents, enum dma_data_direction dir)
1866 {
1867 	struct scatterlist *s;
1868 	int i;
1869 
1870 	for_each_sg(sg, s, nents, i)
1871 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1872 
1873 }
1874 
1875 /**
1876  * arm_iommu_sync_sg_for_device
1877  * @dev: valid struct device pointer
1878  * @sg: list of buffers
1879  * @nents: number of buffers to map (returned from dma_map_sg)
1880  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1881  */
1882 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1883 			int nents, enum dma_data_direction dir)
1884 {
1885 	struct scatterlist *s;
1886 	int i;
1887 
1888 	for_each_sg(sg, s, nents, i)
1889 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1890 }
1891 
1892 
1893 /**
1894  * arm_coherent_iommu_map_page
1895  * @dev: valid struct device pointer
1896  * @page: page that buffer resides in
1897  * @offset: offset into page for start of buffer
1898  * @size: size of buffer to map
1899  * @dir: DMA transfer direction
1900  *
1901  * Coherent IOMMU aware version of arm_dma_map_page()
1902  */
1903 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1904 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1905 	     unsigned long attrs)
1906 {
1907 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1908 	dma_addr_t dma_addr;
1909 	int ret, prot, len = PAGE_ALIGN(size + offset);
1910 
1911 	dma_addr = __alloc_iova(mapping, len);
1912 	if (dma_addr == DMA_MAPPING_ERROR)
1913 		return dma_addr;
1914 
1915 	prot = __dma_info_to_prot(dir, attrs);
1916 
1917 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1918 	if (ret < 0)
1919 		goto fail;
1920 
1921 	return dma_addr + offset;
1922 fail:
1923 	__free_iova(mapping, dma_addr, len);
1924 	return DMA_MAPPING_ERROR;
1925 }
1926 
1927 /**
1928  * arm_iommu_map_page
1929  * @dev: valid struct device pointer
1930  * @page: page that buffer resides in
1931  * @offset: offset into page for start of buffer
1932  * @size: size of buffer to map
1933  * @dir: DMA transfer direction
1934  *
1935  * IOMMU aware version of arm_dma_map_page()
1936  */
1937 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1938 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1939 	     unsigned long attrs)
1940 {
1941 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1942 		__dma_page_cpu_to_dev(page, offset, size, dir);
1943 
1944 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1945 }
1946 
1947 /**
1948  * arm_coherent_iommu_unmap_page
1949  * @dev: valid struct device pointer
1950  * @handle: DMA address of buffer
1951  * @size: size of buffer (same as passed to dma_map_page)
1952  * @dir: DMA transfer direction (same as passed to dma_map_page)
1953  *
1954  * Coherent IOMMU aware version of arm_dma_unmap_page()
1955  */
1956 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1957 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1958 {
1959 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1960 	dma_addr_t iova = handle & PAGE_MASK;
1961 	int offset = handle & ~PAGE_MASK;
1962 	int len = PAGE_ALIGN(size + offset);
1963 
1964 	if (!iova)
1965 		return;
1966 
1967 	iommu_unmap(mapping->domain, iova, len);
1968 	__free_iova(mapping, iova, len);
1969 }
1970 
1971 /**
1972  * arm_iommu_unmap_page
1973  * @dev: valid struct device pointer
1974  * @handle: DMA address of buffer
1975  * @size: size of buffer (same as passed to dma_map_page)
1976  * @dir: DMA transfer direction (same as passed to dma_map_page)
1977  *
1978  * IOMMU aware version of arm_dma_unmap_page()
1979  */
1980 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1981 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1982 {
1983 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1984 	dma_addr_t iova = handle & PAGE_MASK;
1985 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1986 	int offset = handle & ~PAGE_MASK;
1987 	int len = PAGE_ALIGN(size + offset);
1988 
1989 	if (!iova)
1990 		return;
1991 
1992 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1993 		__dma_page_dev_to_cpu(page, offset, size, dir);
1994 
1995 	iommu_unmap(mapping->domain, iova, len);
1996 	__free_iova(mapping, iova, len);
1997 }
1998 
1999 /**
2000  * arm_iommu_map_resource - map a device resource for DMA
2001  * @dev: valid struct device pointer
2002  * @phys_addr: physical address of resource
2003  * @size: size of resource to map
