xref: /openbmc/linux/arch/arm/mach-omap2/vc.c (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * OMAP Voltage Controller (VC) interface
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  */
7 #include <linux/kernel.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/bug.h>
11 #include <linux/io.h>
12 
13 #include <asm/div64.h>
14 
15 #include "iomap.h"
16 #include "soc.h"
17 #include "voltage.h"
18 #include "vc.h"
19 #include "prm-regbits-34xx.h"
20 #include "prm-regbits-44xx.h"
21 #include "prm44xx.h"
22 #include "pm.h"
23 #include "scrm44xx.h"
24 #include "control.h"
25 
26 #define OMAP4430_VDD_IVA_I2C_DISABLE		BIT(14)
27 #define OMAP4430_VDD_MPU_I2C_DISABLE		BIT(13)
28 #define OMAP4430_VDD_CORE_I2C_DISABLE		BIT(12)
29 #define OMAP4430_VDD_IVA_PRESENCE		BIT(9)
30 #define OMAP4430_VDD_MPU_PRESENCE		BIT(8)
31 #define OMAP4430_AUTO_CTRL_VDD_IVA(x)		((x) << 4)
32 #define OMAP4430_AUTO_CTRL_VDD_MPU(x)		((x) << 2)
33 #define OMAP4430_AUTO_CTRL_VDD_CORE(x)		((x) << 0)
34 #define OMAP4430_AUTO_CTRL_VDD_RET		2
35 
36 #define OMAP4430_VDD_I2C_DISABLE_MASK	\
37 	(OMAP4430_VDD_IVA_I2C_DISABLE | \
38 	 OMAP4430_VDD_MPU_I2C_DISABLE | \
39 	 OMAP4430_VDD_CORE_I2C_DISABLE)
40 
41 #define OMAP4_VDD_DEFAULT_VAL	\
42 	(OMAP4430_VDD_I2C_DISABLE_MASK | \
43 	 OMAP4430_VDD_IVA_PRESENCE | OMAP4430_VDD_MPU_PRESENCE | \
44 	 OMAP4430_AUTO_CTRL_VDD_IVA(OMAP4430_AUTO_CTRL_VDD_RET) | \
45 	 OMAP4430_AUTO_CTRL_VDD_MPU(OMAP4430_AUTO_CTRL_VDD_RET) | \
46 	 OMAP4430_AUTO_CTRL_VDD_CORE(OMAP4430_AUTO_CTRL_VDD_RET))
47 
48 #define OMAP4_VDD_RET_VAL	\
49 	(OMAP4_VDD_DEFAULT_VAL & ~OMAP4430_VDD_I2C_DISABLE_MASK)
50 
51 /**
52  * struct omap_vc_channel_cfg - describe the cfg_channel bitfield
53  * @sa: bit for slave address
54  * @rav: bit for voltage configuration register
55  * @rac: bit for command configuration register
56  * @racen: enable bit for RAC
57  * @cmd: bit for command value set selection
58  *
59  * Channel configuration bits, common for OMAP3+
60  * OMAP3 register: PRM_VC_CH_CONF
61  * OMAP4 register: PRM_VC_CFG_CHANNEL
62  * OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG
63  */
64 struct omap_vc_channel_cfg {
65 	u8 sa;
66 	u8 rav;
67 	u8 rac;
68 	u8 racen;
69 	u8 cmd;
70 };
71 
72 static struct omap_vc_channel_cfg vc_default_channel_cfg = {
73 	.sa    = BIT(0),
74 	.rav   = BIT(1),
75 	.rac   = BIT(2),
76 	.racen = BIT(3),
77 	.cmd   = BIT(4),
78 };
79 
80 /*
81  * On OMAP3+, all VC channels have the above default bitfield
82  * configuration, except the OMAP4 MPU channel.  This appears
83  * to be a freak accident as every other VC channel has the
84  * default configuration, thus creating a mutant channel config.
85  */
86 static struct omap_vc_channel_cfg vc_mutant_channel_cfg = {
87 	.sa    = BIT(0),
88 	.rav   = BIT(2),
89 	.rac   = BIT(3),
90 	.racen = BIT(4),
91 	.cmd   = BIT(1),
92 };
93 
94 static struct omap_vc_channel_cfg *vc_cfg_bits;
95 
96 /* Default I2C trace length on pcb, 6.3cm. Used for capacitance calculations. */
97 static u32 sr_i2c_pcb_length = 63;
98 #define CFG_CHANNEL_MASK 0x1f
99 
100 /**
101  * omap_vc_config_channel - configure VC channel to PMIC mappings
102  * @voltdm: pointer to voltagdomain defining the desired VC channel
103  *
104  * Configures the VC channel to PMIC mappings for the following
105  * PMIC settings
106  * - i2c slave address (SA)
107  * - voltage configuration address (RAV)
108  * - command configuration address (RAC) and enable bit (RACEN)
109  * - command values for ON, ONLP, RET and OFF (CMD)
110  *
111  * This function currently only allows flexible configuration of the
112  * non-default channel.  Starting with OMAP4, there are more than 2
113  * channels, with one defined as the default (on OMAP4, it's MPU.)
