1 /* 2 * linux/arch/arm/mach-omap2/timer.c 3 * 4 * OMAP2 GP timer support. 5 * 6 * Copyright (C) 2009 Nokia Corporation 7 * 8 * Update to use new clocksource/clockevent layers 9 * Author: Kevin Hilman, MontaVista Software, Inc. <source@mvista.com> 10 * Copyright (C) 2007 MontaVista Software, Inc. 11 * 12 * Original driver: 13 * Copyright (C) 2005 Nokia Corporation 14 * Author: Paul Mundt <paul.mundt@nokia.com> 15 * Juha Yrjölä <juha.yrjola@nokia.com> 16 * OMAP Dual-mode timer framework support by Timo Teras 17 * 18 * Some parts based off of TI's 24xx code: 19 * 20 * Copyright (C) 2004-2009 Texas Instruments, Inc. 21 * 22 * Roughly modelled after the OMAP1 MPU timer code. 23 * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com> 24 * 25 * This file is subject to the terms and conditions of the GNU General Public 26 * License. See the file "COPYING" in the main directory of this archive 27 * for more details. 28 */ 29 #include <linux/init.h> 30 #include <linux/time.h> 31 #include <linux/interrupt.h> 32 #include <linux/err.h> 33 #include <linux/clk.h> 34 #include <linux/delay.h> 35 #include <linux/irq.h> 36 #include <linux/clocksource.h> 37 #include <linux/clockchips.h> 38 #include <linux/slab.h> 39 #include <linux/of.h> 40 #include <linux/of_address.h> 41 #include <linux/of_irq.h> 42 #include <linux/platform_device.h> 43 #include <linux/platform_data/dmtimer-omap.h> 44 45 #include <asm/mach/time.h> 46 #include <asm/smp_twd.h> 47 #include <asm/sched_clock.h> 48 49 #include <asm/arch_timer.h> 50 #include "omap_hwmod.h" 51 #include "omap_device.h" 52 #include <plat/counter-32k.h> 53 #include <plat/dmtimer.h> 54 #include "omap-pm.h" 55 56 #include "soc.h" 57 #include "common.h" 58 #include "powerdomain.h" 59 60 /* Parent clocks, eventually these will come from the clock framework */ 61 62 #define OMAP2_MPU_SOURCE "sys_ck" 63 #define OMAP3_MPU_SOURCE OMAP2_MPU_SOURCE 64 #define OMAP4_MPU_SOURCE "sys_clkin_ck" 65 #define OMAP2_32K_SOURCE "func_32k_ck" 66 #define OMAP3_32K_SOURCE "omap_32k_fck" 67 #define OMAP4_32K_SOURCE "sys_32k_ck" 68 69 #define REALTIME_COUNTER_BASE 0x48243200 70 #define INCREMENTER_NUMERATOR_OFFSET 0x10 71 #define INCREMENTER_DENUMERATOR_RELOAD_OFFSET 0x14 72 #define NUMERATOR_DENUMERATOR_MASK 0xfffff000 73 74 /* Clockevent code */ 75 76 static struct omap_dm_timer clkev; 77 static struct clock_event_device clockevent_gpt; 78 79 static irqreturn_t omap2_gp_timer_interrupt(int irq, void *dev_id) 80 { 81 struct clock_event_device *evt = &clockevent_gpt; 82 83 __omap_dm_timer_write_status(&clkev, OMAP_TIMER_INT_OVERFLOW); 84 85 evt->event_handler(evt); 86 return IRQ_HANDLED; 87 } 88 89 static struct irqaction omap2_gp_timer_irq = { 90 .name = "gp_timer", 91 .