xref: /openbmc/linux/arch/arm/mm/alignment.c (revision 62e7ca52)
1 /*
2  *  linux/arch/arm/mm/alignment.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Modifications for ARM processor (c) 1995-2001 Russell King
6  *  Thumb alignment fault fixups (c) 2004 MontaVista Software, Inc.
7  *  - Adapted from gdb/sim/arm/thumbemu.c -- Thumb instruction emulation.
8  *    Copyright (C) 1996, Cygnus Software Technologies Ltd.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14 #include <linux/moduleparam.h>
15 #include <linux/compiler.h>
16 #include <linux/kernel.h>
17 #include <linux/errno.h>
18 #include <linux/string.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 
25 #include <asm/cp15.h>
26 #include <asm/system_info.h>
27 #include <asm/unaligned.h>
28 #include <asm/opcodes.h>
29 
30 #include "fault.h"
31 #include "mm.h"
32 
33 /*
34  * 32-bit misaligned trap handler (c) 1998 San Mehat (CCC) -July 1998
35  * /proc/sys/debug/alignment, modified and integrated into
36  * Linux 2.1 by Russell King
37  *
38  * Speed optimisations and better fault handling by Russell King.
39  *
40  * *** NOTE ***
41  * This code is not portable to processors with late data abort handling.
42  */
43 #define CODING_BITS(i)	(i & 0x0e000000)
44 
45 #define LDST_I_BIT(i)	(i & (1 << 26))		/* Immediate constant	*/
46 #define LDST_P_BIT(i)	(i & (1 << 24))		/* Preindex		*/
47 #define LDST_U_BIT(i)	(i & (1 << 23))		/* Add offset		*/
48 #define LDST_W_BIT(i)	(i & (1 << 21))		/* Writeback		*/
49 #define LDST_L_BIT(i)	(i & (1 << 20))		/* Load			*/
50 
51 #define LDST_P_EQ_U(i)	((((i) ^ ((i) >> 1)) & (1 << 23)) == 0)
52 
53 #define LDSTHD_I_BIT(i)	(i & (1 << 22))		/* double/half-word immed */
54 #define LDM_S_BIT(i)	(i & (1 << 22))		/* write CPSR from SPSR	*/
55 
56 #define RN_BITS(i)	((i >> 16) & 15)	/* Rn			*/
57 #define RD_BITS(i)	((i >> 12) & 15)	/* Rd			*/
58 #define RM_BITS(i)	(i & 15)		/* Rm			*/
59 
60 #define REGMASK_BITS(i)	(i & 0xffff)
61 #define OFFSET_BITS(i)	(i & 0x0fff)
62 
63 #define IS_SHIFT(i)	(i & 0x0ff0)
64 #define SHIFT_BITS(i)	((i >> 7) & 0x1f)
65 #define SHIFT_TYPE(i)	(i & 0x60)
66 #define SHIFT_LSL	0x00
67 #define SHIFT_LSR	0x20
68 #define SHIFT_ASR	0x40
69 #define SHIFT_RORRRX	0x60
70 
71 #define BAD_INSTR 	0xdeadc0de
72 
73 /* Thumb-2 32 bit format per ARMv7 DDI0406A A6.3, either f800h,e800h,f800h */
74 #define IS_T32(hi16) \
75 	(((hi16) & 0xe000) == 0xe000 && ((hi16) & 0x1800))
76 
77 static unsigned long ai_user;
78 static unsigned long ai_sys;
79 static void *ai_sys_last_pc;
80 static unsigned long ai_skipped;
81 static unsigned long ai_half;
82 static unsigned long ai_word;
83 static unsigned long ai_dword;
84 static unsigned long ai_multi;
85 static int ai_usermode;
86 static unsigned long cr_no_alignment;
87 
88 core_param(alignment, ai_usermode, int, 0600);
89 
90 #define UM_WARN		(1 << 0)
91 #define UM_FIXUP	(1 << 1)
92 #define UM_SIGNAL	(1 << 2)
93 
94 /* Return true if and only if the ARMv6 unaligned access model is in use. */
95 static bool cpu_is_v6_unaligned(void)
96 {
97 	return cpu_architecture() >= CPU_ARCH_ARMv6 && get_cr() & CR_U;
98 }
99 
100 static int safe_usermode(int new_usermode, bool warn)
101 {
102 	/*
103 	 * ARMv6 and later CPUs can perform unaligned accesses for
104 	 * most single load and store instructions up to word size.
105 	 * LDM, STM, LDRD and STRD still need to be handled.
106 	 *
107 	 * Ignoring the alignment fault is not an option on these
108 	 * CPUs since we spin re-faulting the instruction without
109 	 * making any progress.