114  * Only the non-default channel can be configured.
115  */
116 static int omap_vc_config_channel(struct voltagedomain *voltdm)
117 {
118 	struct omap_vc_channel *vc = voltdm->vc;
119 
120 	/*
121 	 * For default channel, the only configurable bit is RACEN.
122 	 * All others must stay at zero (see function comment above.)
123 	 */
124 	if (vc->flags & OMAP_VC_CHANNEL_DEFAULT)
125 		vc->cfg_channel &= vc_cfg_bits->racen;
126 
127 	voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift,
128 		    vc->cfg_channel << vc->cfg_channel_sa_shift,
129 		    vc->cfg_channel_reg);
130 
131 	return 0;
132 }
133 
134 /* Voltage scale and accessory APIs */
135 int omap_vc_pre_scale(struct voltagedomain *voltdm,
136 		      unsigned long target_volt,
137 		      u8 *target_vsel, u8 *current_vsel)
138 {
139 	struct omap_vc_channel *vc = voltdm->vc;
140 	u32 vc_cmdval;
141 
142 	/* Check if sufficient pmic info is available for this vdd */
143 	if (!voltdm->pmic) {
144 		pr_err("%s: Insufficient pmic info to scale the vdd_%s\n",
145 			__func__, voltdm->name);
146 		return -EINVAL;
147 	}
148 
149 	if (!voltdm->pmic->uv_to_vsel) {
150 		pr_err("%s: PMIC function to convert voltage in uV to vsel not registered. Hence unable to scale voltage for vdd_%s\n",
151 		       __func__, voltdm->name);
152 		return -ENODATA;
153 	}
154 
155 	if (!voltdm->read || !voltdm->write) {
156 		pr_err("%s: No read/write API for accessing vdd_%s regs\n",
157 			__func__, voltdm->name);
158 		return -EINVAL;
159 	}
160 
161 	*target_vsel = voltdm->pmic->uv_to_vsel(target_volt);
162 	*current_vsel = voltdm->pmic->uv_to_vsel(voltdm->nominal_volt);
163 
164 	/* Setting the ON voltage to the new target voltage */
165 	vc_cmdval = voltdm->read(vc->cmdval_reg);
166 	vc_cmdval &= ~vc->common->cmd_on_mask;
167 	vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift);
168 	voltdm->write(vc_cmdval, vc->cmdval_reg);
169 
170 	voltdm->vc_param->on = target_volt;
171 
172 	omap_vp_update_errorgain(voltdm, target_volt);
173 
174 	return 0;
175 }
176 
177 void omap_vc_post_scale(struct voltagedomain *voltdm,
178 			unsigned long target_volt,
179 			u8 target_vsel, u8 current_vsel)
180 {
181 	u32 smps_steps = 0, smps_delay = 0;
182 
183 	smps_steps = abs(target_vsel - current_vsel);
184 	/* SMPS slew rate / step size. 2us added as buffer. */
185 	smps_delay = ((smps_steps * voltdm->pmic->step_size) /
186 			voltdm->pmic->slew_rate) + 2;
187 	udelay(smps_delay);
188 }
189 
190 /* vc_bypass_scale - VC bypass method of voltage scaling */
191 int omap_vc_bypass_scale(struct voltagedomain *voltdm,
192 			 unsigned long target_volt)
193 {
194 	struct omap_vc_channel *vc = voltdm->vc;
195 	u32 loop_cnt = 0, retries_cnt = 0;
196 	u32 vc_valid, vc_bypass_val_reg, vc_bypass_value;
197 	u8 target_vsel, current_vsel;
198 	int ret;
199 
200 	ret = omap_vc_pre_scale(voltdm, target_volt, &target_vsel, &current_vsel);
201 	if (ret)
202 		return ret;
203 
204 	vc_valid = vc->common->valid;
205 	vc_bypass_val_reg = vc->common->bypass_val_reg;
206 	vc_bypass_value = (target_vsel << vc->common->data_shift) |
207 		(vc->volt_reg_addr << vc->common->regaddr_shift) |
208 		(vc->i2c_slave_addr << vc->common->slaveaddr_shift);
209 
210 	voltdm->write(vc_bypass_value, vc_bypass_val_reg);
211 	voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg);
212 
213 	vc_bypass_value = voltdm->read(vc_bypass_val_reg);
214 	/*
215 	 * Loop till the bypass command is acknowledged from the SMPS.
