xref: /openbmc/linux/arch/arm/mach-omap2/vc.c (revision 8c749ce9)
1 /*
2  * OMAP Voltage Controller (VC) interface
3  *
4  * Copyright (C) 2011 Texas Instruments, Inc.
5  *
6  * This file is licensed under the terms of the GNU General Public
7  * License version 2. This program is licensed "as is" without any
8  * warranty of any kind, whether express or implied.
9  */
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/bug.h>
14 #include <linux/io.h>
15 
16 #include <asm/div64.h>
17 
18 #include "iomap.h"
19 #include "soc.h"
20 #include "voltage.h"
21 #include "vc.h"
22 #include "prm-regbits-34xx.h"
23 #include "prm-regbits-44xx.h"
24 #include "prm44xx.h"
25 #include "pm.h"
26 #include "scrm44xx.h"
27 #include "control.h"
28 
29 /**
30  * struct omap_vc_channel_cfg - describe the cfg_channel bitfield
31  * @sa: bit for slave address
32  * @rav: bit for voltage configuration register
33  * @rac: bit for command configuration register
34  * @racen: enable bit for RAC
35  * @cmd: bit for command value set selection
36  *
37  * Channel configuration bits, common for OMAP3+
38  * OMAP3 register: PRM_VC_CH_CONF
39  * OMAP4 register: PRM_VC_CFG_CHANNEL
40  * OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG
41  */
42 struct omap_vc_channel_cfg {
43 	u8 sa;
44 	u8 rav;
45 	u8 rac;
46 	u8 racen;
47 	u8 cmd;
48 };
49 
50 static struct omap_vc_channel_cfg vc_default_channel_cfg = {
51 	.sa    = BIT(0),
52 	.rav   = BIT(1),
53 	.rac   = BIT(2),
54 	.racen = BIT(3),
55 	.cmd   = BIT(4),
56 };
57 
58 /*
59  * On OMAP3+, all VC channels have the above default bitfield
60  * configuration, except the OMAP4 MPU channel.  This appears
61  * to be a freak accident as every other VC channel has the
62  * default configuration, thus creating a mutant channel config.
63  */
64 static struct omap_vc_channel_cfg vc_mutant_channel_cfg = {
65 	.sa    = BIT(0),
66 	.rav   = BIT(2),
67 	.rac   = BIT(3),
68 	.racen = BIT(4),
69 	.cmd   = BIT(1),
70 };
71 
72 static struct omap_vc_channel_cfg *vc_cfg_bits;
73 
74 /* Default I2C trace length on pcb, 6.3cm. Used for capacitance calculations. */
75 static u32 sr_i2c_pcb_length = 63;
76 #define CFG_CHANNEL_MASK 0x1f
77 
78 /**
79  * omap_vc_config_channel - configure VC channel to PMIC mappings
80  * @voltdm: pointer to voltagdomain defining the desired VC channel
81  *
82  * Configures the VC channel to PMIC mappings for the following
83  * PMIC settings
84  * - i2c slave address (SA)
85  * - voltage configuration address (RAV)
86  * - command configuration address (RAC) and enable bit (RACEN)
87  * - command values for ON, ONLP, RET and OFF (CMD)
88  *
89  * This function currently only allows flexible configuration of the
90  * non-default channel.  Starting with OMAP4, there are more than 2
91  * channels, with one defined as the default (on OMAP4, it's MPU.)
92  * Only the non-default channel can be configured.
93  */
94 static int omap_vc_config_channel(struct voltagedomain *voltdm)
95 {
96 	struct omap_vc_channel *vc = voltdm->vc;
97 
98 	/*
99 	 * For default channel, the only configurable bit is RACEN.
100 	 * All others must stay at zero (see function comment above.)