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL, 92 .handler = omap2_gp_timer_interrupt, 93 }; 94 95 static int omap2_gp_timer_set_next_event(unsigned long cycles, 96 struct clock_event_device *evt) 97 { 98 __omap_dm_timer_load_start(&clkev, OMAP_TIMER_CTRL_ST, 99 0xffffffff - cycles, OMAP_TIMER_POSTED); 100 101 return 0; 102 } 103 104 static void omap2_gp_timer_set_mode(enum clock_event_mode mode, 105 struct clock_event_device *evt) 106 { 107 u32 period; 108 109 __omap_dm_timer_stop(&clkev, OMAP_TIMER_POSTED, clkev.rate); 110 111 switch (mode) { 112 case CLOCK_EVT_MODE_PERIODIC: 113 period = clkev.rate / HZ; 114 period -= 1; 115 /* Looks like we need to first set the load value separately */ 116 __omap_dm_timer_write(&clkev, OMAP_TIMER_LOAD_REG, 117 0xffffffff - period, OMAP_TIMER_POSTED); 118 __omap_dm_timer_load_start(&clkev, 119 OMAP_TIMER_CTRL_AR | OMAP_TIMER_CTRL_ST, 120 0xffffffff - period, OMAP_TIMER_POSTED); 121 break; 122 case CLOCK_EVT_MODE_ONESHOT: 123 break; 124 case CLOCK_EVT_MODE_UNUSED: 125 case CLOCK_EVT_MODE_SHUTDOWN: 126 case CLOCK_EVT_MODE_RESUME: 127 break; 128 } 129 } 130 131 static struct clock_event_device clockevent_gpt = { 132 .name = "gp_timer", 133 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, 134 .shift = 32, 135 .rating = 300, 136 .set_next_event = omap2_gp_timer_set_next_event, 137 .set_mode = omap2_gp_timer_set_mode, 138 }; 139 140 static struct property device_disabled = { 141 .name = "status", 142 .length = sizeof("disabled"), 143 .value = "disabled", 144 }; 145 146 static struct of_device_id omap_timer_match[] __initdata = { 147 { .compatible = "ti,omap2-timer", }, 148 { } 149 }; 150 151 /** 152 * omap_get_timer_dt - get a timer using device-tree 153 * @match - device-tree match structure for matching a device type 154 * @property - optional timer property to match 155 * 156 * Helper function to get a timer during early boot using device-tree for use 157 * as kernel system timer. Optionally, the property argument can be used to 158 * select a timer with a specific property. Once a timer is found then mark 159 * the timer node in device-tree as disabled, to prevent the kernel from 160 * registering this timer as a platform device and so no one else can use it. 161 */ 162 static struct device_node * __init omap_get_timer_dt(struct of_device_id *match, 163 const char *property) 164 { 165 struct device_node *np; 166 167 for_each_matching_node(np, match) { 168 if (!of_device_is_available(np)) { 169 of_node_put(np); 170 continue; 171 } 172 173 if (property && !of_get_property(np, property, NULL)) { 174 of_node_put(np); 175 continue; 176 } 177 178 of_add_property(np, &device_disabled); 179 return np; 180 } 181 182 return NULL; 183 } 184 185 /** 186 * omap_dmtimer_init - initialisation function when device tree is used 187 * 188 * For secure OMAP3 devices, timers with device type "timer-secure" cannot 189 * be used by the kernel as they are reserved. Therefore, to prevent the 190 * kernel registering these devices remove them dynamically from the device 191 * tree on boot. 192 */ 193 static void __init omap_dmtimer_init(void) 194 { 195 struct device_node *np; 196 197 if (!cpu_is_omap34xx()) 198 return; 199 200 /* If we are a secure device, remove any secure timer nodes */ 201 if ((omap_type() != OMAP2_DEVICE_TYPE_GP)) { 202 np = omap_get_timer_dt(omap_timer_match, "ti,timer-secure"); 203 if (np) 204 of_node_put(np); 205 } 206 } 207 208 /** 209 * omap_dm_timer_get_errata - get errata flags for a timer 210 * 211 * Get the timer errata flags that are specific to the OMAP device being used. 212 */ 213 static u32 __init omap_dm_timer_get_errata(void) 