1 /* 2 * OMAP Voltage Controller (VC) interface 3 * 4 * Copyright (C) 2011 Texas Instruments, Inc. 5 * 6 * This file is licensed under the terms of the GNU General Public 7 * License version 2. This program is licensed "as is" without any 8 * warranty of any kind, whether express or implied. 9 */ 10 #include <linux/kernel.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/bug.h> 14 #include <linux/io.h> 15 16 #include <asm/div64.h> 17 18 #include "iomap.h" 19 #include "soc.h" 20 #include "voltage.h" 21 #include "vc.h" 22 #include "prm-regbits-34xx.h" 23 #include "prm-regbits-44xx.h" 24 #include "prm44xx.h" 25 #include "pm.h" 26 #include "scrm44xx.h" 27 #include "control.h" 28 29 /** 30 * struct omap_vc_channel_cfg - describe the cfg_channel bitfield 31 * @sa: bit for slave address 32 * @rav: bit for voltage configuration register 33 * @rac: bit for command configuration register 34 * @racen: enable bit for RAC 35 * @cmd: bit for command value set selection 36 * 37 * Channel configuration bits, common for OMAP3+ 38 * OMAP3 register: PRM_VC_CH_CONF 39 * OMAP4 register: PRM_VC_CFG_CHANNEL 40 * OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG 41 */ 42 struct omap_vc_channel_cfg { 43 u8 sa; 44 u8 rav; 45 u8 rac; 46 u8 racen; 47 u8 cmd; 48 }; 49 50 static struct omap_vc_channel_cfg vc_default_channel_cfg = { 51 .sa = BIT(0), 52 .rav = BIT(1), 53 .rac = BIT(2), 54 .racen = BIT(3), 55 .cmd = BIT(4), 56 }; 57 58 /* 59 * On OMAP3+, all VC channels have the above default bitfield 60 * configuration, except the OMAP4 MPU channel. This appears 61 * to be a freak accident as every other VC channel has the 62 * default configuration, thus creating a mutant channel config. 63 */ 64 static struct omap_vc_channel_cfg vc_mutant_channel_cfg = { 65 .sa = BIT(0), 66 .rav = BIT(2), 67 .rac = BIT(3), 68 .racen = BIT(4), 69 .cmd = BIT(1), 70 }; 71 72 static struct omap_vc_channel_cfg *vc_cfg_bits; 73 74 /* Default I2C trace length on pcb, 6.3cm. Used for capacitance calculations. */ 75 static u32 sr_i2c_pcb_length = 63; 76 #define CFG_CHANNEL_MASK 0x1f 77 78 /** 79 * omap_vc_config_channel - configure VC channel to PMIC mappings 80 * @voltdm: pointer to voltagdomain defining the desired VC channel 81 * 82 * Configures the VC channel to PMIC mappings for the following 83 * PMIC settings 84 * - i2c slave address (SA) 85 * - voltage configuration address (RAV) 86 * - command configuration address (RAC) and enable bit (RACEN) 87 * - command values for ON, ONLP, RET and OFF (CMD) 88 * 89 * This function currently only allows flexible configuration of the 90 * non-default channel. Starting with OMAP4, there are more than 2 91 * channels, with one defined as the default (on OMAP4, it's MPU.) 92 * Only the non-default channel can be configured. 93 */ 94 static int omap_vc_config_channel(struct voltagedomain *voltdm) 95 { 96 struct omap_vc_channel *vc = voltdm->vc; 97 98 /* 99 * For default channel, the only configurable bit is RACEN. 100 * All others must stay at zero (see function comment above.) 