xref: /openbmc/linux/arch/arm/mm/cache-b15-rac.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * Broadcom Brahma-B15 CPU read-ahead cache management functions
3  *
4  * Copyright (C) 2015-2016 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/err.h>
12 #include <linux/spinlock.h>
13 #include <linux/io.h>
14 #include <linux/bitops.h>
15 #include <linux/of_address.h>
16 #include <linux/notifier.h>
17 #include <linux/cpu.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/reboot.h>
20 
21 #include <asm/cacheflush.h>
22 #include <asm/hardware/cache-b15-rac.h>
23 
24 extern void v7_flush_kern_cache_all(void);
25 
26 /* RAC register offsets, relative to the HIF_CPU_BIUCTRL register base */
27 #define RAC_CONFIG0_REG			(0x78)
28 #define  RACENPREF_MASK			(0x3)
29 #define  RACPREFINST_SHIFT		(0)
30 #define  RACENINST_SHIFT		(2)
31 #define  RACPREFDATA_SHIFT		(4)
32 #define  RACENDATA_SHIFT		(6)
33 #define  RAC_CPU_SHIFT			(8)
34 #define  RACCFG_MASK			(0xff)
35 #define RAC_CONFIG1_REG			(0x7c)
36 #define RAC_FLUSH_REG			(0x80)
37 #define  FLUSH_RAC			(1 << 0)
38 
39 /* Bitmask to enable instruction and data prefetching with a 256-bytes stride */
40 #define RAC_DATA_INST_EN_MASK		(1 << RACPREFINST_SHIFT | \
41 					 RACENPREF_MASK << RACENINST_SHIFT | \
42 					 1 << RACPREFDATA_SHIFT | \
43 					 RACENPREF_MASK << RACENDATA_SHIFT)
44 
45 #define RAC_ENABLED			0
46 /* Special state where we want to bypass the spinlock and call directly
47  * into the v7 cache maintenance operations during suspend/resume
48  */
49 #define RAC_SUSPENDED			1
50 
51 static void __iomem *b15_rac_base;
52 static DEFINE_SPINLOCK(rac_lock);
53 
54 static u32 rac_config0_reg;
55 
56 /* Initialization flag to avoid checking for b15_rac_base, and to prevent
57  * multi-platform kernels from crashing here as well.
58  */
59 static unsigned long b15_rac_flags;
60 
61 static inline u32 __b15_rac_disable(void)
62 {
63 	u32 val = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
64 	__raw_writel(0, b15_rac_base + RAC_CONFIG0_REG);
65 	dmb();
66 	return val;
67 }
68 
69 static inline void __b15_rac_flush(void)
70 {
71 	u32 reg;
72 
73 	__raw_writel(FLUSH_RAC, b15_rac_base + RAC_FLUSH_REG);
74 	do {
75 		/* This dmb() is required to force the Bus Interface Unit
76 		 * to clean oustanding writes, and forces an idle cycle
77 		 * to be inserted.
78 		 */
79 		dmb();
80 		reg = __raw_readl(b15_rac_base + RAC_FLUSH_REG);
81 	} while (reg & FLUSH_RAC);
82 }
83 
84 static inline u32 b15_rac_disable_and_flush(void)
85 {
86 	u32 reg;
87 
88 	reg = __b15_rac_disable();
89 	__b15_rac_flush();
90 	return reg;
91 }
92 
93 static inline void __b15_rac_enable(u32 val)
94 {
95 	__raw_writel(val, b15_rac_base + RAC_CONFIG0_REG);
96 	/* dsb() is required here to be consistent with __flush_icache_all() */
97 	dsb();
98 }
99 
100 #define BUILD_RAC_CACHE_OP(name, bar)				\
101 void b15_flush_##name(void)					\
102 {								\
103 	unsigned int do_flush;					\
104 	u32 val = 0;						\
105 								\
106 	if (test_bit(RAC_SUSPENDED, &b15_rac_flags)) {		\
107 		v7_flush_##name();				\
108 		bar;						\
109 		return;						\
110 	}							\
111 								\
112 	spin_lock(&rac_lock);					\
113 	do_flush = test_bit(RAC_ENABLED, &b15_rac_flags);	\
114 	if (do_flush)						\
115 		val = b15_rac_disable_and_flush();		\
116 	v7_flush_##name();					\
117 	if (!do_flush)						\
118 		bar;						\
119 	else							\
120 		__b15_rac_enable(val);				\
121 	spin_unlock(&rac_lock);					\
122 }
123 
124 #define nobarrier
125 
126 /* The readahead cache present in the Brahma-B15 CPU is a special piece of
127  * hardware after the integrated L2 cache of the B15 CPU complex whose purpose
128  * is to prefetch instruction and/or data with a line size of either 64 bytes
129  * or 256 bytes. The rationale is that the data-bus of the CPU interface is
130  * optimized for 256-bytes transactions, and enabling the readahead cache
131  * provides a significant performance boost we want it enabled (typically
132  * twice the performance for a memcpy benchmark application).
