1# SPDX-License-Identifier: GPL-2.0 2comment "Processor Type" 3 4# Select CPU types depending on the architecture selected. This selects 5# which CPUs we support in the kernel image, and the compiler instruction 6# optimiser behaviour. 7 8# ARM7TDMI 9config CPU_ARM7TDMI 10 bool 11 depends on !MMU 12 select CPU_32v4T 13 select CPU_ABRT_LV4T 14 select CPU_CACHE_V4 15 select CPU_PABRT_LEGACY 16 help 17 A 32-bit RISC microprocessor based on the ARM7 processor core 18 which has no memory control unit and cache. 19 20 Say Y if you want support for the ARM7TDMI processor. 21 Otherwise, say N. 22 23# ARM720T 24config CPU_ARM720T 25 bool 26 select CPU_32v4T 27 select CPU_ABRT_LV4T 28 select CPU_CACHE_V4 29 select CPU_CACHE_VIVT 30 select CPU_COPY_V4WT if MMU 31 select CPU_CP15_MMU 32 select CPU_PABRT_LEGACY 33 select CPU_THUMB_CAPABLE 34 select CPU_TLB_V4WT if MMU 35 help 36 A 32-bit RISC processor with 8kByte Cache, Write Buffer and 37 MMU built around an ARM7TDMI core. 38 39 Say Y if you want support for the ARM720T processor. 40 Otherwise, say N. 41 42# ARM740T 43config CPU_ARM740T 44 bool 45 depends on !MMU 46 select CPU_32v4T 47 select CPU_ABRT_LV4T 48 select CPU_CACHE_V4 49 select CPU_CP15_MPU 50 select CPU_PABRT_LEGACY 51 select CPU_THUMB_CAPABLE 52 help 53 A 32-bit RISC processor with 8KB cache or 4KB variants, 54 write buffer and MPU(Protection Unit) built around 55 an ARM7TDMI core. 56 57 Say Y if you want support for the ARM740T processor. 58 Otherwise, say N. 59 60# ARM9TDMI 61config CPU_ARM9TDMI 62 bool 63 depends on !MMU 64 select CPU_32v4T 65 select CPU_ABRT_NOMMU 66 select CPU_CACHE_V4 67 select CPU_PABRT_LEGACY 68 help 69 A 32-bit RISC microprocessor based on the ARM9 processor core 70 which has no memory control unit and cache. 71 72 Say Y if you want support for the ARM9TDMI processor. 73 Otherwise, say N. 74 75# ARM920T 76config CPU_ARM920T 77 bool 78 select CPU_32v4T 79 select CPU_ABRT_EV4T 80 select CPU_CACHE_V4WT 81 select CPU_CACHE_VIVT 82 select CPU_COPY_V4WB if MMU 83 select CPU_CP15_MMU 84 select CPU_PABRT_LEGACY 85 select CPU_THUMB_CAPABLE 86 select CPU_TLB_V4WBI if MMU 87 help 88 The ARM920T is licensed to be produced by numerous vendors, 89 and is used in the Cirrus EP93xx and the Samsung S3C2410. 90 91 Say Y if you want support for the ARM920T processor. 92 Otherwise, say N. 93 94# ARM922T 95config CPU_ARM922T 96 bool 97 select CPU_32v4T 98 select CPU_ABRT_EV4T 99 select CPU_CACHE_V4WT 100 select CPU_CACHE_VIVT 101 select CPU_COPY_V4WB if MMU 102 select CPU_CP15_MMU 103 select CPU_PABRT_LEGACY 104 select CPU_THUMB_CAPABLE 105 select CPU_TLB_V4WBI if MMU 106 help 107 The ARM922T is a version of the ARM920T, but with smaller 108 instruction and data caches. It is used in Altera's 109 Excalibur XA device family and the ARM Integrator. 110 111 Say Y if you want support for the ARM922T processor. 112 Otherwise, say N. 113 114# ARM925T 115config CPU_ARM925T 116 bool 117 select CPU_32v4T 118 select CPU_ABRT_EV4T 119 select CPU_CACHE_V4WT 120 select CPU_CACHE_VIVT 121 select CPU_COPY_V4WB if MMU 122 select CPU_CP15_MMU 123 select CPU_PABRT_LEGACY 124 select CPU_THUMB_CAPABLE 125 select CPU_TLB_V4WBI if MMU 126 help 127 The ARM925T is a mix between the ARM920T and ARM926T, but with 128 different instruction and data caches. It is used in TI's OMAP 129 device family. 130 131 Say Y if you want support for the ARM925T processor. 132 Otherwise, say N. 133 134# ARM926T 135config CPU_ARM926T 136 bool 137 select CPU_32v5 138 select CPU_ABRT_EV5TJ 139 select CPU_CACHE_VIVT 140 select CPU_COPY_V4WB if MMU 141 select CPU_CP15_MMU 142 select CPU_PABRT_LEGACY 143 select CPU_THUMB_CAPABLE 144 select CPU_TLB_V4WBI if MMU 145 help 146 This is a variant of the ARM920. It has slightly different 147 instruction sequences for cache and TLB operations. Curiously, 148 there is no documentation on it at the ARM corporate website. 149 150 Say Y if you want support for the ARM926T processor. 151 Otherwise, say N. 152 153# FA526 154config CPU_FA526 155 bool 156 select CPU_32v4 157 select CPU_ABRT_EV4 158 select CPU_CACHE_FA 159 select CPU_CACHE_VIVT 160 select CPU_COPY_FA if MMU 161 select CPU_CP15_MMU 162 select CPU_PABRT_LEGACY 163 select CPU_TLB_FA if MMU 164 help 165 The FA526 is a version of the ARMv4 compatible processor with 166 Branch Target Buffer, Unified TLB and cache line size 16. 