101 	 */
102 	if (vc->flags & OMAP_VC_CHANNEL_DEFAULT)
103 		vc->cfg_channel &= vc_cfg_bits->racen;
104 
105 	voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift,
106 		    vc->cfg_channel << vc->cfg_channel_sa_shift,
107 		    vc->cfg_channel_reg);
108 
109 	return 0;
110 }
111 
112 /* Voltage scale and accessory APIs */
113 int omap_vc_pre_scale(struct voltagedomain *voltdm,
114 		      unsigned long target_volt,
115 		      u8 *target_vsel, u8 *current_vsel)
116 {
117 	struct omap_vc_channel *vc = voltdm->vc;
118 	u32 vc_cmdval;
119 
120 	/* Check if sufficient pmic info is available for this vdd */
121 	if (!voltdm->pmic) {
122 		pr_err("%s: Insufficient pmic info to scale the vdd_%s\n",
123 			__func__, voltdm->name);
124 		return -EINVAL;
125 	}
126 
127 	if (!voltdm->pmic->uv_to_vsel) {
128 		pr_err("%s: PMIC function to convert voltage in uV to vsel not registered. Hence unable to scale voltage for vdd_%s\n",
129 		       __func__, voltdm->name);
130 		return -ENODATA;
131 	}
132 
133 	if (!voltdm->read || !voltdm->write) {
134 		pr_err("%s: No read/write API for accessing vdd_%s regs\n",
135 			__func__, voltdm->name);
136 		return -EINVAL;
137 	}
138 
139 	*target_vsel = voltdm->pmic->uv_to_vsel(target_volt);
140 	*current_vsel = voltdm->pmic->uv_to_vsel(voltdm->nominal_volt);
141 
142 	/* Setting the ON voltage to the new target voltage */
143 	vc_cmdval = voltdm->read(vc->cmdval_reg);
144 	vc_cmdval &= ~vc->common->cmd_on_mask;
145 	vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift);
146 	voltdm->write(vc_cmdval, vc->cmdval_reg);
147 
148 	voltdm->vc_param->on = target_volt;
149 
150 	omap_vp_update_errorgain(voltdm, target_volt);
151 
152 	return 0;
153 }
154 
155 void omap_vc_post_scale(struct voltagedomain *voltdm,
156 			unsigned long target_volt,
157 			u8 target_vsel, u8 current_vsel)
158 {
159 	u32 smps_steps = 0, smps_delay = 0;
160 
161 	smps_steps = abs(target_vsel - current_vsel);
162 	/* SMPS slew rate / step size. 2us added as buffer. */
163 	smps_delay = ((smps_steps * voltdm->pmic->step_size) /
164 			voltdm->pmic->slew_rate) + 2;
165 	udelay(smps_delay);
166 }
167 
168 /* vc_bypass_scale - VC bypass method of voltage scaling */
169 int omap_vc_bypass_scale(struct voltagedomain *voltdm,
170 			 unsigned long target_volt)
171 {
172 	struct omap_vc_channel *vc = voltdm->vc;
173 	u32 loop_cnt = 0, retries_cnt = 0;
174 	u32 vc_valid, vc_bypass_val_reg, vc_bypass_value;
175 	u8 target_vsel, current_vsel;
176 	int ret;
177 
178 	ret = omap_vc_pre_scale(voltdm, target_volt, &target_vsel, &current_vsel);
179 	if (ret)
180 		return ret;
181 
182 	vc_valid = vc->common->valid;
183 	vc_bypass_val_reg = vc->common->bypass_val_reg;
184 	vc_bypass_value = (target_vsel << vc->common->data_shift) |
185 		(vc->volt_reg_addr << vc->common->regaddr_shift) |
186 		(vc->i2c_slave_addr << vc->common->slaveaddr_shift);
187 
188 	voltdm->write(vc_bypass_value, vc_bypass_val_reg);
189 	voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg);
190 
191 	vc_bypass_value = voltdm->read(vc_bypass_val_reg);
192 	/*
193 	 * Loop till the bypass command is acknowledged from the SMPS.
194 	 * NOTE: This is legacy code. The loop count and retry count needs
195 	 * to be revisited.