110 	 */
111 	if (cpu_is_v6_unaligned() && !(new_usermode & (UM_FIXUP | UM_SIGNAL))) {
112 		new_usermode |= UM_FIXUP;
113 
114 		if (warn)
115 			printk(KERN_WARNING "alignment: ignoring faults is unsafe on this CPU.  Defaulting to fixup mode.\n");
116 	}
117 
118 	return new_usermode;
119 }
120 
121 #ifdef CONFIG_PROC_FS
122 static const char *usermode_action[] = {
123 	"ignored",
124 	"warn",
125 	"fixup",
126 	"fixup+warn",
127 	"signal",
128 	"signal+warn"
129 };
130 
131 static int alignment_proc_show(struct seq_file *m, void *v)
132 {
133 	seq_printf(m, "User:\t\t%lu\n", ai_user);
134 	seq_printf(m, "System:\t\t%lu (%pF)\n", ai_sys, ai_sys_last_pc);
135 	seq_printf(m, "Skipped:\t%lu\n", ai_skipped);
136 	seq_printf(m, "Half:\t\t%lu\n", ai_half);
137 	seq_printf(m, "Word:\t\t%lu\n", ai_word);
138 	if (cpu_architecture() >= CPU_ARCH_ARMv5TE)
139 		seq_printf(m, "DWord:\t\t%lu\n", ai_dword);
140 	seq_printf(m, "Multi:\t\t%lu\n", ai_multi);
141 	seq_printf(m, "User faults:\t%i (%s)\n", ai_usermode,
142 			usermode_action[ai_usermode]);
143 
144 	return 0;
145 }
146 
147 static int alignment_proc_open(struct inode *inode, struct file *file)
148 {
149 	return single_open(file, alignment_proc_show, NULL);
150 }
151 
152 static ssize_t alignment_proc_write(struct file *file, const char __user *buffer,
153 				    size_t count, loff_t *pos)
154 {
155 	char mode;
156 
157 	if (count > 0) {
158 		if (get_user(mode, buffer))
159 			return -EFAULT;
160 		if (mode >= '0' && mode <= '5')
161 			ai_usermode = safe_usermode(mode - '0', true);
162 	}
163 	return count;
164 }
165 
166 static const struct file_operations alignment_proc_fops = {
167 	.open		= alignment_proc_open,
168 	.read		= seq_read,
169 	.llseek		= seq_lseek,
170 	.release	= single_release,
171 	.write		= alignment_proc_write,
172 };
173 #endif /* CONFIG_PROC_FS */
174 
175 union offset_union {
176 	unsigned long un;
177 	  signed long sn;
178 };
179 
180 #define TYPE_ERROR	0
181 #define TYPE_FAULT	1
182 #define TYPE_LDST	2
183 #define TYPE_DONE	3
184 
185 #ifdef __ARMEB__
186 #define BE		1
187 #define FIRST_BYTE_16	"mov	%1, %1, ror #8\n"
188 #define FIRST_BYTE_32	"mov	%1, %1, ror #24\n"
189 #define NEXT_BYTE	"ror #24"
190 #else
191 #define BE		0
192 #define FIRST_BYTE_16
193 #define FIRST_BYTE_32
194 #define NEXT_BYTE	"lsr #8"
195 #endif
196 
197 #define __get8_unaligned_check(ins,val,addr,err)	\
198 	__asm__(					\
199  ARM(	"1:	"ins"	%1, [%2], #1\n"	)		\
200  THUMB(	"1:	"ins"	%1, [%2]\n"	)		\
201  THUMB(	"	add	%2, %2, #1\n"	)		\
202 	"2:\n"						\
203 	"	.pushsection .fixup,\"ax\"\n"		\
204 	"	.align	2\n"				\
205 	"3:	mov	%0, #1\n"			\
206 	"	b	2b\n"				\
207 	"	.popsection\n"				\
208 	"	.pushsection __ex_table,\"a\"\n"	\
209 	"	.align	3\n"				\
210 	"	.long	1b, 3b\n"			\
211 	"	.popsection\n"				\
212 	: "=r" (err), "=&r" (val), "=r" (addr)		\
213 	: "0" (err), "2" (addr))
214 
215 #define __get16_unaligned_check(ins,val,addr)			\
216 	do {							\
217 		unsigned int err = 0, v, a = addr;		\
218 		__get8_unaligned_check(ins,v,a,err);		\
219 		val =  v << ((BE) ? 8 : 0);			\
220 		__get8_unaligned_check(ins,v,a,err);		\
221 		val |= v << ((BE) ? 0 : 8);			\
222 		if (err)					\
223 			goto fault;				\
224 	} while (0)
225 
226 #define get16_unaligned_check(val,addr) \
227 	__get16_unaligned_check("ldrb",val,addr)
228 
229 #define get16t_unaligned_check(val,addr) \
230 	__get16_unaligned_check("ldrbt",val,addr)
231 
232 #define __get32_unaligned_check(ins,val,addr)			\
233 	do {							\
234 		unsigned int err = 0, v, a = addr;		\
235 		__get8_unaligned_check(ins,v,a,err);		\
236 		val =  v << ((BE) ? 24 :  0);			\
237 		__get8_unaligned_check(ins,v,a,err);		\
238 		val |= v << ((BE) ? 16 :  8);			\
239 		__get8_unaligned_check(ins,v,a,err);		\
240 		val |= v << ((BE) ?  8 : 16);			\