133  *
134  * The readahead cache is transparent for Modified Virtual Addresses
135  * cache maintenance operations: ICIMVAU, DCIMVAC, DCCMVAC, DCCMVAU and
136  * DCCIMVAC.
137  *
138  * It is however not transparent for the following cache maintenance
139  * operations: DCISW, DCCSW, DCCISW, ICIALLUIS and ICIALLU which is precisely
140  * what we are patching here with our BUILD_RAC_CACHE_OP here.
141  */
142 BUILD_RAC_CACHE_OP(kern_cache_all, nobarrier);
143 
144 static void b15_rac_enable(void)
145 {
146 	unsigned int cpu;
147 	u32 enable = 0;
148 
149 	for_each_possible_cpu(cpu)
150 		enable |= (RAC_DATA_INST_EN_MASK << (cpu * RAC_CPU_SHIFT));
151 
152 	b15_rac_disable_and_flush();
153 	__b15_rac_enable(enable);
154 }
155 
156 static int b15_rac_reboot_notifier(struct notifier_block *nb,
157 				   unsigned long action,
158 				   void *data)
159 {
160 	/* During kexec, we are not yet migrated on the boot CPU, so we need to
161 	 * make sure we are SMP safe here. Once the RAC is disabled, flag it as
162 	 * suspended such that the hotplug notifier returns early.
163 	 */
164 	if (action == SYS_RESTART) {
165 		spin_lock(&rac_lock);
166 		b15_rac_disable_and_flush();
167 		clear_bit(RAC_ENABLED, &b15_rac_flags);
168 		set_bit(RAC_SUSPENDED, &b15_rac_flags);
169 		spin_unlock(&rac_lock);
170 	}
171 
172 	return NOTIFY_DONE;
173 }
174 
175 static struct notifier_block b15_rac_reboot_nb = {
176 	.notifier_call	= b15_rac_reboot_notifier,
177 };
178 
179 /* The CPU hotplug case is the most interesting one, we basically need to make
180  * sure that the RAC is disabled for the entire system prior to having a CPU
181  * die, in particular prior to this dying CPU having exited the coherency
182  * domain.
183  *
184  * Once this CPU is marked dead, we can safely re-enable the RAC for the
185  * remaining CPUs in the system which are still online.
186  *
187  * Offlining a CPU is the problematic case, onlining a CPU is not much of an
188  * issue since the CPU and its cache-level hierarchy will start filling with
189  * the RAC disabled, so L1 and L2 only.
190  *
191  * In this function, we should NOT have to verify any unsafe setting/condition
192  * b15_rac_base:
193  *
194  *   It is protected by the RAC_ENABLED flag which is cleared by default, and
195  *   being cleared when initial procedure is done. b15_rac_base had been set at
196  *   that time.
197  *
198  * RAC_ENABLED:
199  *   There is a small timing windows, in b15_rac_init(), between
200  *      cpuhp_setup_state_*()
201  *      ...
202  *      set RAC_ENABLED
203  *   However, there is no hotplug activity based on the Linux booting procedure.
204  *
205  * Since we have to disable RAC for all cores, we keep RAC on as long as as
206  * possible (disable it as late as possible) to gain the cache benefit.
207  *
208  * Thus, dying/dead states are chosen here
209  *
210  * We are choosing not do disable the RAC on a per-CPU basis, here, if we did
211  * we would want to consider disabling it as early as possible to benefit the
212  * other active CPUs.
213  */
214 
215 /* Running on the dying CPU */
216 static int b15_rac_dying_cpu(unsigned int cpu)
217 {
218 	/* During kexec/reboot, the RAC is disabled via the reboot notifier
219 	 * return early here.
220 	 */
221 	if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
222 		return 0;
223 
224 	spin_lock(&rac_lock);
225 
226 	/* Indicate that we are starting a hotplug procedure */
227 	__clear_bit(RAC_ENABLED, &b15_rac_flags);
228 
229 	/* Disable the readahead cache and save its value to a global */
230 	rac_config0_reg = b15_rac_disable_and_flush();
231 
232 	spin_unlock(&rac_lock);
233 
234 	return 0;
235 }
236 
237 /* Running on a non-dying CPU */
238 static int b15_rac_dead_cpu(unsigned int cpu)
239 {
240 	/* During kexec/reboot, the RAC is disabled via the reboot notifier
241 	 * return early here.