101 */ 102 if (vc->flags & OMAP_VC_CHANNEL_DEFAULT) 103 vc->cfg_channel &= vc_cfg_bits->racen; 104 105 voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift, 106 vc->cfg_channel << vc->cfg_channel_sa_shift, 107 vc->cfg_channel_reg); 108 109 return 0; 110 } 111 112 /* Voltage scale and accessory APIs */ 113 int omap_vc_pre_scale(struct voltagedomain *voltdm, 114 unsigned long target_volt, 115 u8 *target_vsel, u8 *current_vsel) 116 { 117 struct omap_vc_channel *vc = voltdm->vc; 118 u32 vc_cmdval; 119 120 /* Check if sufficient pmic info is available for this vdd */ 121 if (!voltdm->pmic) { 122 pr_err("%s: Insufficient pmic info to scale the vdd_%s\n", 123 __func__, voltdm->name); 124 return -EINVAL; 125 } 126 127 if (!voltdm->pmic->uv_to_vsel) { 128 pr_err("%s: PMIC function to convert voltage in uV to vsel not registered. Hence unable to scale voltage for vdd_%s\n", 129 __func__, voltdm->name); 130 return -ENODATA; 131 } 132 133 if (!voltdm->read || !voltdm->write) { 134 pr_err("%s: No read/write API for accessing vdd_%s regs\n", 135 __func__, voltdm->name); 136 return -EINVAL; 137 } 138 139 *target_vsel = voltdm->pmic->uv_to_vsel(target_volt); 140 *current_vsel = voltdm->pmic->uv_to_vsel(voltdm->nominal_volt); 141 142 /* Setting the ON voltage to the new target voltage */ 143 vc_cmdval = voltdm->read(vc->cmdval_reg); 144 vc_cmdval &= ~vc->common->cmd_on_mask; 145 vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift); 146 voltdm->write(vc_cmdval, vc->cmdval_reg); 147 148 voltdm->vc_param->on = target_volt; 149 150 omap_vp_update_errorgain(voltdm, target_volt); 151 152 return 0; 153 } 154 155 void omap_vc_post_scale(struct voltagedomain *voltdm, 156 unsigned long target_volt, 157 u8 target_vsel, u8 current_vsel) 158 { 159 u32 smps_steps = 0, smps_delay = 0; 160 161 smps_steps = abs(target_vsel - current_vsel); 162 /* SMPS slew rate / step size. 2us added as buffer. */ 163 smps_delay = ((smps_steps * voltdm->pmic->step_size) / 164 voltdm->pmic->slew_rate) + 2; 165 udelay(smps_delay); 166 } 167 168 /* vc_bypass_scale - VC bypass method of voltage scaling */ 169 int omap_vc_bypass_scale(struct voltagedomain *voltdm, 170 unsigned long target_volt) 171 { 172 struct omap_vc_channel *vc = voltdm->vc; 173 u32 loop_cnt = 0, retries_cnt = 0; 174 u32 vc_valid, vc_bypass_val_reg, vc_bypass_value; 175 u8 target_vsel, current_vsel; 176 int ret; 177 178 ret = omap_vc_pre_scale(voltdm, target_volt, &target_vsel, ¤t_vsel); 179 if (ret) 180 return ret; 181 182 vc_valid = vc->common->valid; 183 vc_bypass_val_reg = vc->common->bypass_val_reg; 184 vc_bypass_value = (target_vsel << vc->common->data_shift) | 185 (vc->volt_reg_addr << vc->common->regaddr_shift) | 186 (vc->i2c_slave_addr << vc->common->slaveaddr_shift); 187 188 voltdm->write(vc_bypass_value, vc_bypass_val_reg); 189 voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg); 190 191 vc_bypass_value = voltdm->read(vc_bypass_val_reg); 192 /* 193 * Loop till the bypass command is acknowledged from the SMPS. 194 * NOTE: This is legacy code. The loop count and retry count needs 195 * to be revisited. 196 */ 197 while (!