167 168 Say Y if you want support for the FA526 processor. 169 Otherwise, say N. 170 171# ARM940T 172config CPU_ARM940T 173 bool 174 depends on !MMU 175 select CPU_32v4T 176 select CPU_ABRT_NOMMU 177 select CPU_CACHE_VIVT 178 select CPU_CP15_MPU 179 select CPU_PABRT_LEGACY 180 select CPU_THUMB_CAPABLE 181 help 182 ARM940T is a member of the ARM9TDMI family of general- 183 purpose microprocessors with MPU and separate 4KB 184 instruction and 4KB data cases, each with a 4-word line 185 length. 186 187 Say Y if you want support for the ARM940T processor. 188 Otherwise, say N. 189 190# ARM946E-S 191config CPU_ARM946E 192 bool 193 depends on !MMU 194 select CPU_32v5 195 select CPU_ABRT_NOMMU 196 select CPU_CACHE_VIVT 197 select CPU_CP15_MPU 198 select CPU_PABRT_LEGACY 199 select CPU_THUMB_CAPABLE 200 help 201 ARM946E-S is a member of the ARM9E-S family of high- 202 performance, 32-bit system-on-chip processor solutions. 203 The TCM and ARMv5TE 32-bit instruction set is supported. 204 205 Say Y if you want support for the ARM946E-S processor. 206 Otherwise, say N. 207 208# ARM1020 - needs validating 209config CPU_ARM1020 210 bool 211 select CPU_32v5 212 select CPU_ABRT_EV4T 213 select CPU_CACHE_V4WT 214 select CPU_CACHE_VIVT 215 select CPU_COPY_V4WB if MMU 216 select CPU_CP15_MMU 217 select CPU_PABRT_LEGACY 218 select CPU_THUMB_CAPABLE 219 select CPU_TLB_V4WBI if MMU 220 help 221 The ARM1020 is the 32K cached version of the ARM10 processor, 222 with an addition of a floating-point unit. 223 224 Say Y if you want support for the ARM1020 processor. 225 Otherwise, say N. 226 227# ARM1020E - needs validating 228config CPU_ARM1020E 229 bool 230 depends on n 231 select CPU_32v5 232 select CPU_ABRT_EV4T 233 select CPU_CACHE_V4WT 234 select CPU_CACHE_VIVT 235 select CPU_COPY_V4WB if MMU 236 select CPU_CP15_MMU 237 select CPU_PABRT_LEGACY 238 select CPU_THUMB_CAPABLE 239 select CPU_TLB_V4WBI if MMU 240 241# ARM1022E 242config CPU_ARM1022 243 bool 244 select CPU_32v5 245 select CPU_ABRT_EV4T 246 select CPU_CACHE_VIVT 247 select CPU_COPY_V4WB if MMU # can probably do better 248 select CPU_CP15_MMU 249 select CPU_PABRT_LEGACY 250 select CPU_THUMB_CAPABLE 251 select CPU_TLB_V4WBI if MMU 252 help 253 The ARM1022E is an implementation of the ARMv5TE architecture 254 based upon the ARM10 integer core with a 16KiB L1 Harvard cache, 255 embedded trace macrocell, and a floating-point unit. 256 257 Say Y if you want support for the ARM1022E processor. 258 Otherwise, say N. 259 260# ARM1026EJ-S 261config CPU_ARM1026 262 bool 263 select CPU_32v5 264 select CPU_ABRT_EV5T # But need Jazelle, but EV5TJ ignores bit 10 265 select CPU_CACHE_VIVT 266 select CPU_COPY_V4WB if MMU # can probably do better 267 select CPU_CP15_MMU 268 select CPU_PABRT_LEGACY 269 select CPU_THUMB_CAPABLE 270 select CPU_TLB_V4WBI if MMU 271 help 272 The ARM1026EJ-S is an implementation of the ARMv5TEJ architecture 273 based upon the ARM10 integer core. 274 275 Say Y if you want support for the ARM1026EJ-S processor. 276 Otherwise, say N. 277 278# SA110 279config CPU_SA110 280 bool 281 select CPU_32v3 if ARCH_RPC 282 select CPU_32v4 if !ARCH_RPC 283 select CPU_ABRT_EV4 284 select CPU_CACHE_V4WB 285 select CPU_CACHE_VIVT 286 select CPU_COPY_V4WB if MMU 287 select CPU_CP15_MMU 288 select CPU_PABRT_LEGACY 289 select CPU_TLB_V4WB if MMU 290 help 291 The Intel StrongARM(R) SA-110 is a 32-bit microprocessor and 292 is available at five speeds ranging from 100 MHz to 233 MHz. 293 More information is available at 294 <http://developer.intel.com/design/strong/sa110.htm>. 295 296 Say Y if you want support for the SA-110 processor. 