1 /* 2 * linux/arch/arm/mach-omap2/timer.c 3 * 4 * OMAP2 GP timer support. 5 * 6 * Copyright (C) 2009 Nokia Corporation 7 * 8 * Update to use new clocksource/clockevent layers 9 * Author: Kevin Hilman, MontaVista Software, Inc. <source@mvista.com> 10 * Copyright (C) 2007 MontaVista Software, Inc. 11 * 12 * Original driver: 13 * Copyright (C) 2005 Nokia Corporation 14 * Author: Paul Mundt <paul.mundt@nokia.com> 15 * Juha Yrjölä <juha.yrjola@nokia.com> 16 * OMAP Dual-mode timer framework support by Timo Teras 17 * 18 * Some parts based off of TI's 24xx code: 19 * 20 * Copyright (C) 2004-2009 Texas Instruments, Inc. 21 * 22 * Roughly modelled after the OMAP1 MPU timer code. 23 * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com> 24 * 25 * This file is subject to the terms and conditions of the GNU General Public 26 * License. See the file "COPYING" in the main directory of this archive 27 * for more details. 28 */ 29 #include <linux/init.h> 30 #include <linux/time.h> 31 #include <linux/interrupt.h> 32 #include <linux/err.h> 33 #include <linux/clk.h> 34 #include <linux/delay.h> 35 #include <linux/irq.h> 36 #include <linux/clocksource.h> 37 #include <linux/clockchips.h> 38 #include <linux/slab.h> 39 #include <linux/of.h> 40 #include <linux/of_address.h> 41 #include <linux/of_irq.h> 42 #include <linux/platform_device.h> 43 #include <linux/platform_data/dmtimer-omap.h> 44 #include <linux/sched_clock.h> 45 46 #include <asm/mach/time.h> 47 #include <asm/smp_twd.h> 48 49 #include "omap_hwmod.h" 50 #include "omap_device.h" 51 #include <plat/counter-32k.h> 52 #include <plat/dmtimer.h> 53 #include "omap-pm.h" 54 55 #include "soc.h" 56 #include "common.h" 57 #include "powerdomain.h" 58 59 #define REALTIME_COUNTER_BASE 0x48243200 60 #define INCREMENTER_NUMERATOR_OFFSET 0x10 61 #define INCREMENTER_DENUMERATOR_RELOAD_OFFSET 0x14 62 #define NUMERATOR_DENUMERATOR_MASK 0xfffff000 63 64 /* Clockevent code */ 65 66 static struct omap_dm_timer clkev; 67 static struct clock_event_device clockevent_gpt; 68 69 static irqreturn_t omap2_gp_timer_interrupt(int irq, void *dev_id) 70 { 71 struct clock_event_device *evt = &clockevent_gpt; 72 73 __omap_dm_timer_write_status(&clkev, OMAP_TIMER_INT_OVERFLOW); 74 75 evt->event_handler(evt); 76 return IRQ_HANDLED; 77 } 78 79 static struct irqaction omap2_gp_timer_irq = { 80 .name = "gp_timer", 81 .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL, 82 .handler = omap2_gp_timer_interrupt, 83 }; 84 85 static int omap2_gp_timer_set_next_event(unsigned long cycles, 86 struct clock_event_device *evt) 87 { 88 __omap_dm_timer_load_start(&clkev, OMAP_TIMER_CTRL_ST, 89 0xffffffff - cycles, OMAP_TIMER_POSTED); 90 91 return 0; 92 } 93 94 static void omap2_gp_timer_set_mode(enum clock_event_mode mode, 95 struct clock_event_device *evt) 96 { 97 u32 period; 98 99 __omap_dm_timer_stop(&clkev, OMAP_TIMER_POSTED, clkev.rate); 100 101 switch (mode) { 102 case CLOCK_EVT_MODE_PERIODIC: 103 period = clkev.rate / HZ; 104 period -= 1; 105 /* Looks like we need to first set the load value separately */ 106 __omap_dm_timer_write(&clkev, OMAP_TIMER_LOAD_REG, 107 