xref: /openbmc/linux/arch/arm/mach-omap2/prm_common.c (revision e23feb16)
1 /*
2  * OMAP2+ common Power & Reset Management (PRM) IP block functions
3  *
4  * Copyright (C) 2011 Texas Instruments, Inc.
5  * Tero Kristo <t-kristo@ti.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  *
12  * For historical purposes, the API used to configure the PRM
13  * interrupt handler refers to it as the "PRCM interrupt."  The
14  * underlying registers are located in the PRM on OMAP3/4.
15  *
16  * XXX This code should eventually be moved to a PRM driver.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/io.h>
23 #include <linux/irq.h>
24 #include <linux/interrupt.h>
25 #include <linux/slab.h>
26 
27 #include "prm2xxx_3xxx.h"
28 #include "prm2xxx.h"
29 #include "prm3xxx.h"
30 #include "prm44xx.h"
31 #include "common.h"
32 
33 /*
34  * OMAP_PRCM_MAX_NR_PENDING_REG: maximum number of PRM_IRQ*_MPU regs
35  * XXX this is technically not needed, since
36  * omap_prcm_register_chain_handler() could allocate this based on the
37  * actual amount of memory needed for the SoC
38  */
39 #define OMAP_PRCM_MAX_NR_PENDING_REG		2
40 
41 /*
42  * prcm_irq_chips: an array of all of the "generic IRQ chips" in use
43  * by the PRCM interrupt handler code.  There will be one 'chip' per
44  * PRM_{IRQSTATUS,IRQENABLE}_MPU register pair.  (So OMAP3 will have
45  * one "chip" and OMAP4 will have two.)
46  */
47 static struct irq_chip_generic **prcm_irq_chips;
48 
49 /*
50  * prcm_irq_setup: the PRCM IRQ parameters for the hardware the code
51  * is currently running on.  Defined and passed by initialization code
52  * that calls omap_prcm_register_chain_handler().
53  */
54 static struct omap_prcm_irq_setup *prcm_irq_setup;
55 
56 /* prm_base: base virtual address of the PRM IP block */
57 void __iomem *prm_base;
58 
59 /*
60  * prm_ll_data: function pointers to SoC-specific implementations of
61  * common PRM functions
62  */
63 static struct prm_ll_data null_prm_ll_data;
64 static struct prm_ll_data *prm_ll_data = &null_prm_ll_data;
65 
66 /* Private functions */
67 
68 /*
69  * Move priority events from events to priority_events array
70  */
71 static void omap_prcm_events_filter_priority(unsigned long *events,
72 	unsigned long *priority_events)
73 {
74 	int i;
75 
76 	for (i = 0; i < prcm_irq_setup->nr_regs; i++) {
77 		priority_events[i] =
78 			events[i] & prcm_irq_setup->priority_mask[i];
79 		events[i] ^= priority_events[i];
80 	}
81 }
82 
83 /*
84  * PRCM Interrupt Handler
85  *
86  * This is a common handler for the OMAP PRCM interrupts. Pending
87  * interrupts are detected by a call to prcm_pending_events and
88  * dispatched accordingly. Clearing of the wakeup events should be
89  * done by the SoC specific individual handlers.
90  */
91 static void omap_prcm_irq_handler(unsigned int irq, struct irq_desc *desc)
92 {
93 	unsigned long pending[OMAP_PRCM_MAX_NR_PENDING_REG];
94 	unsigned long priority_pending[OMAP_PRCM_MAX_NR_PENDING_REG];
95 	struct irq_chip *chip = irq_desc_get_chip(desc);
96 	unsigned int virtirq;
97 	int nr_irq = prcm_irq_setup->nr_regs * 32;
98 
99 	/*
100 	 * If we are suspended, mask all interrupts from PRCM level,
101 	 * this does not ack them, and they will be pending until we
102 	 * re-enable the interrupts, at which point the
103 	 * omap_prcm_irq_handler will be executed again.  The
104 	 * _save_and_clear_irqen() function must ensure that the PRM
105 	 * write to disable all IRQs has reached the PRM before
106 	 * returning, or spurious PRCM interrupts may occur during
107 	 * suspend.