196 	 */
197 	while (!(vc_bypass_value & vc_valid)) {
198 		loop_cnt++;
199 
200 		if (retries_cnt > 10) {
201 			pr_warn("%s: Retry count exceeded\n", __func__);
202 			return -ETIMEDOUT;
203 		}
204 
205 		if (loop_cnt > 50) {
206 			retries_cnt++;
207 			loop_cnt = 0;
208 			udelay(10);
209 		}
210 		vc_bypass_value = voltdm->read(vc_bypass_val_reg);
211 	}
212 
213 	omap_vc_post_scale(voltdm, target_volt, target_vsel, current_vsel);
214 	return 0;
215 }
216 
217 /* Convert microsecond value to number of 32kHz clock cycles */
218 static inline u32 omap_usec_to_32k(u32 usec)
219 {
220 	return DIV_ROUND_UP_ULL(32768ULL * (u64)usec, 1000000ULL);
221 }
222 
223 struct omap3_vc_timings {
224 	u32 voltsetup1;
225 	u32 voltsetup2;
226 };
227 
228 struct omap3_vc {
229 	struct voltagedomain *vd;
230 	u32 voltctrl;
231 	u32 voltsetup1;
232 	u32 voltsetup2;
233 	struct omap3_vc_timings timings[2];
234 };
235 static struct omap3_vc vc;
236 
237 void omap3_vc_set_pmic_signaling(int core_next_state)
238 {
239 	struct voltagedomain *vd = vc.vd;
240 	struct omap3_vc_timings *c = vc.timings;
241 	u32 voltctrl, voltsetup1, voltsetup2;
242 
243 	voltctrl = vc.voltctrl;
244 	voltsetup1 = vc.voltsetup1;
245 	voltsetup2 = vc.voltsetup2;
246 
247 	switch (core_next_state) {
248 	case PWRDM_POWER_OFF:
249 		voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_RET |
250 			      OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP);
251 		voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_OFF;
252 		if (voltctrl & OMAP3430_PRM_VOLTCTRL_SEL_OFF)
253 			voltsetup2 = c->voltsetup2;
254 		else
255 			voltsetup1 = c->voltsetup1;
256 		break;
257 	case PWRDM_POWER_RET:
258 	default:
259 		c++;
260 		voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_OFF |
261 			      OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP);
262 		voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_RET;
263 		voltsetup1 = c->voltsetup1;
264 		break;
265 	}
266 
267 	if (voltctrl != vc.voltctrl) {
268 		vd->write(voltctrl, OMAP3_PRM_VOLTCTRL_OFFSET);
269 		vc.voltctrl = voltctrl;
270 	}
271 	if (voltsetup1 != vc.voltsetup1) {
272 		vd->write(c->voltsetup1,
273 			  OMAP3_PRM_VOLTSETUP1_OFFSET);
274 		vc.voltsetup1 = voltsetup1;
275 	}
276 	if (voltsetup2 != vc.voltsetup2) {
277 		vd->write(c->voltsetup2,
278 			  OMAP3_PRM_VOLTSETUP2_OFFSET);
279 		vc.voltsetup2 = voltsetup2;
280 	}
281 }
282 
283 /*
284  * Configure signal polarity for sys_clkreq and sys_off_mode pins
285  * as the default values are wrong and can cause the system to hang
286  * if any twl4030 scripts are loaded.
287  */
288 static void __init omap3_vc_init_pmic_signaling(struct voltagedomain *voltdm)
289 {
290 	u32 val;
291 
292 	if (vc.vd)
293 		return;
294 
295 	vc.vd = voltdm;
296 
297 	val = voltdm->read(OMAP3_PRM_POLCTRL_OFFSET);
298 	if (!(val & OMAP3430_PRM_POLCTRL_CLKREQ_POL) ||
299 	    (val & OMAP3430_PRM_POLCTRL_OFFMODE_POL)) {
300 		val |= OMAP3430_PRM_POLCTRL_CLKREQ_POL;
301 		val &= ~OMAP3430_PRM_POLCTRL_OFFMODE_POL;
302 		pr_debug("PM: fixing sys_clkreq and sys_off_mode polarity to 0x%x\n",
303 			 val);
304 		voltdm->write(val, OMAP3_PRM_POLCTRL_OFFSET);
305 	}
306 
307 	/*
308 	 * By default let's use I2C4 signaling for retention idle
309 	 * and sys_off_mode pin signaling for off idle. This way we
310 	 * have sys_clk_req pin go down for retention and both
311 	 * sys_clk_req and sys_off_mode pins will go down for off
312 	 * idle. And we can also scale voltages to zero for off-idle.
313 	 * Note that no actual voltage scaling during off-idle will
314 	 * happen unless the board specific twl4030 PMIC scripts are
315 	 * loaded. See also omap_vc_i2c_init for comments regarding
316 	 * erratum i531.