214 { 215 if (cpu_is_omap24xx()) 216 return 0; 217 218 return OMAP_TIMER_ERRATA_I103_I767; 219 } 220 221 static int __init omap_dm_timer_init_one(struct omap_dm_timer *timer, 222 int gptimer_id, 223 const char *fck_source, 224 const char *property, 225 int posted) 226 { 227 char name[10]; /* 10 = sizeof("gptXX_Xck0") */ 228 const char *oh_name; 229 struct device_node *np; 230 struct omap_hwmod *oh; 231 struct resource irq, mem; 232 int r = 0; 233 234 if (of_have_populated_dt()) { 235 np = omap_get_timer_dt(omap_timer_match, NULL); 236 if (!np) 237 return -ENODEV; 238 239 of_property_read_string_index(np, "ti,hwmods", 0, &oh_name); 240 if (!oh_name) 241 return -ENODEV; 242 243 timer->irq = irq_of_parse_and_map(np, 0); 244 if (!timer->irq) 245 return -ENXIO; 246 247 timer->io_base = of_iomap(np, 0); 248 249 of_node_put(np); 250 } else { 251 if (omap_dm_timer_reserve_systimer(gptimer_id)) 252 return -ENODEV; 253 254 sprintf(name, "timer%d", gptimer_id); 255 oh_name = name; 256 } 257 258 oh = omap_hwmod_lookup(oh_name); 259 if (!oh) 260 return -ENODEV; 261 262 if (!of_have_populated_dt()) { 263 r = omap_hwmod_get_resource_byname(oh, IORESOURCE_IRQ, NULL, 264 &irq); 265 if (r) 266 return -ENXIO; 267 timer->irq = irq.start; 268 269 r = omap_hwmod_get_resource_byname(oh, IORESOURCE_MEM, NULL, 270 &mem); 271 if (r) 272 return -ENXIO; 273 274 /* Static mapping, never released */ 275 timer->io_base = ioremap(mem.start, mem.end - mem.start); 276 } 277 278 if (!timer->io_base) 279 return -ENXIO; 280 281 /* After the dmtimer is using hwmod these clocks won't be needed */ 282 timer->fclk = clk_get(NULL, omap_hwmod_get_main_clk(oh)); 283 if (IS_ERR(timer->fclk)) 284 return -ENODEV; 285 286 /* FIXME: Need to remove hard-coded test on timer ID */ 287 if (gptimer_id != 12) { 288 struct clk *src; 289 290 src = clk_get(NULL, fck_source); 291 if (IS_ERR(src)) { 292 r = -EINVAL; 293 } else { 294 r = clk_set_parent(timer->fclk, src); 295 if (IS_ERR_VALUE(r)) 296 pr_warn("%s: %s cannot set source\n", 297 __func__, oh->name); 298 clk_put(src); 299 } 300 } 301 302 omap_hwmod_setup_one(oh_name); 303 omap_hwmod_enable(oh); 304 __omap_dm_timer_init_regs(timer); 305 306 if (posted) 307 __omap_dm_timer_enable_posted(timer); 308 309 /* Check that the intended posted configuration matches the actual */ 310 if (posted != timer->posted) 311 return -EINVAL; 312 313 timer->rate = clk_get_rate(timer->fclk); 314 timer->reserved = 1; 315 316 return r; 317 } 318 319 static void __init omap2_gp_clockevent_init(int gptimer_id, 320 const char *fck_source, 321 const char *property) 322 { 323 int res; 324 325 clkev.errata = omap_dm_timer_get_errata(); 326 327 /* 328 * For clock-event timers we never read the timer counter and 329 * so we are not impacted by errata i103 and i767. Therefore, 330 * we can safely ignore this errata for clock-event timers. 