0xffffffff - period, OMAP_TIMER_POSTED); 108 __omap_dm_timer_load_start(&clkev, 109 OMAP_TIMER_CTRL_AR | OMAP_TIMER_CTRL_ST, 110 0xffffffff - period, OMAP_TIMER_POSTED); 111 break; 112 case CLOCK_EVT_MODE_ONESHOT: 113 break; 114 case CLOCK_EVT_MODE_UNUSED: 115 case CLOCK_EVT_MODE_SHUTDOWN: 116 case CLOCK_EVT_MODE_RESUME: 117 break; 118 } 119 } 120 121 static struct clock_event_device clockevent_gpt = { 122 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, 123 .rating = 300, 124 .set_next_event = omap2_gp_timer_set_next_event, 125 .set_mode = omap2_gp_timer_set_mode, 126 }; 127 128 static struct property device_disabled = { 129 .name = "status", 130 .length = sizeof("disabled"), 131 .value = "disabled", 132 }; 133 134 static struct of_device_id omap_timer_match[] __initdata = { 135 { .compatible = "ti,omap2420-timer", }, 136 { .compatible = "ti,omap3430-timer", }, 137 { .compatible = "ti,omap4430-timer", }, 138 { .compatible = "ti,omap5430-timer", }, 139 { .compatible = "ti,am335x-timer", }, 140 { .compatible = "ti,am335x-timer-1ms", }, 141 { } 142 }; 143 144 /** 145 * omap_get_timer_dt - get a timer using device-tree 146 * @match - device-tree match structure for matching a device type 147 * @property - optional timer property to match 148 * 149 * Helper function to get a timer during early boot using device-tree for use 150 * as kernel system timer. Optionally, the property argument can be used to 151 * select a timer with a specific property. Once a timer is found then mark 152 * the timer node in device-tree as disabled, to prevent the kernel from 153 * registering this timer as a platform device and so no one else can use it. 154 */ 155 static struct device_node * __init omap_get_timer_dt(struct of_device_id *match, 156 const char *property) 157 { 158 struct device_node *np; 159 160 for_each_matching_node(np, match) { 161 if (!of_device_is_available(np)) 162 continue; 163 164 if (property && !of_get_property(np, property, NULL)) 165 continue; 166 167 if (!property && (of_get_property(np, "ti,timer-alwon", NULL) || 168 of_get_property(np, "ti,timer-dsp", NULL) || 169 of_get_property(np, "ti,timer-pwm", NULL) || 170 of_get_property(np, "ti,timer-secure", NULL))) 171 continue; 172 173 of_add_property(np, &device_disabled); 174 return np; 175 } 176 177 return NULL; 178 } 179 180 /** 181 * omap_dmtimer_init - initialisation function when device tree is used 182 * 183 * For secure OMAP3 devices, timers with device type "timer-secure" cannot 184 * be used by the kernel as they are reserved. Therefore, to prevent the 185 * kernel registering these devices remove them dynamically from the device 186 * tree on boot. 187 */ 188 static void __init omap_dmtimer_init(void) 189 { 190 struct device_node *np; 191 192 if (!cpu_is_omap34xx()) 193 return; 194 195 /* If we are a secure device, remove any secure timer nodes */ 196 if ((omap_type() != OMAP2_DEVICE_TYPE_GP)) { 197 np = omap_get_timer_dt(omap_timer_match, "ti,timer-secure"); 198 if (np) 199 of_node_put(np); 200 } 201 } 202 203 /** 204 * omap_dm_timer_get_errata - get errata flags for a timer 205 * 206 * Get