xref: /openbmc/linux/arch/arm/mm/cache-v7.S (revision b595076a)
1/*
2 *  linux/arch/arm/mm/cache-v7.S
3 *
4 *  Copyright (C) 2001 Deep Blue Solutions Ltd.
5 *  Copyright (C) 2005 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 *  This is the "shell" of the ARMv7 processor support.
12 */
13#include <linux/linkage.h>
14#include <linux/init.h>
15#include <asm/assembler.h>
16#include <asm/unwind.h>
17
18#include "proc-macros.S"
19
20/*
21 *	v7_flush_icache_all()
22 *
23 *	Flush the whole I-cache.
24 *
25 *	Registers:
26 *	r0 - set to 0
27 */
28ENTRY(v7_flush_icache_all)
29	mov	r0, #0
30	ALT_SMP(mcr	p15, 0, r0, c7, c1, 0)		@ invalidate I-cache inner shareable
31	ALT_UP(mcr	p15, 0, r0, c7, c5, 0)		@ I+BTB cache invalidate
32	mov	pc, lr
33ENDPROC(v7_flush_icache_all)
34
35/*
36 *	v7_flush_dcache_all()
37 *
38 *	Flush the whole D-cache.
39 *
40 *	Corrupted registers: r0-r7, r9-r11 (r6 only in Thumb mode)
41 *
42 *	- mm    - mm_struct describing address space
43 */
44ENTRY(v7_flush_dcache_all)
45	dmb					@ ensure ordering with previous memory accesses
46	mrc	p15, 1, r0, c0, c0, 1		@ read clidr
47	ands	r3, r0, #0x7000000		@ extract loc from clidr
48	mov	r3, r3, lsr #23			@ left align loc bit field
49	beq	finished			@ if loc is 0, then no need to clean
50	mov	r10, #0				@ start clean at cache level 0
51loop1:
52	add	r2, r10, r10, lsr #1		@ work out 3x current cache level
53	mov	r1, r0, lsr r2			@ extract cache type bits from clidr
54	and	r1, r1, #7			@ mask of the bits for current cache only
55	cmp	r1, #2				@ see what cache we have at this level
56	blt	skip				@ skip if no cache, or just i-cache
57	mcr	p15, 2, r10, c0, c0, 0		@ select current cache level in cssr
58	isb					@ isb to sych the new cssr&csidr
59	mrc	p15, 1, r1, c0, c0, 0		@ read the new csidr
60	and	r2, r1, #7			@ extract the length of the cache lines
61	add	r2, r2, #4			@ add 4 (line length offset)
62	ldr	r4, =0x3ff
63	ands	r4, r4, r1, lsr #3		@ find maximum number on the way size
64	clz	r5, r4				@ find bit position of way size increment
65	ldr	r7, =0x7fff
66	ands	r7, r7, r1, lsr #13		@ extract max number of the index size
67loop2:
68	mov	r9, r4				@ create working copy of max way size
69loop3:
70 ARM(	orr	r11, r10, r9, lsl r5	)	@ factor way and cache number into r11
71 THUMB(	lsl	r6, r9, r5		)
72 THUMB(	orr	r11, r10, r6		)	@ factor way and cache number into r11
73 ARM(	orr	r11, r11, r7, lsl r2	)	@ factor index number into r11
74 THUMB(	lsl	r6, r7, r2		)
75 THUMB(	orr	r11, r11, r6		)	@ factor index number into r11
76	mcr	p15, 0, r11, c7, c14, 2		@ clean & invalidate by set/way
77	subs	r9, r9, #1			@ decrement the way
78	bge	loop3
79	subs	r7, r7, #1			@ decrement the index
80	bge	loop2
81skip:
82	add	r10, r10, #2			@ increment cache number
83	cmp	r3, r10
84	bgt	loop1
85finished:
86	mov	r10, #0				@ swith back to cache level 0
87	mcr	p15, 2, r10, c0, c0, 0		@ select current cache level in cssr
88	dsb
89	isb
90	mov	pc, lr
91ENDPROC(v7_flush_dcache_all)
92
93/*
94 *	v7_flush_cache_all()
95 *
96 *	Flush the entire cache system.