241 		__get8_unaligned_check(ins,v,a,err);		\
242 		val |= v << ((BE) ?  0 : 24);			\
243 		if (err)					\
244 			goto fault;				\
245 	} while (0)
246 
247 #define get32_unaligned_check(val,addr) \
248 	__get32_unaligned_check("ldrb",val,addr)
249 
250 #define get32t_unaligned_check(val,addr) \
251 	__get32_unaligned_check("ldrbt",val,addr)
252 
253 #define __put16_unaligned_check(ins,val,addr)			\
254 	do {							\
255 		unsigned int err = 0, v = val, a = addr;	\
256 		__asm__( FIRST_BYTE_16				\
257 	 ARM(	"1:	"ins"	%1, [%2], #1\n"	)		\
258 	 THUMB(	"1:	"ins"	%1, [%2]\n"	)		\
259 	 THUMB(	"	add	%2, %2, #1\n"	)		\
260 		"	mov	%1, %1, "NEXT_BYTE"\n"		\
261 		"2:	"ins"	%1, [%2]\n"			\
262 		"3:\n"						\
263 		"	.pushsection .fixup,\"ax\"\n"		\
264 		"	.align	2\n"				\
265 		"4:	mov	%0, #1\n"			\
266 		"	b	3b\n"				\
267 		"	.popsection\n"				\
268 		"	.pushsection __ex_table,\"a\"\n"	\
269 		"	.align	3\n"				\
270 		"	.long	1b, 4b\n"			\
271 		"	.long	2b, 4b\n"			\
272 		"	.popsection\n"				\
273 		: "=r" (err), "=&r" (v), "=&r" (a)		\
274 		: "0" (err), "1" (v), "2" (a));			\
275 		if (err)					\
276 			goto fault;				\
277 	} while (0)
278 
279 #define put16_unaligned_check(val,addr)  \
280 	__put16_unaligned_check("strb",val,addr)
281 
282 #define put16t_unaligned_check(val,addr) \
283 	__put16_unaligned_check("strbt",val,addr)
284 
285 #define __put32_unaligned_check(ins,val,addr)			\
286 	do {							\
287 		unsigned int err = 0, v = val, a = addr;	\
288 		__asm__( FIRST_BYTE_32				\
289 	 ARM(	"1:	"ins"	%1, [%2], #1\n"	)		\
290 	 THUMB(	"1:	"ins"	%1, [%2]\n"	)		\
291 	 THUMB(	"	add	%2, %2, #1\n"	)		\
292 		"	mov	%1, %1, "NEXT_BYTE"\n"		\
293 	 ARM(	"2:	"ins"	%1, [%2], #1\n"	)		\
294 	 THUMB(	"2:	"ins"	%1, [%2]\n"	)		\
295 	 THUMB(	"	add	%2, %2, #1\n"	)		\
296 		"	mov	%1, %1, "NEXT_BYTE"\n"		\
297 	 ARM(	"3:	"ins"	%1, [%2], #1\n"	)		\
298 	 THUMB(	"3:	"ins"	%1, [%2]\n"	)		\
299 	 THUMB(	"	add	%2, %2, #1\n"	)		\
300 		"	mov	%1, %1, "NEXT_BYTE"\n"		\
301 		"4:	"ins"	%1, [%2]\n"			\
302 		"5:\n"						\
303 		"	.pushsection .fixup,\"ax\"\n"		\
304 		"	.align	2\n"				\
305 		"6:	mov	%0, #1\n"			\
306 		"	b	5b\n"				\
307 		"	.popsection\n"				\
308 		"	.pushsection __ex_table,\"a\"\n"	\
309 		"	.align	3\n"				\
310 		"	.long	1b, 6b\n"			\
311 		"	.long	2b, 6b\n"			\
312 		"	.long	3b, 6b\n"			\
313 		"	.long	4b, 6b\n"			\
314 		"	.popsection\n"				\
315 		: "=r" (err), "=&r" (v), "=&r" (a)		\
316 		: "0" (err), "1" (v), "2" (a));			\
317 		if (err)					\
318 			goto fault;				\
319 	} while (0)
320 
321 #define put32_unaligned_check(val,addr) \
322 	__put32_unaligned_check("strb", val, addr)
323 
324 #define put32t_unaligned_check(val,addr) \
325 	__put32_unaligned_check("strbt", val, addr)
326 
327 static void
328 do_alignment_finish_ldst(unsigned long addr, unsigned long instr, struct pt_regs *regs, union offset_union offset)
329 {
330 	if (!LDST_U_BIT(instr))
331 		offset.un = -offset.un;
332 
333 	if (!LDST_P_BIT(instr))
334 		addr += offset.un;
335 
336 	if (!LDST_P_BIT(instr) || LDST_W_BIT(instr))
337 		regs->uregs[RN_BITS(instr)] = addr;
338 }
339 
340 static int
341 do_alignment_ldrhstrh(unsigned long addr, unsigned long instr, struct pt_regs *regs)
342 {
343 	unsigned int rd = RD_BITS(instr);
344 
345 	ai_half += 1;
346 
347 	if (user_mode(regs))
348 		goto user;
349 
350 	if (LDST_L_BIT(instr)) {
351 		unsigned long val;
352 		get16_unaligned_check(val, addr);
353 
354 		/* signed half-word? */
355 		if (instr & 0x40)
356 			val = (signed long)((signed short) val);
357 
358 		regs->uregs[rd] = val;
359 	} else
360 		put16_unaligned_check(regs->uregs[rd], addr);
361 
362 	return TYPE_LDST;
363 
364  user:
365 	if (LDST_L_BIT(instr)) {
366 		unsigned long val;
367 		get16t_unaligned_check(val, addr);
368 
369 		/* signed half-word? */
370 		if (instr & 0x40)