(vc_bypass_value & vc_valid)) { 198 loop_cnt++; 199 200 if (retries_cnt > 10) { 201 pr_warn("%s: Retry count exceeded\n", __func__); 202 return -ETIMEDOUT; 203 } 204 205 if (loop_cnt > 50) { 206 retries_cnt++; 207 loop_cnt = 0; 208 udelay(10); 209 } 210 vc_bypass_value = voltdm->read(vc_bypass_val_reg); 211 } 212 213 omap_vc_post_scale(voltdm, target_volt, target_vsel, current_vsel); 214 return 0; 215 } 216 217 /* Convert microsecond value to number of 32kHz clock cycles */ 218 static inline u32 omap_usec_to_32k(u32 usec) 219 { 220 return DIV_ROUND_UP_ULL(32768ULL * (u64)usec, 1000000ULL); 221 } 222 223 struct omap3_vc_timings { 224 u32 voltsetup1; 225 u32 voltsetup2; 226 }; 227 228 struct omap3_vc { 229 struct voltagedomain *vd; 230 u32 voltctrl; 231 u32 voltsetup1; 232 u32 voltsetup2; 233 struct omap3_vc_timings timings[2]; 234 }; 235 static struct omap3_vc vc; 236 237 void omap3_vc_set_pmic_signaling(int core_next_state) 238 { 239 struct voltagedomain *vd = vc.vd; 240 struct omap3_vc_timings *c = vc.timings; 241 u32 voltctrl, voltsetup1, voltsetup2; 242 243 voltctrl = vc.voltctrl; 244 voltsetup1 = vc.voltsetup1; 245 voltsetup2 = vc.voltsetup2; 246 247 switch (core_next_state) { 248 case PWRDM_POWER_OFF: 249 voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_RET | 250 OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP); 251 voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_OFF; 252 if (voltctrl & OMAP3430_PRM_VOLTCTRL_SEL_OFF) 253 voltsetup2 = c->voltsetup2; 254 else 255 voltsetup1 = c->voltsetup1; 256 break; 257 case PWRDM_POWER_RET: 258 default: 259 c++; 260 voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_OFF | 261 OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP); 262 voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_RET; 263 voltsetup1 = c->voltsetup1; 264 break; 265 } 266 267 if (voltctrl != vc.voltctrl) { 268 vd->write(voltctrl, OMAP3_PRM_VOLTCTRL_OFFSET); 269 vc.voltctrl = voltctrl; 270 } 271 if (voltsetup1 != vc.voltsetup1) { 272 vd->write(c->voltsetup1, 273 OMAP3_PRM_VOLTSETUP1_OFFSET); 274 vc.voltsetup1 = voltsetup1; 275 } 276 if (voltsetup2 != vc.voltsetup2) { 277 vd->write(c->voltsetup2, 278 OMAP3_PRM_VOLTSETUP2_OFFSET); 279 vc.voltsetup2 = voltsetup2; 280 } 281 } 282 283 #define PRM_POLCTRL_TWL_MASK (OMAP3430_PRM_POLCTRL_CLKREQ_POL | \ 284 OMAP3430_PRM_POLCTRL_CLKREQ_POL) 285 #define PRM_POLCTRL_TWL_VAL OMAP3430_PRM_POLCTRL_CLKREQ_POL 286 287 /* 288 * Configure signal polarity for sys_clkreq and sys_off_mode pins 289 * as the default values are wrong and can cause the system to hang 290 * if any twl4030 scripts are loaded. 291 */ 292 static void __init omap3_vc_init_pmic_signaling(struct voltagedomain *voltdm) 293 { 294 u32 val; 295 296 if (vc.vd) 297 return; 298 299 vc.vd = voltdm; 300 301 val = voltdm->read(OMAP3_PRM_POLCTRL_OFFSET); 302 if (!(val & OMAP3430_PRM_POLCTRL_CLKREQ_POL) || 303 (val & OMAP3430_PRM_POLCTRL_OFFMODE_POL)) { 304 val |= OMAP3430_PRM_POLCTRL_CLKREQ_POL; 305 val &= ~OMAP3430_PRM_POLCTRL_OFFMODE_POL; 306 pr_debug("PM: fixing sys_clkreq and sys_off_mode polarity to 0x%x\n", 307 val); 308 voltdm->write(val, OMAP3_PRM_POLCTRL_OFFSET); 309 } 310 311 /* 312 * By default let's use I2C4 signaling for retention idle 313 * and sys_off_mode pin signaling for off idle. This way we 314 * have sys_clk_req pin go down for retention and both 315 * sys_clk_req and sys_off_mode pins will go down for off 316 * idle. And we can also scale voltages to zero for off-idle. 317 * Note that no actual voltage scaling during off-idle will 318 * happen unless the board specific twl4030 PMIC scripts are 319 * loaded. See also omap_vc_i2c_init for comments regarding 320 * erratum i531. 