2004  * @dir: DMA transfer direction
2005  */
2006 static dma_addr_t arm_iommu_map_resource(struct device *dev,
2007 		phys_addr_t phys_addr, size_t size,
2008 		enum dma_data_direction dir, unsigned long attrs)
2009 {
2010 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2011 	dma_addr_t dma_addr;
2012 	int ret, prot;
2013 	phys_addr_t addr = phys_addr & PAGE_MASK;
2014 	unsigned int offset = phys_addr & ~PAGE_MASK;
2015 	size_t len = PAGE_ALIGN(size + offset);
2016 
2017 	dma_addr = __alloc_iova(mapping, len);
2018 	if (dma_addr == DMA_MAPPING_ERROR)
2019 		return dma_addr;
2020 
2021 	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
2022 
2023 	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2024 	if (ret < 0)
2025 		goto fail;
2026 
2027 	return dma_addr + offset;
2028 fail:
2029 	__free_iova(mapping, dma_addr, len);
2030 	return DMA_MAPPING_ERROR;
2031 }
2032 
2033 /**
2034  * arm_iommu_unmap_resource - unmap a device DMA resource
2035  * @dev: valid struct device pointer
2036  * @dma_handle: DMA address to resource
2037  * @size: size of resource to map
2038  * @dir: DMA transfer direction
2039  */
2040 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2041 		size_t size, enum dma_data_direction dir,
2042 		unsigned long attrs)
2043 {
2044 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2045 	dma_addr_t iova = dma_handle & PAGE_MASK;
2046 	unsigned int offset = dma_handle & ~PAGE_MASK;
2047 	size_t len = PAGE_ALIGN(size + offset);
2048 
2049 	if (!iova)
2050 		return;
2051 
2052 	iommu_unmap(mapping->domain, iova, len);
2053 	__free_iova(mapping, iova, len);
2054 }
2055 
2056 static void arm_iommu_sync_single_for_cpu(struct device *dev,
2057 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2058 {
2059 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2060 	dma_addr_t iova = handle & PAGE_MASK;
2061 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2062 	unsigned int offset = handle & ~PAGE_MASK;
2063 
2064 	if (!iova)
2065 		return;
2066 
2067 	__dma_page_dev_to_cpu(page, offset, size, dir);
2068 }
2069 
2070 static void arm_iommu_sync_single_for_device(struct device *dev,
2071 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2072 {
2073 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2074 	dma_addr_t iova = handle & PAGE_MASK;
2075 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2076 	unsigned int offset = handle & ~PAGE_MASK;
2077 
2078 	if (!iova)
2079 		return;
2080 
2081 	__dma_page_cpu_to_dev(page, offset, size, dir);
2082 }
2083 
2084 const struct dma_map_ops iommu_ops = {
2085 	.alloc		= arm_iommu_alloc_attrs,
2086 	.free		= arm_iommu_free_attrs,
2087 	.mmap		= arm_iommu_mmap_attrs,
2088 	.get_sgtable	= arm_iommu_get_sgtable,
2089 
2090 	.map_page		= arm_iommu_map_page,
2091 	.unmap_page		= arm_iommu_unmap_page,
2092 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2093 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2094 
2095 	.map_sg			= arm_iommu_map_sg,
2096 	.unmap_sg		= arm_iommu_unmap_sg,
2097 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2098 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2099 
2100 	.map_resource		= arm_iommu_map_resource,
2101 	.unmap_resource		= arm_iommu_unmap_resource,
2102 
2103 	.dma_supported		= arm_dma_supported,
2104 };
2105 
2106 const struct dma_map_ops iommu_coherent_ops = {
2107 	.alloc		= arm_coherent_iommu_alloc_attrs,
2108 	.free		= arm_coherent_iommu_free_attrs,
2109 	.mmap		= arm_coherent_iommu_mmap_attrs,
2110 	.get_sgtable	= arm_iommu_get_sgtable,
2111 
2112 	.map_page	= arm_coherent_iommu_map_page,
2113 	.unmap_page	= arm_coherent_iommu_unmap_page,
2114 
2115 	.map_sg		= arm_coherent_iommu_map_sg,
2116 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2117 
2118 	.map_resource	= arm_iommu_map_resource,
2119 	.unmap_resource	= arm_iommu_unmap_resource,
2120 
2121 	.dma_supported		= arm_dma_supported,
2122 };
2123 
2124 /**
2125  * arm_iommu_create_mapping
2126  * @bus: pointer to the bus holding the client device (for IOMMU calls)
2127  * @base: start address of the valid IO address space
2128  * @size: maximum size of the valid IO address space
2129  *
2130  * Creates a mapping structure which holds information about used/unused
2131  * IO address ranges, which is required to perform memory allocation and
2132  * mapping with IOMMU aware functions.
