xref: /openbmc/linux/arch/arm/mm/dma-mapping-nommu.c (revision 7aacf86b)
1 /*
2  *  Based on linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  */
11 
12 #include <linux/export.h>
13 #include <linux/mm.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/scatterlist.h>
16 
17 #include <asm/cachetype.h>
18 #include <asm/cacheflush.h>
19 #include <asm/outercache.h>
20 #include <asm/cp15.h>
21 
22 #include "dma.h"
23 
24 /*
25  *  dma_noop_ops is used if
26  *   - MMU/MPU is off
27  *   - cpu is v7m w/o cache support
28  *   - device is coherent
29  *  otherwise arm_nommu_dma_ops is used.
30  *
31  *  arm_nommu_dma_ops rely on consistent DMA memory (please, refer to
32  *  [1] on how to declare such memory).
33  *
34  *  [1] Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt
35  */
36 
37 static void *arm_nommu_dma_alloc(struct device *dev, size_t size,
38 				 dma_addr_t *dma_handle, gfp_t gfp,
39 				 unsigned long attrs)
40 
41 {
42 	const struct dma_map_ops *ops = &dma_noop_ops;
43 	void *ret;
44 
45 	/*
46 	 * Try generic allocator first if we are advertised that
47 	 * consistency is not required.
48 	 */
49 
50 	if (attrs & DMA_ATTR_NON_CONSISTENT)
51 		return ops->alloc(dev, size, dma_handle, gfp, attrs);
52 
53 	ret = dma_alloc_from_global_coherent(size, dma_handle);
54 
55 	/*
56 	 * dma_alloc_from_global_coherent() may fail because:
57 	 *
58 	 * - no consistent DMA region has been defined, so we can't
59 	 *   continue.
60 	 * - there is no space left in consistent DMA region, so we
61 	 *   only can fallback to generic allocator if we are
62 	 *   advertised that consistency is not required.
63 	 */
64 
65 	WARN_ON_ONCE(ret == NULL);
66 	return ret;
67 }
68 
69 static void arm_nommu_dma_free(struct device *dev, size_t size,
70 			       void *cpu_addr, dma_addr_t dma_addr,
71 			       unsigned long attrs)
72 {
73 	const struct dma_map_ops *ops = &dma_noop_ops;
74 
75 	if (attrs & DMA_ATTR_NON_CONSISTENT) {
76 		ops->free(dev, size, cpu_addr, dma_addr, attrs);
77 	} else {
78 		int ret = dma_release_from_global_coherent(get_order(size),
79 							   cpu_addr);
80 
81 		WARN_ON_ONCE(ret == 0);
82 	}
83 
84 	return;
85 }
86 
87 static int arm_nommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
88 			      void *cpu_addr, dma_addr_t dma_addr, size_t size,
89 			      unsigned long attrs)
90 {
91 	int ret;
92 
93 	if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
94 		return ret;
95 
96 	return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
97 }
98 
99 
100 static void __dma_page_cpu_to_dev(phys_addr_t paddr, size_t size,
101 				  enum dma_data_direction dir)
102 {
103 	dmac_map_area(__va(paddr), size, dir);
104 
105 	if (dir == DMA_FROM_DEVICE)
106 		outer_inv_range(paddr, paddr + size);
107 	else
108 		outer_clean_range(paddr, paddr + size);
109 }
110 
111 static void __dma_page_dev_to_cpu(phys_addr_t paddr, size_t size,
112 				  enum dma_data_direction dir)
113 {
114 	if (dir != DMA_TO_DEVICE) {
115 		outer_inv_range(paddr, paddr + size);
116 		dmac_unmap_area(__va(paddr), size, dir);
117 	}
118 }
119 
120 static dma_addr_t arm_nommu_dma_map_page(struct device *dev, struct page *page,
121 					 unsigned long offset, size_t size,
122 					 enum dma_data_direction dir,
123 					 unsigned long attrs)
124 {
125 	dma_addr_t handle = page_to_phys(page) + offset;
126 
127 	__dma_page_cpu_to_dev(handle, size, dir);
128 
129 	return handle;
130 }
131 
132 static void arm_nommu_dma_unmap_page(struct device *dev, dma_addr_t handle,
133 				     size_t size, enum dma_data_direction dir,
134 				     unsigned long attrs)
135 {
136 	__dma_page_dev_to_cpu(handle, size, dir);
137 }