321 */ 322 val = voltdm->read(OMAP3_PRM_VOLTCTRL_OFFSET); 323 if (!(val & OMAP3430_PRM_VOLTCTRL_SEL_OFF)) { 324 val |= OMAP3430_PRM_VOLTCTRL_SEL_OFF; 325 pr_debug("PM: setting voltctrl sys_off_mode signaling to 0x%x\n", 326 val); 327 voltdm->write(val, OMAP3_PRM_VOLTCTRL_OFFSET); 328 } 329 vc.voltctrl = val; 330 331 omap3_vc_set_pmic_signaling(PWRDM_POWER_ON); 332 } 333 334 static void omap3_init_voltsetup1(struct voltagedomain *voltdm, 335 struct omap3_vc_timings *c, u32 idle) 336 { 337 unsigned long val; 338 339 val = (voltdm->vc_param->on - idle) / voltdm->pmic->slew_rate; 340 val *= voltdm->sys_clk.rate / 8 / 1000000 + 1; 341 val <<= __ffs(voltdm->vfsm->voltsetup_mask); 342 c->voltsetup1 &= ~voltdm->vfsm->voltsetup_mask; 343 c->voltsetup1 |= val; 344 } 345 346 /** 347 * omap3_set_i2c_timings - sets i2c sleep timings for a channel 348 * @voltdm: channel to configure 349 * @off_mode: select whether retention or off mode values used 350 * 351 * Calculates and sets up voltage controller to use I2C based 352 * voltage scaling for sleep modes. This can be used for either off mode 353 * or retention. Off mode has additionally an option to use sys_off_mode 354 * pad, which uses a global signal to program the whole power IC to 355 * off-mode. 356 * 357 * Note that pmic is not controlling the voltage scaling during 358 * retention signaled over I2C4, so we can keep voltsetup2 as 0. 359 * And the oscillator is not shut off over I2C4, so no need to 360 * set clksetup. 361 */ 362 static void omap3_set_i2c_timings(struct voltagedomain *voltdm) 363 { 364 struct omap3_vc_timings *c = vc.timings; 365 366 /* Configure PRWDM_POWER_OFF over I2C4 */ 367 omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->off); 368 c++; 369 /* Configure PRWDM_POWER_RET over I2C4 */ 370 omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->ret); 371 } 372 373 /** 374 * omap3_set_off_timings - sets off-mode timings for a channel 375 * @voltdm: channel to configure 376 * 377 * Calculates and sets up off-mode timings for a channel. Off-mode 378 * can use either I2C based voltage scaling, or alternatively 379 * sys_off_mode pad can be used to send a global command to power IC.n, 380 * sys_off_mode has the additional benefit that voltages can be 381 * scaled to zero volt level with TWL4030 / TWL5030, I2C can only 382 * scale to 600mV. 383 * 384 * Note that omap is not controlling the voltage scaling during 385 * off idle signaled by sys_off_mode, so we can keep voltsetup1 386 * as 0. 387 */ 388 static void omap3_set_off_timings(struct voltagedomain *voltdm) 389 { 390 struct omap3_vc_timings *c = vc.timings; 391 u32 tstart, tshut, clksetup, voltoffset; 392 393 if (c->voltsetup2) 394 return; 395 396 omap_pm_get_oscillator(&tstart, &tshut); 397 if (tstart == ULONG_MAX) { 398 pr_debug("PM: oscillator start-up time not initialized, using 10ms\n"); 399 clksetup = omap_usec_to_32k(10000); 400 } else { 401 clksetup = omap_usec_to_32k(tstart); 402 } 403 404 /* 405 * For twl4030 errata 27, we need to allow minimum ~488.32 us wait to 406 * switch from HFCLKIN to internal oscillator. That means timings 407 * have voltoffset fixed to 0xa in rounded up 32 KiHz cycles. And 408 * that means we can calculate the value based on the oscillator 409 * start-up time since voltoffset2 = clksetup - voltoffset. 