331 */ 332 __omap_dm_timer_override_errata(&clkev, OMAP_TIMER_ERRATA_I103_I767); 333 334 res = omap_dm_timer_init_one(&clkev, gptimer_id, fck_source, property, 335 OMAP_TIMER_POSTED); 336 BUG_ON(res); 337 338 omap2_gp_timer_irq.dev_id = &clkev; 339 setup_irq(clkev.irq, &omap2_gp_timer_irq); 340 341 __omap_dm_timer_int_enable(&clkev, OMAP_TIMER_INT_OVERFLOW); 342 343 clockevent_gpt.mult = div_sc(clkev.rate, NSEC_PER_SEC, 344 clockevent_gpt.shift); 345 clockevent_gpt.max_delta_ns = 346 clockevent_delta2ns(0xffffffff, &clockevent_gpt); 347 clockevent_gpt.min_delta_ns = 348 clockevent_delta2ns(3, &clockevent_gpt); 349 /* Timer internal resynch latency. */ 350 351 clockevent_gpt.cpumask = cpu_possible_mask; 352 clockevent_gpt.irq = omap_dm_timer_get_irq(&clkev); 353 clockevents_register_device(&clockevent_gpt); 354 355 pr_info("OMAP clockevent source: GPTIMER%d at %lu Hz\n", 356 gptimer_id, clkev.rate); 357 } 358 359 /* Clocksource code */ 360 static struct omap_dm_timer clksrc; 361 static bool use_gptimer_clksrc; 362 363 /* 364 * clocksource 365 */ 366 static cycle_t clocksource_read_cycles(struct clocksource *cs) 367 { 368 return (cycle_t)__omap_dm_timer_read_counter(&clksrc, 369 OMAP_TIMER_NONPOSTED); 370 } 371 372 static struct clocksource clocksource_gpt = { 373 .name = "gp_timer", 374 .rating = 300, 375 .read = clocksource_read_cycles, 376 .mask = CLOCKSOURCE_MASK(32), 377 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 378 }; 379 380 static u32 notrace dmtimer_read_sched_clock(void) 381 { 382 if (clksrc.reserved) 383 return __omap_dm_timer_read_counter(&clksrc, 384 OMAP_TIMER_NONPOSTED); 385 386 return 0; 387 } 388 389 static struct of_device_id omap_counter_match[] __initdata = { 390 { .compatible = "ti,omap-counter32k", }, 391 { } 392 }; 393 394 /* Setup free-running counter for clocksource */ 395 static int __init __maybe_unused omap2_sync32k_clocksource_init(void) 396 { 397 int ret; 398 struct device_node *np = NULL; 399 struct omap_hwmod *oh; 400 void __iomem *vbase; 401 const char *oh_name = "counter_32k"; 402 403 /* 404 * If device-tree is present, then search the DT blob 405 * to see if the 32kHz counter is supported. 406 */ 407 if (of_have_populated_dt()) { 408 np = omap_get_timer_dt(omap_counter_match, NULL); 409 if (!np) 410 return -ENODEV; 411 412 of_property_read_string_index(np, "ti,hwmods", 0, &oh_name); 413 if (!oh_name) 414 return -ENODEV; 415 } 416 417 /* 418 * First check hwmod data is available for sync32k counter 419 */ 420 oh = omap_hwmod_lookup(oh_name); 421 if (!oh || oh->slaves_cnt == 0) 422 return -ENODEV; 423 424 omap_hwmod_setup_one(oh_name); 425 426 if (np) { 427 vbase = of_iomap(np, 0); 428 of_node_put(np); 429 } else { 430 vbase = omap_hwmod_get_mpu_rt_va(oh); 431 } 432 433 if (!vbase) { 434 pr_warn("%s: failed to get counter_32k resource\n", __func__); 435 return -ENXIO; 436 } 437 438 ret = omap_hwmod_enable(oh); 439 if (ret) { 440 pr_warn("%s: failed to enable counter_32k module (%d)\n", 441 __func__, ret); 442 return ret; 443 } 444 445 ret = omap_init_clocksource_32k(vbase); 446 if (ret) { 447 pr_warn("%s: failed to initialize counter_32k as a clocksource (%d)\n", 448 __func__, ret); 449 omap_hwmod_idle(oh); 450 } 451 452 return ret; 453 } 454 455 static void __init omap2_gptimer_clocksource_init(int gptimer_id, 456 const char *fck_source) 457 { 458 int res; 459 460 clksrc.errata = omap_dm_timer_get_errata(); 461 462 res = omap_dm_timer_init_one(&clksrc, gptimer_id, fck_source, NULL, 463 