216 	 * NOTE: This is legacy code. The loop count and retry count needs
217 	 * to be revisited.
218 	 */
219 	while (!(vc_bypass_value & vc_valid)) {
220 		loop_cnt++;
221 
222 		if (retries_cnt > 10) {
223 			pr_warn("%s: Retry count exceeded\n", __func__);
224 			return -ETIMEDOUT;
225 		}
226 
227 		if (loop_cnt > 50) {
228 			retries_cnt++;
229 			loop_cnt = 0;
230 			udelay(10);
231 		}
232 		vc_bypass_value = voltdm->read(vc_bypass_val_reg);
233 	}
234 
235 	omap_vc_post_scale(voltdm, target_volt, target_vsel, current_vsel);
236 	return 0;
237 }
238 
239 /* Convert microsecond value to number of 32kHz clock cycles */
240 static inline u32 omap_usec_to_32k(u32 usec)
241 {
242 	return DIV_ROUND_UP_ULL(32768ULL * (u64)usec, 1000000ULL);
243 }
244 
245 struct omap3_vc_timings {
246 	u32 voltsetup1;
247 	u32 voltsetup2;
248 };
249 
250 struct omap3_vc {
251 	struct voltagedomain *vd;
252 	u32 voltctrl;
253 	u32 voltsetup1;
254 	u32 voltsetup2;
255 	struct omap3_vc_timings timings[2];
256 };
257 static struct omap3_vc vc;
258 
259 void omap3_vc_set_pmic_signaling(int core_next_state)
260 {
261 	struct voltagedomain *vd = vc.vd;
262 	struct omap3_vc_timings *c = vc.timings;
263 	u32 voltctrl, voltsetup1, voltsetup2;
264 
265 	voltctrl = vc.voltctrl;
266 	voltsetup1 = vc.voltsetup1;
267 	voltsetup2 = vc.voltsetup2;
268 
269 	switch (core_next_state) {
270 	case PWRDM_POWER_OFF:
271 		voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_RET |
272 			      OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP);
273 		voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_OFF;
274 		if (voltctrl & OMAP3430_PRM_VOLTCTRL_SEL_OFF)
275 			voltsetup2 = c->voltsetup2;
276 		else
277 			voltsetup1 = c->voltsetup1;
278 		break;
279 	case PWRDM_POWER_RET:
280 	default:
281 		c++;
282 		voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_OFF |
283 			      OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP);
284 		voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_RET;
285 		voltsetup1 = c->voltsetup1;
286 		break;
287 	}
288 
289 	if (voltctrl != vc.voltctrl) {
290 		vd->write(voltctrl, OMAP3_PRM_VOLTCTRL_OFFSET);
291 		vc.voltctrl = voltctrl;
292 	}
293 	if (voltsetup1 != vc.voltsetup1) {
294 		vd->write(c->voltsetup1,
295 			  OMAP3_PRM_VOLTSETUP1_OFFSET);
296 		vc.voltsetup1 = voltsetup1;
297 	}
298 	if (voltsetup2 != vc.voltsetup2) {
299 		vd->write(c->voltsetup2,
300 			  OMAP3_PRM_VOLTSETUP2_OFFSET);
301 		vc.voltsetup2 = voltsetup2;
302 	}
303 }
304 
305 void omap4_vc_set_pmic_signaling(int core_next_state)
306 {
307 	struct voltagedomain *vd = vc.vd;
308 	u32 val;
309 
310 	if (!vd)
311 		return;
312 
313 	switch (core_next_state) {
314 	case PWRDM_POWER_RET:
315 		val = OMAP4_VDD_RET_VAL;
316 		break;
317 	default:
318 		val = OMAP4_VDD_DEFAULT_VAL;
319 		break;
320 	}
321 
322 	vd->write(val, OMAP4_PRM_VOLTCTRL_OFFSET);
323 }
324 
325 /*
326  * Configure signal polarity for sys_clkreq and sys_off_mode pins
327  * as the default values are wrong and can cause the system to hang
328  * if any twl4030 scripts are loaded.