410 */ 411 voltoffset = omap_usec_to_32k(488); 412 c->voltsetup2 = clksetup - voltoffset; 413 voltdm->write(clksetup, OMAP3_PRM_CLKSETUP_OFFSET); 414 voltdm->write(voltoffset, OMAP3_PRM_VOLTOFFSET_OFFSET); 415 } 416 417 static void __init omap3_vc_init_channel(struct voltagedomain *voltdm) 418 { 419 omap3_vc_init_pmic_signaling(voltdm); 420 omap3_set_off_timings(voltdm); 421 omap3_set_i2c_timings(voltdm); 422 } 423 424 /** 425 * omap4_calc_volt_ramp - calculates voltage ramping delays on omap4 426 * @voltdm: channel to calculate values for 427 * @voltage_diff: voltage difference in microvolts 428 * 429 * Calculates voltage ramp prescaler + counter values for a voltage 430 * difference on omap4. Returns a field value suitable for writing to 431 * VOLTSETUP register for a channel in following format: 432 * bits[8:9] prescaler ... bits[0:5] counter. See OMAP4 TRM for reference. 433 */ 434 static u32 omap4_calc_volt_ramp(struct voltagedomain *voltdm, u32 voltage_diff) 435 { 436 u32 prescaler; 437 u32 cycles; 438 u32 time; 439 440 time = voltage_diff / voltdm->pmic->slew_rate; 441 442 cycles = voltdm->sys_clk.rate / 1000 * time / 1000; 443 444 cycles /= 64; 445 prescaler = 0; 446 447 /* shift to next prescaler until no overflow */ 448 449 /* scale for div 256 = 64 * 4 */ 450 if (cycles > 63) { 451 cycles /= 4; 452 prescaler++; 453 } 454 455 /* scale for div 512 = 256 * 2 */ 456 if (cycles > 63) { 457 cycles /= 2; 458 prescaler++; 459 } 460 461 /* scale for div 2048 = 512 * 4 */ 462 if (cycles > 63) { 463 cycles /= 4; 464 prescaler++; 465 } 466 467 /* check for overflow => invalid ramp time */ 468 if (cycles > 63) { 469 pr_warn("%s: invalid setuptime for vdd_%s\n", __func__, 470 voltdm->name); 471 return 0; 472 } 473 474 cycles++; 475 476 return (prescaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) | 477 (cycles << OMAP4430_RAMP_UP_COUNT_SHIFT); 478 } 479 480 /** 481 * omap4_usec_to_val_scrm - convert microsecond value to SCRM module bitfield 482 * @usec: microseconds 483 * @shift: number of bits to shift left 484 * @mask: bitfield mask 485 * 486 * Converts microsecond value to OMAP4 SCRM bitfield. Bitfield is 487 * shifted to requested position, and checked agains the mask value. 488 * If larger, forced to the max value of the field (i.e. the mask itself.) 489 * Returns the SCRM bitfield value. 490 */ 491 static u32 omap4_usec_to_val_scrm(u32 usec, int shift, u32 mask) 492 { 493 u32 val; 494 495 val = omap_usec_to_32k(usec) << shift; 496 497 /* Check for overflow, if yes, force to max value */ 498 if (val > mask) 499 val = mask; 500 501 return val; 502 } 503 504 /** 505 * omap4_set_timings - set voltage ramp timings for a channel 506 * @voltdm: channel to configure 507 * @off_mode: whether off-mode values are used 508 * 509 * Calculates and sets the voltage ramp up / down values for a channel. 