317 	 */
318 	val = voltdm->read(OMAP3_PRM_VOLTCTRL_OFFSET);
319 	if (!(val & OMAP3430_PRM_VOLTCTRL_SEL_OFF)) {
320 		val |= OMAP3430_PRM_VOLTCTRL_SEL_OFF;
321 		pr_debug("PM: setting voltctrl sys_off_mode signaling to 0x%x\n",
322 			 val);
323 		voltdm->write(val, OMAP3_PRM_VOLTCTRL_OFFSET);
324 	}
325 	vc.voltctrl = val;
326 
327 	omap3_vc_set_pmic_signaling(PWRDM_POWER_ON);
328 }
329 
330 static void omap3_init_voltsetup1(struct voltagedomain *voltdm,
331 				  struct omap3_vc_timings *c, u32 idle)
332 {
333 	unsigned long val;
334 
335 	val = (voltdm->vc_param->on - idle) / voltdm->pmic->slew_rate;
336 	val *= voltdm->sys_clk.rate / 8 / 1000000 + 1;
337 	val <<= __ffs(voltdm->vfsm->voltsetup_mask);
338 	c->voltsetup1 &= ~voltdm->vfsm->voltsetup_mask;
339 	c->voltsetup1 |= val;
340 }
341 
342 /**
343  * omap3_set_i2c_timings - sets i2c sleep timings for a channel
344  * @voltdm: channel to configure
345  * @off_mode: select whether retention or off mode values used
346  *
347  * Calculates and sets up voltage controller to use I2C based
348  * voltage scaling for sleep modes. This can be used for either off mode
349  * or retention. Off mode has additionally an option to use sys_off_mode
350  * pad, which uses a global signal to program the whole power IC to
351  * off-mode.
352  *
353  * Note that pmic is not controlling the voltage scaling during
354  * retention signaled over I2C4, so we can keep voltsetup2 as 0.
355  * And the oscillator is not shut off over I2C4, so no need to
356  * set clksetup.
357  */
358 static void omap3_set_i2c_timings(struct voltagedomain *voltdm)
359 {
360 	struct omap3_vc_timings *c = vc.timings;
361 
362 	/* Configure PRWDM_POWER_OFF over I2C4 */
363 	omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->off);
364 	c++;
365 	/* Configure PRWDM_POWER_RET over I2C4 */
366 	omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->ret);
367 }
368 
369 /**
370  * omap3_set_off_timings - sets off-mode timings for a channel
371  * @voltdm: channel to configure
372  *
373  * Calculates and sets up off-mode timings for a channel. Off-mode
374  * can use either I2C based voltage scaling, or alternatively
375  * sys_off_mode pad can be used to send a global command to power IC.n,
376  * sys_off_mode has the additional benefit that voltages can be
377  * scaled to zero volt level with TWL4030 / TWL5030, I2C can only
378  * scale to 600mV.
379  *
380  * Note that omap is not controlling the voltage scaling during
381  * off idle signaled by sys_off_mode, so we can keep voltsetup1
382  * as 0.
383  */
384 static void omap3_set_off_timings(struct voltagedomain *voltdm)
385 {
386 	struct omap3_vc_timings *c = vc.timings;
387 	u32 tstart, tshut, clksetup, voltoffset;
388 
389 	if (c->voltsetup2)
390 		return;
391 
392 	omap_pm_get_oscillator(&tstart, &tshut);
393 	if (tstart == ULONG_MAX) {
394 		pr_debug("PM: oscillator start-up time not initialized, using 10ms\n");
395 		clksetup = omap_usec_to_32k(10000);
396 	} else {
397 		clksetup = omap_usec_to_32k(tstart);
398 	}
399 
400 	/*
401 	 * For twl4030 errata 27, we need to allow minimum ~488.32 us wait to
402 	 * switch from HFCLKIN to internal oscillator. That means timings
403 	 * have voltoffset fixed to 0xa in rounded up 32 KiHz cycles. And
404 	 * that means we can calculate the value based on the oscillator
405 	 * start-up time since voltoffset2 = clksetup - voltoffset.