297 Otherwise, say N. 298 299# SA1100 300config CPU_SA1100 301 bool 302 select CPU_32v4 303 select CPU_ABRT_EV4 304 select CPU_CACHE_V4WB 305 select CPU_CACHE_VIVT 306 select CPU_CP15_MMU 307 select CPU_PABRT_LEGACY 308 select CPU_TLB_V4WB if MMU 309 310# XScale 311config CPU_XSCALE 312 bool 313 select CPU_32v5 314 select CPU_ABRT_EV5T 315 select CPU_CACHE_VIVT 316 select CPU_CP15_MMU 317 select CPU_PABRT_LEGACY 318 select CPU_THUMB_CAPABLE 319 select CPU_TLB_V4WBI if MMU 320 321# XScale Core Version 3 322config CPU_XSC3 323 bool 324 select CPU_32v5 325 select CPU_ABRT_EV5T 326 select CPU_CACHE_VIVT 327 select CPU_CP15_MMU 328 select CPU_PABRT_LEGACY 329 select CPU_THUMB_CAPABLE 330 select CPU_TLB_V4WBI if MMU 331 select IO_36 332 333# Marvell PJ1 (Mohawk) 334config CPU_MOHAWK 335 bool 336 select CPU_32v5 337 select CPU_ABRT_EV5T 338 select CPU_CACHE_VIVT 339 select CPU_COPY_V4WB if MMU 340 select CPU_CP15_MMU 341 select CPU_PABRT_LEGACY 342 select CPU_THUMB_CAPABLE 343 select CPU_TLB_V4WBI if MMU 344 345# Feroceon 346config CPU_FEROCEON 347 bool 348 select CPU_32v5 349 select CPU_ABRT_EV5T 350 select CPU_CACHE_VIVT 351 select CPU_COPY_FEROCEON if MMU 352 select CPU_CP15_MMU 353 select CPU_PABRT_LEGACY 354 select CPU_THUMB_CAPABLE 355 select CPU_TLB_FEROCEON if MMU 356 357config CPU_FEROCEON_OLD_ID 358 bool "Accept early Feroceon cores with an ARM926 ID" 359 depends on CPU_FEROCEON && !CPU_ARM926T 360 default y 361 help 362 This enables the usage of some old Feroceon cores 363 for which the CPU ID is equal to the ARM926 ID. 364 Relevant for Feroceon-1850 and early Feroceon-2850. 365 366# Marvell PJ4 367config CPU_PJ4 368 bool 369 select ARM_THUMBEE 370 select CPU_V7 371 372config CPU_PJ4B 373 bool 374 select CPU_V7 375 376# ARMv6 377config CPU_V6 378 bool 379 select CPU_32v6 380 select CPU_ABRT_EV6 381 select CPU_CACHE_V6 382 select CPU_CACHE_VIPT 383 select CPU_COPY_V6 if MMU 384 select CPU_CP15_MMU 385 select CPU_HAS_ASID if MMU 386 select CPU_PABRT_V6 387 select CPU_THUMB_CAPABLE 388 select CPU_TLB_V6 if MMU 389 select SMP_ON_UP if SMP 390 391# ARMv6k 392config CPU_V6K 393 bool 394 select CPU_32v6 395 select CPU_32v6K 396 select CPU_ABRT_EV6 397 select CPU_CACHE_V6 398 select CPU_CACHE_VIPT 399 select CPU_COPY_V6 if MMU 400 select CPU_CP15_MMU 401 select CPU_HAS_ASID if MMU 402 select CPU_PABRT_V6 403 select CPU_THUMB_CAPABLE 404 select CPU_TLB_V6 if MMU 405 406# ARMv7 and ARMv8 architectures 407config CPU_V7 408 bool 409 select CPU_32v6K 410 select CPU_32v7 411 select CPU_ABRT_EV7 412 select CPU_CACHE_V7 413 select CPU_CACHE_VIPT 414 select CPU_COPY_V6 if MMU 415 select CPU_CP15_MMU if MMU 416 select CPU_CP15_MPU if !MMU 417 select CPU_HAS_ASID if MMU 418 select CPU_PABRT_V7 419 select CPU_SPECTRE if MMU 420 select CPU_THUMB_CAPABLE 421 select CPU_TLB_V7 if MMU 422 423# ARMv7M 424config CPU_V7M 425 bool 426 select CPU_32v7M 427 select CPU_ABRT_NOMMU 428 select CPU_CACHE_V7M 429 select CPU_CACHE_NOP 430 select CPU_PABRT_LEGACY 431 select CPU_THUMBONLY 432 433config CPU_THUMBONLY 434 bool 435 select CPU_THUMB_CAPABLE 436 # There are no CPUs available with MMU that don't implement an ARM ISA: 437 depends on !MMU 438 help 439 Select this if your CPU doesn't support the 32 bit ARM instructions. 440 441config CPU_THUMB_CAPABLE 442 bool 443 help 444 Select this if your CPU can support Thumb mode. 445 446# Figure out what processor architecture version we should be using. 447# This defines the compiler instruction set which depends on the machine type. 448config CPU_32v3 449 bool 450 select CPU_USE_DOMAINS if MMU 451 select NEED_KUSER_HELPERS 452 select TLS_REG_EMUL if SMP || !MMU 453 select CPU_NO_EFFICIENT_FFS 454 455config CPU_32v4 456 bool 457 select CPU_USE_DOMAINS if MMU 458 select NEED_KUSER_HELPERS 459 select TLS_REG_EMUL if SMP || !MMU 460 select CPU_NO_EFFICIENT_FFS 461 462config CPU_32v4T 463 bool 464 select CPU_USE_DOMAINS if MMU 465 select NEED_KUSER_HELPERS 466 select TLS_REG_EMUL if SMP || !MMU 467 select CPU_NO_EFFICIENT_FFS 468 469config CPU_32v5 470 bool 471 select CPU_USE_DOMAINS if MMU 472 select NEED_KUSER_HELPERS 473 select TLS_REG_EMUL if SMP || !MMU 474 475config CPU_32v6 476 bool 477 select TLS_REG_EMUL if !CPU_32v6K && !MMU 478 479config CPU_32v6K 480 bool 481 482config CPU_32v7 483 bool 484 485config CPU_32v7M 486 bool 487 488# The abort model 489config CPU_ABRT_NOMMU 490 bool 491 492config CPU_ABRT_EV4 493 bool 494 495config CPU_ABRT_EV4T 496 bool 497 498config CPU_ABRT_LV4T 499 bool 500 501config CPU_ABRT_EV5T 502 bool 503 504config CPU_ABRT_EV5TJ 505 bool 506 507config CPU_ABRT_EV6 508 bool 509 510config CPU_ABRT_EV7 511 bool 512 513config CPU_PABRT_LEGACY 514 bool 515 516config CPU_PABRT_V6 517 bool 518 519config CPU_PABRT_V7 520 bool 521 522# The cache model 523config CPU_CACHE_V4 524 bool 525 526config CPU_CACHE_V4WT 527 bool 528 529config CPU_CACHE_V4WB 530 bool 531 532config CPU_CACHE_V6 533 bool 534 535config CPU_CACHE_V7 536 bool 537 538config CPU_CACHE_NOP 539 bool 540 541config CPU_CACHE_VIVT 542 bool 543 544config CPU_CACHE_VIPT 545 bool 546 547config CPU_CACHE_FA 548 bool 549 550config CPU_CACHE_V7M 551 bool 552 553if MMU 554# The copy-page model 555config CPU_COPY_V4WT 556 bool 557 558config CPU_COPY_V4WB 559 bool 560 561config CPU_COPY_FEROCEON 562 bool 563 564config CPU_COPY_FA 565 bool 566 567config CPU_COPY_V6 568 bool 569 570# This selects the TLB model 571config CPU_TLB_V4WT 572 bool 573 help 574 ARM Architecture Version 4 TLB with writethrough cache. 