329  */
330 static void __init omap3_vc_init_pmic_signaling(struct voltagedomain *voltdm)
331 {
332 	u32 val;
333 
334 	if (vc.vd)
335 		return;
336 
337 	vc.vd = voltdm;
338 
339 	val = voltdm->read(OMAP3_PRM_POLCTRL_OFFSET);
340 	if (!(val & OMAP3430_PRM_POLCTRL_CLKREQ_POL) ||
341 	    (val & OMAP3430_PRM_POLCTRL_OFFMODE_POL)) {
342 		val |= OMAP3430_PRM_POLCTRL_CLKREQ_POL;
343 		val &= ~OMAP3430_PRM_POLCTRL_OFFMODE_POL;
344 		pr_debug("PM: fixing sys_clkreq and sys_off_mode polarity to 0x%x\n",
345 			 val);
346 		voltdm->write(val, OMAP3_PRM_POLCTRL_OFFSET);
347 	}
348 
349 	/*
350 	 * By default let's use I2C4 signaling for retention idle
351 	 * and sys_off_mode pin signaling for off idle. This way we
352 	 * have sys_clk_req pin go down for retention and both
353 	 * sys_clk_req and sys_off_mode pins will go down for off
354 	 * idle. And we can also scale voltages to zero for off-idle.
355 	 * Note that no actual voltage scaling during off-idle will
356 	 * happen unless the board specific twl4030 PMIC scripts are
357 	 * loaded. See also omap_vc_i2c_init for comments regarding
358 	 * erratum i531.
359 	 */
360 	val = voltdm->read(OMAP3_PRM_VOLTCTRL_OFFSET);
361 	if (!(val & OMAP3430_PRM_VOLTCTRL_SEL_OFF)) {
362 		val |= OMAP3430_PRM_VOLTCTRL_SEL_OFF;
363 		pr_debug("PM: setting voltctrl sys_off_mode signaling to 0x%x\n",
364 			 val);
365 		voltdm->write(val, OMAP3_PRM_VOLTCTRL_OFFSET);
366 	}
367 	vc.voltctrl = val;
368 
369 	omap3_vc_set_pmic_signaling(PWRDM_POWER_ON);
370 }
371 
372 static void omap3_init_voltsetup1(struct voltagedomain *voltdm,
373 				  struct omap3_vc_timings *c, u32 idle)
374 {
375 	unsigned long val;
376 
377 	val = (voltdm->vc_param->on - idle) / voltdm->pmic->slew_rate;
378 	val *= voltdm->sys_clk.rate / 8 / 1000000 + 1;
379 	val <<= __ffs(voltdm->vfsm->voltsetup_mask);
380 	c->voltsetup1 &= ~voltdm->vfsm->voltsetup_mask;
381 	c->voltsetup1 |= val;
382 }
383 
384 /**
385  * omap3_set_i2c_timings - sets i2c sleep timings for a channel
386  * @voltdm: channel to configure
387  * @off_mode: select whether retention or off mode values used
388  *
389  * Calculates and sets up voltage controller to use I2C based
390  * voltage scaling for sleep modes. This can be used for either off mode
391  * or retention. Off mode has additionally an option to use sys_off_mode
392  * pad, which uses a global signal to program the whole power IC to
393  * off-mode.
394  *
395  * Note that pmic is not controlling the voltage scaling during
396  * retention signaled over I2C4, so we can keep voltsetup2 as 0.
397  * And the oscillator is not shut off over I2C4, so no need to
398  * set clksetup.
399  */
400 static void omap3_set_i2c_timings(struct voltagedomain *voltdm)
401 {
402 	struct omap3_vc_timings *c = vc.timings;
403 
404 	/* Configure PRWDM_POWER_OFF over I2C4 */
405 	omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->off);
406 	c++;
407 	/* Configure PRWDM_POWER_RET over I2C4 */
408 	omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->ret);
409 }
410 
411 /**
412  * omap3_set_off_timings - sets off-mode timings for a channel
413  * @voltdm: channel to configure
414  *
415  * Calculates and sets up off-mode timings for a channel. Off-mode
416  * can use either I2C based voltage scaling, or alternatively
417  * sys_off_mode pad can be used to send a global command to power IC.n,
418  * sys_off_mode has the additional benefit that voltages can be
419  * scaled to zero volt level with TWL4030 / TWL5030, I2C can only
420  * scale to 600mV.
421  *
422  * Note that omap is not controlling the voltage scaling during
423  * off idle signaled by sys_off_mode, so we can keep voltsetup1
424  * as 0.