406 	 */
407 	voltoffset = omap_usec_to_32k(488);
408 	c->voltsetup2 = clksetup - voltoffset;
409 	voltdm->write(clksetup, OMAP3_PRM_CLKSETUP_OFFSET);
410 	voltdm->write(voltoffset, OMAP3_PRM_VOLTOFFSET_OFFSET);
411 }
412 
413 static void __init omap3_vc_init_channel(struct voltagedomain *voltdm)
414 {
415 	omap3_vc_init_pmic_signaling(voltdm);
416 	omap3_set_off_timings(voltdm);
417 	omap3_set_i2c_timings(voltdm);
418 }
419 
420 /**
421  * omap4_calc_volt_ramp - calculates voltage ramping delays on omap4
422  * @voltdm: channel to calculate values for
423  * @voltage_diff: voltage difference in microvolts
424  *
425  * Calculates voltage ramp prescaler + counter values for a voltage
426  * difference on omap4. Returns a field value suitable for writing to
427  * VOLTSETUP register for a channel in following format:
428  * bits[8:9] prescaler ... bits[0:5] counter. See OMAP4 TRM for reference.
429  */
430 static u32 omap4_calc_volt_ramp(struct voltagedomain *voltdm, u32 voltage_diff)
431 {
432 	u32 prescaler;
433 	u32 cycles;
434 	u32 time;
435 
436 	time = voltage_diff / voltdm->pmic->slew_rate;
437 
438 	cycles = voltdm->sys_clk.rate / 1000 * time / 1000;
439 
440 	cycles /= 64;
441 	prescaler = 0;
442 
443 	/* shift to next prescaler until no overflow */
444 
445 	/* scale for div 256 = 64 * 4 */
446 	if (cycles > 63) {
447 		cycles /= 4;
448 		prescaler++;
449 	}
450 
451 	/* scale for div 512 = 256 * 2 */
452 	if (cycles > 63) {
453 		cycles /= 2;
454 		prescaler++;
455 	}
456 
457 	/* scale for div 2048 = 512 * 4 */
458 	if (cycles > 63) {
459 		cycles /= 4;
460 		prescaler++;
461 	}
462 
463 	/* check for overflow => invalid ramp time */
464 	if (cycles > 63) {
465 		pr_warn("%s: invalid setuptime for vdd_%s\n", __func__,
466 			voltdm->name);
467 		return 0;
468 	}
469 
470 	cycles++;
471 
472 	return (prescaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) |
473 		(cycles << OMAP4430_RAMP_UP_COUNT_SHIFT);
474 }
475 
476 /**
477  * omap4_usec_to_val_scrm - convert microsecond value to SCRM module bitfield
478  * @usec: microseconds
479  * @shift: number of bits to shift left
480  * @mask: bitfield mask
481  *
482  * Converts microsecond value to OMAP4 SCRM bitfield. Bitfield is
483  * shifted to requested position, and checked agains the mask value.
484  * If larger, forced to the max value of the field (i.e. the mask itself.)
485  * Returns the SCRM bitfield value.
486  */
487 static u32 omap4_usec_to_val_scrm(u32 usec, int shift, u32 mask)
488 {
489 	u32 val;
490 
491 	val = omap_usec_to_32k(usec) << shift;
492 
493 	/* Check for overflow, if yes, force to max value */
494 	if (val > mask)
495 		val = mask;
496 
497 	return val;
498 }
499 
500 /**
501  * omap4_set_timings - set voltage ramp timings for a channel
502  * @voltdm: channel to configure
503  * @off_mode: whether off-mode values are used
504  *
505  * Calculates and sets the voltage ramp up / down values for a channel.
