1/* 2 * linux/arch/arm/mm/cache-v7.S 3 * 4 * Copyright (C) 2001 Deep Blue Solutions Ltd. 5 * Copyright (C) 2005 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This is the "shell" of the ARMv7 processor support. 12 */ 13#include <linux/linkage.h> 14#include <linux/init.h> 15#include <asm/assembler.h> 16#include <asm/unwind.h> 17 18#include "proc-macros.S" 19 20/* 21 * v7_flush_icache_all() 22 * 23 * Flush the whole I-cache. 24 * 25 * Registers: 26 * r0 - set to 0 27 */ 28ENTRY(v7_flush_icache_all) 29 mov r0, #0 30 ALT_SMP(mcr p15, 0, r0, c7, c1, 0) @ invalidate I-cache inner shareable 31 ALT_UP(mcr p15, 0, r0, c7, c5, 0) @ I+BTB cache invalidate 32 mov pc, lr 33ENDPROC(v7_flush_icache_all) 34 35/* 36 * v7_flush_dcache_all() 37 * 38 * Flush the whole D-cache. 39 * 40 * Corrupted registers: r0-r7, r9-r11 (r6 only in Thumb mode) 41 * 42 * - mm - mm_struct describing address space 43 */ 44ENTRY(v7_flush_dcache_all) 45 dmb @ ensure ordering with previous memory accesses 46 mrc p15, 1, r0, c0, c0, 1 @ read clidr 47 ands r3, r0, #0x7000000 @ extract loc from clidr 48 mov r3, r3, lsr #23 @ left align loc bit field 49 beq finished @ if loc is 0, then no need to clean 50 mov r10, #0 @ start clean at cache level 0 51loop1: 52 add r2, r10, r10, lsr #1 @ work out 3x current cache level 53 mov r1, r0, lsr r2 @ extract cache type bits from clidr 54 and r1, r1, #7 @ mask of the bits for current cache only 55 cmp r1, #2 @ see what cache we have at this level 56 blt skip @ skip if no cache, or just i-cache 57 mcr p15, 2, r10, c0, c0, 0 @ select current cache level in cssr 58 isb @ isb to sych the new cssr&csidr 59 mrc p15, 1, r1, c0, c0, 0 @ read the new csidr 60 and r2, r1, #7 @ extract the length of the cache lines 61 add r2, r2, #4 @ add 4 (line length offset) 62 ldr r4, =0x3ff 63 ands r4, r4, r1, lsr #3 @ find maximum number on the way size 64 clz r5, r4 @ find bit position of way size increment 65 ldr r7, =0x7fff 66 ands r7, r7, r1, lsr #13 @ extract max number of the index size 67loop2: 68 mov r9, r4 @ create working copy of max way size 69loop3: 70 ARM( orr r11, r10, r9, lsl r5 ) @ factor way and cache number into r11 71 THUMB( lsl r6, r9, r5 ) 72 THUMB( orr r11, r10, r6 ) @ factor way and cache number into r11 73 ARM( orr r11, r11, r7, lsl r2 ) @ factor index number into r11 74 THUMB( lsl r6, r7, r2 ) 75 THUMB( orr r11, r11, r6 ) @ factor index number into r11 76 mcr p15, 0, r11, c7, c14, 2 @ clean & invalidate by set/way 77 subs r9, r9, #1 @ decrement the way 78 bge loop3 79 subs r7, r7, #1 @ decrement the index 80 bge loop2 81skip: 82 add r10, r10, #2 @ increment cache number 83 cmp r3, r10 84 bgt loop1 85finished: 86 mov r10, #0 @ swith back to cache level 0 87 mcr p15, 2, r10, c0, c0, 0 @ select current cache level in cssr 88 dsb 89 isb 90 mov pc, lr 91ENDPROC(v7_flush_dcache_all) 92 93/* 94 * v7_flush_cache_all() 95 * 96 * Flush the entire cache system. 97 * The data cache flush is now achieved using atomic clean / invalidates 98 * working outwards from L1 cache. This is done using Set/Way based cache 99 * maintenance instructions. 