371 			val = (signed long)((signed short) val);
372 
373 		regs->uregs[rd] = val;
374 	} else
375 		put16t_unaligned_check(regs->uregs[rd], addr);
376 
377 	return TYPE_LDST;
378 
379  fault:
380 	return TYPE_FAULT;
381 }
382 
383 static int
384 do_alignment_ldrdstrd(unsigned long addr, unsigned long instr,
385 		      struct pt_regs *regs)
386 {
387 	unsigned int rd = RD_BITS(instr);
388 	unsigned int rd2;
389 	int load;
390 
391 	if ((instr & 0xfe000000) == 0xe8000000) {
392 		/* ARMv7 Thumb-2 32-bit LDRD/STRD */
393 		rd2 = (instr >> 8) & 0xf;
394 		load = !!(LDST_L_BIT(instr));
395 	} else if (((rd & 1) == 1) || (rd == 14))
396 		goto bad;
397 	else {
398 		load = ((instr & 0xf0) == 0xd0);
399 		rd2 = rd + 1;
400 	}
401 
402 	ai_dword += 1;
403 
404 	if (user_mode(regs))
405 		goto user;
406 
407 	if (load) {
408 		unsigned long val;
409 		get32_unaligned_check(val, addr);
410 		regs->uregs[rd] = val;
411 		get32_unaligned_check(val, addr + 4);
412 		regs->uregs[rd2] = val;
413 	} else {
414 		put32_unaligned_check(regs->uregs[rd], addr);
415 		put32_unaligned_check(regs->uregs[rd2], addr + 4);
416 	}
417 
418 	return TYPE_LDST;
419 
420  user:
421 	if (load) {
422 		unsigned long val;
423 		get32t_unaligned_check(val, addr);
424 		regs->uregs[rd] = val;
425 		get32t_unaligned_check(val, addr + 4);
426 		regs->uregs[rd2] = val;
427 	} else {
428 		put32t_unaligned_check(regs->uregs[rd], addr);
429 		put32t_unaligned_check(regs->uregs[rd2], addr + 4);
430 	}
431 
432 	return TYPE_LDST;
433  bad:
434 	return TYPE_ERROR;
435  fault:
436 	return TYPE_FAULT;
437 }
438 
439 static int
440 do_alignment_ldrstr(unsigned long addr, unsigned long instr, struct pt_regs *regs)
441 {
442 	unsigned int rd = RD_BITS(instr);
443 
444 	ai_word += 1;
445 
446 	if ((!LDST_P_BIT(instr) && LDST_W_BIT(instr)) || user_mode(regs))
447 		goto trans;
448 
449 	if (LDST_L_BIT(instr)) {
450 		unsigned int val;
451 		get32_unaligned_check(val, addr);
452 		regs->uregs[rd] = val;
453 	} else
454 		put32_unaligned_check(regs->uregs[rd], addr);
455 	return TYPE_LDST;
456 
457  trans:
458 	if (LDST_L_BIT(instr)) {
459 		unsigned int val;
460 		get32t_unaligned_check(val, addr);
461 		regs->uregs[rd] = val;
462 	} else
463 		put32t_unaligned_check(regs->uregs[rd], addr);
464 	return TYPE_LDST;
465 
466  fault:
467 	return TYPE_FAULT;
468 }
469 
470 /*
471  * LDM/STM alignment handler.
472  *
473  * There are 4 variants of this instruction:
474  *
475  * B = rn pointer before instruction, A = rn pointer after instruction
476  *              ------ increasing address ----->
477  *	        |    | r0 | r1 | ... | rx |    |
478  * PU = 01             B                    A
479  * PU = 11        B                    A
480  * PU = 00        A                    B
481  * PU = 10             A                    B
482  */
483 static int
484 do_alignment_ldmstm(unsigned long addr, unsigned long instr, struct pt_regs *regs)
485 {
486 	unsigned int rd, rn, correction, nr_regs, regbits;
487 	unsigned long eaddr, newaddr;
488 
489 	if (LDM_S_BIT(instr))
490 		goto bad;
491 
492 	correction = 4; /* processor implementation defined */
493 	regs->ARM_pc += correction;
494 
495 	ai_multi += 1;
496 
497 	/* count the number of registers in the mask to be transferred */
498 	nr_regs = hweight16(REGMASK_BITS(instr)) * 4;
499 
500 	rn = RN_BITS(instr);
501 	newaddr = eaddr = regs->uregs[rn];
502 
503 	if (!LDST_U_BIT(instr))
504 		nr_regs = -nr_regs;
505 	newaddr += nr_regs;
506 	if (!LDST_U_BIT(instr))
507 		eaddr = newaddr;
508 
509 	if (LDST_P_EQ_U(instr))	/* U = P */
510 		eaddr += 4;
511 
512 	/*
513 	 * For alignment faults on the ARM922T/ARM920T the MMU  makes
514 	 * the FSR (and hence addr) equal to the updated base address
515 	 * of the multiple access rather than the restored value.