575 576config CPU_TLB_V4WB 577 bool 578 help 579 ARM Architecture Version 4 TLB with writeback cache. 580 581config CPU_TLB_V4WBI 582 bool 583 help 584 ARM Architecture Version 4 TLB with writeback cache and invalidate 585 instruction cache entry. 586 587config CPU_TLB_FEROCEON 588 bool 589 help 590 Feroceon TLB (v4wbi with non-outer-cachable page table walks). 591 592config CPU_TLB_FA 593 bool 594 help 595 Faraday ARM FA526 architecture, unified TLB with writeback cache 596 and invalidate instruction cache entry. Branch target buffer is 597 also supported. 598 599config CPU_TLB_V6 600 bool 601 602config CPU_TLB_V7 603 bool 604 605endif 606 607config CPU_HAS_ASID 608 bool 609 help 610 This indicates whether the CPU has the ASID register; used to 611 tag TLB and possibly cache entries. 612 613config CPU_CP15 614 bool 615 help 616 Processor has the CP15 register. 617 618config CPU_CP15_MMU 619 bool 620 select CPU_CP15 621 help 622 Processor has the CP15 register, which has MMU related registers. 623 624config CPU_CP15_MPU 625 bool 626 select CPU_CP15 627 help 628 Processor has the CP15 register, which has MPU related registers. 629 630config CPU_USE_DOMAINS 631 bool 632 help 633 This option enables or disables the use of domain switching 634 using the DACR (domain access control register) to protect memory 635 domains from each other. In Linux we use three domains: kernel, user 636 and IO. The domains are used to protect userspace from kernelspace 637 and to handle IO-space as a special type of memory by assigning 638 manager or client roles to running code (such as a process). 639 640config CPU_V7M_NUM_IRQ 641 int "Number of external interrupts connected to the NVIC" 642 depends on CPU_V7M 643 default 90 if ARCH_STM32 644 default 112 if SOC_VF610 645 default 240 646 help 647 This option indicates the number of interrupts connected to the NVIC. 648 The value can be larger than the real number of interrupts supported 649 by the system, but must not be lower. 650 The default value is 240, corresponding to the maximum number of 651 interrupts supported by the NVIC on Cortex-M family. 652 653 If unsure, keep default value. 654 655# 656# CPU supports 36-bit I/O 657# 658config IO_36 659 bool 660 661comment "Processor Features" 662 663config ARM_LPAE 664 bool "Support for the Large Physical Address Extension" 665 depends on MMU && CPU_32v7 && !CPU_32v6 && !CPU_32v5 && \ 666 !CPU_32v4 && !CPU_32v3 667 select PHYS_ADDR_T_64BIT 668 select SWIOTLB 669 help 670 Say Y if you have an ARMv7 processor supporting the LPAE page 671 table format and you would like to access memory beyond the 672 4GB limit. The resulting kernel image will not run on 673 processors without the LPA extension. 674 675 If unsure, say N. 676 677config ARM_PV_FIXUP 678 def_bool y 679 depends on ARM_LPAE && ARM_PATCH_PHYS_VIRT && ARCH_KEYSTONE 680 681config ARM_THUMB 682 bool "Support Thumb user binaries" if !CPU_THUMBONLY && EXPERT 683 depends on CPU_THUMB_CAPABLE && !CPU_32v4 684 default y 685 help 686 Say Y if you want to include kernel support for running user space 687 Thumb binaries. 688 689 The Thumb instruction set is a compressed form of the standard ARM 690 instruction set resulting in smaller binaries at the expense of 691 slightly less efficient code. 692 693 If this option is disabled, and you run userspace that switches to 694 Thumb mode, signal handling will not work correctly, resulting in 695 segmentation faults or illegal instruction aborts. 696 697 If you don't know what this all is, saying Y is a safe choice. 698 699config ARM_THUMBEE 700 bool "Enable ThumbEE CPU extension" 701 depends on CPU_V7 702 help 703 Say Y here if you have a CPU with the ThumbEE extension and code to 704 make use of it. Say N for code that can run on CPUs without ThumbEE. 