xref: /openbmc/linux/arch/arm/mm/Kconfig (revision c358f538)
1# SPDX-License-Identifier: GPL-2.0
2comment "Processor Type"
3
4# Select CPU types depending on the architecture selected.  This selects
5# which CPUs we support in the kernel image, and the compiler instruction
6# optimiser behaviour.
7
8# ARM7TDMI
9config CPU_ARM7TDMI
10	bool
11	depends on !MMU
12	select CPU_32v4T
13	select CPU_ABRT_LV4T
14	select CPU_CACHE_V4
15	select CPU_PABRT_LEGACY
16	help
17	  A 32-bit RISC microprocessor based on the ARM7 processor core
18	  which has no memory control unit and cache.
19
20	  Say Y if you want support for the ARM7TDMI processor.
21	  Otherwise, say N.
22
23# ARM720T
24config CPU_ARM720T
25	bool
26	select CPU_32v4T
27	select CPU_ABRT_LV4T
28	select CPU_CACHE_V4
29	select CPU_CACHE_VIVT
30	select CPU_COPY_V4WT if MMU
31	select CPU_CP15_MMU
32	select CPU_PABRT_LEGACY
33	select CPU_THUMB_CAPABLE
34	select CPU_TLB_V4WT if MMU
35	help
36	  A 32-bit RISC processor with 8kByte Cache, Write Buffer and
37	  MMU built around an ARM7TDMI core.
38
39	  Say Y if you want support for the ARM720T processor.
40	  Otherwise, say N.
41
42# ARM740T
43config CPU_ARM740T
44	bool
45	depends on !MMU
46	select CPU_32v4T
47	select CPU_ABRT_LV4T
48	select CPU_CACHE_V4
49	select CPU_CP15_MPU
50	select CPU_PABRT_LEGACY
51	select CPU_THUMB_CAPABLE
52	help
53	  A 32-bit RISC processor with 8KB cache or 4KB variants,
54	  write buffer and MPU(Protection Unit) built around
55	  an ARM7TDMI core.
56
57	  Say Y if you want support for the ARM740T processor.
58	  Otherwise, say N.
59
60# ARM9TDMI
61config CPU_ARM9TDMI
62	bool
63	depends on !MMU
64	select CPU_32v4T
65	select CPU_ABRT_NOMMU
66	select CPU_CACHE_V4
67	select CPU_PABRT_LEGACY
68	help
69	  A 32-bit RISC microprocessor based on the ARM9 processor core
70	  which has no memory control unit and cache.
71
72	  Say Y if you want support for the ARM9TDMI processor.
73	  Otherwise, say N.
74
75# ARM920T
76config CPU_ARM920T
77	bool
78	select CPU_32v4T
79	select CPU_ABRT_EV4T
80	select CPU_CACHE_V4WT
81	select CPU_CACHE_VIVT
82	select CPU_COPY_V4WB if MMU
83	select CPU_CP15_MMU
84	select CPU_PABRT_LEGACY
85	select CPU_THUMB_CAPABLE
86	select CPU_TLB_V4WBI if MMU
87	help
88	  The ARM920T is licensed to be produced by numerous vendors,
89	  and is used in the Cirrus EP93xx and the Samsung S3C2410.
90
91	  Say Y if you want support for the ARM920T processor.
92	  Otherwise, say N.
93
94# ARM922T
95config CPU_ARM922T
96	bool
97	select CPU_32v4T
98	select CPU_ABRT_EV4T
99	select CPU_CACHE_V4WT
100	select CPU_CACHE_VIVT
101	select CPU_COPY_V4WB if MMU
102	select CPU_CP15_MMU
103	select CPU_PABRT_LEGACY
104	select CPU_THUMB_CAPABLE
105	select CPU_TLB_V4WBI if MMU
106	help
107	  The ARM922T is a version of the ARM920T, but with smaller
108	  instruction and data caches. It is used in Altera's
109	  Excalibur XA device family and the ARM Integrator.
110
111	  Say Y if you want support for the ARM922T processor.
112	  Otherwise, say N.
113
114# ARM925T
115config CPU_ARM925T
116	bool
117	select CPU_32v4T
118	select CPU_ABRT_EV4T
119	select CPU_CACHE_V4WT
120	select CPU_CACHE_VIVT
121	select CPU_COPY_V4WB if MMU
122	select CPU_CP15_MMU
123	select CPU_PABRT_LEGACY
124	select CPU_THUMB_CAPABLE
125	select CPU_TLB_V4WBI if MMU
126 	help
127 	  The ARM925T is a mix between the ARM920T and ARM926T, but with
128	  different instruction and data caches. It is used in TI's OMAP
129 	  device family.
130
131 	  Say Y if you want support for the ARM925T processor.
132 	  Otherwise, say N.
133
134# ARM926T
135config CPU_ARM926T
136	bool
137	select CPU_32v5
138	select CPU_ABRT_EV5TJ
139	select CPU_CACHE_VIVT
140	select CPU_COPY_V4WB if MMU
141	select CPU_CP15_MMU
142	select CPU_PABRT_LEGACY
143	select CPU_THUMB_CAPABLE
144	select CPU_TLB_V4WBI if MMU
145	help
146	  This is a variant of the ARM920.  It has slightly different
147	  instruction sequences for cache and TLB operations.  Curiously,
148	  there is no documentation on it at the ARM corporate website.