the timer errata flags that are specific to the OMAP device being used. 207 */ 208 static u32 __init omap_dm_timer_get_errata(void) 209 { 210 if (cpu_is_omap24xx()) 211 return 0; 212 213 return OMAP_TIMER_ERRATA_I103_I767; 214 } 215 216 static int __init omap_dm_timer_init_one(struct omap_dm_timer *timer, 217 const char *fck_source, 218 const char *property, 219 const char **timer_name, 220 int posted) 221 { 222 char name[10]; /* 10 = sizeof("gptXX_Xck0") */ 223 const char *oh_name = NULL; 224 struct device_node *np; 225 struct omap_hwmod *oh; 226 struct resource irq, mem; 227 struct clk *src; 228 int r = 0; 229 230 if (of_have_populated_dt()) { 231 np = omap_get_timer_dt(omap_timer_match, property); 232 if (!np) 233 return -ENODEV; 234 235 of_property_read_string_index(np, "ti,hwmods", 0, &oh_name); 236 if (!oh_name) 237 return -ENODEV; 238 239 timer->irq = irq_of_parse_and_map(np, 0); 240 if (!timer->irq) 241 return -ENXIO; 242 243 timer->io_base = of_iomap(np, 0); 244 245 of_node_put(np); 246 } else { 247 if (omap_dm_timer_reserve_systimer(timer->id)) 248 return -ENODEV; 249 250 sprintf(name, "timer%d", timer->id); 251 oh_name = name; 252 } 253 254 oh = omap_hwmod_lookup(oh_name); 255 if (!oh) 256 return -ENODEV; 257 258 *timer_name = oh->name; 259 260 if (!of_have_populated_dt()) { 261 r = omap_hwmod_get_resource_byname(oh, IORESOURCE_IRQ, NULL, 262 &irq); 263 if (r) 264 return -ENXIO; 265 timer->irq = irq.start; 266 267 r = omap_hwmod_get_resource_byname(oh, IORESOURCE_MEM, NULL, 268 &mem); 269 if (r) 270 return -ENXIO; 271 272 /* Static mapping, never released */ 273 timer->io_base = ioremap(mem.start, mem.end - mem.start); 274 } 275 276 if (!timer->io_base) 277 return -ENXIO; 278 279 /* After the dmtimer is using hwmod these clocks won't be needed */ 280 timer->fclk = clk_get(NULL, omap_hwmod_get_main_clk(oh)); 281 if (IS_ERR(timer->fclk)) 282 return PTR_ERR(timer->fclk); 283 284 src = clk_get(NULL, fck_source); 285 if (IS_ERR(src)) 286 return PTR_ERR(src); 287 288 if (clk_get_parent(timer->fclk) != src) { 289 r = clk_set_parent(timer->fclk, src); 290 if (r < 0) { 291 pr_warn("%s: %s cannot set source\n", __func__, 292 oh->name); 293 clk_put(src); 294 return r; 295 } 296 } 297 298 clk_put(src); 299 300 omap_hwmod_setup_one(oh_name); 301 omap_hwmod_enable(oh); 302 __omap_dm_timer_init_regs(timer); 303 304 if (posted) 305 __omap_dm_timer_enable_posted(timer); 306 307 /* Check that the intended posted configuration matches the actual */ 308 if (posted != timer->posted) 309 return -EINVAL; 310 311 timer->rate = clk_get_rate(timer->fclk); 312 timer->reserved = 1; 313 314 return r; 315 } 316 317 static void __init omap2_gp_clockevent_init(int gptimer_id, 318 const char *fck_source, 319 const char *property) 320 { 321 int res; 322 323 clkev.id = gptimer_id; 324 clkev.errata = omap_dm_timer_get_errata(); 325 326 /* 327 * For clock-event timers we never read the timer counter and 328 * so we are not impacted by errata i103 and i767. Therefore, 329 * we can safely ignore this errata for clock-event timers. 