425  */
426 static void omap3_set_off_timings(struct voltagedomain *voltdm)
427 {
428 	struct omap3_vc_timings *c = vc.timings;
429 	u32 tstart, tshut, clksetup, voltoffset;
430 
431 	if (c->voltsetup2)
432 		return;
433 
434 	omap_pm_get_oscillator(&tstart, &tshut);
435 	if (tstart == ULONG_MAX) {
436 		pr_debug("PM: oscillator start-up time not initialized, using 10ms\n");
437 		clksetup = omap_usec_to_32k(10000);
438 	} else {
439 		clksetup = omap_usec_to_32k(tstart);
440 	}
441 
442 	/*
443 	 * For twl4030 errata 27, we need to allow minimum ~488.32 us wait to
444 	 * switch from HFCLKIN to internal oscillator. That means timings
445 	 * have voltoffset fixed to 0xa in rounded up 32 KiHz cycles. And
446 	 * that means we can calculate the value based on the oscillator
447 	 * start-up time since voltoffset2 = clksetup - voltoffset.
448 	 */
449 	voltoffset = omap_usec_to_32k(488);
450 	c->voltsetup2 = clksetup - voltoffset;
451 	voltdm->write(clksetup, OMAP3_PRM_CLKSETUP_OFFSET);
452 	voltdm->write(voltoffset, OMAP3_PRM_VOLTOFFSET_OFFSET);
453 }
454 
455 static void __init omap3_vc_init_channel(struct voltagedomain *voltdm)
456 {
457 	omap3_vc_init_pmic_signaling(voltdm);
458 	omap3_set_off_timings(voltdm);
459 	omap3_set_i2c_timings(voltdm);
460 }
461 
462 /**
463  * omap4_calc_volt_ramp - calculates voltage ramping delays on omap4
464  * @voltdm: channel to calculate values for
465  * @voltage_diff: voltage difference in microvolts
466  *
467  * Calculates voltage ramp prescaler + counter values for a voltage
468  * difference on omap4. Returns a field value suitable for writing to
469  * VOLTSETUP register for a channel in following format:
470  * bits[8:9] prescaler ... bits[0:5] counter. See OMAP4 TRM for reference.
471  */
472 static u32 omap4_calc_volt_ramp(struct voltagedomain *voltdm, u32 voltage_diff)
473 {
474 	u32 prescaler;
475 	u32 cycles;
476 	u32 time;
477 
478 	time = voltage_diff / voltdm->pmic->slew_rate;
479 
480 	cycles = voltdm->sys_clk.rate / 1000 * time / 1000;
481 
482 	cycles /= 64;
483 	prescaler = 0;
484 
485 	/* shift to next prescaler until no overflow */
486 
487 	/* scale for div 256 = 64 * 4 */
488 	if (cycles > 63) {
489 		cycles /= 4;
490 		prescaler++;
491 	}
492 
493 	/* scale for div 512 = 256 * 2 */
494 	if (cycles > 63) {
495 		cycles /= 2;
496 		prescaler++;
497 	}
498 
499 	/* scale for div 2048 = 512 * 4 */
500 	if (cycles > 63) {
501 		cycles /= 4;
502 		prescaler++;
503 	}
504 
505 	/* check for overflow => invalid ramp time */
506 	if (cycles > 63) {
507 		pr_warn("%s: invalid setuptime for vdd_%s\n", __func__,
508 			voltdm->name);
509 		return 0;
510 	}
511 
512 	cycles++;
513 
514 	return (prescaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) |
515 		(cycles << OMAP4430_RAMP_UP_COUNT_SHIFT);
516 }
517 
518 /**
519  * omap4_usec_to_val_scrm - convert microsecond value to SCRM module bitfield
520  * @usec: microseconds
521  * @shift: number of bits to shift left
522  * @mask: bitfield mask
523  *
524  * Converts microsecond value to OMAP4 SCRM bitfield. Bitfield is
525  * shifted to requested position, and checked agains the mask value.
526  * If larger, forced to the max value of the field (i.e. the mask itself.)
527  * Returns the SCRM bitfield value.
528  */
529 static u32 omap4_usec_to_val_scrm(u32 usec, int shift, u32 mask)
530 {
531 	u32 val;
532 
533 	val = omap_usec_to_32k(usec) << shift;
534 
535 	/* Check for overflow, if yes, force to max value */
536 	if (val > mask)
537 		val = mask;
538 
539 	return val;
540 }
541 
542 /**
543  * omap4_set_timings - set voltage ramp timings for a channel
544  * @voltdm: channel to configure
545  * @off_mode: whether off-mode values are used
546  *
547  * Calculates and sets the voltage ramp up / down values for a channel.