149
150	  Say Y if you want support for the ARM926T processor.
151	  Otherwise, say N.
152
153# FA526
154config CPU_FA526
155	bool
156	select CPU_32v4
157	select CPU_ABRT_EV4
158	select CPU_CACHE_FA
159	select CPU_CACHE_VIVT
160	select CPU_COPY_FA if MMU
161	select CPU_CP15_MMU
162	select CPU_PABRT_LEGACY
163	select CPU_TLB_FA if MMU
164	help
165	  The FA526 is a version of the ARMv4 compatible processor with
166	  Branch Target Buffer, Unified TLB and cache line size 16.
167
168	  Say Y if you want support for the FA526 processor.
169	  Otherwise, say N.
170
171# ARM940T
172config CPU_ARM940T
173	bool
174	depends on !MMU
175	select CPU_32v4T
176	select CPU_ABRT_NOMMU
177	select CPU_CACHE_VIVT
178	select CPU_CP15_MPU
179	select CPU_PABRT_LEGACY
180	select CPU_THUMB_CAPABLE
181	help
182	  ARM940T is a member of the ARM9TDMI family of general-
183	  purpose microprocessors with MPU and separate 4KB
184	  instruction and 4KB data cases, each with a 4-word line
185	  length.
186
187	  Say Y if you want support for the ARM940T processor.
188	  Otherwise, say N.
189
190# ARM946E-S
191config CPU_ARM946E
192	bool
193	depends on !MMU
194	select CPU_32v5
195	select CPU_ABRT_NOMMU
196	select CPU_CACHE_VIVT
197	select CPU_CP15_MPU
198	select CPU_PABRT_LEGACY
199	select CPU_THUMB_CAPABLE
200	help
201	  ARM946E-S is a member of the ARM9E-S family of high-
202	  performance, 32-bit system-on-chip processor solutions.
203	  The TCM and ARMv5TE 32-bit instruction set is supported.
204
205	  Say Y if you want support for the ARM946E-S processor.
206	  Otherwise, say N.
207
208# ARM1020 - needs validating
209config CPU_ARM1020
210	bool
211	select CPU_32v5
212	select CPU_ABRT_EV4T
213	select CPU_CACHE_V4WT
214	select CPU_CACHE_VIVT
215	select CPU_COPY_V4WB if MMU
216	select CPU_CP15_MMU
217	select CPU_PABRT_LEGACY
218	select CPU_THUMB_CAPABLE
219	select CPU_TLB_V4WBI if MMU
220	help
221	  The ARM1020 is the 32K cached version of the ARM10 processor,
222	  with an addition of a floating-point unit.
223
224	  Say Y if you want support for the ARM1020 processor.
225	  Otherwise, say N.
226
227# ARM1020E - needs validating
228config CPU_ARM1020E
229	bool
230	depends on n
231	select CPU_32v5
232	select CPU_ABRT_EV4T
233	select CPU_CACHE_V4WT
234	select CPU_CACHE_VIVT
235	select CPU_COPY_V4WB if MMU
236	select CPU_CP15_MMU
237	select CPU_PABRT_LEGACY
238	select CPU_THUMB_CAPABLE
239	select CPU_TLB_V4WBI if MMU
240
241# ARM1022E
242config CPU_ARM1022
243	bool
244	select CPU_32v5
245	select CPU_ABRT_EV4T
246	select CPU_CACHE_VIVT
247	select CPU_COPY_V4WB if MMU # can probably do better
248	select CPU_CP15_MMU
249	select CPU_PABRT_LEGACY
250	select CPU_THUMB_CAPABLE
251	select CPU_TLB_V4WBI if MMU
252	help
253	  The ARM1022E is an implementation of the ARMv5TE architecture
254	  based upon the ARM10 integer core with a 16KiB L1 Harvard cache,
255	  embedded trace macrocell, and a floating-point unit.
256
257	  Say Y if you want support for the ARM1022E processor.
258	  Otherwise, say N.
259
260# ARM1026EJ-S
261config CPU_ARM1026
262	bool
263	select CPU_32v5
264	select CPU_ABRT_EV5T # But need Jazelle, but EV5TJ ignores bit 10
265	select CPU_CACHE_VIVT
266	select CPU_COPY_V4WB if MMU # can probably do better
267	select CPU_CP15_MMU
268	select CPU_PABRT_LEGACY
269	select CPU_THUMB_CAPABLE
270	select CPU_TLB_V4WBI if MMU
271	help
272	  The ARM1026EJ-S is an implementation of the ARMv5TEJ architecture
273	  based upon the ARM10 integer core.
274
275	  Say Y if you want support for the ARM1026EJ-S processor.
276	  Otherwise, say N.
277
278# SA110
279config CPU_SA110
280	bool
281	select CPU_32v3 if ARCH_RPC
282	select CPU_32v4 if !ARCH_RPC
283	select CPU_ABRT_EV4
284	select CPU_CACHE_V4WB
285	select CPU_CACHE_VIVT
286	select CPU_COPY_V4WB if MMU
287	select CPU_CP15_MMU
288	select CPU_PABRT_LEGACY
289	select CPU_TLB_V4WB if MMU
290	help
291	  The Intel StrongARM(R) SA-110 is a 32-bit microprocessor and
292	  is available at five speeds ranging from 100 MHz to 233 MHz.
