xref: /openbmc/linux/arch/arm/mm/cache-v7.S (revision fd589a8f)
1/*
2 *  linux/arch/arm/mm/cache-v7.S
3 *
4 *  Copyright (C) 2001 Deep Blue Solutions Ltd.
5 *  Copyright (C) 2005 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 *  This is the "shell" of the ARMv7 processor support.
12 */
13#include <linux/linkage.h>
14#include <linux/init.h>
15#include <asm/assembler.h>
16
17#include "proc-macros.S"
18
19/*
20 *	v7_flush_dcache_all()
21 *
22 *	Flush the whole D-cache.
23 *
24 *	Corrupted registers: r0-r7, r9-r11 (r6 only in Thumb mode)
25 *
26 *	- mm    - mm_struct describing address space
27 */
28ENTRY(v7_flush_dcache_all)
29	dmb					@ ensure ordering with previous memory accesses
30	mrc	p15, 1, r0, c0, c0, 1		@ read clidr
31	ands	r3, r0, #0x7000000		@ extract loc from clidr
32	mov	r3, r3, lsr #23			@ left align loc bit field
33	beq	finished			@ if loc is 0, then no need to clean
34	mov	r10, #0				@ start clean at cache level 0
35loop1:
36	add	r2, r10, r10, lsr #1		@ work out 3x current cache level
37	mov	r1, r0, lsr r2			@ extract cache type bits from clidr
38	and	r1, r1, #7			@ mask of the bits for current cache only
39	cmp	r1, #2				@ see what cache we have at this level
40	blt	skip				@ skip if no cache, or just i-cache
41	mcr	p15, 2, r10, c0, c0, 0		@ select current cache level in cssr
42	isb					@ isb to sych the new cssr&csidr
43	mrc	p15, 1, r1, c0, c0, 0		@ read the new csidr
44	and	r2, r1, #7			@ extract the length of the cache lines
45	add	r2, r2, #4			@ add 4 (line length offset)
46	ldr	r4, =0x3ff
47	ands	r4, r4, r1, lsr #3		@ find maximum number on the way size
48	clz	r5, r4				@ find bit position of way size increment
49	ldr	r7, =0x7fff
50	ands	r7, r7, r1, lsr #13		@ extract max number of the index size
51loop2:
52	mov	r9, r4				@ create working copy of max way size
53loop3:
54 ARM(	orr	r11, r10, r9, lsl r5	)	@ factor way and cache number into r11
55 THUMB(	lsl	r6, r9, r5		)
56 THUMB(	orr	r11, r10, r6		)	@ factor way and cache number into r11
57 ARM(	orr	r11, r11, r7, lsl r2	)	@ factor index number into r11
58 THUMB(	lsl	r6, r7, r2		)
59 THUMB(	orr	r11, r11, r6		)	@ factor index number into r11
60	mcr	p15, 0, r11, c7, c14, 2		@ clean & invalidate by set/way
61	subs	r9, r9, #1			@ decrement the way
62	bge	loop3
63	subs	r7, r7, #1			@ decrement the index
64	bge	loop2
65skip:
66	add	r10, r10, #2			@ increment cache number
67	cmp	r3, r10
68	bgt	loop1
69finished:
70	mov	r10, #0				@ swith back to cache level 0
71	mcr	p15, 2, r10, c0, c0, 0		@ select current cache level in cssr
72	dsb
73	isb
74	mov	pc, lr
75ENDPROC(v7_flush_dcache_all)
76
77/*
78 *	v7_flush_cache_all()
79 *
80 *	Flush the entire cache system.
81 *  The data cache flush is now achieved using atomic clean / invalidates
82 *  working outwards from L1 cache. This is done using Set/Way based cache
83 *  maintainance instructions.
84 *  The instruction cache can still be invalidated back to the point of
85 *  unification in a single instruction.
86 *
87 */
88ENTRY(v7_flush_kern_cache_all)
89 ARM(	stmfd	sp!, {r4-r5, r7, r9-r11, lr}	)
90 THUMB(	stmfd	sp!, {r4-r7, r9-r11, lr}	)
91	bl	v7_flush_dcache_all
92	mov	r0, #0
93	mcr	p15, 0, r0, c7, c5, 0		@ I+BTB cache invalidate
94 ARM(	ldmfd	sp!, {r4-r5, r7, r9-r11, lr}	)
95 THUMB(	ldmfd	sp!, {r4-r7, r9-r11, lr}	)
96	mov	pc, lr
97ENDPROC(v7_flush_kern_cache_all)
98
99/*
100 *	v7_flush_cache_all()
101 *
102 *	Flush all TLB entries in a particular address space
103 *
104 *	- mm    - mm_struct describing address space
105 */
106ENTRY(v7_flush_user_cache_all)
107	/*FALLTHROUGH*/
108
109/*
110 *	v7_flush_cache_range(start, end, flags)
111 *
112 *	Flush a range of TLB entries in the specified address space.
113 *
114 *	- start - start address (may not be aligned)
115 *	- end   - end address (exclusive, may not be aligned)
116 *	- flags	- vm_area_struct flags describing address space
117 *
118 *	It is assumed that:
119 *	- we have a VIPT cache.