510 */ 511 static void omap4_set_timings(struct voltagedomain *voltdm, bool off_mode) 512 { 513 u32 val; 514 u32 ramp; 515 int offset; 516 u32 tstart, tshut; 517 518 if (off_mode) { 519 ramp = omap4_calc_volt_ramp(voltdm, 520 voltdm->vc_param->on - voltdm->vc_param->off); 521 offset = voltdm->vfsm->voltsetup_off_reg; 522 } else { 523 ramp = omap4_calc_volt_ramp(voltdm, 524 voltdm->vc_param->on - voltdm->vc_param->ret); 525 offset = voltdm->vfsm->voltsetup_reg; 526 } 527 528 if (!ramp) 529 return; 530 531 val = voltdm->read(offset); 532 533 val |= ramp << OMAP4430_RAMP_DOWN_COUNT_SHIFT; 534 535 val |= ramp << OMAP4430_RAMP_UP_COUNT_SHIFT; 536 537 voltdm->write(val, offset); 538 539 omap_pm_get_oscillator(&tstart, &tshut); 540 541 val = omap4_usec_to_val_scrm(tstart, OMAP4_SETUPTIME_SHIFT, 542 OMAP4_SETUPTIME_MASK); 543 val |= omap4_usec_to_val_scrm(tshut, OMAP4_DOWNTIME_SHIFT, 544 OMAP4_DOWNTIME_MASK); 545 546 writel_relaxed(val, OMAP4_SCRM_CLKSETUPTIME); 547 } 548 549 /* OMAP4 specific voltage init functions */ 550 static void __init omap4_vc_init_channel(struct voltagedomain *voltdm) 551 { 552 omap4_set_timings(voltdm, true); 553 omap4_set_timings(voltdm, false); 554 } 555 556 struct i2c_init_data { 557 u8 loadbits; 558 u8 load; 559 u8 hsscll_38_4; 560 u8 hsscll_26; 561 u8 hsscll_19_2; 562 u8 hsscll_16_8; 563 u8 hsscll_12; 564 }; 565 566 static const struct i2c_init_data const omap4_i2c_timing_data[] __initconst = { 567 { 568 .load = 50, 569 .loadbits = 0x3, 570 .hsscll_38_4 = 13, 571 .hsscll_26 = 11, 572 .hsscll_19_2 = 9, 573 .hsscll_16_8 = 9, 574 .hsscll_12 = 8, 575 }, 576 { 577 .load = 25, 578 .loadbits = 0x2, 579 .hsscll_38_4 = 13, 580 .hsscll_26 = 11, 581 .hsscll_19_2 = 9, 582 .hsscll_16_8 = 9, 583 .hsscll_12 = 8, 584 }, 585 { 586 .load = 12, 587 .loadbits = 0x1, 588 .hsscll_38_4 = 11, 589 .hsscll_26 = 10, 590 .hsscll_19_2 = 9, 591 .hsscll_16_8 = 9, 592 .hsscll_12 = 8, 593 }, 594 { 595 .load = 0, 596 .loadbits = 0x0, 597 .hsscll_38_4 = 12, 598 .hsscll_26 = 10, 599 .hsscll_19_2 = 9, 600 .hsscll_16_8 = 8, 601 .hsscll_12 = 8, 602 }, 603 }; 604 605 /** 606 * omap4_vc_i2c_timing_init - sets up board I2C timing parameters 607 * @voltdm: voltagedomain pointer to get data from 608 * 609 * Use PMIC + board supplied settings for calculating the total I2C 610 * channel capacitance and set the timing parameters based on this. 611 * Pre-calculated values are provided in data tables, as it is not 612 * too straightforward to calculate these runtime. 613 */ 614 static void __init omap4_vc_i2c_timing_init(struct voltagedomain *voltdm) 615 { 616 u32 capacitance; 617 u32 val; 618 u16 hsscll; 619 const struct i2c_init_data *i2c_data; 620 621 if (!voltdm->pmic->i2c_high_speed) { 622 pr_warn("%s: only high speed supported!\n", __func__); 623 return; 624 } 625 626 /* PCB trace capacitance, 0.125pF / mm => mm / 8 */ 627 capacitance = DIV_ROUND_UP(sr_i2c_pcb_length, 8); 628 629 /* OMAP pad capacitance */ 630 capacitance += 4; 631 632 /* PMIC pad capacitance */ 633 capacitance += voltdm->pmic->i2c_pad_load; 634 635 /* Search for capacitance match in the table */ 636 i2c_data = omap4_i2c_timing_data; 637 638 while (i2c_data->load > capacitance) 639 i2c_data++; 640 641 /* Select proper values based on sysclk frequency */ 642 switch (voltdm->sys_clk.rate) { 643 case 38400000: 644 hsscll = i2c_data->hsscll_38_4; 645 break; 646 case 26000000: 647 hsscll = i2c_data->hsscll_26; 648 break; 649 case 19200000: 650 hsscll = i2c_data->hsscll_19_2; 651 break; 652 case 16800000: 653 hsscll = i2c_data->hsscll_16_8; 654 break; 655 case 12000000: 656 hsscll = i2c_data->hsscll_12; 657 break; 658 default: 659 pr_warn("%s: unsupported sysclk rate: %d!