OMAP_TIMER_NONPOSTED); 464 BUG_ON(res); 465 466 __omap_dm_timer_load_start(&clksrc, 467 OMAP_TIMER_CTRL_ST | OMAP_TIMER_CTRL_AR, 0, 468 OMAP_TIMER_NONPOSTED); 469 setup_sched_clock(dmtimer_read_sched_clock, 32, clksrc.rate); 470 471 if (clocksource_register_hz(&clocksource_gpt, clksrc.rate)) 472 pr_err("Could not register clocksource %s\n", 473 clocksource_gpt.name); 474 else 475 pr_info("OMAP clocksource: GPTIMER%d at %lu Hz\n", 476 gptimer_id, clksrc.rate); 477 } 478 479 #ifdef CONFIG_SOC_HAS_REALTIME_COUNTER 480 /* 481 * The realtime counter also called master counter, is a free-running 482 * counter, which is related to real time. It produces the count used 483 * by the CPU local timer peripherals in the MPU cluster. The timer counts 484 * at a rate of 6.144 MHz. Because the device operates on different clocks 485 * in different power modes, the master counter shifts operation between 486 * clocks, adjusting the increment per clock in hardware accordingly to 487 * maintain a constant count rate. 488 */ 489 static void __init realtime_counter_init(void) 490 { 491 void __iomem *base; 492 static struct clk *sys_clk; 493 unsigned long rate; 494 unsigned int reg, num, den; 495 496 base = ioremap(REALTIME_COUNTER_BASE, SZ_32); 497 if (!base) { 498 pr_err("%s: ioremap failed\n", __func__); 499 return; 500 } 501 sys_clk = clk_get(NULL, "sys_clkin_ck"); 502 if (IS_ERR(sys_clk)) { 503 pr_err("%s: failed to get system clock handle\n", __func__); 504 iounmap(base); 505 return; 506 } 507 508 rate = clk_get_rate(sys_clk); 509 /* Numerator/denumerator values refer TRM Realtime Counter section */ 510 switch (rate) { 511 case 1200000: 512 num = 64; 513 den = 125; 514 break; 515 case 1300000: 516 num = 768; 517 den = 1625; 518 break; 519 case 19200000: 520 num = 8; 521 den = 25; 522 break; 523 case 2600000: 524 num = 384; 525 den = 1625; 526 break; 527 case 2700000: 528 num = 256; 529 den = 1125; 530 break; 531 case 38400000: 532 default: 533 /* Program it for 38.4 MHz */ 534 num = 4; 535 den = 25; 536 break; 537 } 538 539 /* Program numerator and denumerator registers */ 540 reg = __raw_readl(base + INCREMENTER_NUMERATOR_OFFSET) & 541 NUMERATOR_DENUMERATOR_MASK; 542 reg |= num; 543 __raw_writel(reg, base + INCREMENTER_NUMERATOR_OFFSET); 544 545 reg = __raw_readl(base + INCREMENTER_NUMERATOR_OFFSET) & 546 NUMERATOR_DENUMERATOR_MASK; 547 reg |= den; 548 __raw_writel(reg, base + INCREMENTER_DENUMERATOR_RELOAD_OFFSET); 549 550 iounmap(base); 551 } 552 #else 553 static inline void __init realtime_counter_init(void) 554 {} 555 #endif 556 557 #define OMAP_SYS_GP_TIMER_INIT(name, clkev_nr, clkev_src, clkev_prop, \ 558 clksrc_nr, clksrc_src) \ 559 static void __init omap##name##_gptimer_timer_init(void) \ 560 { \ 561 omap_dmtimer_init(); \ 562 omap2_gp_clockevent_init((clkev_nr), clkev_src, clkev_prop); \ 563 omap2_gptimer_clocksource_init((clksrc_nr), clksrc_src); \ 564 } 565 566 #define OMAP_SYS_32K_TIMER_INIT(name, clkev_nr, clkev_src, clkev_prop, \ 567 clksrc_nr, clksrc_src) \ 568 static void __init omap##name##_sync32k_timer_init(void) \ 569 { \ 570 omap_dmtimer_init(); \ 571 omap2_gp_clockevent_init((clkev_nr), clkev_src, clkev_prop); \ 572 /* Enable