330 */ 331 __omap_dm_timer_override_errata(&clkev, OMAP_TIMER_ERRATA_I103_I767); 332 333 res = omap_dm_timer_init_one(&clkev, fck_source, property, 334 &clockevent_gpt.name, OMAP_TIMER_POSTED); 335 BUG_ON(res); 336 337 omap2_gp_timer_irq.dev_id = &clkev; 338 setup_irq(clkev.irq, &omap2_gp_timer_irq); 339 340 __omap_dm_timer_int_enable(&clkev, OMAP_TIMER_INT_OVERFLOW); 341 342 clockevent_gpt.cpumask = cpu_possible_mask; 343 clockevent_gpt.irq = omap_dm_timer_get_irq(&clkev); 344 clockevents_config_and_register(&clockevent_gpt, clkev.rate, 345 3, /* Timer internal resynch latency */ 346 0xffffffff); 347 348 pr_info("OMAP clockevent source: %s at %lu Hz\n", clockevent_gpt.name, 349 clkev.rate); 350 } 351 352 /* Clocksource code */ 353 static struct omap_dm_timer clksrc; 354 static bool use_gptimer_clksrc; 355 356 /* 357 * clocksource 358 */ 359 static cycle_t clocksource_read_cycles(struct clocksource *cs) 360 { 361 return (cycle_t)__omap_dm_timer_read_counter(&clksrc, 362 OMAP_TIMER_NONPOSTED); 363 } 364 365 static struct clocksource clocksource_gpt = { 366 .rating = 300, 367 .read = clocksource_read_cycles, 368 .mask = CLOCKSOURCE_MASK(32), 369 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 370 }; 371 372 static u32 notrace dmtimer_read_sched_clock(void) 373 { 374 if (clksrc.reserved) 375 return __omap_dm_timer_read_counter(&clksrc, 376 OMAP_TIMER_NONPOSTED); 377 378 return 0; 379 } 380 381 static struct of_device_id omap_counter_match[] __initdata = { 382 { .compatible = "ti,omap-counter32k", }, 383 { } 384 }; 385 386 /* Setup free-running counter for clocksource */ 387 static int __init __maybe_unused omap2_sync32k_clocksource_init(void) 388 { 389 int ret; 390 struct device_node *np = NULL; 391 struct omap_hwmod *oh; 392 void __iomem *vbase; 393 const char *oh_name = "counter_32k"; 394 395 /* 396 * If device-tree is present, then search the DT blob 397 * to see if the 32kHz counter is supported. 398 */ 399 if (of_have_populated_dt()) { 400 np = omap_get_timer_dt(omap_counter_match, NULL); 401 if (!np) 402 return -ENODEV; 403 404 of_property_read_string_index(np, "ti,hwmods", 0, &oh_name); 405 if (!oh_name) 406 return -ENODEV; 407 } 408 409 /* 410 * First check hwmod data is available for sync32k counter 411 */ 412 oh = omap_hwmod_lookup(oh_name); 413 if (!oh || oh->slaves_cnt == 0) 414 return -ENODEV; 415 416 omap_hwmod_setup_one(oh_name); 417 418 if (np) { 419 vbase = of_iomap(np, 0); 420 of_node_put(np); 421 } else { 422 vbase = omap_hwmod_get_mpu_rt_va(oh); 423 } 424 425 if (!vbase) { 426 pr_warn("%s: failed to get counter_32k resource\n", __func__); 427 return -ENXIO; 428 } 429 430 ret = omap_hwmod_enable(oh); 431 if (ret) { 432 pr_warn("%s: failed to enable counter_32k module (%d)\n", 433 __func__, ret); 434 return ret; 435 } 436 437 ret = omap_init_clocksource_32k(vbase); 438 if (ret) { 439 pr_warn("%s: failed to initialize counter_32k as a clocksource (%d)\n", 440 __func__, ret); 441 omap_hwmod_idle(oh); 442 } 443 444 return ret; 445 } 446 447 static void __init omap2_gptimer_clocksource_init(int gptimer_id, 448 const char *fck_source, 449 const char *property) 450 { 451 int res; 452 453 clksrc.id = gptimer_id; 454 clksrc.errata = omap_dm_timer_get_errata(); 455 456 res = omap_dm_timer_init_one(&clksrc, fck_source, property, 457 &clocksource_gpt.name, 458 OMAP_TIMER_NONPOSTED); 459 BUG_ON(res); 460 461 __omap_dm_timer_load_start(&clksrc, 462 OMAP_TIMER_CTRL_ST | OMAP_TIMER_CTRL_AR, 0, 463 OMAP_TIMER_NONPOSTED); 464 setup_sched_clock(dmtimer_read_sched_clock, 32, clksrc.rate); 465 466 if (clocksource_register_hz(&clocksource_gpt, clksrc.rate)) 467 pr_err("Could not register clocksource %s\n", 468 clocksource_gpt.name); 469 else 470 pr_info("OMAP clocksource: %s at %lu Hz\n", 471 clocksource_gpt.name, clksrc.rate); 472 } 473 474 #ifdef CONFIG_SOC_HAS_REALTIME_COUNTER 475 /* 476 * The realtime counter also called master counter, is a free-running 477 * counter, which is related to real time. It produces the count used 478 * by the CPU local timer peripherals in the MPU cluster. The timer counts 479 * at a rate of 6.144 MHz. Because the device operates on different clocks 480 * in different power modes, the master counter shifts operation between 481 * clocks, adjusting the increment per clock in hardware accordingly to 482 * maintain a constant count rate. 483 */ 484 static void __init realtime_counter_init(void) 485 { 486 void __iomem *base; 487 static struct clk *sys_clk; 488 unsigned long rate; 489 unsigned int reg, num, den; 490 491 base = ioremap(REALTIME_COUNTER_BASE, SZ_32); 492 if (!base) { 493 pr_err("%s: ioremap failed\n", __func__); 494 return; 495 } 496 sys_clk = clk_get(NULL, "sys_clkin"); 497 if (IS_ERR(sys_clk)) { 498 pr_err("%s: failed to get system clock handle\n", __func__); 499 iounmap(base); 500 return; 501 } 502 503 rate = clk_get_rate(sys_clk); 504 /* Numerator/denumerator values refer TRM Realtime Counter section */ 505 switch (rate) { 506 case 1200000: 507 num = 64; 508 den = 125; 509 break; 510 case 1300000: 511 num = 768; 512 den = 1625; 513 break; 514 case 19200000: 515 num = 8; 516 den = 25; 517 break; 518 case 2600000: 519 num = 384; 520 den = 1625; 521 break; 522 case 2700000: 523 num = 256; 524 den = 1125; 525 break; 526 case 38400000: 527 default: 528 /* Program it for 38.4 MHz */ 529 num = 4; 530 den = 25; 531 break; 532 } 533 534 /* Program numerator and denumerator registers */ 535 reg = __raw_readl(base + INCREMENTER_NUMERATOR_OFFSET) & 536 NUMERATOR_DENUMERATOR_MASK; 537 reg |= num; 538 __raw_writel(reg, base + INCREMENTER_NUMERATOR_OFFSET); 539 540 reg = __raw_readl(base + INCREMENTER_DENUMERATOR_RELOAD_OFFSET) & 541 NUMERATOR_DENUMERATOR_MASK; 542 reg |= den; 543 __raw_writel(reg, base + INCREMENTER_DENUMERATOR_RELOAD_OFFSET); 544 545 iounmap(base); 546 } 547 #else 548 static inline void __init realtime_counter_init(void) 549 {} 550 #endif 551 552 #define OMAP_SYS_GP_TIMER_INIT(name, clkev_nr, clkev_src, clkev_prop, \ 553 clksrc_nr, clksrc_src, clksrc_prop) \ 554 void __init omap##name##_gptimer_timer_init(void) \ 555 { \ 556 if (omap_clk_init) \ 557 omap_clk_init(); \ 558 omap_dmtimer_init(); \ 559 omap2_gp_clockevent_init((clkev_nr), clkev_src, clkev_prop); \ 560 omap2_gptimer_clocksource_init((clksrc_nr), clksrc_src, \ 