506  */
507 static void omap4_set_timings(struct voltagedomain *voltdm, bool off_mode)
508 {
509 	u32 val;
510 	u32 ramp;
511 	int offset;
512 	u32 tstart, tshut;
513 
514 	if (off_mode) {
515 		ramp = omap4_calc_volt_ramp(voltdm,
516 			voltdm->vc_param->on - voltdm->vc_param->off);
517 		offset = voltdm->vfsm->voltsetup_off_reg;
518 	} else {
519 		ramp = omap4_calc_volt_ramp(voltdm,
520 			voltdm->vc_param->on - voltdm->vc_param->ret);
521 		offset = voltdm->vfsm->voltsetup_reg;
522 	}
523 
524 	if (!ramp)
525 		return;
526 
527 	val = voltdm->read(offset);
528 
529 	val |= ramp << OMAP4430_RAMP_DOWN_COUNT_SHIFT;
530 
531 	val |= ramp << OMAP4430_RAMP_UP_COUNT_SHIFT;
532 
533 	voltdm->write(val, offset);
534 
535 	omap_pm_get_oscillator(&tstart, &tshut);
536 
537 	val = omap4_usec_to_val_scrm(tstart, OMAP4_SETUPTIME_SHIFT,
538 		OMAP4_SETUPTIME_MASK);
539 	val |= omap4_usec_to_val_scrm(tshut, OMAP4_DOWNTIME_SHIFT,
540 		OMAP4_DOWNTIME_MASK);
541 
542 	writel_relaxed(val, OMAP4_SCRM_CLKSETUPTIME);
543 }
544 
545 /* OMAP4 specific voltage init functions */
546 static void __init omap4_vc_init_channel(struct voltagedomain *voltdm)
547 {
548 	omap4_set_timings(voltdm, true);
549 	omap4_set_timings(voltdm, false);
550 }
551 
552 struct i2c_init_data {
553 	u8 loadbits;
554 	u8 load;
555 	u8 hsscll_38_4;
556 	u8 hsscll_26;
557 	u8 hsscll_19_2;
558 	u8 hsscll_16_8;
559 	u8 hsscll_12;
560 };
561 
562 static const struct i2c_init_data const omap4_i2c_timing_data[] __initconst = {
563 	{
564 		.load = 50,
565 		.loadbits = 0x3,
566 		.hsscll_38_4 = 13,
567 		.hsscll_26 = 11,
568 		.hsscll_19_2 = 9,
569 		.hsscll_16_8 = 9,
570 		.hsscll_12 = 8,
571 	},
572 	{
573 		.load = 25,
574 		.loadbits = 0x2,
575 		.hsscll_38_4 = 13,
576 		.hsscll_26 = 11,
577 		.hsscll_19_2 = 9,
578 		.hsscll_16_8 = 9,
579 		.hsscll_12 = 8,
580 	},
581 	{
582 		.load = 12,
583 		.loadbits = 0x1,
584 		.hsscll_38_4 = 11,
585 		.hsscll_26 = 10,
586 		.hsscll_19_2 = 9,
587 		.hsscll_16_8 = 9,
588 		.hsscll_12 = 8,
589 	},
590 	{
591 		.load = 0,
592 		.loadbits = 0x0,
593 		.hsscll_38_4 = 12,
594 		.hsscll_26 = 10,
595 		.hsscll_19_2 = 9,
596 		.hsscll_16_8 = 8,
597 		.hsscll_12 = 8,
598 	},
599 };
600 
601 /**
602  * omap4_vc_i2c_timing_init - sets up board I2C timing parameters
603  * @voltdm: voltagedomain pointer to get data from
604  *
605  * Use PMIC + board supplied settings for calculating the total I2C
606  * channel capacitance and set the timing parameters based on this.
607  * Pre-calculated values are provided in data tables, as it is not
608  * too straightforward to calculate these runtime.