705 706config ARM_VIRT_EXT 707 bool 708 default y if CPU_V7 709 help 710 Enable the kernel to make use of the ARM Virtualization 711 Extensions to install hypervisors without run-time firmware 712 assistance. 713 714 A compliant bootloader is required in order to make maximum 715 use of this feature. Refer to Documentation/arm/booting.rst for 716 details. 717 718config SWP_EMULATE 719 bool "Emulate SWP/SWPB instructions" if !SMP 720 depends on CPU_V7 721 default y if SMP 722 select HAVE_PROC_CPU if PROC_FS 723 help 724 ARMv6 architecture deprecates use of the SWP/SWPB instructions. 725 ARMv7 multiprocessing extensions introduce the ability to disable 726 these instructions, triggering an undefined instruction exception 727 when executed. Say Y here to enable software emulation of these 728 instructions for userspace (not kernel) using LDREX/STREX. 729 Also creates /proc/cpu/swp_emulation for statistics. 730 731 In some older versions of glibc [<=2.8] SWP is used during futex 732 trylock() operations with the assumption that the code will not 733 be preempted. This invalid assumption may be more likely to fail 734 with SWP emulation enabled, leading to deadlock of the user 735 application. 736 737 NOTE: when accessing uncached shared regions, LDREX/STREX rely 738 on an external transaction monitoring block called a global 739 monitor to maintain update atomicity. If your system does not 740 implement a global monitor, this option can cause programs that 741 perform SWP operations to uncached memory to deadlock. 742 743 If unsure, say Y. 744 745choice 746 prompt "CPU Endianness" 747 default CPU_LITTLE_ENDIAN 748 749config CPU_LITTLE_ENDIAN 750 bool "Built little-endian kernel" 751 help 752 Say Y if you plan on running a kernel in little-endian mode. 753 This is the default and is used in practically all modern user 754 space builds. 755 756config CPU_BIG_ENDIAN 757 bool "Build big-endian kernel" 758 depends on !LD_IS_LLD 759 help 760 Say Y if you plan on running a kernel in big-endian mode. 761 This works on many machines using ARMv6 or newer processors 762 but requires big-endian user space. 763 764 The only ARMv5 platform with big-endian support is 765 Intel IXP4xx. 766 767endchoice 768 769config CPU_ENDIAN_BE8 770 bool 771 depends on CPU_BIG_ENDIAN 772 default CPU_V6 || CPU_V6K || CPU_V7 || CPU_V7M 773 help 774 Support for the BE-8 (big-endian) mode on ARMv6 and ARMv7 processors. 775 776config CPU_ENDIAN_BE32 777 bool 778 depends on CPU_BIG_ENDIAN 779 default !CPU_ENDIAN_BE8 780 help 781 Support for the BE-32 (big-endian) mode on pre-ARMv6 processors. 782 783config CPU_HIGH_VECTOR 784 depends on !MMU && CPU_CP15 && !CPU_ARM740T 785 bool "Select the High exception vector" 786 help 787 Say Y here to select high exception vector(0xFFFF0000~). 788 The exception vector can vary depending on the platform 789 design in nommu mode. If your platform needs to select 790 high exception vector, say Y. 791 Otherwise or if you are unsure, say N, and the low exception 792 vector (0x00000000~) will be used. 793 794config CPU_ICACHE_DISABLE 795 bool "Disable I-Cache (I-bit)" 796 depends on (CPU_CP15 && !(CPU_ARM720T || CPU_ARM740T || CPU_XSCALE || CPU_XSC3)) || CPU_V7M 797 help 798 Say Y here to disable the processor instruction cache. Unless 799 you have a reason not to or are unsure, say N. 800 801config CPU_ICACHE_MISMATCH_WORKAROUND 802 bool "Workaround for I-Cache line size mismatch between CPU cores" 803 depends on SMP && CPU_V7 804 help 805 Some big.LITTLE systems have I-Cache line size mismatch between 806 LITTLE and big cores. Say Y here to enable a workaround for 807 proper I-Cache support on such systems. If unsure, say N. 808 809config CPU_DCACHE_DISABLE 810 bool "Disable D-Cache (C-bit)" 811 depends on (CPU_CP15 && !SMP) || CPU_V7M 812 help 813 Say Y here to disable the processor data cache. Unless 814 you have a reason not to or are unsure, say N. 815 816config CPU_DCACHE_SIZE 817 hex 818 depends on CPU_ARM740T || CPU_ARM946E 819 default 0x00001000 if CPU_ARM740T 820 default 0x00002000 # default size for ARM946E-S 821 help 822 Some cores are synthesizable to have various sized cache. For 823 ARM946E-S case, it can vary from 0KB to 1MB. 824 To support such cache operations, it is efficient to know the size 825 before compile time. 826 If your SoC is configured to have a different size, define the value 827 here with proper conditions. 