\n", __func__, 660 voltdm->sys_clk.rate); 661 return; 662 } 663 664 /* Loadbits define pull setup for the I2C channels */ 665 val = i2c_data->loadbits << 25 | i2c_data->loadbits << 29; 666 667 /* Write to SYSCTRL_PADCONF_WKUP_CTRL_I2C_2 to setup I2C pull */ 668 writel_relaxed(val, OMAP2_L4_IO_ADDRESS(OMAP4_CTRL_MODULE_PAD_WKUP + 669 OMAP4_CTRL_MODULE_PAD_WKUP_CONTROL_I2C_2)); 670 671 /* HSSCLH can always be zero */ 672 val = hsscll << OMAP4430_HSSCLL_SHIFT; 673 val |= (0x28 << OMAP4430_SCLL_SHIFT | 0x2c << OMAP4430_SCLH_SHIFT); 674 675 /* Write setup times to I2C config register */ 676 voltdm->write(val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET); 677 } 678 679 680 681 /** 682 * omap_vc_i2c_init - initialize I2C interface to PMIC 683 * @voltdm: voltage domain containing VC data 684 * 685 * Use PMIC supplied settings for I2C high-speed mode and 686 * master code (if set) and program the VC I2C configuration 687 * register. 688 * 689 * The VC I2C configuration is common to all VC channels, 690 * so this function only configures I2C for the first VC 691 * channel registers. All other VC channels will use the 692 * same configuration. 693 */ 694 static void __init omap_vc_i2c_init(struct voltagedomain *voltdm) 695 { 696 struct omap_vc_channel *vc = voltdm->vc; 697 static bool initialized; 698 static bool i2c_high_speed; 699 u8 mcode; 700 701 if (initialized) { 702 if (voltdm->pmic->i2c_high_speed != i2c_high_speed) 703 pr_warn("%s: I2C config for vdd_%s does not match other channels (%u).\n", 704 __func__, voltdm->name, i2c_high_speed); 705 return; 706 } 707 708 /* 709 * Note that for omap3 OMAP3430_SREN_MASK clears SREN to work around 710 * erratum i531 "Extra Power Consumed When Repeated Start Operation 711 * Mode Is Enabled on I2C Interface Dedicated for Smart Reflex (I2C4)". 712 * Otherwise I2C4 eventually leads into about 23mW extra power being 713 * consumed even during off idle using VMODE. 714 */ 715 i2c_high_speed = voltdm->pmic->i2c_high_speed; 716 if (i2c_high_speed) 717 voltdm->rmw(vc->common->i2c_cfg_clear_mask, 718 vc->common->i2c_cfg_hsen_mask, 719 vc->common->i2c_cfg_reg); 720 721 mcode = voltdm->pmic->i2c_mcode; 722 if (mcode) 723 voltdm->rmw(vc->common->i2c_mcode_mask, 724 mcode << __ffs(vc->common->i2c_mcode_mask), 725 vc->common->i2c_cfg_reg); 726 727 if (cpu_is_omap44xx()) 728 omap4_vc_i2c_timing_init(voltdm); 729 730 initialized = true; 731 } 732 733 /** 734 * omap_vc_calc_vsel - calculate vsel value for a channel 735 * @voltdm: channel to calculate value for 736 * @uvolt: microvolt value to convert to vsel 737 * 738 * Converts a microvolt value to vsel value for the used PMIC. 739 * This checks whether the microvolt value is out of bounds, and 740 * adjusts the value accordingly. If unsupported value detected, 741 * warning is thrown. 