293	  More information is available at
294	  <http://developer.intel.com/design/strong/sa110.htm>.
295
296	  Say Y if you want support for the SA-110 processor.
297	  Otherwise, say N.
298
299# SA1100
300config CPU_SA1100
301	bool
302	select CPU_32v4
303	select CPU_ABRT_EV4
304	select CPU_CACHE_V4WB
305	select CPU_CACHE_VIVT
306	select CPU_CP15_MMU
307	select CPU_PABRT_LEGACY
308	select CPU_TLB_V4WB if MMU
309
310# XScale
311config CPU_XSCALE
312	bool
313	select CPU_32v5
314	select CPU_ABRT_EV5T
315	select CPU_CACHE_VIVT
316	select CPU_CP15_MMU
317	select CPU_PABRT_LEGACY
318	select CPU_THUMB_CAPABLE
319	select CPU_TLB_V4WBI if MMU
320
321# XScale Core Version 3
322config CPU_XSC3
323	bool
324	select CPU_32v5
325	select CPU_ABRT_EV5T
326	select CPU_CACHE_VIVT
327	select CPU_CP15_MMU
328	select CPU_PABRT_LEGACY
329	select CPU_THUMB_CAPABLE
330	select CPU_TLB_V4WBI if MMU
331	select IO_36
332
333# Marvell PJ1 (Mohawk)
334config CPU_MOHAWK
335	bool
336	select CPU_32v5
337	select CPU_ABRT_EV5T
338	select CPU_CACHE_VIVT
339	select CPU_COPY_V4WB if MMU
340	select CPU_CP15_MMU
341	select CPU_PABRT_LEGACY
342	select CPU_THUMB_CAPABLE
343	select CPU_TLB_V4WBI if MMU
344
345# Feroceon
346config CPU_FEROCEON
347	bool
348	select CPU_32v5
349	select CPU_ABRT_EV5T
350	select CPU_CACHE_VIVT
351	select CPU_COPY_FEROCEON if MMU
352	select CPU_CP15_MMU
353	select CPU_PABRT_LEGACY
354	select CPU_THUMB_CAPABLE
355	select CPU_TLB_FEROCEON if MMU
356
357config CPU_FEROCEON_OLD_ID
358	bool "Accept early Feroceon cores with an ARM926 ID"
359	depends on CPU_FEROCEON && !CPU_ARM926T
360	default y
361	help
362	  This enables the usage of some old Feroceon cores
363	  for which the CPU ID is equal to the ARM926 ID.
364	  Relevant for Feroceon-1850 and early Feroceon-2850.
365
366# Marvell PJ4
367config CPU_PJ4
368	bool
369	select ARM_THUMBEE
370	select CPU_V7
371
372config CPU_PJ4B
373	bool
374	select CPU_V7
375
376# ARMv6
377config CPU_V6
378	bool
379	select CPU_32v6
380	select CPU_ABRT_EV6
381	select CPU_CACHE_V6
382	select CPU_CACHE_VIPT
383	select CPU_COPY_V6 if MMU
384	select CPU_CP15_MMU
385	select CPU_HAS_ASID if MMU
386	select CPU_PABRT_V6
387	select CPU_THUMB_CAPABLE
388	select CPU_TLB_V6 if MMU
389	select SMP_ON_UP if SMP
390
391# ARMv6k
392config CPU_V6K
393	bool
394	select CPU_32v6
395	select CPU_32v6K
396	select CPU_ABRT_EV6
397	select CPU_CACHE_V6
398	select CPU_CACHE_VIPT
399	select CPU_COPY_V6 if MMU
400	select CPU_CP15_MMU
401	select CPU_HAS_ASID if MMU
402	select CPU_PABRT_V6
403	select CPU_THUMB_CAPABLE
404	select CPU_TLB_V6 if MMU
405
406# ARMv7
407config CPU_V7
408	bool
409	select CPU_32v6K
410	select CPU_32v7
411	select CPU_ABRT_EV7
412	select CPU_CACHE_V7
413	select CPU_CACHE_VIPT
414	select CPU_COPY_V6 if MMU
415	select CPU_CP15_MMU if MMU
416	select CPU_CP15_MPU if !MMU
417	select CPU_HAS_ASID if MMU
418	select CPU_PABRT_V7
419	select CPU_SPECTRE if MMU
420	select CPU_THUMB_CAPABLE
421	select CPU_TLB_V7 if MMU
422
423# ARMv7M
424config CPU_V7M
425	bool
426	select CPU_32v7M
427	select CPU_ABRT_NOMMU
428	select CPU_CACHE_V7M
429	select CPU_CACHE_NOP
430	select CPU_PABRT_LEGACY
431	select CPU_THUMBONLY
432
433config CPU_THUMBONLY
434	bool
435	select CPU_THUMB_CAPABLE
436	# There are no CPUs available with MMU that don't implement an ARM ISA:
437	depends on !MMU
438	help
439	  Select this if your CPU doesn't support the 32 bit ARM instructions.
440
441config CPU_THUMB_CAPABLE
442	bool
443	help
444	  Select this if your CPU can support Thumb mode.
445
446# Figure out what processor architecture version we should be using.