828 829config CPU_DCACHE_WRITETHROUGH 830 bool "Force write through D-cache" 831 depends on (CPU_ARM740T || CPU_ARM920T || CPU_ARM922T || CPU_ARM925T || CPU_ARM926T || CPU_ARM940T || CPU_ARM946E || CPU_ARM1020 || CPU_FA526) && !CPU_DCACHE_DISABLE 832 default y if CPU_ARM925T 833 help 834 Say Y here to use the data cache in writethrough mode. Unless you 835 specifically require this or are unsure, say N. 836 837config CPU_CACHE_ROUND_ROBIN 838 bool "Round robin I and D cache replacement algorithm" 839 depends on (CPU_ARM926T || CPU_ARM946E || CPU_ARM1020) && (!CPU_ICACHE_DISABLE || !CPU_DCACHE_DISABLE) 840 help 841 Say Y here to use the predictable round-robin cache replacement 842 policy. Unless you specifically require this or are unsure, say N. 843 844config CPU_BPREDICT_DISABLE 845 bool "Disable branch prediction" 846 depends on CPU_ARM1020 || CPU_V6 || CPU_V6K || CPU_MOHAWK || CPU_XSC3 || CPU_V7 || CPU_FA526 || CPU_V7M 847 help 848 Say Y here to disable branch prediction. If unsure, say N. 849 850config CPU_SPECTRE 851 bool 852 select GENERIC_CPU_VULNERABILITIES 853 854config HARDEN_BRANCH_PREDICTOR 855 bool "Harden the branch predictor against aliasing attacks" if EXPERT 856 depends on CPU_SPECTRE 857 default y 858 help 859 Speculation attacks against some high-performance processors rely 860 on being able to manipulate the branch predictor for a victim 861 context by executing aliasing branches in the attacker context. 862 Such attacks can be partially mitigated against by clearing 863 internal branch predictor state and limiting the prediction 864 logic in some situations. 865 866 This config option will take CPU-specific actions to harden 867 the branch predictor against aliasing attacks and may rely on 868 specific instruction sequences or control bits being set by 869 the system firmware. 870 871 If unsure, say Y. 872 873config HARDEN_BRANCH_HISTORY 874 bool "Harden Spectre style attacks against branch history" if EXPERT 875 depends on CPU_SPECTRE 876 default y 877 help 878 Speculation attacks against some high-performance processors can 879 make use of branch history to influence future speculation. When 880 taking an exception, a sequence of branches overwrites the branch 881 history, or branch history is invalidated. 882 883config TLS_REG_EMUL 884 bool 885 select NEED_KUSER_HELPERS 886 help 887 An SMP system using a pre-ARMv6 processor (there are apparently 888 a few prototypes like that in existence) and therefore access to 889 that required register must be emulated. 890 891config NEED_KUSER_HELPERS 892 bool 893 894config KUSER_HELPERS 895 bool "Enable kuser helpers in vector page" if !NEED_KUSER_HELPERS 896 depends on MMU 897 default y 898 help 899 Warning: disabling this option may break user programs. 900 901 Provide kuser helpers in the vector page. The kernel provides 902 helper code to userspace in read only form at a fixed location 903 in the high vector page to allow userspace to be independent of 904 the CPU type fitted to the system. This permits binaries to be 905 run on ARMv4 through to ARMv7 without modification. 906 907 See Documentation/arm/kernel_user_helpers.rst for details. 908 909 However, the fixed address nature of these helpers can be used 910 by ROP (return orientated programming) authors when creating 911 exploits. 912 913 If all of the binaries and libraries which run on your platform 914 are built specifically for your platform, and make no use of 915 these helpers, then you can turn this option off to hinder 916 such exploits. However, in that case, if a binary or library 917 relying on those helpers is run, it will receive a SIGILL signal, 918 which will terminate the program. 919 920 Say N here only if you are absolutely certain that you do not 921 need these helpers; otherwise, the safe option is to say Y. 922 923config VDSO 924 bool "Enable VDSO for acceleration of some system calls" 925 depends on AEABI && MMU && CPU_V7 926 default y if ARM_ARCH_TIMER 927 select HAVE_GENERIC_VDSO 928 select GENERIC_TIME_VSYSCALL 929 select GENERIC_VDSO_32 930 select GENERIC_GETTIMEOFDAY 931 help 932 Place in the process address space an ELF shared object 933 providing fast implementations of gettimeofday and 934 clock_gettime. Systems that implement the ARM architected 935 timer will receive maximum benefit. 