the use of clocksource="gp_timer" kernel parameter */ \ 573 if (use_gptimer_clksrc) \ 574 omap2_gptimer_clocksource_init((clksrc_nr), clksrc_src);\ 575 else \ 576 omap2_sync32k_clocksource_init(); \ 577 } 578 579 #define OMAP_SYS_TIMER(name, clksrc) \ 580 struct sys_timer omap##name##_timer = { \ 581 .init = omap##name##_##clksrc##_timer_init, \ 582 }; 583 584 #ifdef CONFIG_ARCH_OMAP2 585 OMAP_SYS_32K_TIMER_INIT(2, 1, OMAP2_32K_SOURCE, "ti,timer-alwon", 586 2, OMAP2_MPU_SOURCE); 587 OMAP_SYS_TIMER(2, sync32k); 588 #endif /* CONFIG_ARCH_OMAP2 */ 589 590 #ifdef CONFIG_ARCH_OMAP3 591 OMAP_SYS_32K_TIMER_INIT(3, 1, OMAP3_32K_SOURCE, "ti,timer-alwon", 592 2, OMAP3_MPU_SOURCE); 593 OMAP_SYS_TIMER(3, sync32k); 594 OMAP_SYS_32K_TIMER_INIT(3_secure, 12, OMAP3_32K_SOURCE, "ti,timer-secure", 595 2, OMAP3_MPU_SOURCE); 596 OMAP_SYS_TIMER(3_secure, sync32k); 597 OMAP_SYS_GP_TIMER_INIT(3_gp, 1, OMAP3_MPU_SOURCE, "ti,timer-alwon", 598 2, OMAP3_MPU_SOURCE); 599 OMAP_SYS_TIMER(3_gp, gptimer); 600 #endif /* CONFIG_ARCH_OMAP3 */ 601 602 #ifdef CONFIG_SOC_AM33XX 603 OMAP_SYS_GP_TIMER_INIT(3_am33xx, 1, OMAP4_MPU_SOURCE, "ti,timer-alwon", 604 2, OMAP4_MPU_SOURCE); 605 OMAP_SYS_TIMER(3_am33xx, gptimer); 606 #endif /* CONFIG_SOC_AM33XX */ 607 608 #ifdef CONFIG_ARCH_OMAP4 609 OMAP_SYS_32K_TIMER_INIT(4, 1, OMAP4_32K_SOURCE, "ti,timer-alwon", 610 2, OMAP4_MPU_SOURCE); 611 #ifdef CONFIG_LOCAL_TIMERS 612 static DEFINE_TWD_LOCAL_TIMER(twd_local_timer, OMAP44XX_LOCAL_TWD_BASE, 29); 613 static void __init omap4_local_timer_init(void) 614 { 615 omap4_sync32k_timer_init(); 616 /* Local timers are not supprted on OMAP4430 ES1.0 */ 617 if (omap_rev() != OMAP4430_REV_ES1_0) { 618 int err; 619 620 if (of_have_populated_dt()) { 621 twd_local_timer_of_register(); 622 return; 623 } 624 625 err = twd_local_timer_register(&twd_local_timer); 626 if (err) 627 pr_err("twd_local_timer_register failed %d\n", err); 628 } 629 } 630 #else /* CONFIG_LOCAL_TIMERS */ 631 static void __init omap4_local_timer_init(void) 632 { 633 omap4_sync32k_timer_init(); 634 } 635 #endif /* CONFIG_LOCAL_TIMERS */ 636 OMAP_SYS_TIMER(4, local); 637 #endif /* CONFIG_ARCH_OMAP4 */ 638 639 #ifdef CONFIG_SOC_OMAP5 640 OMAP_SYS_32K_TIMER_INIT(5, 1, OMAP4_32K_SOURCE, "ti,timer-alwon", 641 2, OMAP4_MPU_SOURCE); 642 static void __init omap5_realtime_timer_init(void) 643 { 644 int err; 645 646 omap5_sync32k_timer_init(); 647 realtime_counter_init(); 648 649 err = arch_timer_of_register(); 650 if (err) 651 pr_err("%s: arch_timer_register failed %d\n", __func__, err); 652 } 653 OMAP_SYS_TIMER(5, realtime); 654 #endif /* CONFIG_SOC_OMAP5 */ 655 656 /** 657 * omap_timer_init - build and register timer device with an 658 * associated timer hwmod 659 * @oh: timer hwmod pointer to be used to build timer device 660 * @user: parameter that can be passed from calling hwmod API 661 * 662 * Called by omap_hwmod_for_each_by_class to register each of the timer 663 * devices present in the system. The number of timer devices is known 664 * by parsing through the hwmod database for a given class name. At the 665 * end of function call memory is allocated for timer device and it is 666 * registered to the framework ready to be proved by the driver. 