447# This defines the compiler instruction set which depends on the machine type.
448config CPU_32v3
449	bool
450	select CPU_USE_DOMAINS if MMU
451	select NEED_KUSER_HELPERS
452	select TLS_REG_EMUL if SMP || !MMU
453	select CPU_NO_EFFICIENT_FFS
454
455config CPU_32v4
456	bool
457	select CPU_USE_DOMAINS if MMU
458	select NEED_KUSER_HELPERS
459	select TLS_REG_EMUL if SMP || !MMU
460	select CPU_NO_EFFICIENT_FFS
461
462config CPU_32v4T
463	bool
464	select CPU_USE_DOMAINS if MMU
465	select NEED_KUSER_HELPERS
466	select TLS_REG_EMUL if SMP || !MMU
467	select CPU_NO_EFFICIENT_FFS
468
469config CPU_32v5
470	bool
471	select CPU_USE_DOMAINS if MMU
472	select NEED_KUSER_HELPERS
473	select TLS_REG_EMUL if SMP || !MMU
474
475config CPU_32v6
476	bool
477	select TLS_REG_EMUL if !CPU_32v6K && !MMU
478
479config CPU_32v6K
480	bool
481
482config CPU_32v7
483	bool
484
485config CPU_32v7M
486	bool
487
488# The abort model
489config CPU_ABRT_NOMMU
490	bool
491
492config CPU_ABRT_EV4
493	bool
494
495config CPU_ABRT_EV4T
496	bool
497
498config CPU_ABRT_LV4T
499	bool
500
501config CPU_ABRT_EV5T
502	bool
503
504config CPU_ABRT_EV5TJ
505	bool
506
507config CPU_ABRT_EV6
508	bool
509
510config CPU_ABRT_EV7
511	bool
512
513config CPU_PABRT_LEGACY
514	bool
515
516config CPU_PABRT_V6
517	bool
518
519config CPU_PABRT_V7
520	bool
521
522# The cache model
523config CPU_CACHE_V4
524	bool
525
526config CPU_CACHE_V4WT
527	bool
528
529config CPU_CACHE_V4WB
530	bool
531
532config CPU_CACHE_V6
533	bool
534
535config CPU_CACHE_V7
536	bool
537
538config CPU_CACHE_NOP
539	bool
540
541config CPU_CACHE_VIVT
542	bool
543
544config CPU_CACHE_VIPT
545	bool
546
547config CPU_CACHE_FA
548	bool
549
550config CPU_CACHE_V7M
551	bool
552
553if MMU
554# The copy-page model
555config CPU_COPY_V4WT
556	bool
557
558config CPU_COPY_V4WB
559	bool
560
561config CPU_COPY_FEROCEON
562	bool
563
564config CPU_COPY_FA
565	bool
566
567config CPU_COPY_V6
568	bool
569
570# This selects the TLB model
571config CPU_TLB_V4WT
572	bool
573	help
574	  ARM Architecture Version 4 TLB with writethrough cache.
575
576config CPU_TLB_V4WB
577	bool
578	help
579	  ARM Architecture Version 4 TLB with writeback cache.
580
581config CPU_TLB_V4WBI
582	bool
583	help
584	  ARM Architecture Version 4 TLB with writeback cache and invalidate
585	  instruction cache entry.
586
587config CPU_TLB_FEROCEON
588	bool
589	help
590	  Feroceon TLB (v4wbi with non-outer-cachable page table walks).
591
592config CPU_TLB_FA
593	bool
594	help
595	  Faraday ARM FA526 architecture, unified TLB with writeback cache
596	  and invalidate instruction cache entry. Branch target buffer is
597	  also supported.
598
599config CPU_TLB_V6
600	bool
601
602config CPU_TLB_V7
603	bool
604
605endif
606
607config CPU_HAS_ASID
608	bool
609	help
610	  This indicates whether the CPU has the ASID register; used to
611	  tag TLB and possibly cache entries.
612
613config CPU_CP15
614	bool
615	help
616	  Processor has the CP15 register.
617
618config CPU_CP15_MMU
619	bool
620	select CPU_CP15
621	help
622	  Processor has the CP15 register, which has MMU related registers.
623
624config CPU_CP15_MPU
625	bool
626	select CPU_CP15
627	help
628	  Processor has the CP15 register, which has MPU related registers.
629
630config CPU_USE_DOMAINS
631	bool
632	help
633	  This option enables or disables the use of domain switching
634	  using the DACR (domain access control register) to protect memory
635	  domains from each other. In Linux we use three domains: kernel, user
636	  and IO. The domains are used to protect userspace from kernelspace
637	  and to handle IO-space as a special type of memory by assigning
638	  manager or client roles to running code (such as a process).
639
640config CPU_V7M_NUM_IRQ
641	int "Number of external interrupts connected to the NVIC"
642	depends on CPU_V7M
643	default 90 if ARCH_STM32
644	default 112 if SOC_VF610
645	default 240
646	help
647	  This option indicates the number of interrupts connected to the NVIC.
648	  The value can be larger than the real number of interrupts supported
649	  by the system, but must not be lower.