936 937 You must have glibc 2.22 or later for programs to seamlessly 938 take advantage of this. 939 940config DMA_CACHE_RWFO 941 bool "Enable read/write for ownership DMA cache maintenance" 942 depends on CPU_V6K && SMP 943 default y 944 help 945 The Snoop Control Unit on ARM11MPCore does not detect the 946 cache maintenance operations and the dma_{map,unmap}_area() 947 functions may leave stale cache entries on other CPUs. By 948 enabling this option, Read or Write For Ownership in the ARMv6 949 DMA cache maintenance functions is performed. These LDR/STR 950 instructions change the cache line state to shared or modified 951 so that the cache operation has the desired effect. 952 953 Note that the workaround is only valid on processors that do 954 not perform speculative loads into the D-cache. For such 955 processors, if cache maintenance operations are not broadcast 956 in hardware, other workarounds are needed (e.g. cache 957 maintenance broadcasting in software via FIQ). 958 959config OUTER_CACHE 960 bool 961 962config OUTER_CACHE_SYNC 963 bool 964 select ARM_HEAVY_MB 965 help 966 The outer cache has a outer_cache_fns.sync function pointer 967 that can be used to drain the write buffer of the outer cache. 968 969config CACHE_B15_RAC 970 bool "Enable the Broadcom Brahma-B15 read-ahead cache controller" 971 depends on ARCH_BRCMSTB 972 default y 973 help 974 This option enables the Broadcom Brahma-B15 read-ahead cache 975 controller. If disabled, the read-ahead cache remains off. 976 977config CACHE_FEROCEON_L2 978 bool "Enable the Feroceon L2 cache controller" 979 depends on ARCH_MV78XX0 || ARCH_MVEBU 980 default y 981 select OUTER_CACHE 982 help 983 This option enables the Feroceon L2 cache controller. 984 985config CACHE_FEROCEON_L2_WRITETHROUGH 986 bool "Force Feroceon L2 cache write through" 987 depends on CACHE_FEROCEON_L2 988 help 989 Say Y here to use the Feroceon L2 cache in writethrough mode. 990 Unless you specifically require this, say N for writeback mode. 991 992config MIGHT_HAVE_CACHE_L2X0 993 bool 994 help 995 This option should be selected by machines which have a L2x0 996 or PL310 cache controller, but where its use is optional. 997 998 The only effect of this option is to make CACHE_L2X0 and 999 related options available to the user for configuration. 1000 1001 Boards or SoCs which always require the cache controller 1002 support to be present should select CACHE_L2X0 directly 1003 instead of this option, thus preventing the user from 1004 inadvertently configuring a broken kernel. 1005 1006config CACHE_L2X0 1007 bool "Enable the L2x0 outer cache controller" if MIGHT_HAVE_CACHE_L2X0 1008 default MIGHT_HAVE_CACHE_L2X0 1009 select OUTER_CACHE 1010 select OUTER_CACHE_SYNC 1011 help 1012 This option enables the L2x0 PrimeCell. 1013 1014config CACHE_L2X0_PMU 1015 bool "L2x0 performance monitor support" if CACHE_L2X0 1016 depends on PERF_EVENTS 1017 help 1018 This option enables support for the performance monitoring features 1019 of the L220 and PL310 outer cache controllers. 1020 1021if CACHE_L2X0 1022 1023config PL310_ERRATA_588369 1024 bool "PL310 errata: Clean & Invalidate maintenance operations do not invalidate clean lines" 1025 help 1026 The PL310 L2 cache controller implements three types of Clean & 1027 Invalidate maintenance operations: by Physical Address 1028 (offset 0x7F0), by Index/Way (0x7F8) and by Way (0x7FC). 1029 They are architecturally defined to behave as the execution of a 1030 clean operation followed immediately by an invalidate operation, 1031 both performing to the same memory location. This functionality 1032 is not correctly implemented in PL310 prior to r2p0 (fixed in r2p0) 1033 as clean lines are not invalidated as a result of these operations. 1034 1035config PL310_ERRATA_727915 1036 bool "PL310 errata: Background Clean & Invalidate by Way operation can cause data corruption" 1037 help 1038 PL310 implements the Clean & Invalidate by Way L2 cache maintenance 1039 operation (offset 0x7FC). This operation runs in background so that 1040 PL310 can handle normal accesses while it is in progress. Under very 1041 rare circumstances, due to this erratum, write data can be lost when 1042 PL310 treats a cacheable write transaction during a Clean & 1043 Invalidate by Way operation. Revisions prior to r3p1 are affected by 1044 this errata (fixed in r3p1). 