97 *  The data cache flush is now achieved using atomic clean / invalidates
98 *  working outwards from L1 cache. This is done using Set/Way based cache
99 *  maintainance instructions.
100 *  The instruction cache can still be invalidated back to the point of
101 *  unification in a single instruction.
102 *
103 */
104ENTRY(v7_flush_kern_cache_all)
105 ARM(	stmfd	sp!, {r4-r5, r7, r9-r11, lr}	)
106 THUMB(	stmfd	sp!, {r4-r7, r9-r11, lr}	)
107	bl	v7_flush_dcache_all
108	mov	r0, #0
109	ALT_SMP(mcr	p15, 0, r0, c7, c1, 0)	@ invalidate I-cache inner shareable
110	ALT_UP(mcr	p15, 0, r0, c7, c5, 0)	@ I+BTB cache invalidate
111 ARM(	ldmfd	sp!, {r4-r5, r7, r9-r11, lr}	)
112 THUMB(	ldmfd	sp!, {r4-r7, r9-r11, lr}	)
113	mov	pc, lr
114ENDPROC(v7_flush_kern_cache_all)
115
116/*
117 *	v7_flush_cache_all()
118 *
119 *	Flush all TLB entries in a particular address space
120 *
121 *	- mm    - mm_struct describing address space
122 */
123ENTRY(v7_flush_user_cache_all)
124	/*FALLTHROUGH*/
125
126/*
127 *	v7_flush_cache_range(start, end, flags)
128 *
129 *	Flush a range of TLB entries in the specified address space.
130 *
131 *	- start - start address (may not be aligned)
132 *	- end   - end address (exclusive, may not be aligned)
133 *	- flags	- vm_area_struct flags describing address space
134 *
135 *	It is assumed that:
136 *	- we have a VIPT cache.
137 */
138ENTRY(v7_flush_user_cache_range)
139	mov	pc, lr
140ENDPROC(v7_flush_user_cache_all)
141ENDPROC(v7_flush_user_cache_range)
142
143/*
144 *	v7_coherent_kern_range(start,end)
145 *
146 *	Ensure that the I and D caches are coherent within specified
147 *	region.  This is typically used when code has been written to
148 *	a memory region, and will be executed.
149 *
150 *	- start   - virtual start address of region
151 *	- end     - virtual end address of region
152 *
153 *	It is assumed that:
154 *	- the Icache does not read data from the write buffer
155 */
156ENTRY(v7_coherent_kern_range)
157	/* FALLTHROUGH */
158
159/*
160 *	v7_coherent_user_range(start,end)
161 *
162 *	Ensure that the I and D caches are coherent within specified
163 *	region.  This is typically used when code has been written to
164 *	a memory region, and will be executed.
165 *
166 *	- start   - virtual start address of region
167 *	- end     - virtual end address of region
168 *
169 *	It is assumed that:
170 *	- the Icache does not read data from the write buffer
171 */
172ENTRY(v7_coherent_user_range)
173 UNWIND(.fnstart		)
174	dcache_line_size r2, r3
175	sub	r3, r2, #1
176	bic	r0, r0, r3
1771:
178 USER(	mcr	p15, 0, r0, c7, c11, 1	)	@ clean D line to the point of unification
179	dsb
180 USER(	mcr	p15, 0, r0, c7, c5, 1	)	@ invalidate I line
181	add	r0, r0, r2
1822:
183	cmp	r0, r1
184	blo	1b
185	mov	r0, #0
186	ALT_SMP(mcr	p15, 0, r0, c7, c1, 6)	@ invalidate BTB Inner Shareable
187	ALT_UP(mcr	p15, 0, r0, c7, c5, 6)	@ invalidate BTB
188	dsb
189	isb
190	mov	pc, lr
191
192/*
193 * Fault handling for the cache operation above. If the virtual address in r0
194 * isn't mapped, just try the next page.
195 */
1969001:
197	mov	r0, r0, lsr #12
198	mov	r0, r0, lsl #12
199	add	r0, r0, #4096
200	b	2b
201 UNWIND(.fnend		)
202ENDPROC(v7_coherent_kern_range)
203ENDPROC(v7_coherent_user_range)
204
205/*
206 *	v7_flush_kern_dcache_area(void *addr, size_t size)
207 *
208 *	Ensure that the data held in the page kaddr is written back
209 *	to the page in question.