108 	 */
109 	if (prcm_irq_setup->suspended) {
110 		prcm_irq_setup->save_and_clear_irqen(prcm_irq_setup->saved_mask);
111 		prcm_irq_setup->suspend_save_flag = true;
112 	}
113 
114 	/*
115 	 * Loop until all pending irqs are handled, since
116 	 * generic_handle_irq() can cause new irqs to come
117 	 */
118 	while (!prcm_irq_setup->suspended) {
119 		prcm_irq_setup->read_pending_irqs(pending);
120 
121 		/* No bit set, then all IRQs are handled */
122 		if (find_first_bit(pending, nr_irq) >= nr_irq)
123 			break;
124 
125 		omap_prcm_events_filter_priority(pending, priority_pending);
126 
127 		/*
128 		 * Loop on all currently pending irqs so that new irqs
129 		 * cannot starve previously pending irqs
130 		 */
131 
132 		/* Serve priority events first */
133 		for_each_set_bit(virtirq, priority_pending, nr_irq)
134 			generic_handle_irq(prcm_irq_setup->base_irq + virtirq);
135 
136 		/* Serve normal events next */
137 		for_each_set_bit(virtirq, pending, nr_irq)
138 			generic_handle_irq(prcm_irq_setup->base_irq + virtirq);
139 	}
140 	if (chip->irq_ack)
141 		chip->irq_ack(&desc->irq_data);
142 	if (chip->irq_eoi)
143 		chip->irq_eoi(&desc->irq_data);
144 	chip->irq_unmask(&desc->irq_data);
145 
146 	prcm_irq_setup->ocp_barrier(); /* avoid spurious IRQs */
147 }
148 
149 /* Public functions */
150 
151 /**
152  * omap_prcm_event_to_irq - given a PRCM event name, returns the
153  * corresponding IRQ on which the handler should be registered
154  * @name: name of the PRCM interrupt bit to look up - see struct omap_prcm_irq
155  *
156  * Returns the Linux internal IRQ ID corresponding to @name upon success,
157  * or -ENOENT upon failure.
158  */
159 int omap_prcm_event_to_irq(const char *name)
160 {
161 	int i;
162 
163 	if (!prcm_irq_setup || !name)
164 		return -ENOENT;
165 
166 	for (i = 0; i < prcm_irq_setup->nr_irqs; i++)
167 		if (!strcmp(prcm_irq_setup->irqs[i].name, name))
168 			return prcm_irq_setup->base_irq +
169 				prcm_irq_setup->irqs[i].offset;
170 
171 	return -ENOENT;
172 }
173 
174 /**
175  * omap_prcm_irq_cleanup - reverses memory allocated and other steps
176  * done by omap_prcm_register_chain_handler()
177  *
178  * No return value.
179  */
180 void omap_prcm_irq_cleanup(void)
181 {
182 	int i;
183 
184 	if (!prcm_irq_setup) {
185 		pr_err("PRCM: IRQ handler not initialized; cannot cleanup\n");
186 		return;
187 	}
188 
189 	if (prcm_irq_chips) {
190 		for (i = 0; i < prcm_irq_setup->nr_regs; i++) {
191 			if (prcm_irq_chips[i])
192 				irq_remove_generic_chip(prcm_irq_chips[i],
193 					0xffffffff, 0, 0);
194 			prcm_irq_chips[i] = NULL;
195 		}
196 		kfree(prcm_irq_chips);
197 		prcm_irq_chips = NULL;
198 	}
199 
200 	kfree(prcm_irq_setup->saved_mask);
201 	prcm_irq_setup->saved_mask = NULL;
202 
203 	kfree(prcm_irq_setup->priority_mask);
204 	prcm_irq_setup->priority_mask = NULL;
205 
206 	irq_set_chained_handler(prcm_irq_setup->irq, NULL);
207 
208 	if (prcm_irq_setup->base_irq > 0)
209 		irq_free_descs(prcm_irq_setup->base_irq,
210 			prcm_irq_setup->nr_regs * 32);
211 	prcm_irq_setup->base_irq = 0;
212 }
213 
214 void omap_prcm_irq_prepare(void)
215 {
216 	prcm_irq_setup->suspended = true;
217 }
218 
219 void omap_prcm_irq_complete(void)
220 {
221 	prcm_irq_setup->suspended = false;
222 
223 	/* If we have not saved the masks, do not attempt to restore */
224 	if (!prcm_irq_setup->suspend_save_flag)
225 		return;
226 
227 	prcm_irq_setup->suspend_save_flag = false;
228 
229 	/*
230 	 * Re-enable all masked PRCM irq sources, this causes the PRCM
231 	 * interrupt to fire immediately if the events were masked
232 	 * previously in the chain handler
233 	 */
234 	prcm_irq_setup->restore_irqen(prcm_irq_setup->saved_mask);
235 }
236 
237 /**
238  * omap_prcm_register_chain_handler - initializes the prcm chained interrupt
239  * handler based on provided parameters
240  * @irq_setup: hardware data about the underlying PRM/PRCM
241  *
242  * Set up the PRCM chained interrupt handler on the PRCM IRQ.  Sets up
243  * one generic IRQ chip per PRM interrupt status/enable register pair.