1045 1046config PL310_ERRATA_753970 1047 bool "PL310 errata: cache sync operation may be faulty" 1048 help 1049 This option enables the workaround for the 753970 PL310 (r3p0) erratum. 1050 1051 Under some condition the effect of cache sync operation on 1052 the store buffer still remains when the operation completes. 1053 This means that the store buffer is always asked to drain and 1054 this prevents it from merging any further writes. The workaround 1055 is to replace the normal offset of cache sync operation (0x730) 1056 by another offset targeting an unmapped PL310 register 0x740. 1057 This has the same effect as the cache sync operation: store buffer 1058 drain and waiting for all buffers empty. 1059 1060config PL310_ERRATA_769419 1061 bool "PL310 errata: no automatic Store Buffer drain" 1062 help 1063 On revisions of the PL310 prior to r3p2, the Store Buffer does 1064 not automatically drain. This can cause normal, non-cacheable 1065 writes to be retained when the memory system is idle, leading 1066 to suboptimal I/O performance for drivers using coherent DMA. 1067 This option adds a write barrier to the cpu_idle loop so that, 1068 on systems with an outer cache, the store buffer is drained 1069 explicitly. 1070 1071endif 1072 1073config CACHE_TAUROS2 1074 bool "Enable the Tauros2 L2 cache controller" 1075 depends on (CPU_MOHAWK || CPU_PJ4) 1076 default y 1077 select OUTER_CACHE 1078 help 1079 This option enables the Tauros2 L2 cache controller (as 1080 found on PJ1/PJ4). 1081 1082config CACHE_UNIPHIER 1083 bool "Enable the UniPhier outer cache controller" 1084 depends on ARCH_UNIPHIER 1085 select ARM_L1_CACHE_SHIFT_7 1086 select OUTER_CACHE 1087 select OUTER_CACHE_SYNC 1088 help 1089 This option enables the UniPhier outer cache (system cache) 1090 controller. 1091 1092config CACHE_XSC3L2 1093 bool "Enable the L2 cache on XScale3" 1094 depends on CPU_XSC3 1095 default y 1096 select OUTER_CACHE 1097 help 1098 This option enables the L2 cache on XScale3. 1099 1100config ARM_L1_CACHE_SHIFT_6 1101 bool 1102 default y if CPU_V7 1103 help 1104 Setting ARM L1 cache line size to 64 Bytes. 1105 1106config ARM_L1_CACHE_SHIFT_7 1107 bool 1108 help 1109 Setting ARM L1 cache line size to 128 Bytes. 1110 1111config ARM_L1_CACHE_SHIFT 1112 int 1113 default 7 if ARM_L1_CACHE_SHIFT_7 1114 default 6 if ARM_L1_CACHE_SHIFT_6 1115 default 5 1116 1117config ARM_DMA_MEM_BUFFERABLE 1118 bool "Use non-cacheable memory for DMA" if (CPU_V6 || CPU_V6K || CPU_V7M) && !CPU_V7 1119 default y if CPU_V6 || CPU_V6K || CPU_V7 || CPU_V7M 1120 help 1121 Historically, the kernel has used strongly ordered mappings to 1122 provide DMA coherent memory. With the advent of ARMv7, mapping 1123 memory with differing types results in unpredictable behaviour, 1124 so on these CPUs, this option is forced on. 1125 1126 Multiple mappings with differing attributes is also unpredictable 1127 on ARMv6 CPUs, but since they do not have aggressive speculative 1128 prefetch, no harm appears to occur. 1129 1130 However, drivers may be missing the necessary barriers for ARMv6, 1131 and therefore turning this on may result in unpredictable driver 1132 behaviour. Therefore, we offer this as an option. 1133 1134 On some of the beefier ARMv7-M machines (with DMA and write 1135 buffers) you likely want this enabled, while those that 1136 didn't need it until now also won't need it in the future. 1137 1138 You are recommended say 'Y' here and debug any affected drivers. 1139 1140config ARM_HEAVY_MB 1141 bool 1142 1143config DEBUG_ALIGN_RODATA 1144 bool "Make rodata strictly non-executable" 1145 depends on STRICT_KERNEL_RWX 1146 default y 1147 help 1148 If this is set, rodata will be made explicitly non-executable. This 1149 provides protection on the rare chance that attackers might find and 1150 use ROP gadgets that exist in the rodata section. This adds an 1151 additional section-aligned split of rodata from kernel text so it 1152 can be made explicitly non-executable. This padding may waste memory 1153 space to gain the additional protection. 1154