561 clksrc_prop); \ 562 } 563 564 #define OMAP_SYS_32K_TIMER_INIT(name, clkev_nr, clkev_src, clkev_prop, \ 565 clksrc_nr, clksrc_src, clksrc_prop) \ 566 void __init omap##name##_sync32k_timer_init(void) \ 567 { \ 568 if (omap_clk_init) \ 569 omap_clk_init(); \ 570 omap_dmtimer_init(); \ 571 omap2_gp_clockevent_init((clkev_nr), clkev_src, clkev_prop); \ 572 /* Enable the use of clocksource="gp_timer" kernel parameter */ \ 573 if (use_gptimer_clksrc) \ 574 omap2_gptimer_clocksource_init((clksrc_nr), clksrc_src, \ 575 clksrc_prop); \ 576 else \ 577 omap2_sync32k_clocksource_init(); \ 578 } 579 580 #ifdef CONFIG_ARCH_OMAP2 581 OMAP_SYS_32K_TIMER_INIT(2, 1, "timer_32k_ck", "ti,timer-alwon", 582 2, "timer_sys_ck", NULL); 583 #endif /* CONFIG_ARCH_OMAP2 */ 584 585 #if defined(CONFIG_ARCH_OMAP3) || defined(CONFIG_SOC_AM43XX) 586 OMAP_SYS_32K_TIMER_INIT(3, 1, "timer_32k_ck", "ti,timer-alwon", 587 2, "timer_sys_ck", NULL); 588 OMAP_SYS_32K_TIMER_INIT(3_secure, 12, "secure_32k_fck", "ti,timer-secure", 589 2, "timer_sys_ck", NULL); 590 #endif /* CONFIG_ARCH_OMAP3 */ 591 592 #if defined(CONFIG_ARCH_OMAP3) || defined(CONFIG_SOC_AM33XX) 593 OMAP_SYS_GP_TIMER_INIT(3, 2, "timer_sys_ck", NULL, 594 1, "timer_sys_ck", "ti,timer-alwon"); 595 #endif 596 597 #if defined(CONFIG_ARCH_OMAP4) || defined(CONFIG_SOC_OMAP5) || \ 598 defined(CONFIG_SOC_DRA7XX) 599 static OMAP_SYS_32K_TIMER_INIT(4, 1, "timer_32k_ck", "ti,timer-alwon", 600 2, "sys_clkin_ck", NULL); 601 #endif 602 603 #ifdef CONFIG_ARCH_OMAP4 604 #ifdef CONFIG_HAVE_ARM_TWD 605 static DEFINE_TWD_LOCAL_TIMER(twd_local_timer, OMAP44XX_LOCAL_TWD_BASE, 29); 606 void __init omap4_local_timer_init(void) 607 { 608 omap4_sync32k_timer_init(); 609 /* Local timers are not supprted on OMAP4430 ES1.0 */ 610 if (omap_rev() != OMAP4430_REV_ES1_0) { 611 int err; 612 613 if (of_have_populated_dt()) { 614 clocksource_of_init(); 615 return; 616 } 617 618 err = twd_local_timer_register(&twd_local_timer); 619 if (err) 620 pr_err("twd_local_timer_register failed %d\n", err); 621 } 622 } 623 #else 624 void __init omap4_local_timer_init(void) 625 { 626 omap4_sync32k_timer_init(); 627 } 628 #endif /* CONFIG_HAVE_ARM_TWD */ 629 #endif /* CONFIG_ARCH_OMAP4 */ 630 631 #if defined(CONFIG_SOC_OMAP5) || defined(CONFIG_SOC_DRA7XX) 632 void __init omap5_realtime_timer_init(void) 633 { 634 omap4_sync32k_timer_init(); 635 realtime_counter_init(); 636 637 clocksource_of_init(); 638 } 639 #endif /* CONFIG_SOC_OMAP5 || CONFIG_SOC_DRA7XX */ 640 641 /** 642 * omap_timer_init - build and register timer device with an 643 * associated timer hwmod 644 * @oh: timer hwmod pointer to be used to build timer device 645 * @user: parameter that can be passed from calling hwmod API 646 * 647 * Called by omap_hwmod_for_each_by_class to register each of the timer 648 * devices present in the system. The number of timer devices is known 649 * by parsing through the hwmod database for a given class name. At the 650 * end of function call memory is allocated for timer device and it is 651 * registered to the framework ready to be proved by the driver. 