650	  The default value is 240, corresponding to the maximum number of
651	  interrupts supported by the NVIC on Cortex-M family.
652
653	  If unsure, keep default value.
654
655#
656# CPU supports 36-bit I/O
657#
658config IO_36
659	bool
660
661comment "Processor Features"
662
663config ARM_LPAE
664	bool "Support for the Large Physical Address Extension"
665	depends on MMU && CPU_32v7 && !CPU_32v6 && !CPU_32v5 && \
666		!CPU_32v4 && !CPU_32v3
667	select PHYS_ADDR_T_64BIT
668	select SWIOTLB
669	help
670	  Say Y if you have an ARMv7 processor supporting the LPAE page
671	  table format and you would like to access memory beyond the
672	  4GB limit. The resulting kernel image will not run on
673	  processors without the LPA extension.
674
675	  If unsure, say N.
676
677config ARM_PV_FIXUP
678	def_bool y
679	depends on ARM_LPAE && ARM_PATCH_PHYS_VIRT && ARCH_KEYSTONE
680
681config ARM_THUMB
682	bool "Support Thumb user binaries" if !CPU_THUMBONLY && EXPERT
683	depends on CPU_THUMB_CAPABLE && !CPU_32v4
684	default y
685	help
686	  Say Y if you want to include kernel support for running user space
687	  Thumb binaries.
688
689	  The Thumb instruction set is a compressed form of the standard ARM
690	  instruction set resulting in smaller binaries at the expense of
691	  slightly less efficient code.
692
693	  If this option is disabled, and you run userspace that switches to
694	  Thumb mode, signal handling will not work correctly, resulting in
695	  segmentation faults or illegal instruction aborts.
696
697	  If you don't know what this all is, saying Y is a safe choice.
698
699config ARM_THUMBEE
700	bool "Enable ThumbEE CPU extension"
701	depends on CPU_V7
702	help
703	  Say Y here if you have a CPU with the ThumbEE extension and code to
704	  make use of it. Say N for code that can run on CPUs without ThumbEE.
705
706config ARM_VIRT_EXT
707	bool
708	default y if CPU_V7
709	help
710	  Enable the kernel to make use of the ARM Virtualization
711	  Extensions to install hypervisors without run-time firmware
712	  assistance.
713
714	  A compliant bootloader is required in order to make maximum
715	  use of this feature.  Refer to Documentation/arm/booting.rst for
716	  details.
717
718config SWP_EMULATE
719	bool "Emulate SWP/SWPB instructions" if !SMP
720	depends on CPU_V7
721	default y if SMP
722	select HAVE_PROC_CPU if PROC_FS
723	help
724	  ARMv6 architecture deprecates use of the SWP/SWPB instructions.
725	  ARMv7 multiprocessing extensions introduce the ability to disable
726	  these instructions, triggering an undefined instruction exception
727	  when executed. Say Y here to enable software emulation of these
728	  instructions for userspace (not kernel) using LDREX/STREX.
729	  Also creates /proc/cpu/swp_emulation for statistics.
730
731	  In some older versions of glibc [<=2.8] SWP is used during futex
732	  trylock() operations with the assumption that the code will not
733	  be preempted. This invalid assumption may be more likely to fail
734	  with SWP emulation enabled, leading to deadlock of the user
735	  application.
736
737	  NOTE: when accessing uncached shared regions, LDREX/STREX rely
738	  on an external transaction monitoring block called a global
739	  monitor to maintain update atomicity. If your system does not
740	  implement a global monitor, this option can cause programs that
741	  perform SWP operations to uncached memory to deadlock.
742
743	  If unsure, say Y.
744
745choice
746	prompt "CPU Endianess"
747	default CPU_LITTLE_ENDIAN
748
749config CPU_LITTLE_ENDIAN
750	bool "Built little-endian kernel"
751	help
752	  Say Y if you plan on running a kernel in little-endian mode.
753	  This is the default and is used in practically all modern user
754	  space builds.
755
756config CPU_BIG_ENDIAN
757	bool "Build big-endian kernel"
758	depends on !LD_IS_LLD
759	help
760	  Say Y if you plan on running a kernel in big-endian mode.
761	  This works on many machines using ARMv6 or newer processors
762	  but requires big-endian user space.
763
764	  The only ARMv5 platform with big-endian support is
765	  Intel IXP4xx.
766
767endchoice
768
769config CPU_ENDIAN_BE8
770	bool
771	depends on CPU_BIG_ENDIAN
772	default CPU_V6 || CPU_V6K || CPU_V7 || CPU_V7M
773	help
774	  Support for the BE-8 (big-endian) mode on ARMv6 and ARMv7 processors.
775
776config CPU_ENDIAN_BE32
777	bool
778	depends on CPU_BIG_ENDIAN
779	default !CPU_ENDIAN_BE8
780	help
781	  Support for the BE-32 (big-endian) mode on pre-ARMv6 processors.
782
783config CPU_HIGH_VECTOR
784	depends on !MMU && CPU_CP15 && !CPU_ARM740T
785	bool "Select the High exception vector"
786	help
787	  Say Y here to select high exception vector(0xFFFF0000~).
788	  The exception vector can vary depending on the platform
789	  design in nommu mode. If your platform needs to select
790	  high exception vector, say Y.