667 */ 668 static int __init omap_timer_init(struct omap_hwmod *oh, void *unused) 669 { 670 int id; 671 int ret = 0; 672 char *name = "omap_timer"; 673 struct dmtimer_platform_data *pdata; 674 struct platform_device *pdev; 675 struct omap_timer_capability_dev_attr *timer_dev_attr; 676 677 pr_debug("%s: %s\n", __func__, oh->name); 678 679 /* on secure device, do not register secure timer */ 680 timer_dev_attr = oh->dev_attr; 681 if (omap_type() != OMAP2_DEVICE_TYPE_GP && timer_dev_attr) 682 if (timer_dev_attr->timer_capability == OMAP_TIMER_SECURE) 683 return ret; 684 685 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL); 686 if (!pdata) { 687 pr_err("%s: No memory for [%s]\n", __func__, oh->name); 688 return -ENOMEM; 689 } 690 691 /* 692 * Extract the IDs from name field in hwmod database 693 * and use the same for constructing ids' for the 694 * timer devices. In a way, we are avoiding usage of 695 * static variable witin the function to do the same. 696 * CAUTION: We have to be careful and make sure the 697 * name in hwmod database does not change in which case 698 * we might either make corresponding change here or 699 * switch back static variable mechanism. 700 */ 701 sscanf(oh->name, "timer%2d", &id); 702 703 if (timer_dev_attr) 704 pdata->timer_capability = timer_dev_attr->timer_capability; 705 706 pdata->timer_errata = omap_dm_timer_get_errata(); 707 pdata->get_context_loss_count = omap_pm_get_dev_context_loss_count; 708 709 pdev = omap_device_build(name, id, oh, pdata, sizeof(*pdata), 710 NULL, 0, 0); 711 712 if (IS_ERR(pdev)) { 713 pr_err("%s: Can't build omap_device for %s: %s.\n", 714 __func__, name, oh->name); 715 ret = -EINVAL; 716 } 717 718 kfree(pdata); 719 720 return ret; 721 } 722 723 /** 724 * omap2_dm_timer_init - top level regular device initialization 725 * 726 * Uses dedicated hwmod api to parse through hwmod database for 727 * given class name and then build and register the timer device. 728 */ 729 static int __init omap2_dm_timer_init(void) 730 { 731 int ret; 732 733 /* If dtb is there, the devices will be created dynamically */ 734 if (of_have_populated_dt()) 735 return -ENODEV; 736 737 ret = omap_hwmod_for_each_by_class("timer", omap_timer_init, NULL); 738 if (unlikely(ret)) { 739 pr_err("%s: device registration failed.\n", __func__); 740 return -EINVAL; 741 } 742 743 return 0; 744 } 745 arch_initcall(omap2_dm_timer_init); 746 747 /** 748 * omap2_override_clocksource - clocksource override with user configuration 749 * 750 * Allows user to override default clocksource, using kernel parameter 751 * clocksource="gp_timer" (For all OMAP2PLUS architectures) 752 * 753 * Note that, here we are using same standard kernel parameter "clocksource=", 754 * and not introducing any OMAP specific interface. 755 */ 756 static int __init omap2_override_clocksource(char *str) 757 { 758 if (!str) 759 return 0; 760 /* 761 * For OMAP architecture, we only have two options 762 * - sync_32k (default) 763 * - gp_timer (sys_clk based) 764 */ 765 if (!strcmp(str, "gp_timer")) 766 use_gptimer_clksrc = true; 767 768 return 0; 769 } 770 early_param("clocksource", omap2_override_clocksource); 771