2133  *
2134  * The client device need to be attached to the mapping with
2135  * arm_iommu_attach_device function.
2136  */
2137 struct dma_iommu_mapping *
2138 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2139 {
2140 	unsigned int bits = size >> PAGE_SHIFT;
2141 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2142 	struct dma_iommu_mapping *mapping;
2143 	int extensions = 1;
2144 	int err = -ENOMEM;
2145 
2146 	/* currently only 32-bit DMA address space is supported */
2147 	if (size > DMA_BIT_MASK(32) + 1)
2148 		return ERR_PTR(-ERANGE);
2149 
2150 	if (!bitmap_size)
2151 		return ERR_PTR(-EINVAL);
2152 
2153 	if (bitmap_size > PAGE_SIZE) {
2154 		extensions = bitmap_size / PAGE_SIZE;
2155 		bitmap_size = PAGE_SIZE;
2156 	}
2157 
2158 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2159 	if (!mapping)
2160 		goto err;
2161 
2162 	mapping->bitmap_size = bitmap_size;
2163 	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2164 				   GFP_KERNEL);
2165 	if (!mapping->bitmaps)
2166 		goto err2;
2167 
2168 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2169 	if (!mapping->bitmaps[0])
2170 		goto err3;
2171 
2172 	mapping->nr_bitmaps = 1;
2173 	mapping->extensions = extensions;
2174 	mapping->base = base;
2175 	mapping->bits = BITS_PER_BYTE * bitmap_size;
2176 
2177 	spin_lock_init(&mapping->lock);
2178 
2179 	mapping->domain = iommu_domain_alloc(bus);
2180 	if (!mapping->domain)
2181 		goto err4;
2182 
2183 	kref_init(&mapping->kref);
2184 	return mapping;
2185 err4:
2186 	kfree(mapping->bitmaps[0]);
2187 err3:
2188 	kfree(mapping->bitmaps);
2189 err2:
2190 	kfree(mapping);
2191 err:
2192 	return ERR_PTR(err);
2193 }
2194 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2195 
2196 static void release_iommu_mapping(struct kref *kref)
2197 {
2198 	int i;
2199 	struct dma_iommu_mapping *mapping =
2200 		container_of(kref, struct dma_iommu_mapping, kref);
2201 
2202 	iommu_domain_free(mapping->domain);
2203 	for (i = 0; i < mapping->nr_bitmaps; i++)
2204 		kfree(mapping->bitmaps[i]);
2205 	kfree(mapping->bitmaps);
2206 	kfree(mapping);
2207 }
2208 
2209 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2210 {
2211 	int next_bitmap;
2212 
2213 	if (mapping->nr_bitmaps >= mapping->extensions)
2214 		return -EINVAL;
2215 
2216 	next_bitmap = mapping->nr_bitmaps;
2217 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2218 						GFP_ATOMIC);
2219 	if (!mapping->bitmaps[next_bitmap])
2220 		return -ENOMEM;
2221 
2222 	mapping->nr_bitmaps++;
2223 
2224 	return 0;
2225 }
2226 
2227 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2228 {
2229 	if (mapping)
2230 		kref_put(&mapping->kref, release_iommu_mapping);
2231 }
2232 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2233 
2234 static int __arm_iommu_attach_device(struct device *dev,
2235 				     struct dma_iommu_mapping *mapping)
2236 {
2237 	int err;
2238 
2239 	err = iommu_attach_device(mapping->domain, dev);
2240 	if (err)
2241 		return err;
2242 
2243 	kref_get(&mapping->kref);
2244 	to_dma_iommu_mapping(dev) = mapping;
2245 
2246 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2247 	return 0;
2248 }
2249 
2250 /**
2251  * arm_iommu_attach_device
2252  * @dev: valid struct device pointer
2253  * @mapping: io address space mapping structure (returned from
2254  *	arm_iommu_create_mapping)
2255  *
2256  * Attaches specified io address space mapping to the provided device.