138 
139 
140 static int arm_nommu_dma_map_sg(struct device *dev, struct scatterlist *sgl,
141 				int nents, enum dma_data_direction dir,
142 				unsigned long attrs)
143 {
144 	int i;
145 	struct scatterlist *sg;
146 
147 	for_each_sg(sgl, sg, nents, i) {
148 		sg_dma_address(sg) = sg_phys(sg);
149 		sg_dma_len(sg) = sg->length;
150 		__dma_page_cpu_to_dev(sg_dma_address(sg), sg_dma_len(sg), dir);
151 	}
152 
153 	return nents;
154 }
155 
156 static void arm_nommu_dma_unmap_sg(struct device *dev, struct scatterlist *sgl,
157 				   int nents, enum dma_data_direction dir,
158 				   unsigned long attrs)
159 {
160 	struct scatterlist *sg;
161 	int i;
162 
163 	for_each_sg(sgl, sg, nents, i)
164 		__dma_page_dev_to_cpu(sg_dma_address(sg), sg_dma_len(sg), dir);
165 }
166 
167 static void arm_nommu_dma_sync_single_for_device(struct device *dev,
168 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
169 {
170 	__dma_page_cpu_to_dev(handle, size, dir);
171 }
172 
173 static void arm_nommu_dma_sync_single_for_cpu(struct device *dev,
174 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
175 {
176 	__dma_page_cpu_to_dev(handle, size, dir);
177 }
178 
179 static void arm_nommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
180 					     int nents, enum dma_data_direction dir)
181 {
182 	struct scatterlist *sg;
183 	int i;
184 
185 	for_each_sg(sgl, sg, nents, i)
186 		__dma_page_cpu_to_dev(sg_dma_address(sg), sg_dma_len(sg), dir);
187 }
188 
189 static void arm_nommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
190 					  int nents, enum dma_data_direction dir)
191 {
192 	struct scatterlist *sg;
193 	int i;
194 
195 	for_each_sg(sgl, sg, nents, i)
196 		__dma_page_dev_to_cpu(sg_dma_address(sg), sg_dma_len(sg), dir);
197 }
198 
199 const struct dma_map_ops arm_nommu_dma_ops = {
200 	.alloc			= arm_nommu_dma_alloc,
201 	.free			= arm_nommu_dma_free,
202 	.mmap			= arm_nommu_dma_mmap,
203 	.map_page		= arm_nommu_dma_map_page,
204 	.unmap_page		= arm_nommu_dma_unmap_page,
205 	.map_sg			= arm_nommu_dma_map_sg,
206 	.unmap_sg		= arm_nommu_dma_unmap_sg,
207 	.sync_single_for_device	= arm_nommu_dma_sync_single_for_device,
208 	.sync_single_for_cpu	= arm_nommu_dma_sync_single_for_cpu,
209 	.sync_sg_for_device	= arm_nommu_dma_sync_sg_for_device,
210 	.sync_sg_for_cpu	= arm_nommu_dma_sync_sg_for_cpu,
211 };
212 EXPORT_SYMBOL(arm_nommu_dma_ops);
213 
214 static const struct dma_map_ops *arm_nommu_get_dma_map_ops(bool coherent)
215 {
216 	return coherent ? &dma_noop_ops : &arm_nommu_dma_ops;
217 }
218 
219 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
220 			const struct iommu_ops *iommu, bool coherent)
221 {
222 	const struct dma_map_ops *dma_ops;
223 
224 	if (IS_ENABLED(CONFIG_CPU_V7M)) {
225 		/*
226 		 * Cache support for v7m is optional, so can be treated as
227 		 * coherent if no cache has been detected. Note that it is not
228 		 * enough to check if MPU is in use or not since in absense of
229 		 * MPU system memory map is used.
230 		 */
231 		dev->archdata.dma_coherent = (cacheid) ? coherent : true;
232 	} else {
233 		/*
234 		 * Assume coherent DMA in case MMU/MPU has not been set up.
235 		 */
236 		dev->archdata.dma_coherent = (get_cr() & CR_M) ? coherent : true;
237 	}
238 
239 	dma_ops = arm_nommu_get_dma_map_ops(dev->archdata.dma_coherent);
240 
241 	set_dma_ops(dev, dma_ops);
242 }
243 
244 void arch_teardown_dma_ops(struct device *dev)
245 {
246 }
247 
248 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
249 
250 static int __init dma_debug_do_init(void)
251 {
252 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
253 	return 0;
254 }
255 core_initcall(dma_debug_do_init);
256