652 */ 653 static int __init omap_timer_init(struct omap_hwmod *oh, void *unused) 654 { 655 int id; 656 int ret = 0; 657 char *name = "omap_timer"; 658 struct dmtimer_platform_data *pdata; 659 struct platform_device *pdev; 660 struct omap_timer_capability_dev_attr *timer_dev_attr; 661 662 pr_debug("%s: %s\n", __func__, oh->name); 663 664 /* on secure device, do not register secure timer */ 665 timer_dev_attr = oh->dev_attr; 666 if (omap_type() != OMAP2_DEVICE_TYPE_GP && timer_dev_attr) 667 if (timer_dev_attr->timer_capability == OMAP_TIMER_SECURE) 668 return ret; 669 670 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL); 671 if (!pdata) { 672 pr_err("%s: No memory for [%s]\n", __func__, oh->name); 673 return -ENOMEM; 674 } 675 676 /* 677 * Extract the IDs from name field in hwmod database 678 * and use the same for constructing ids' for the 679 * timer devices. In a way, we are avoiding usage of 680 * static variable witin the function to do the same. 681 * CAUTION: We have to be careful and make sure the 682 * name in hwmod database does not change in which case 683 * we might either make corresponding change here or 684 * switch back static variable mechanism. 685 */ 686 sscanf(oh->name, "timer%2d", &id); 687 688 if (timer_dev_attr) 689 pdata->timer_capability = timer_dev_attr->timer_capability; 690 691 pdata->timer_errata = omap_dm_timer_get_errata(); 692 pdata->get_context_loss_count = omap_pm_get_dev_context_loss_count; 693 694 pdev = omap_device_build(name, id, oh, pdata, sizeof(*pdata)); 695 696 if (IS_ERR(pdev)) { 697 pr_err("%s: Can't build omap_device for %s: %s.\n", 698 __func__, name, oh->name); 699 ret = -EINVAL; 700 } 701 702 kfree(pdata); 703 704 return ret; 705 } 706 707 /** 708 * omap2_dm_timer_init - top level regular device initialization 709 * 710 * Uses dedicated hwmod api to parse through hwmod database for 711 * given class name and then build and register the timer device. 712 */ 713 static int __init omap2_dm_timer_init(void) 714 { 715 int ret; 716 717 /* If dtb is there, the devices will be created dynamically */ 718 if (of_have_populated_dt()) 719 return -ENODEV; 720 721 ret = omap_hwmod_for_each_by_class("timer", omap_timer_init, NULL); 722 if (unlikely(ret)) { 723 pr_err("%s: device registration failed.\n", __func__); 724 return -EINVAL; 725 } 726 727 return 0; 728 } 729 omap_arch_initcall(omap2_dm_timer_init); 730 731 /** 732 * omap2_override_clocksource - clocksource override with user configuration 733 * 734 * Allows user to override default clocksource, using kernel parameter 735 * clocksource="gp_timer" (For all OMAP2PLUS architectures) 736 * 737 * Note that, here we are using same standard kernel parameter "clocksource=", 738 * and not introducing any OMAP specific interface. 739 */ 740 static int __init omap2_override_clocksource(char *str) 741 { 742 if (!str) 743 return 0; 744 /* 745 * For OMAP architecture, we only have two options 746 * - sync_32k (default) 747 * - gp_timer (sys_clk based) 748 */ 749 if (!strcmp(str, "gp_timer")) 750 use_gptimer_clksrc = true; 751 752 return 0; 753 } 754 early_param("clocksource", omap2_override_clocksource); 755