516 	 * Switch this message off if we've got a ARM92[02], otherwise
517 	 * [ls]dm alignment faults are noisy!
518 	 */
519 #if !(defined CONFIG_CPU_ARM922T)  && !(defined CONFIG_CPU_ARM920T)
520 	/*
521 	 * This is a "hint" - we already have eaddr worked out by the
522 	 * processor for us.
523 	 */
524 	if (addr != eaddr) {
525 		printk(KERN_ERR "LDMSTM: PC = %08lx, instr = %08lx, "
526 			"addr = %08lx, eaddr = %08lx\n",
527 			 instruction_pointer(regs), instr, addr, eaddr);
528 		show_regs(regs);
529 	}
530 #endif
531 
532 	if (user_mode(regs)) {
533 		for (regbits = REGMASK_BITS(instr), rd = 0; regbits;
534 		     regbits >>= 1, rd += 1)
535 			if (regbits & 1) {
536 				if (LDST_L_BIT(instr)) {
537 					unsigned int val;
538 					get32t_unaligned_check(val, eaddr);
539 					regs->uregs[rd] = val;
540 				} else
541 					put32t_unaligned_check(regs->uregs[rd], eaddr);
542 				eaddr += 4;
543 			}
544 	} else {
545 		for (regbits = REGMASK_BITS(instr), rd = 0; regbits;
546 		     regbits >>= 1, rd += 1)
547 			if (regbits & 1) {
548 				if (LDST_L_BIT(instr)) {
549 					unsigned int val;
550 					get32_unaligned_check(val, eaddr);
551 					regs->uregs[rd] = val;
552 				} else
553 					put32_unaligned_check(regs->uregs[rd], eaddr);
554 				eaddr += 4;
555 			}
556 	}
557 
558 	if (LDST_W_BIT(instr))
559 		regs->uregs[rn] = newaddr;
560 	if (!LDST_L_BIT(instr) || !(REGMASK_BITS(instr) & (1 << 15)))
561 		regs->ARM_pc -= correction;
562 	return TYPE_DONE;
563 
564 fault:
565 	regs->ARM_pc -= correction;
566 	return TYPE_FAULT;
567 
568 bad:
569 	printk(KERN_ERR "Alignment trap: not handling ldm with s-bit set\n");
570 	return TYPE_ERROR;
571 }
572 
573 /*
574  * Convert Thumb ld/st instruction forms to equivalent ARM instructions so
575  * we can reuse ARM userland alignment fault fixups for Thumb.
576  *
577  * This implementation was initially based on the algorithm found in
578  * gdb/sim/arm/thumbemu.c. It is basically just a code reduction of same
579  * to convert only Thumb ld/st instruction forms to equivalent ARM forms.
580  *
581  * NOTES:
582  * 1. Comments below refer to ARM ARM DDI0100E Thumb Instruction sections.
583  * 2. If for some reason we're passed an non-ld/st Thumb instruction to
584  *    decode, we return 0xdeadc0de. This should never happen under normal
585  *    circumstances but if it does, we've got other problems to deal with
586  *    elsewhere and we obviously can't fix those problems here.
587  */
588 
589 static unsigned long
590 thumb2arm(u16 tinstr)
591 {
592 	u32 L = (tinstr & (1<<11)) >> 11;
593 
594 	switch ((tinstr & 0xf800) >> 11) {
595 	/* 6.5.1 Format 1: */
596 	case 0x6000 >> 11:				/* 7.1.52 STR(1) */
597 	case 0x6800 >> 11:				/* 7.1.26 LDR(1) */
598 	case 0x7000 >> 11:				/* 7.1.55 STRB(1) */
599 	case 0x7800 >> 11:				/* 7.1.30 LDRB(1) */
600 		return 0xe5800000 |
601 			((tinstr & (1<<12)) << (22-12)) |	/* fixup */
602 			(L<<20) |				/* L==1? */
603 			((tinstr & (7<<0)) << (12-0)) |		/* Rd */
604 			((tinstr & (7<<3)) << (16-3)) |		/* Rn */
605 			((tinstr & (31<<6)) >>			/* immed_5 */
606 				(6 - ((tinstr & (1<<12)) ? 0 : 2)));
607 	case 0x8000 >> 11:				/* 7.1.57 STRH(1) */
608 	case 0x8800 >> 11:				/* 7.1.32 LDRH(1) */
609 		return 0xe1c000b0 |
610 			(L<<20) |				/* L==1? */
611 			((tinstr & (7<<0)) << (12-0)) |		/* Rd */
612 			((tinstr & (7<<3)) << (16-3)) |		/* Rn */
613 			((tinstr & (7<<6)) >> (6-1)) |	 /* immed_5[2:0] */
614 			((tinstr & (3<<9)) >> (9-8));	 /* immed_5[4:3] */
615 
616 	/* 6.5.1 Format 2: */
617 	case 0x5000 >> 11:
618 	case 0x5800 >> 11:
619 		{
620 			static const u32 subset[8] = {
621 				0xe7800000,		/* 7.1.53 STR(2) */
622 				0xe18000b0,		/* 7.1.58 STRH(2) */
623 				0xe7c00000,		/* 7.1.56 STRB(2) */
624 				0xe19000d0,		/* 7.1.34 LDRSB */
625 				0xe7900000,		/* 7.1.27 LDR(2) */
626 				0xe19000b0,		/* 7.1.33 LDRH(2) */
627 				0xe7d00000,		/* 7.1.31 LDRB(2) */
628 				0xe19000f0		/* 7.1.35 LDRSH */
629 			};
630 			return subset[(tinstr & (7<<9)) >> 9] |
631 			    ((tinstr & (7<<0)) << (12-0)) |	/* Rd */
632 			    ((tinstr & (7<<3)) << (16-3)) |	/* Rn */
633 			    ((tinstr & (7<<6)) >> (6-0));	/* Rm */
634 		}
635 
636 	/* 6.5.1 Format 3: */
637 	case 0x4800 >> 11:				/* 7.1.28 LDR(3) */
638 		/* NOTE: This case is not technically possible. We're
639 		 *	 loading 32-bit memory data via PC relative
640 		 *	 addressing mode. So we can and should eliminate
641 		 *	 this case. But I'll leave it here for now.