210 *
211 *	- addr	- kernel address
212 *	- size	- region size
213 */
214ENTRY(v7_flush_kern_dcache_area)
215	dcache_line_size r2, r3
216	add	r1, r0, r1
2171:
218	mcr	p15, 0, r0, c7, c14, 1		@ clean & invalidate D line / unified line
219	add	r0, r0, r2
220	cmp	r0, r1
221	blo	1b
222	dsb
223	mov	pc, lr
224ENDPROC(v7_flush_kern_dcache_area)
225
226/*
227 *	v7_dma_inv_range(start,end)
228 *
229 *	Invalidate the data cache within the specified region; we will
230 *	be performing a DMA operation in this region and we want to
231 *	purge old data in the cache.
232 *
233 *	- start   - virtual start address of region
234 *	- end     - virtual end address of region
235 */
236v7_dma_inv_range:
237	dcache_line_size r2, r3
238	sub	r3, r2, #1
239	tst	r0, r3
240	bic	r0, r0, r3
241	mcrne	p15, 0, r0, c7, c14, 1		@ clean & invalidate D / U line
242
243	tst	r1, r3
244	bic	r1, r1, r3
245	mcrne	p15, 0, r1, c7, c14, 1		@ clean & invalidate D / U line
2461:
247	mcr	p15, 0, r0, c7, c6, 1		@ invalidate D / U line
248	add	r0, r0, r2
249	cmp	r0, r1
250	blo	1b
251	dsb
252	mov	pc, lr
253ENDPROC(v7_dma_inv_range)
254
255/*
256 *	v7_dma_clean_range(start,end)
257 *	- start   - virtual start address of region
258 *	- end     - virtual end address of region
259 */
260v7_dma_clean_range:
261	dcache_line_size r2, r3
262	sub	r3, r2, #1
263	bic	r0, r0, r3
2641:
265	mcr	p15, 0, r0, c7, c10, 1		@ clean D / U line
266	add	r0, r0, r2
267	cmp	r0, r1
268	blo	1b
269	dsb
270	mov	pc, lr
271ENDPROC(v7_dma_clean_range)
272
273/*
274 *	v7_dma_flush_range(start,end)
275 *	- start   - virtual start address of region
276 *	- end     - virtual end address of region
277 */
278ENTRY(v7_dma_flush_range)
279	dcache_line_size r2, r3
280	sub	r3, r2, #1
281	bic	r0, r0, r3
2821:
283	mcr	p15, 0, r0, c7, c14, 1		@ clean & invalidate D / U line
284	add	r0, r0, r2
285	cmp	r0, r1
286	blo	1b
287	dsb
288	mov	pc, lr
289ENDPROC(v7_dma_flush_range)
290
291/*
292 *	dma_map_area(start, size, dir)
293 *	- start	- kernel virtual start address
294 *	- size	- size of region
295 *	- dir	- DMA direction
296 */
297ENTRY(v7_dma_map_area)
298	add	r1, r1, r0
299	teq	r2, #DMA_FROM_DEVICE
300	beq	v7_dma_inv_range
301	b	v7_dma_clean_range
302ENDPROC(v7_dma_map_area)
303
304/*
305 *	dma_unmap_area(start, size, dir)
306 *	- start	- kernel virtual start address
307 *	- size	- size of region
308 *	- dir	- DMA direction
309 */
310ENTRY(v7_dma_unmap_area)
311	add	r1, r1, r0
312	teq	r2, #DMA_TO_DEVICE
313	bne	v7_dma_inv_range
314	mov	pc, lr
315ENDPROC(v7_dma_unmap_area)
316
317	__INITDATA
318
319	.type	v7_cache_fns, #object
320ENTRY(v7_cache_fns)
321	.long	v7_flush_icache_all
322	.long	v7_flush_kern_cache_all
323	.long	v7_flush_user_cache_all
324	.long	v7_flush_user_cache_range
325	.long	v7_coherent_kern_range
326	.long	v7_coherent_user_range
327	.long	v7_flush_kern_dcache_area
328	.long	v7_dma_map_area
329	.long	v7_dma_unmap_area
330	.long	v7_dma_flush_range
331	.size	v7_cache_fns, . - v7_cache_fns
332