791	  Otherwise or if you are unsure, say N, and the low exception
792	  vector (0x00000000~) will be used.
793
794config CPU_ICACHE_DISABLE
795	bool "Disable I-Cache (I-bit)"
796	depends on (CPU_CP15 && !(CPU_ARM720T || CPU_ARM740T || CPU_XSCALE || CPU_XSC3)) || CPU_V7M
797	help
798	  Say Y here to disable the processor instruction cache. Unless
799	  you have a reason not to or are unsure, say N.
800
801config CPU_ICACHE_MISMATCH_WORKAROUND
802	bool "Workaround for I-Cache line size mismatch between CPU cores"
803	depends on SMP && CPU_V7
804	help
805	  Some big.LITTLE systems have I-Cache line size mismatch between
806	  LITTLE and big cores.  Say Y here to enable a workaround for
807	  proper I-Cache support on such systems.  If unsure, say N.
808
809config CPU_DCACHE_DISABLE
810	bool "Disable D-Cache (C-bit)"
811	depends on (CPU_CP15 && !SMP) || CPU_V7M
812	help
813	  Say Y here to disable the processor data cache. Unless
814	  you have a reason not to or are unsure, say N.
815
816config CPU_DCACHE_SIZE
817	hex
818	depends on CPU_ARM740T || CPU_ARM946E
819	default 0x00001000 if CPU_ARM740T
820	default 0x00002000 # default size for ARM946E-S
821	help
822	  Some cores are synthesizable to have various sized cache. For
823	  ARM946E-S case, it can vary from 0KB to 1MB.
824	  To support such cache operations, it is efficient to know the size
825	  before compile time.
826	  If your SoC is configured to have a different size, define the value
827	  here with proper conditions.
828
829config CPU_DCACHE_WRITETHROUGH
830	bool "Force write through D-cache"
831	depends on (CPU_ARM740T || CPU_ARM920T || CPU_ARM922T || CPU_ARM925T || CPU_ARM926T || CPU_ARM940T || CPU_ARM946E || CPU_ARM1020 || CPU_FA526) && !CPU_DCACHE_DISABLE
832	default y if CPU_ARM925T
833	help
834	  Say Y here to use the data cache in writethrough mode. Unless you
835	  specifically require this or are unsure, say N.
836
837config CPU_CACHE_ROUND_ROBIN
838	bool "Round robin I and D cache replacement algorithm"
839	depends on (CPU_ARM926T || CPU_ARM946E || CPU_ARM1020) && (!CPU_ICACHE_DISABLE || !CPU_DCACHE_DISABLE)
840	help
841	  Say Y here to use the predictable round-robin cache replacement
842	  policy.  Unless you specifically require this or are unsure, say N.
843
844config CPU_BPREDICT_DISABLE
845	bool "Disable branch prediction"
846	depends on CPU_ARM1020 || CPU_V6 || CPU_V6K || CPU_MOHAWK || CPU_XSC3 || CPU_V7 || CPU_FA526 || CPU_V7M
847	help
848	  Say Y here to disable branch prediction.  If unsure, say N.
849
850config CPU_SPECTRE
851	bool
852	select GENERIC_CPU_VULNERABILITIES
853
854config HARDEN_BRANCH_PREDICTOR
855	bool "Harden the branch predictor against aliasing attacks" if EXPERT
856	depends on CPU_SPECTRE
857	default y
858	help
859	   Speculation attacks against some high-performance processors rely
860	   on being able to manipulate the branch predictor for a victim
861	   context by executing aliasing branches in the attacker context.
862	   Such attacks can be partially mitigated against by clearing
863	   internal branch predictor state and limiting the prediction
864	   logic in some situations.
865
866	   This config option will take CPU-specific actions to harden
867	   the branch predictor against aliasing attacks and may rely on
868	   specific instruction sequences or control bits being set by
869	   the system firmware.
870
871	   If unsure, say Y.
872
873config HARDEN_BRANCH_HISTORY
874	bool "Harden Spectre style attacks against branch history" if EXPERT
875	depends on CPU_SPECTRE
876	default y
877	help
878	  Speculation attacks against some high-performance processors can
879	  make use of branch history to influence future speculation. When
880	  taking an exception, a sequence of branches overwrites the branch
881	  history, or branch history is invalidated.
882
883config TLS_REG_EMUL
884	bool
885	select NEED_KUSER_HELPERS
886	help
887	  An SMP system using a pre-ARMv6 processor (there are apparently
888	  a few prototypes like that in existence) and therefore access to
889	  that required register must be emulated.
890
891config NEED_KUSER_HELPERS
892	bool
893
894config KUSER_HELPERS
895	bool "Enable kuser helpers in vector page" if !NEED_KUSER_HELPERS
896	depends on MMU
897	default y
898	help
899	  Warning: disabling this option may break user programs.
900
901	  Provide kuser helpers in the vector page.  The kernel provides
902	  helper code to userspace in read only form at a fixed location
903	  in the high vector page to allow userspace to be independent of
904	  the CPU type fitted to the system.  This permits binaries to be
905	  run on ARMv4 through to ARMv7 without modification.