548  */
549 static void omap4_set_timings(struct voltagedomain *voltdm, bool off_mode)
550 {
551 	u32 val;
552 	u32 ramp;
553 	int offset;
554 	u32 tstart, tshut;
555 
556 	if (off_mode) {
557 		ramp = omap4_calc_volt_ramp(voltdm,
558 			voltdm->vc_param->on - voltdm->vc_param->off);
559 		offset = voltdm->vfsm->voltsetup_off_reg;
560 	} else {
561 		ramp = omap4_calc_volt_ramp(voltdm,
562 			voltdm->vc_param->on - voltdm->vc_param->ret);
563 		offset = voltdm->vfsm->voltsetup_reg;
564 	}
565 
566 	if (!ramp)
567 		return;
568 
569 	val = voltdm->read(offset);
570 
571 	val |= ramp << OMAP4430_RAMP_DOWN_COUNT_SHIFT;
572 
573 	val |= ramp << OMAP4430_RAMP_UP_COUNT_SHIFT;
574 
575 	voltdm->write(val, offset);
576 
577 	omap_pm_get_oscillator(&tstart, &tshut);
578 
579 	val = omap4_usec_to_val_scrm(tstart, OMAP4_SETUPTIME_SHIFT,
580 		OMAP4_SETUPTIME_MASK);
581 	val |= omap4_usec_to_val_scrm(tshut, OMAP4_DOWNTIME_SHIFT,
582 		OMAP4_DOWNTIME_MASK);
583 
584 	writel_relaxed(val, OMAP4_SCRM_CLKSETUPTIME);
585 }
586 
587 static void __init omap4_vc_init_pmic_signaling(struct voltagedomain *voltdm)
588 {
589 	if (vc.vd)
590 		return;
591 
592 	vc.vd = voltdm;
593 	voltdm->write(OMAP4_VDD_DEFAULT_VAL, OMAP4_PRM_VOLTCTRL_OFFSET);
594 }
595 
596 /* OMAP4 specific voltage init functions */
597 static void __init omap4_vc_init_channel(struct voltagedomain *voltdm)
598 {
599 	omap4_vc_init_pmic_signaling(voltdm);
600 	omap4_set_timings(voltdm, true);
601 	omap4_set_timings(voltdm, false);
602 }
603 
604 struct i2c_init_data {
605 	u8 loadbits;
606 	u8 load;
607 	u8 hsscll_38_4;
608 	u8 hsscll_26;
609 	u8 hsscll_19_2;
610 	u8 hsscll_16_8;
611 	u8 hsscll_12;
612 };
613 
614 static const struct i2c_init_data omap4_i2c_timing_data[] __initconst = {
615 	{
616 		.load = 50,
617 		.loadbits = 0x3,
618 		.hsscll_38_4 = 13,
619 		.hsscll_26 = 11,
620 		.hsscll_19_2 = 9,
621 		.hsscll_16_8 = 9,
622 		.hsscll_12 = 8,
623 	},
624 	{
625 		.load = 25,
626 		.loadbits = 0x2,
627 		.hsscll_38_4 = 13,
628 		.hsscll_26 = 11,
629 		.hsscll_19_2 = 9,
630 		.hsscll_16_8 = 9,
631 		.hsscll_12 = 8,
632 	},
633 	{
634 		.load = 12,
635 		.loadbits = 0x1,
636 		.hsscll_38_4 = 11,
637 		.hsscll_26 = 10,
638 		.hsscll_19_2 = 9,
639 		.hsscll_16_8 = 9,
640 		.hsscll_12 = 8,
641 	},
642 	{
643 		.load = 0,
644 		.loadbits = 0x0,
645 		.hsscll_38_4 = 12,
646 		.hsscll_26 = 10,
647 		.hsscll_19_2 = 9,
648 		.hsscll_16_8 = 8,
649 		.hsscll_12 = 8,
650 	},
651 };
652 
653 /**
654  * omap4_vc_i2c_timing_init - sets up board I2C timing parameters
655  * @voltdm: voltagedomain pointer to get data from
656  *
657  * Use PMIC + board supplied settings for calculating the total I2C
658  * channel capacitance and set the timing parameters based on this.
659  * Pre-calculated values are provided in data tables, as it is not
660  * too straightforward to calculate these runtime.