642 		 */
643 		return 0xe59f0000 |
644 		    ((tinstr & (7<<8)) << (12-8)) |		/* Rd */
645 		    ((tinstr & 255) << (2-0));			/* immed_8 */
646 
647 	/* 6.5.1 Format 4: */
648 	case 0x9000 >> 11:				/* 7.1.54 STR(3) */
649 	case 0x9800 >> 11:				/* 7.1.29 LDR(4) */
650 		return 0xe58d0000 |
651 			(L<<20) |				/* L==1? */
652 			((tinstr & (7<<8)) << (12-8)) |		/* Rd */
653 			((tinstr & 255) << 2);			/* immed_8 */
654 
655 	/* 6.6.1 Format 1: */
656 	case 0xc000 >> 11:				/* 7.1.51 STMIA */
657 	case 0xc800 >> 11:				/* 7.1.25 LDMIA */
658 		{
659 			u32 Rn = (tinstr & (7<<8)) >> 8;
660 			u32 W = ((L<<Rn) & (tinstr&255)) ? 0 : 1<<21;
661 
662 			return 0xe8800000 | W | (L<<20) | (Rn<<16) |
663 				(tinstr&255);
664 		}
665 
666 	/* 6.6.1 Format 2: */
667 	case 0xb000 >> 11:				/* 7.1.48 PUSH */
668 	case 0xb800 >> 11:				/* 7.1.47 POP */
669 		if ((tinstr & (3 << 9)) == 0x0400) {
670 			static const u32 subset[4] = {
671 				0xe92d0000,	/* STMDB sp!,{registers} */
672 				0xe92d4000,	/* STMDB sp!,{registers,lr} */
673 				0xe8bd0000,	/* LDMIA sp!,{registers} */
674 				0xe8bd8000	/* LDMIA sp!,{registers,pc} */
675 			};
676 			return subset[(L<<1) | ((tinstr & (1<<8)) >> 8)] |
677 			    (tinstr & 255);		/* register_list */
678 		}
679 		/* Else fall through for illegal instruction case */
680 
681 	default:
682 		return BAD_INSTR;
683 	}
684 }
685 
686 /*
687  * Convert Thumb-2 32 bit LDM, STM, LDRD, STRD to equivalent instruction
688  * handlable by ARM alignment handler, also find the corresponding handler,
689  * so that we can reuse ARM userland alignment fault fixups for Thumb.
690  *
691  * @pinstr: original Thumb-2 instruction; returns new handlable instruction
692  * @regs: register context.
693  * @poffset: return offset from faulted addr for later writeback
694  *
695  * NOTES:
696  * 1. Comments below refer to ARMv7 DDI0406A Thumb Instruction sections.
697  * 2. Register name Rt from ARMv7 is same as Rd from ARMv6 (Rd is Rt)
698  */
699 static void *
700 do_alignment_t32_to_handler(unsigned long *pinstr, struct pt_regs *regs,
701 			    union offset_union *poffset)
702 {
703 	unsigned long instr = *pinstr;
704 	u16 tinst1 = (instr >> 16) & 0xffff;
705 	u16 tinst2 = instr & 0xffff;
706 
707 	switch (tinst1 & 0xffe0) {
708 	/* A6.3.5 Load/Store multiple */
709 	case 0xe880:		/* STM/STMIA/STMEA,LDM/LDMIA, PUSH/POP T2 */
710 	case 0xe8a0:		/* ...above writeback version */
711 	case 0xe900:		/* STMDB/STMFD, LDMDB/LDMEA */
712 	case 0xe920:		/* ...above writeback version */
713 		/* no need offset decision since handler calculates it */
714 		return do_alignment_ldmstm;
715 
716 	case 0xf840:		/* POP/PUSH T3 (single register) */
717 		if (RN_BITS(instr) == 13 && (tinst2 & 0x09ff) == 0x0904) {
718 			u32 L = !!(LDST_L_BIT(instr));
719 			const u32 subset[2] = {
720 				0xe92d0000,	/* STMDB sp!,{registers} */
721 				0xe8bd0000,	/* LDMIA sp!,{registers} */
722 			};
723 			*pinstr = subset[L] | (1<<RD_BITS(instr));
724 			return do_alignment_ldmstm;
725 		}
726 		/* Else fall through for illegal instruction case */
727 		break;
728 
729 	/* A6.3.6 Load/store double, STRD/LDRD(immed, lit, reg) */
730 	case 0xe860:
731 	case 0xe960:
732 	case 0xe8e0:
733 	case 0xe9e0:
734 		poffset->un = (tinst2 & 0xff) << 2;
735 	case 0xe940:
736 	case 0xe9c0:
737 		return do_alignment_ldrdstrd;
738 
739 	/*
740 	 * No need to handle load/store instructions up to word size
741 	 * since ARMv6 and later CPUs can perform unaligned accesses.