742 */ 743 static u8 omap_vc_calc_vsel(struct voltagedomain *voltdm, u32 uvolt) 744 { 745 if (voltdm->pmic->vddmin > uvolt) 746 uvolt = voltdm->pmic->vddmin; 747 if (voltdm->pmic->vddmax < uvolt) { 748 WARN(1, "%s: voltage not supported by pmic: %u vs max %u\n", 749 __func__, uvolt, voltdm->pmic->vddmax); 750 /* Lets try maximum value anyway */ 751 uvolt = voltdm->pmic->vddmax; 752 } 753 754 return voltdm->pmic->uv_to_vsel(uvolt); 755 } 756 757 #ifdef CONFIG_PM 758 /** 759 * omap_pm_setup_sr_i2c_pcb_length - set length of SR I2C traces on PCB 760 * @mm: length of the PCB trace in millimetres 761 * 762 * Sets the PCB trace length for the I2C channel. By default uses 63mm. 763 * This is needed for properly calculating the capacitance value for 764 * the PCB trace, and for setting the SR I2C channel timing parameters. 765 */ 766 void __init omap_pm_setup_sr_i2c_pcb_length(u32 mm) 767 { 768 sr_i2c_pcb_length = mm; 769 } 770 #endif 771 772 void __init omap_vc_init_channel(struct voltagedomain *voltdm) 773 { 774 struct omap_vc_channel *vc = voltdm->vc; 775 u8 on_vsel, onlp_vsel, ret_vsel, off_vsel; 776 u32 val; 777 778 if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) { 779 pr_err("%s: No PMIC info for vdd_%s\n", __func__, voltdm->name); 780 return; 781 } 782 783 if (!voltdm->read || !voltdm->write) { 784 pr_err("%s: No read/write API for accessing vdd_%s regs\n", 785 __func__, voltdm->name); 786 return; 787 } 788 789 vc->cfg_channel = 0; 790 if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT) 791 vc_cfg_bits = &vc_mutant_channel_cfg; 792 else 793 vc_cfg_bits = &vc_default_channel_cfg; 794 795 /* get PMIC/board specific settings */ 796 vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr; 797 vc->volt_reg_addr = voltdm->pmic->volt_reg_addr; 798 vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr; 799 800 /* Configure the i2c slave address for this VC */ 801 voltdm->rmw(vc->smps_sa_mask, 802 vc->i2c_slave_addr << __ffs(vc->smps_sa_mask), 803 vc->smps_sa_reg); 804 vc->cfg_channel |= vc_cfg_bits->sa; 805 806 /* 807 * Configure the PMIC register addresses. 808 */ 809 voltdm->rmw(vc->smps_volra_mask, 810 vc->volt_reg_addr << __ffs(vc->smps_volra_mask), 811 vc->smps_volra_reg); 812 vc->cfg_channel |= vc_cfg_bits->rav; 813 814 if (vc->cmd_reg_addr) { 815 voltdm->rmw(vc->smps_cmdra_mask, 816 vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask), 817 vc->smps_cmdra_reg); 818 vc->cfg_channel |= vc_cfg_bits->rac; 819 } 820 821 if (vc->cmd_reg_addr == vc->volt_reg_addr) 822 vc->cfg_channel |= vc_cfg_bits->racen; 823 824 /* Set up the on, inactive, retention and off voltage */ 825 on_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->on); 826 onlp_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->onlp); 827 ret_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->ret); 828 off_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->off); 829 830 val = ((on_vsel << vc->common->cmd_on_shift) | 831 (onlp_vsel << vc->common->cmd_onlp_shift) | 832 (ret_vsel << vc->common->cmd_ret_shift) | 833 (off_vsel << vc->common->cmd_off_shift)); 834 voltdm->write(val, vc->cmdval_reg); 835 vc->cfg_channel |= vc_cfg_bits->cmd; 836 837 /* Channel configuration */ 838 omap_vc_config_channel(voltdm); 839 840 omap_vc_i2c_init(voltdm); 841 842 if (cpu_is_omap34xx()) 843 omap3_vc_init_channel(voltdm); 844 else if (cpu_is_omap44xx()) 845 omap4_vc_init_channel(voltdm); 846 } 847 848