242 	 */
243 	if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
244 		return 0;
245 
246 	spin_lock(&rac_lock);
247 
248 	/* And enable it */
249 	__b15_rac_enable(rac_config0_reg);
250 	__set_bit(RAC_ENABLED, &b15_rac_flags);
251 
252 	spin_unlock(&rac_lock);
253 
254 	return 0;
255 }
256 
257 static int b15_rac_suspend(void)
258 {
259 	/* Suspend the read-ahead cache oeprations, forcing our cache
260 	 * implementation to fallback to the regular ARMv7 calls.
261 	 *
262 	 * We are guaranteed to be running on the boot CPU at this point and
263 	 * with every other CPU quiesced, so setting RAC_SUSPENDED is not racy
264 	 * here.
265 	 */
266 	rac_config0_reg = b15_rac_disable_and_flush();
267 	set_bit(RAC_SUSPENDED, &b15_rac_flags);
268 
269 	return 0;
270 }
271 
272 static void b15_rac_resume(void)
273 {
274 	/* Coming out of a S3 suspend/resume cycle, the read-ahead cache
275 	 * register RAC_CONFIG0_REG will be restored to its default value, make
276 	 * sure we re-enable it and set the enable flag, we are also guaranteed
277 	 * to run on the boot CPU, so not racy again.
278 	 */
279 	__b15_rac_enable(rac_config0_reg);
280 	clear_bit(RAC_SUSPENDED, &b15_rac_flags);
281 }
282 
283 static struct syscore_ops b15_rac_syscore_ops = {
284 	.suspend	= b15_rac_suspend,
285 	.resume		= b15_rac_resume,
286 };
287 
288 static int __init b15_rac_init(void)
289 {
290 	struct device_node *dn;
291 	int ret = 0, cpu;
292 	u32 reg, en_mask = 0;
293 
294 	dn = of_find_compatible_node(NULL, NULL, "brcm,brcmstb-cpu-biu-ctrl");
295 	if (!dn)
296 		return -ENODEV;
297 
298 	if (WARN(num_possible_cpus() > 4, "RAC only supports 4 CPUs\n"))
299 		goto out;
300 
301 	b15_rac_base = of_iomap(dn, 0);
302 	if (!b15_rac_base) {
303 		pr_err("failed to remap BIU control base\n");
304 		ret = -ENOMEM;
305 		goto out;
306 	}
307 
308 	ret = register_reboot_notifier(&b15_rac_reboot_nb);
309 	if (ret) {
310 		pr_err("failed to register reboot notifier\n");
311 		iounmap(b15_rac_base);
312 		goto out;
313 	}
314 
315 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
316 		ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DEAD,
317 					"arm/cache-b15-rac:dead",
318 					NULL, b15_rac_dead_cpu);
319 		if (ret)
320 			goto out_unmap;
321 
322 		ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING,
323 					"arm/cache-b15-rac:dying",
324 					NULL, b15_rac_dying_cpu);
325 		if (ret)
326 			goto out_cpu_dead;
327 	}
328 
329 	if (IS_ENABLED(CONFIG_PM_SLEEP))
330 		register_syscore_ops(&b15_rac_syscore_ops);
331 
332 	spin_lock(&rac_lock);
333 	reg = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
334 	for_each_possible_cpu(cpu)
335 		en_mask |= ((1 << RACPREFDATA_SHIFT) << (cpu * RAC_CPU_SHIFT));
336 	WARN(reg & en_mask, "Read-ahead cache not previously disabled\n");
337 
338 	b15_rac_enable();
339 	set_bit(RAC_ENABLED, &b15_rac_flags);
340 	spin_unlock(&rac_lock);
341 
342 	pr_info("Broadcom Brahma-B15 readahead cache at: 0x%p\n",
343 		b15_rac_base + RAC_CONFIG0_REG);
344 
345 	goto out;
346 
347 out_cpu_dead:
348 	cpuhp_remove_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING);
349 out_unmap:
350 	unregister_reboot_notifier(&b15_rac_reboot_nb);
351 	iounmap(b15_rac_base);
352 out:
353 	of_node_put(dn);
354 	return ret;
355 }
356 arch_initcall(b15_rac_init);
357