609  */
610 static void __init omap4_vc_i2c_timing_init(struct voltagedomain *voltdm)
611 {
612 	u32 capacitance;
613 	u32 val;
614 	u16 hsscll;
615 	const struct i2c_init_data *i2c_data;
616 
617 	if (!voltdm->pmic->i2c_high_speed) {
618 		pr_warn("%s: only high speed supported!\n", __func__);
619 		return;
620 	}
621 
622 	/* PCB trace capacitance, 0.125pF / mm => mm / 8 */
623 	capacitance = DIV_ROUND_UP(sr_i2c_pcb_length, 8);
624 
625 	/* OMAP pad capacitance */
626 	capacitance += 4;
627 
628 	/* PMIC pad capacitance */
629 	capacitance += voltdm->pmic->i2c_pad_load;
630 
631 	/* Search for capacitance match in the table */
632 	i2c_data = omap4_i2c_timing_data;
633 
634 	while (i2c_data->load > capacitance)
635 		i2c_data++;
636 
637 	/* Select proper values based on sysclk frequency */
638 	switch (voltdm->sys_clk.rate) {
639 	case 38400000:
640 		hsscll = i2c_data->hsscll_38_4;
641 		break;
642 	case 26000000:
643 		hsscll = i2c_data->hsscll_26;
644 		break;
645 	case 19200000:
646 		hsscll = i2c_data->hsscll_19_2;
647 		break;
648 	case 16800000:
649 		hsscll = i2c_data->hsscll_16_8;
650 		break;
651 	case 12000000:
652 		hsscll = i2c_data->hsscll_12;
653 		break;
654 	default:
655 		pr_warn("%s: unsupported sysclk rate: %d!\n", __func__,
656 			voltdm->sys_clk.rate);
657 		return;
658 	}
659 
660 	/* Loadbits define pull setup for the I2C channels */
661 	val = i2c_data->loadbits << 25 | i2c_data->loadbits << 29;
662 
663 	/* Write to SYSCTRL_PADCONF_WKUP_CTRL_I2C_2 to setup I2C pull */
664 	writel_relaxed(val, OMAP2_L4_IO_ADDRESS(OMAP4_CTRL_MODULE_PAD_WKUP +
665 				OMAP4_CTRL_MODULE_PAD_WKUP_CONTROL_I2C_2));
666 
667 	/* HSSCLH can always be zero */
668 	val = hsscll << OMAP4430_HSSCLL_SHIFT;
669 	val |= (0x28 << OMAP4430_SCLL_SHIFT | 0x2c << OMAP4430_SCLH_SHIFT);
670 
671 	/* Write setup times to I2C config register */
672 	voltdm->write(val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET);
673 }
674 
675 
676 
677 /**
678  * omap_vc_i2c_init - initialize I2C interface to PMIC
679  * @voltdm: voltage domain containing VC data
680  *
681  * Use PMIC supplied settings for I2C high-speed mode and
682  * master code (if set) and program the VC I2C configuration
683  * register.
684  *
685  * The VC I2C configuration is common to all VC channels,
686  * so this function only configures I2C for the first VC
687  * channel registers.  All other VC channels will use the
688  * same configuration.
689  */
690 static void __init omap_vc_i2c_init(struct voltagedomain *voltdm)
691 {
692 	struct omap_vc_channel *vc = voltdm->vc;
693 	static bool initialized;
694 	static bool i2c_high_speed;
695 	u8 mcode;
696 
697 	if (initialized) {
698 		if (voltdm->pmic->i2c_high_speed != i2c_high_speed)
699 			pr_warn("%s: I2C config for vdd_%s does not match other channels (%u).\n",
700 				__func__, voltdm->name, i2c_high_speed);
701 		return;
702 	}
703 
704 	/*
705 	 * Note that for omap3 OMAP3430_SREN_MASK clears SREN to work around
706 	 * erratum i531 "Extra Power Consumed When Repeated Start Operation
707 	 * Mode Is Enabled on I2C Interface Dedicated for Smart Reflex (I2C4)".
708 	 * Otherwise I2C4 eventually leads into about 23mW extra power being
709 	 * consumed even during off idle using VMODE.
710 	 */
711 	i2c_high_speed = voltdm->pmic->i2c_high_speed;
712 	if (i2c_high_speed)
713 		voltdm->rmw(vc->common->i2c_cfg_clear_mask,
714 			    vc->common->i2c_cfg_hsen_mask,
715 			    vc->common->i2c_cfg_reg);
716 
717 	mcode = voltdm->pmic->i2c_mcode;
718 	if (mcode)
719 		voltdm->rmw(vc->common->i2c_mcode_mask,
720 			    mcode << __ffs(vc->common->i2c_mcode_mask),
721 			    vc->common->i2c_cfg_reg);
722 
723 	if (cpu_is_omap44xx())
724 		omap4_vc_i2c_timing_init(voltdm);
725 
726 	initialized = true;
727 }
728 
729 /**
730  * omap_vc_calc_vsel - calculate vsel value for a channel
731  * @voltdm: channel to calculate value for
732  * @uvolt: microvolt value to convert to vsel
733  *
734  * Converts a microvolt value to vsel value for the used PMIC.
735  * This checks whether the microvolt value is out of bounds, and
736  * adjusts the value accordingly. If unsupported value detected,
737  * warning is thrown.