742 	 */
743 	default:
744 		break;
745 	}
746 	return NULL;
747 }
748 
749 static int
750 do_alignment(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
751 {
752 	union offset_union uninitialized_var(offset);
753 	unsigned long instr = 0, instrptr;
754 	int (*handler)(unsigned long addr, unsigned long instr, struct pt_regs *regs);
755 	unsigned int type;
756 	unsigned int fault;
757 	u16 tinstr = 0;
758 	int isize = 4;
759 	int thumb2_32b = 0;
760 
761 	if (interrupts_enabled(regs))
762 		local_irq_enable();
763 
764 	instrptr = instruction_pointer(regs);
765 
766 	if (thumb_mode(regs)) {
767 		u16 *ptr = (u16 *)(instrptr & ~1);
768 		fault = probe_kernel_address(ptr, tinstr);
769 		tinstr = __mem_to_opcode_thumb16(tinstr);
770 		if (!fault) {
771 			if (cpu_architecture() >= CPU_ARCH_ARMv7 &&
772 			    IS_T32(tinstr)) {
773 				/* Thumb-2 32-bit */
774 				u16 tinst2 = 0;
775 				fault = probe_kernel_address(ptr + 1, tinst2);
776 				tinst2 = __mem_to_opcode_thumb16(tinst2);
777 				instr = __opcode_thumb32_compose(tinstr, tinst2);
778 				thumb2_32b = 1;
779 			} else {
780 				isize = 2;
781 				instr = thumb2arm(tinstr);
782 			}
783 		}
784 	} else {
785 		fault = probe_kernel_address(instrptr, instr);
786 		instr = __mem_to_opcode_arm(instr);
787 	}
788 
789 	if (fault) {
790 		type = TYPE_FAULT;
791 		goto bad_or_fault;
792 	}
793 
794 	if (user_mode(regs))
795 		goto user;
796 
797 	ai_sys += 1;
798 	ai_sys_last_pc = (void *)instruction_pointer(regs);
799 
800  fixup:
801 
802 	regs->ARM_pc += isize;
803 
804 	switch (CODING_BITS(instr)) {
805 	case 0x00000000:	/* 3.13.4 load/store instruction extensions */
806 		if (LDSTHD_I_BIT(instr))
807 			offset.un = (instr & 0xf00) >> 4 | (instr & 15);
808 		else
809 			offset.un = regs->uregs[RM_BITS(instr)];
810 
811 		if ((instr & 0x000000f0) == 0x000000b0 || /* LDRH, STRH */
812 		    (instr & 0x001000f0) == 0x001000f0)   /* LDRSH */
813 			handler = do_alignment_ldrhstrh;
814 		else if ((instr & 0x001000f0) == 0x000000d0 || /* LDRD */
815 			 (instr & 0x001000f0) == 0x000000f0)   /* STRD */
816 			handler = do_alignment_ldrdstrd;
817 		else if ((instr & 0x01f00ff0) == 0x01000090) /* SWP */
818 			goto swp;
819 		else
820 			goto bad;
821 		break;
822 
823 	case 0x04000000:	/* ldr or str immediate */
824 		offset.un = OFFSET_BITS(instr);
825 		handler = do_alignment_ldrstr;
826 		break;
827 
828 	case 0x06000000:	/* ldr or str register */
829 		offset.un = regs->uregs[RM_BITS(instr)];
830 
831 		if (IS_SHIFT(instr)) {
832 			unsigned int shiftval = SHIFT_BITS(instr);
833 
834 			switch(SHIFT_TYPE(instr)) {
835 			case SHIFT_LSL:
836 				offset.un <<= shiftval;
837 				break;
838 
839 			case SHIFT_LSR:
840 				offset.un >>= shiftval;
841 				break;
842 
843 			case SHIFT_ASR:
844 				offset.sn >>= shiftval;
845 				break;
846 
847 			case SHIFT_RORRRX:
848 				if (shiftval == 0) {
849 					offset.un >>= 1;
850 					if (regs->ARM_cpsr & PSR_C_BIT)
851 						offset.un |= 1 << 31;
852 				} else
853 					offset.un = offset.un >> shiftval |
854 							  offset.un << (32 - shiftval);
855 				break;
856 			}
857 		}
858 		handler = do_alignment_ldrstr;
859 		break;
860 
861 	case 0x08000000:	/* ldm or stm, or thumb-2 32bit instruction */
862 		if (thumb2_32b) {
863 			offset.un = 0;
864 			handler = do_alignment_t32_to_handler(&instr, regs, &offset);
865 		} else {
866 			offset.un = 0;
867 			handler = do_alignment_ldmstm;
868 		}
869 		break;
870 
871 	default:
872 		goto bad;
873 	}
874 
875 	if (!handler)
876 		goto bad;
877 	type = handler(addr, instr, regs);
878 
879 	if (type == TYPE_ERROR || type == TYPE_FAULT) {
880 		regs->ARM_pc -= isize;
881 		goto bad_or_fault;
882 	}
883 
884 	if (type == TYPE_LDST)
885 		do_alignment_finish_ldst(addr, instr, regs, offset);
886 
887 	return 0;
888 
889  bad_or_fault:
890 	if (type == TYPE_ERROR)
891 		goto bad;
892 	/*
893 	 * We got a fault - fix it up, or die.