2257  * This replaces the dma operations (dma_map_ops pointer) with the
2258  * IOMMU aware version.
2259  *
2260  * More than one client might be attached to the same io address space
2261  * mapping.
2262  */
2263 int arm_iommu_attach_device(struct device *dev,
2264 			    struct dma_iommu_mapping *mapping)
2265 {
2266 	int err;
2267 
2268 	err = __arm_iommu_attach_device(dev, mapping);
2269 	if (err)
2270 		return err;
2271 
2272 	set_dma_ops(dev, &iommu_ops);
2273 	return 0;
2274 }
2275 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2276 
2277 /**
2278  * arm_iommu_detach_device
2279  * @dev: valid struct device pointer
2280  *
2281  * Detaches the provided device from a previously attached map.
2282  * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2283  */
2284 void arm_iommu_detach_device(struct device *dev)
2285 {
2286 	struct dma_iommu_mapping *mapping;
2287 
2288 	mapping = to_dma_iommu_mapping(dev);
2289 	if (!mapping) {
2290 		dev_warn(dev, "Not attached\n");
2291 		return;
2292 	}
2293 
2294 	iommu_detach_device(mapping->domain, dev);
2295 	kref_put(&mapping->kref, release_iommu_mapping);
2296 	to_dma_iommu_mapping(dev) = NULL;
2297 	set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2298 
2299 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2300 }
2301 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2302 
2303 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2304 {
2305 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2306 }
2307 
2308 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2309 				    const struct iommu_ops *iommu)
2310 {
2311 	struct dma_iommu_mapping *mapping;
2312 
2313 	if (!iommu)
2314 		return false;
2315 
2316 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2317 	if (IS_ERR(mapping)) {
2318 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2319 				size, dev_name(dev));
2320 		return false;
2321 	}
2322 
2323 	if (__arm_iommu_attach_device(dev, mapping)) {
2324 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2325 				dev_name(dev));
2326 		arm_iommu_release_mapping(mapping);
2327 		return false;
2328 	}
2329 
2330 	return true;
2331 }
2332 
2333 static void arm_teardown_iommu_dma_ops(struct device *dev)
2334 {
2335 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2336 
2337 	if (!mapping)
2338 		return;
2339 
2340 	arm_iommu_detach_device(dev);
2341 	arm_iommu_release_mapping(mapping);
2342 }
2343 
2344 #else
2345 
2346 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2347 				    const struct iommu_ops *iommu)
2348 {
2349 	return false;
2350 }
2351 
2352 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2353 
2354 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2355 
2356 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2357 
2358 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2359 			const struct iommu_ops *iommu, bool coherent)
2360 {
2361 	const struct dma_map_ops *dma_ops;
2362 
2363 	dev->archdata.dma_coherent = coherent;
2364 
2365 	/*
2366 	 * Don't override the dma_ops if they have already been set. Ideally
2367 	 * this should be the only location where dma_ops are set, remove this
2368 	 * check when all other callers of set_dma_ops will have disappeared.
2369 	 */
2370 	if (dev->dma_ops)
2371 		return;
2372 
2373 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2374 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2375 	else
2376 		dma_ops = arm_get_dma_map_ops(coherent);
2377 
2378 	set_dma_ops(dev, dma_ops);
2379 
2380 #ifdef CONFIG_XEN
2381 	if (xen_initial_domain()) {
2382 		dev->archdata.dev_dma_ops = dev->dma_ops;
2383 		dev->dma_ops = xen_dma_ops;
2384 	}
2385 #endif
2386 	dev->archdata.dma_ops_setup = true;
2387 }
2388 
2389 void arch_teardown_dma_ops(struct device *dev)
2390 {
2391 	if (!dev->archdata.dma_ops_setup)
2392 		return;
2393 
2394 	arm_teardown_iommu_dma_ops(dev);
2395 	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2396 	set_dma_ops(dev, NULL);
2397 }
2398