906
907	  See Documentation/arm/kernel_user_helpers.rst for details.
908
909	  However, the fixed address nature of these helpers can be used
910	  by ROP (return orientated programming) authors when creating
911	  exploits.
912
913	  If all of the binaries and libraries which run on your platform
914	  are built specifically for your platform, and make no use of
915	  these helpers, then you can turn this option off to hinder
916	  such exploits. However, in that case, if a binary or library
917	  relying on those helpers is run, it will receive a SIGILL signal,
918	  which will terminate the program.
919
920	  Say N here only if you are absolutely certain that you do not
921	  need these helpers; otherwise, the safe option is to say Y.
922
923config VDSO
924	bool "Enable VDSO for acceleration of some system calls"
925	depends on AEABI && MMU && CPU_V7
926	default y if ARM_ARCH_TIMER
927	select HAVE_GENERIC_VDSO
928	select GENERIC_TIME_VSYSCALL
929	select GENERIC_VDSO_32
930	select GENERIC_GETTIMEOFDAY
931	help
932	  Place in the process address space an ELF shared object
933	  providing fast implementations of gettimeofday and
934	  clock_gettime.  Systems that implement the ARM architected
935	  timer will receive maximum benefit.
936
937	  You must have glibc 2.22 or later for programs to seamlessly
938	  take advantage of this.
939
940config DMA_CACHE_RWFO
941	bool "Enable read/write for ownership DMA cache maintenance"
942	depends on CPU_V6K && SMP
943	default y
944	help
945	  The Snoop Control Unit on ARM11MPCore does not detect the
946	  cache maintenance operations and the dma_{map,unmap}_area()
947	  functions may leave stale cache entries on other CPUs. By
948	  enabling this option, Read or Write For Ownership in the ARMv6
949	  DMA cache maintenance functions is performed. These LDR/STR
950	  instructions change the cache line state to shared or modified
951	  so that the cache operation has the desired effect.
952
953	  Note that the workaround is only valid on processors that do
954	  not perform speculative loads into the D-cache. For such
955	  processors, if cache maintenance operations are not broadcast
956	  in hardware, other workarounds are needed (e.g. cache
957	  maintenance broadcasting in software via FIQ).
958
959config OUTER_CACHE
960	bool
961
962config OUTER_CACHE_SYNC
963	bool
964	select ARM_HEAVY_MB
965	help
966	  The outer cache has a outer_cache_fns.sync function pointer
967	  that can be used to drain the write buffer of the outer cache.
968
969config CACHE_B15_RAC
970	bool "Enable the Broadcom Brahma-B15 read-ahead cache controller"
971	depends on ARCH_BRCMSTB
972	default y
973	help
974	  This option enables the Broadcom Brahma-B15 read-ahead cache
975	  controller. If disabled, the read-ahead cache remains off.
976
977config CACHE_FEROCEON_L2
978	bool "Enable the Feroceon L2 cache controller"
979	depends on ARCH_MV78XX0 || ARCH_MVEBU
980	default y
981	select OUTER_CACHE
982	help
983	  This option enables the Feroceon L2 cache controller.
984
985config CACHE_FEROCEON_L2_WRITETHROUGH
986	bool "Force Feroceon L2 cache write through"
987	depends on CACHE_FEROCEON_L2
988	help
989	  Say Y here to use the Feroceon L2 cache in writethrough mode.
990	  Unless you specifically require this, say N for writeback mode.
991
992config MIGHT_HAVE_CACHE_L2X0
993	bool
994	help
995	  This option should be selected by machines which have a L2x0
996	  or PL310 cache controller, but where its use is optional.
997
998	  The only effect of this option is to make CACHE_L2X0 and
999	  related options available to the user for configuration.
1000
1001	  Boards or SoCs which always require the cache controller
1002	  support to be present should select CACHE_L2X0 directly
1003	  instead of this option, thus preventing the user from
1004	  inadvertently configuring a broken kernel.
1005
1006config CACHE_L2X0
1007	bool "Enable the L2x0 outer cache controller" if MIGHT_HAVE_CACHE_L2X0
1008	default MIGHT_HAVE_CACHE_L2X0
1009	select OUTER_CACHE
1010	select OUTER_CACHE_SYNC
1011	help
1012	  This option enables the L2x0 PrimeCell.
1013
1014config CACHE_L2X0_PMU
1015	bool "L2x0 performance monitor support" if CACHE_L2X0
1016	depends on PERF_EVENTS
1017	help
1018	  This option enables support for the performance monitoring features
1019	  of the L220 and PL310 outer cache controllers.
1020
1021if CACHE_L2X0
1022
1023config PL310_ERRATA_588369
1024	bool "PL310 errata: Clean & Invalidate maintenance operations do not invalidate clean lines"
1025	help
1026	   The PL310 L2 cache controller implements three types of Clean &
1027	   Invalidate maintenance operations: by Physical Address
1028	   (offset 0x7F0), by Index/Way (0x7F8) and by Way (0x7FC).
1029	   They are architecturally defined to behave as the execution of a
1030	   clean operation followed immediately by an invalidate operation,
1031	   both performing to the same memory location. This functionality
1032	   is not correctly implemented in PL310 prior to r2p0 (fixed in r2p0)
1033	   as clean lines are not invalidated as a result of these operations.