661  */
662 static void __init omap4_vc_i2c_timing_init(struct voltagedomain *voltdm)
663 {
664 	u32 capacitance;
665 	u32 val;
666 	u16 hsscll;
667 	const struct i2c_init_data *i2c_data;
668 
669 	if (!voltdm->pmic->i2c_high_speed) {
670 		pr_info("%s: using bootloader low-speed timings\n", __func__);
671 		return;
672 	}
673 
674 	/* PCB trace capacitance, 0.125pF / mm => mm / 8 */
675 	capacitance = DIV_ROUND_UP(sr_i2c_pcb_length, 8);
676 
677 	/* OMAP pad capacitance */
678 	capacitance += 4;
679 
680 	/* PMIC pad capacitance */
681 	capacitance += voltdm->pmic->i2c_pad_load;
682 
683 	/* Search for capacitance match in the table */
684 	i2c_data = omap4_i2c_timing_data;
685 
686 	while (i2c_data->load > capacitance)
687 		i2c_data++;
688 
689 	/* Select proper values based on sysclk frequency */
690 	switch (voltdm->sys_clk.rate) {
691 	case 38400000:
692 		hsscll = i2c_data->hsscll_38_4;
693 		break;
694 	case 26000000:
695 		hsscll = i2c_data->hsscll_26;
696 		break;
697 	case 19200000:
698 		hsscll = i2c_data->hsscll_19_2;
699 		break;
700 	case 16800000:
701 		hsscll = i2c_data->hsscll_16_8;
702 		break;
703 	case 12000000:
704 		hsscll = i2c_data->hsscll_12;
705 		break;
706 	default:
707 		pr_warn("%s: unsupported sysclk rate: %d!\n", __func__,
708 			voltdm->sys_clk.rate);
709 		return;
710 	}
711 
712 	/* Loadbits define pull setup for the I2C channels */
713 	val = i2c_data->loadbits << 25 | i2c_data->loadbits << 29;
714 
715 	/* Write to SYSCTRL_PADCONF_WKUP_CTRL_I2C_2 to setup I2C pull */
716 	writel_relaxed(val, OMAP2_L4_IO_ADDRESS(OMAP4_CTRL_MODULE_PAD_WKUP +
717 				OMAP4_CTRL_MODULE_PAD_WKUP_CONTROL_I2C_2));
718 
719 	/* HSSCLH can always be zero */
720 	val = hsscll << OMAP4430_HSSCLL_SHIFT;
721 	val |= (0x28 << OMAP4430_SCLL_SHIFT | 0x2c << OMAP4430_SCLH_SHIFT);
722 
723 	/* Write setup times to I2C config register */
724 	voltdm->write(val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET);
725 }
726 
727 
728 
729 /**
730  * omap_vc_i2c_init - initialize I2C interface to PMIC
731  * @voltdm: voltage domain containing VC data
732  *
733  * Use PMIC supplied settings for I2C high-speed mode and
734  * master code (if set) and program the VC I2C configuration
735  * register.
736  *
737  * The VC I2C configuration is common to all VC channels,
738  * so this function only configures I2C for the first VC
739  * channel registers.  All other VC channels will use the
740  * same configuration.
741  */
742 static void __init omap_vc_i2c_init(struct voltagedomain *voltdm)
743 {
744 	struct omap_vc_channel *vc = voltdm->vc;
745 	static bool initialized;
746 	static bool i2c_high_speed;
747 	u8 mcode;
748 
749 	if (initialized) {
750 		if (voltdm->pmic->i2c_high_speed != i2c_high_speed)
751 			pr_warn("%s: I2C config for vdd_%s does not match other channels (%u).\n",
752 				__func__, voltdm->name, i2c_high_speed);
753 		return;
754 	}
755 
756 	/*
757 	 * Note that for omap3 OMAP3430_SREN_MASK clears SREN to work around
758 	 * erratum i531 "Extra Power Consumed When Repeated Start Operation
759 	 * Mode Is Enabled on I2C Interface Dedicated for Smart Reflex (I2C4)".
760 	 * Otherwise I2C4 eventually leads into about 23mW extra power being
761 	 * consumed even during off idle using VMODE.