100 * The instruction cache can still be invalidated back to the point of 101 * unification in a single instruction. 102 * 103 */ 104ENTRY(v7_flush_kern_cache_all) 105 ARM( stmfd sp!, {r4-r5, r7, r9-r11, lr} ) 106 THUMB( stmfd sp!, {r4-r7, r9-r11, lr} ) 107 bl v7_flush_dcache_all 108 mov r0, #0 109 ALT_SMP(mcr p15, 0, r0, c7, c1, 0) @ invalidate I-cache inner shareable 110 ALT_UP(mcr p15, 0, r0, c7, c5, 0) @ I+BTB cache invalidate 111 ARM( ldmfd sp!, {r4-r5, r7, r9-r11, lr} ) 112 THUMB( ldmfd sp!, {r4-r7, r9-r11, lr} ) 113 mov pc, lr 114ENDPROC(v7_flush_kern_cache_all) 115 116/* 117 * v7_flush_cache_all() 118 * 119 * Flush all TLB entries in a particular address space 120 * 121 * - mm - mm_struct describing address space 122 */ 123ENTRY(v7_flush_user_cache_all) 124 /*FALLTHROUGH*/ 125 126/* 127 * v7_flush_cache_range(start, end, flags) 128 * 129 * Flush a range of TLB entries in the specified address space. 130 * 131 * - start - start address (may not be aligned) 132 * - end - end address (exclusive, may not be aligned) 133 * - flags - vm_area_struct flags describing address space 134 * 135 * It is assumed that: 136 * - we have a VIPT cache. 137 */ 138ENTRY(v7_flush_user_cache_range) 139 mov pc, lr 140ENDPROC(v7_flush_user_cache_all) 141ENDPROC(v7_flush_user_cache_range) 142 143/* 144 * v7_coherent_kern_range(start,end) 145 * 146 * Ensure that the I and D caches are coherent within specified 147 * region. This is typically used when code has been written to 148 * a memory region, and will be executed. 149 * 150 * - start - virtual start address of region 151 * - end - virtual end address of region 152 * 153 * It is assumed that: 154 * - the Icache does not read data from the write buffer 155 */ 156ENTRY(v7_coherent_kern_range) 157 /* FALLTHROUGH */ 158 159/* 160 * v7_coherent_user_range(start,end) 161 * 162 * Ensure that the I and D caches are coherent within specified 163 * region. This is typically used when code has been written to 164 * a memory region, and will be executed. 165 * 166 * - start - virtual start address of region 167 * - end - virtual end address of region 168 * 169 * It is assumed that: 170 * - the Icache does not read data from the write buffer 171 */ 172ENTRY(v7_coherent_user_range) 173 UNWIND(.fnstart ) 174 dcache_line_size r2, r3 175 sub r3, r2, #1 176 bic r12, r0, r3 1771: 178 USER( mcr p15, 0, r12, c7, c11, 1 ) @ clean D line to the point of unification 179 add r12, r12, r2 180 cmp r12, r1 181 blo 1b 182 dsb 183 icache_line_size r2, r3 184 sub r3, r2, #1 185 bic r12, r0, r3 1862: 187 USER( mcr p15, 0, r12, c7, c5, 1 ) @ invalidate I line 188 add r12, r12, r2 189 cmp r12, r1 190 blo 2b 1913: 192 mov r0, #0 193 ALT_SMP(mcr p15, 0, r0, c7, c1, 6) @ invalidate BTB Inner Shareable 194 ALT_UP(mcr p15, 0, r0, c7, c5, 6) @ invalidate BTB 195 dsb 196 isb 197 mov pc, lr 198 199/* 200 * Fault handling for the cache operation above. If the virtual address in r0 201 * isn't mapped, just try the next page. 202 */ 2039001: 204 mov r12, r12, lsr #12 205 mov r12, r12, lsl #12 206 add r12, r12, #4096 207 b 3b 208 UNWIND(.fnend ) 209ENDPROC(v7_coherent_kern_range) 210ENDPROC(v7_coherent_user_range) 211 212/* 213 * v7_flush_kern_dcache_area(void *addr, size_t size) 214 * 215 * Ensure that the data held in the page kaddr is written back 216 * to the page in question. 