120 */
121ENTRY(v7_flush_user_cache_range)
122	mov	pc, lr
123ENDPROC(v7_flush_user_cache_all)
124ENDPROC(v7_flush_user_cache_range)
125
126/*
127 *	v7_coherent_kern_range(start,end)
128 *
129 *	Ensure that the I and D caches are coherent within specified
130 *	region.  This is typically used when code has been written to
131 *	a memory region, and will be executed.
132 *
133 *	- start   - virtual start address of region
134 *	- end     - virtual end address of region
135 *
136 *	It is assumed that:
137 *	- the Icache does not read data from the write buffer
138 */
139ENTRY(v7_coherent_kern_range)
140	/* FALLTHROUGH */
141
142/*
143 *	v7_coherent_user_range(start,end)
144 *
145 *	Ensure that the I and D caches are coherent within specified
146 *	region.  This is typically used when code has been written to
147 *	a memory region, and will be executed.
148 *
149 *	- start   - virtual start address of region
150 *	- end     - virtual end address of region
151 *
152 *	It is assumed that:
153 *	- the Icache does not read data from the write buffer
154 */
155ENTRY(v7_coherent_user_range)
156	dcache_line_size r2, r3
157	sub	r3, r2, #1
158	bic	r0, r0, r3
1591:	mcr	p15, 0, r0, c7, c11, 1		@ clean D line to the point of unification
160	dsb
161	mcr	p15, 0, r0, c7, c5, 1		@ invalidate I line
162	add	r0, r0, r2
163	cmp	r0, r1
164	blo	1b
165	mov	r0, #0
166	mcr	p15, 0, r0, c7, c5, 6		@ invalidate BTB
167	dsb
168	isb
169	mov	pc, lr
170ENDPROC(v7_coherent_kern_range)
171ENDPROC(v7_coherent_user_range)
172
173/*
174 *	v7_flush_kern_dcache_page(kaddr)
175 *
176 *	Ensure that the data held in the page kaddr is written back
177 *	to the page in question.
178 *
179 *	- kaddr   - kernel address (guaranteed to be page aligned)
180 */
181ENTRY(v7_flush_kern_dcache_page)
182	dcache_line_size r2, r3
183	add	r1, r0, #PAGE_SZ
1841:
185	mcr	p15, 0, r0, c7, c14, 1		@ clean & invalidate D line / unified line
186	add	r0, r0, r2
187	cmp	r0, r1
188	blo	1b
189	dsb
190	mov	pc, lr
191ENDPROC(v7_flush_kern_dcache_page)
192
193/*
194 *	v7_dma_inv_range(start,end)
195 *
196 *	Invalidate the data cache within the specified region; we will
197 *	be performing a DMA operation in this region and we want to
198 *	purge old data in the cache.
199 *
200 *	- start   - virtual start address of region
201 *	- end     - virtual end address of region
202 */
203ENTRY(v7_dma_inv_range)
204	dcache_line_size r2, r3
205	sub	r3, r2, #1
206	tst	r0, r3
207	bic	r0, r0, r3
208	mcrne	p15, 0, r0, c7, c14, 1		@ clean & invalidate D / U line
209
210	tst	r1, r3
211	bic	r1, r1, r3
212	mcrne	p15, 0, r1, c7, c14, 1		@ clean & invalidate D / U line
2131:
214	mcr	p15, 0, r0, c7, c6, 1		@ invalidate D / U line
215	add	r0, r0, r2
216	cmp	r0, r1
217	blo	1b
218	dsb
219	mov	pc, lr
220ENDPROC(v7_dma_inv_range)
221
222/*
223 *	v7_dma_clean_range(start,end)
224 *	- start   - virtual start address of region
225 *	- end     - virtual end address of region
226 */
227ENTRY(v7_dma_clean_range)
228	dcache_line_size r2, r3
229	sub	r3, r2, #1
230	bic	r0, r0, r3
2311:
232	mcr	p15, 0, r0, c7, c10, 1		@ clean D / U line
233	add	r0, r0, r2
234	cmp	r0, r1
235	blo	1b
236	dsb
237	mov	pc, lr
238ENDPROC(v7_dma_clean_range)
239
240/*
241 *	v7_dma_flush_range(start,end)
242 *	- start   - virtual start address of region
243 *	- end     - virtual end address of region
244 */
245ENTRY(v7_dma_flush_range)
246	dcache_line_size r2, r3
247	sub	r3, r2, #1
248	bic	r0, r0, r3
2491:
250	mcr	p15, 0, r0, c7, c14, 1		@ clean & invalidate D / U line
251	add	r0, r0, r2
252	cmp	r0, r1
253	blo	1b
254	dsb
255	mov	pc, lr
256ENDPROC(v7_dma_flush_range)
257
258	__INITDATA
259
260	.type	v7_cache_fns, #object
261ENTRY(v7_cache_fns)
262	.long	v7_flush_kern_cache_all
263	.long	v7_flush_user_cache_all
264	.long	v7_flush_user_cache_range
265	.long	v7_coherent_kern_range
266	.long	v7_coherent_user_range
267	.long	v7_flush_kern_dcache_page
268	.long	v7_dma_inv_range
269	.long	v7_dma_clean_range
270	.long	v7_dma_flush_range
271	.size	v7_cache_fns, . - v7_cache_fns
272