738  */
739 static u8 omap_vc_calc_vsel(struct voltagedomain *voltdm, u32 uvolt)
740 {
741 	if (voltdm->pmic->vddmin > uvolt)
742 		uvolt = voltdm->pmic->vddmin;
743 	if (voltdm->pmic->vddmax < uvolt) {
744 		WARN(1, "%s: voltage not supported by pmic: %u vs max %u\n",
745 			__func__, uvolt, voltdm->pmic->vddmax);
746 		/* Lets try maximum value anyway */
747 		uvolt = voltdm->pmic->vddmax;
748 	}
749 
750 	return voltdm->pmic->uv_to_vsel(uvolt);
751 }
752 
753 #ifdef CONFIG_PM
754 /**
755  * omap_pm_setup_sr_i2c_pcb_length - set length of SR I2C traces on PCB
756  * @mm: length of the PCB trace in millimetres
757  *
758  * Sets the PCB trace length for the I2C channel. By default uses 63mm.
759  * This is needed for properly calculating the capacitance value for
760  * the PCB trace, and for setting the SR I2C channel timing parameters.
761  */
762 void __init omap_pm_setup_sr_i2c_pcb_length(u32 mm)
763 {
764 	sr_i2c_pcb_length = mm;
765 }
766 #endif
767 
768 void __init omap_vc_init_channel(struct voltagedomain *voltdm)
769 {
770 	struct omap_vc_channel *vc = voltdm->vc;
771 	u8 on_vsel, onlp_vsel, ret_vsel, off_vsel;
772 	u32 val;
773 
774 	if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) {
775 		pr_err("%s: No PMIC info for vdd_%s\n", __func__, voltdm->name);
776 		return;
777 	}
778 
779 	if (!voltdm->read || !voltdm->write) {
780 		pr_err("%s: No read/write API for accessing vdd_%s regs\n",
781 			__func__, voltdm->name);
782 		return;
783 	}
784 
785 	vc->cfg_channel = 0;
786 	if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT)
787 		vc_cfg_bits = &vc_mutant_channel_cfg;
788 	else
789 		vc_cfg_bits = &vc_default_channel_cfg;
790 
791 	/* get PMIC/board specific settings */
792 	vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr;
793 	vc->volt_reg_addr = voltdm->pmic->volt_reg_addr;
794 	vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr;
795 
796 	/* Configure the i2c slave address for this VC */
797 	voltdm->rmw(vc->smps_sa_mask,
798 		    vc->i2c_slave_addr << __ffs(vc->smps_sa_mask),
799 		    vc->smps_sa_reg);
800 	vc->cfg_channel |= vc_cfg_bits->sa;
801 
802 	/*
803 	 * Configure the PMIC register addresses.
804 	 */
805 	voltdm->rmw(vc->smps_volra_mask,
806 		    vc->volt_reg_addr << __ffs(vc->smps_volra_mask),
807 		    vc->smps_volra_reg);
808 	vc->cfg_channel |= vc_cfg_bits->rav;
809 
810 	if (vc->cmd_reg_addr) {
811 		voltdm->rmw(vc->smps_cmdra_mask,
812 			    vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask),
813 			    vc->smps_cmdra_reg);
814 		vc->cfg_channel |= vc_cfg_bits->rac;
815 	}
816 
817 	if (vc->cmd_reg_addr == vc->volt_reg_addr)
818 		vc->cfg_channel |= vc_cfg_bits->racen;
819 
820 	/* Set up the on, inactive, retention and off voltage */
821 	on_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->on);
822 	onlp_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->onlp);
823 	ret_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->ret);
824 	off_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->off);
825 
826 	val = ((on_vsel << vc->common->cmd_on_shift) |
827 	       (onlp_vsel << vc->common->cmd_onlp_shift) |
828 	       (ret_vsel << vc->common->cmd_ret_shift) |
829 	       (off_vsel << vc->common->cmd_off_shift));
830 	voltdm->write(val, vc->cmdval_reg);
831 	vc->cfg_channel |= vc_cfg_bits->cmd;
832 
833 	/* Channel configuration */
834 	omap_vc_config_channel(voltdm);
835 
836 	omap_vc_i2c_init(voltdm);
837 
838 	if (cpu_is_omap34xx())
839 		omap3_vc_init_channel(voltdm);
840 	else if (cpu_is_omap44xx())
841 		omap4_vc_init_channel(voltdm);
842 }
843 
844