217 * 218 * - addr - kernel address 219 * - size - region size 220 */ 221ENTRY(v7_flush_kern_dcache_area) 222 dcache_line_size r2, r3 223 add r1, r0, r1 224 sub r3, r2, #1 225 bic r0, r0, r3 2261: 227 mcr p15, 0, r0, c7, c14, 1 @ clean & invalidate D line / unified line 228 add r0, r0, r2 229 cmp r0, r1 230 blo 1b 231 dsb 232 mov pc, lr 233ENDPROC(v7_flush_kern_dcache_area) 234 235/* 236 * v7_dma_inv_range(start,end) 237 * 238 * Invalidate the data cache within the specified region; we will 239 * be performing a DMA operation in this region and we want to 240 * purge old data in the cache. 241 * 242 * - start - virtual start address of region 243 * - end - virtual end address of region 244 */ 245v7_dma_inv_range: 246 dcache_line_size r2, r3 247 sub r3, r2, #1 248 tst r0, r3 249 bic r0, r0, r3 250 mcrne p15, 0, r0, c7, c14, 1 @ clean & invalidate D / U line 251 252 tst r1, r3 253 bic r1, r1, r3 254 mcrne p15, 0, r1, c7, c14, 1 @ clean & invalidate D / U line 2551: 256 mcr p15, 0, r0, c7, c6, 1 @ invalidate D / U line 257 add r0, r0, r2 258 cmp r0, r1 259 blo 1b 260 dsb 261 mov pc, lr 262ENDPROC(v7_dma_inv_range) 263 264/* 265 * v7_dma_clean_range(start,end) 266 * - start - virtual start address of region 267 * - end - virtual end address of region 268 */ 269v7_dma_clean_range: 270 dcache_line_size r2, r3 271 sub r3, r2, #1 272 bic r0, r0, r3 2731: 274 mcr p15, 0, r0, c7, c10, 1 @ clean D / U line 275 add r0, r0, r2 276 cmp r0, r1 277 blo 1b 278 dsb 279 mov pc, lr 280ENDPROC(v7_dma_clean_range) 281 282/* 283 * v7_dma_flush_range(start,end) 284 * - start - virtual start address of region 285 * - end - virtual end address of region 286 */ 287ENTRY(v7_dma_flush_range) 288 dcache_line_size r2, r3 289 sub r3, r2, #1 290 bic r0, r0, r3 2911: 292 mcr p15, 0, r0, c7, c14, 1 @ clean & invalidate D / U line 293 add r0, r0, r2 294 cmp r0, r1 295 blo 1b 296 dsb 297 mov pc, lr 298ENDPROC(v7_dma_flush_range) 299 300/* 301 * dma_map_area(start, size, dir) 302 * - start - kernel virtual start address 303 * - size - size of region 304 * - dir - DMA direction 305 */ 306ENTRY(v7_dma_map_area) 307 add r1, r1, r0 308 teq r2, #DMA_FROM_DEVICE 309 beq v7_dma_inv_range 310 b v7_dma_clean_range 311ENDPROC(v7_dma_map_area) 312 313/* 314 * dma_unmap_area(start, size, dir) 315 * - start - kernel virtual start address 316 * - size - size of region 317 * - dir - DMA direction 318 */ 319ENTRY(v7_dma_unmap_area) 320 add r1, r1, r0 321 teq r2, #DMA_TO_DEVICE 322 bne v7_dma_inv_range 323 mov pc, lr 324ENDPROC(v7_dma_unmap_area) 325 326 __INITDATA 327 328 .type v7_cache_fns, #object 329ENTRY(v7_cache_fns) 330 .long v7_flush_icache_all 331 .long v7_flush_kern_cache_all 332 .long v7_flush_user_cache_all 333 .long v7_flush_user_cache_range 334 .long v7_coherent_kern_range 335 .long v7_coherent_user_range 336 .long v7_flush_kern_dcache_area 337 .long v7_dma_map_area 338 .long v7_dma_unmap_area 339 .long v7_dma_flush_range 340 .size v7_cache_fns, . - v7_cache_fns 341