1034
1035config PL310_ERRATA_727915
1036	bool "PL310 errata: Background Clean & Invalidate by Way operation can cause data corruption"
1037	help
1038	  PL310 implements the Clean & Invalidate by Way L2 cache maintenance
1039	  operation (offset 0x7FC). This operation runs in background so that
1040	  PL310 can handle normal accesses while it is in progress. Under very
1041	  rare circumstances, due to this erratum, write data can be lost when
1042	  PL310 treats a cacheable write transaction during a Clean &
1043	  Invalidate by Way operation.  Revisions prior to r3p1 are affected by
1044	  this errata (fixed in r3p1).
1045
1046config PL310_ERRATA_753970
1047	bool "PL310 errata: cache sync operation may be faulty"
1048	help
1049	  This option enables the workaround for the 753970 PL310 (r3p0) erratum.
1050
1051	  Under some condition the effect of cache sync operation on
1052	  the store buffer still remains when the operation completes.
1053	  This means that the store buffer is always asked to drain and
1054	  this prevents it from merging any further writes. The workaround
1055	  is to replace the normal offset of cache sync operation (0x730)
1056	  by another offset targeting an unmapped PL310 register 0x740.
1057	  This has the same effect as the cache sync operation: store buffer
1058	  drain and waiting for all buffers empty.
1059
1060config PL310_ERRATA_769419
1061	bool "PL310 errata: no automatic Store Buffer drain"
1062	help
1063	  On revisions of the PL310 prior to r3p2, the Store Buffer does
1064	  not automatically drain. This can cause normal, non-cacheable
1065	  writes to be retained when the memory system is idle, leading
1066	  to suboptimal I/O performance for drivers using coherent DMA.
1067	  This option adds a write barrier to the cpu_idle loop so that,
1068	  on systems with an outer cache, the store buffer is drained
1069	  explicitly.
1070
1071endif
1072
1073config CACHE_TAUROS2
1074	bool "Enable the Tauros2 L2 cache controller"
1075	depends on (CPU_MOHAWK || CPU_PJ4)
1076	default y
1077	select OUTER_CACHE
1078	help
1079	  This option enables the Tauros2 L2 cache controller (as
1080	  found on PJ1/PJ4).
1081
1082config CACHE_UNIPHIER
1083	bool "Enable the UniPhier outer cache controller"
1084	depends on ARCH_UNIPHIER
1085	select ARM_L1_CACHE_SHIFT_7
1086	select OUTER_CACHE
1087	select OUTER_CACHE_SYNC
1088	help
1089	  This option enables the UniPhier outer cache (system cache)
1090	  controller.
1091
1092config CACHE_XSC3L2
1093	bool "Enable the L2 cache on XScale3"
1094	depends on CPU_XSC3
1095	default y
1096	select OUTER_CACHE
1097	help
1098	  This option enables the L2 cache on XScale3.
1099
1100config ARM_L1_CACHE_SHIFT_6
1101	bool
1102	default y if CPU_V7
1103	help
1104	  Setting ARM L1 cache line size to 64 Bytes.
1105
1106config ARM_L1_CACHE_SHIFT_7
1107	bool
1108	help
1109	  Setting ARM L1 cache line size to 128 Bytes.
1110
1111config ARM_L1_CACHE_SHIFT
1112	int
1113	default 7 if ARM_L1_CACHE_SHIFT_7
1114	default 6 if ARM_L1_CACHE_SHIFT_6
1115	default 5
1116
1117config ARM_DMA_MEM_BUFFERABLE
1118	bool "Use non-cacheable memory for DMA" if (CPU_V6 || CPU_V6K || CPU_V7M) && !CPU_V7
1119	default y if CPU_V6 || CPU_V6K || CPU_V7 || CPU_V7M
1120	help
1121	  Historically, the kernel has used strongly ordered mappings to
1122	  provide DMA coherent memory.  With the advent of ARMv7, mapping
1123	  memory with differing types results in unpredictable behaviour,
1124	  so on these CPUs, this option is forced on.
1125
1126	  Multiple mappings with differing attributes is also unpredictable
1127	  on ARMv6 CPUs, but since they do not have aggressive speculative
1128	  prefetch, no harm appears to occur.
1129
1130	  However, drivers may be missing the necessary barriers for ARMv6,
1131	  and therefore turning this on may result in unpredictable driver
1132	  behaviour.  Therefore, we offer this as an option.
1133
1134	  On some of the beefier ARMv7-M machines (with DMA and write
1135	  buffers) you likely want this enabled, while those that
1136	  didn't need it until now also won't need it in the future.
1137
1138	  You are recommended say 'Y' here and debug any affected drivers.
1139
1140config ARM_HEAVY_MB
1141	bool
1142
1143config DEBUG_ALIGN_RODATA
1144	bool "Make rodata strictly non-executable"
1145	depends on STRICT_KERNEL_RWX
1146	default y
1147	help
1148	  If this is set, rodata will be made explicitly non-executable. This
1149	  provides protection on the rare chance that attackers might find and
1150	  use ROP gadgets that exist in the rodata section. This adds an
1151	  additional section-aligned split of rodata from kernel text so it
1152	  can be made explicitly non-executable. This padding may waste memory
1153	  space to gain the additional protection.
1154