894 	 */
895 	do_bad_area(addr, fsr, regs);
896 	return 0;
897 
898  swp:
899 	printk(KERN_ERR "Alignment trap: not handling swp instruction\n");
900 
901  bad:
902 	/*
903 	 * Oops, we didn't handle the instruction.
904 	 */
905 	printk(KERN_ERR "Alignment trap: not handling instruction "
906 		"%0*lx at [<%08lx>]\n",
907 		isize << 1,
908 		isize == 2 ? tinstr : instr, instrptr);
909 	ai_skipped += 1;
910 	return 1;
911 
912  user:
913 	ai_user += 1;
914 
915 	if (ai_usermode & UM_WARN)
916 		printk("Alignment trap: %s (%d) PC=0x%08lx Instr=0x%0*lx "
917 		       "Address=0x%08lx FSR 0x%03x\n", current->comm,
918 			task_pid_nr(current), instrptr,
919 			isize << 1,
920 			isize == 2 ? tinstr : instr,
921 		        addr, fsr);
922 
923 	if (ai_usermode & UM_FIXUP)
924 		goto fixup;
925 
926 	if (ai_usermode & UM_SIGNAL) {
927 		siginfo_t si;
928 
929 		si.si_signo = SIGBUS;
930 		si.si_errno = 0;
931 		si.si_code = BUS_ADRALN;
932 		si.si_addr = (void __user *)addr;
933 
934 		force_sig_info(si.si_signo, &si, current);
935 	} else {
936 		/*
937 		 * We're about to disable the alignment trap and return to
938 		 * user space.  But if an interrupt occurs before actually
939 		 * reaching user space, then the IRQ vector entry code will
940 		 * notice that we were still in kernel space and therefore
941 		 * the alignment trap won't be re-enabled in that case as it
942 		 * is presumed to be always on from kernel space.
943 		 * Let's prevent that race by disabling interrupts here (they
944 		 * are disabled on the way back to user space anyway in
945 		 * entry-common.S) and disable the alignment trap only if
946 		 * there is no work pending for this thread.
947 		 */
948 		raw_local_irq_disable();
949 		if (!(current_thread_info()->flags & _TIF_WORK_MASK))
950 			set_cr(cr_no_alignment);
951 	}
952 
953 	return 0;
954 }
955 
956 static int __init noalign_setup(char *__unused)
957 {
958 	set_cr(__clear_cr(CR_A));
959 	return 1;
960 }
961 __setup("noalign", noalign_setup);
962 
963 /*
964  * This needs to be done after sysctl_init, otherwise sys/ will be
965  * overwritten.  Actually, this shouldn't be in sys/ at all since
966  * it isn't a sysctl, and it doesn't contain sysctl information.
967  * We now locate it in /proc/cpu/alignment instead.
968  */
969 static int __init alignment_init(void)
970 {
971 #ifdef CONFIG_PROC_FS
972 	struct proc_dir_entry *res;
973 
974 	res = proc_create("cpu/alignment", S_IWUSR | S_IRUGO, NULL,
975 			  &alignment_proc_fops);
976 	if (!res)
977 		return -ENOMEM;
978 #endif
979 
980 	if (cpu_is_v6_unaligned()) {
981 		set_cr(__clear_cr(CR_A));
982 		ai_usermode = safe_usermode(ai_usermode, false);
983 	}
984 
985 	cr_no_alignment = get_cr() & ~CR_A;
986 
987 	hook_fault_code(FAULT_CODE_ALIGNMENT, do_alignment, SIGBUS, BUS_ADRALN,
988 			"alignment exception");
989 
990 	/*
991 	 * ARMv6K and ARMv7 use fault status 3 (0b00011) as Access Flag section
992 	 * fault, not as alignment error.
993 	 *
994 	 * TODO: handle ARMv6K properly. Runtime check for 'K' extension is
995 	 * needed.
996 	 */
997 	if (cpu_architecture() <= CPU_ARCH_ARMv6) {
998 		hook_fault_code(3, do_alignment, SIGBUS, BUS_ADRALN,
999 				"alignment exception");
1000 	}
1001 
1002 	return 0;
1003 }
1004 
1005 fs_initcall(alignment_init);
1006