762 	 */
763 	i2c_high_speed = voltdm->pmic->i2c_high_speed;
764 	if (i2c_high_speed)
765 		voltdm->rmw(vc->common->i2c_cfg_clear_mask,
766 			    vc->common->i2c_cfg_hsen_mask,
767 			    vc->common->i2c_cfg_reg);
768 
769 	mcode = voltdm->pmic->i2c_mcode;
770 	if (mcode)
771 		voltdm->rmw(vc->common->i2c_mcode_mask,
772 			    mcode << __ffs(vc->common->i2c_mcode_mask),
773 			    vc->common->i2c_cfg_reg);
774 
775 	if (cpu_is_omap44xx())
776 		omap4_vc_i2c_timing_init(voltdm);
777 
778 	initialized = true;
779 }
780 
781 /**
782  * omap_vc_calc_vsel - calculate vsel value for a channel
783  * @voltdm: channel to calculate value for
784  * @uvolt: microvolt value to convert to vsel
785  *
786  * Converts a microvolt value to vsel value for the used PMIC.
787  * This checks whether the microvolt value is out of bounds, and
788  * adjusts the value accordingly. If unsupported value detected,
789  * warning is thrown.
790  */
791 static u8 omap_vc_calc_vsel(struct voltagedomain *voltdm, u32 uvolt)
792 {
793 	if (voltdm->pmic->vddmin > uvolt)
794 		uvolt = voltdm->pmic->vddmin;
795 	if (voltdm->pmic->vddmax < uvolt) {
796 		WARN(1, "%s: voltage not supported by pmic: %u vs max %u\n",
797 			__func__, uvolt, voltdm->pmic->vddmax);
798 		/* Lets try maximum value anyway */
799 		uvolt = voltdm->pmic->vddmax;
800 	}
801 
802 	return voltdm->pmic->uv_to_vsel(uvolt);
803 }
804 
805 void __init omap_vc_init_channel(struct voltagedomain *voltdm)
806 {
807 	struct omap_vc_channel *vc = voltdm->vc;
808 	u8 on_vsel, onlp_vsel, ret_vsel, off_vsel;
809 	u32 val;
810 
811 	if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) {
812 		pr_err("%s: No PMIC info for vdd_%s\n", __func__, voltdm->name);
813 		return;
814 	}
815 
816 	if (!voltdm->read || !voltdm->write) {
817 		pr_err("%s: No read/write API for accessing vdd_%s regs\n",
818 			__func__, voltdm->name);
819 		return;
820 	}
821 
822 	vc->cfg_channel = 0;
823 	if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT)
824 		vc_cfg_bits = &vc_mutant_channel_cfg;
825 	else
826 		vc_cfg_bits = &vc_default_channel_cfg;
827 
828 	/* get PMIC/board specific settings */
829 	vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr;
830 	vc->volt_reg_addr = voltdm->pmic->volt_reg_addr;
831 	vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr;
832 
833 	/* Configure the i2c slave address for this VC */
834 	voltdm->rmw(vc->smps_sa_mask,
835 		    vc->i2c_slave_addr << __ffs(vc->smps_sa_mask),
836 		    vc->smps_sa_reg);
837 	vc->cfg_channel |= vc_cfg_bits->sa;
838 
839 	/*
840 	 * Configure the PMIC register addresses.
841 	 */
842 	voltdm->rmw(vc->smps_volra_mask,
843 		    vc->volt_reg_addr << __ffs(vc->smps_volra_mask),
844 		    vc->smps_volra_reg);
845 	vc->cfg_channel |= vc_cfg_bits->rav;
846 
847 	if (vc->cmd_reg_addr) {
848 		voltdm->rmw(vc->smps_cmdra_mask,
849 			    vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask),
850 			    vc->smps_cmdra_reg);
851 		vc->cfg_channel |= vc_cfg_bits->rac;
852 	}
853 
854 	if (vc->cmd_reg_addr == vc->volt_reg_addr)
855 		vc->cfg_channel |= vc_cfg_bits->racen;
856 
857 	/* Set up the on, inactive, retention and off voltage */
858 	on_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->on);
859 	onlp_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->onlp);
860 	ret_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->ret);
861 	off_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->off);
862 
863 	val = ((on_vsel << vc->common->cmd_on_shift) |
864 	       (onlp_vsel << vc->common->cmd_onlp_shift) |
865 	       (ret_vsel << vc->common->cmd_ret_shift) |
866 	       (off_vsel << vc->common->cmd_off_shift));
867 	voltdm->write(val, vc->cmdval_reg);
868 	vc->cfg_channel |= vc_cfg_bits->cmd;
869 
870 	/* Channel configuration */
871 	omap_vc_config_channel(voltdm);
872 
873 	omap_vc_i2c_init(voltdm);
874 
875 	if (cpu_is_omap34xx())
876 		omap3_vc_init_channel(voltdm);
877 	else if (cpu_is_omap44xx())
878 		omap4_vc_init_channel(voltdm);
879 }
880