244  * Returns 0 upon success, -EINVAL if called twice or if invalid
245  * arguments are passed, or -ENOMEM on any other error.
246  */
247 int omap_prcm_register_chain_handler(struct omap_prcm_irq_setup *irq_setup)
248 {
249 	int nr_regs;
250 	u32 mask[OMAP_PRCM_MAX_NR_PENDING_REG];
251 	int offset, i;
252 	struct irq_chip_generic *gc;
253 	struct irq_chip_type *ct;
254 
255 	if (!irq_setup)
256 		return -EINVAL;
257 
258 	nr_regs = irq_setup->nr_regs;
259 
260 	if (prcm_irq_setup) {
261 		pr_err("PRCM: already initialized; won't reinitialize\n");
262 		return -EINVAL;
263 	}
264 
265 	if (nr_regs > OMAP_PRCM_MAX_NR_PENDING_REG) {
266 		pr_err("PRCM: nr_regs too large\n");
267 		return -EINVAL;
268 	}
269 
270 	prcm_irq_setup = irq_setup;
271 
272 	prcm_irq_chips = kzalloc(sizeof(void *) * nr_regs, GFP_KERNEL);
273 	prcm_irq_setup->saved_mask = kzalloc(sizeof(u32) * nr_regs, GFP_KERNEL);
274 	prcm_irq_setup->priority_mask = kzalloc(sizeof(u32) * nr_regs,
275 		GFP_KERNEL);
276 
277 	if (!prcm_irq_chips || !prcm_irq_setup->saved_mask ||
278 	    !prcm_irq_setup->priority_mask) {
279 		pr_err("PRCM: kzalloc failed\n");
280 		goto err;
281 	}
282 
283 	memset(mask, 0, sizeof(mask));
284 
285 	for (i = 0; i < irq_setup->nr_irqs; i++) {
286 		offset = irq_setup->irqs[i].offset;
287 		mask[offset >> 5] |= 1 << (offset & 0x1f);
288 		if (irq_setup->irqs[i].priority)
289 			irq_setup->priority_mask[offset >> 5] |=
290 				1 << (offset & 0x1f);
291 	}
292 
293 	irq_set_chained_handler(irq_setup->irq, omap_prcm_irq_handler);
294 
295 	irq_setup->base_irq = irq_alloc_descs(-1, 0, irq_setup->nr_regs * 32,
296 		0);
297 
298 	if (irq_setup->base_irq < 0) {
299 		pr_err("PRCM: failed to allocate irq descs: %d\n",
300 			irq_setup->base_irq);
301 		goto err;
302 	}
303 
304 	for (i = 0; i < irq_setup->nr_regs; i++) {
305 		gc = irq_alloc_generic_chip("PRCM", 1,
306 			irq_setup->base_irq + i * 32, prm_base,
307 			handle_level_irq);
308 
309 		if (!gc) {
310 			pr_err("PRCM: failed to allocate generic chip\n");
311 			goto err;
312 		}
313 		ct = gc->chip_types;
314 		ct->chip.irq_ack = irq_gc_ack_set_bit;
315 		ct->chip.irq_mask = irq_gc_mask_clr_bit;
316 		ct->chip.irq_unmask = irq_gc_mask_set_bit;
317 
318 		ct->regs.ack = irq_setup->ack + i * 4;
319 		ct->regs.mask = irq_setup->mask + i * 4;
320 
321 		irq_setup_generic_chip(gc, mask[i], 0, IRQ_NOREQUEST, 0);
322 		prcm_irq_chips[i] = gc;
323 	}
324 
325 	return 0;
326 
327 err:
328 	omap_prcm_irq_cleanup();
329 	return -ENOMEM;
330 }
331 
332 /**
333  * omap2_set_globals_prm - set the PRM base address (for early use)
334  * @prm: PRM base virtual address
335  *
336  * XXX Will be replaced when the PRM/CM drivers are completed.
337  */
338 void __init omap2_set_globals_prm(void __iomem *prm)
339 {
340 	prm_base = prm;
341 }
342 
343 /**
344  * prm_read_reset_sources - return the sources of the SoC's last reset
345  *
346  * Return a u32 bitmask representing the reset sources that caused the
347  * SoC to reset.  The low-level per-SoC functions called by this
348  * function remap the SoC-specific reset source bits into an
349  * OMAP-common set of reset source bits, defined in
350  * arch/arm/mach-omap2/prm.h.  Returns the standardized reset source
351  * u32 bitmask from the hardware upon success, or returns (1 <<
352  * OMAP_UNKNOWN_RST_SRC_ID_SHIFT) if no low-level read_reset_sources()
353  * function was registered.
354  */
355 u32 prm_read_reset_sources(void)
356 {
357 	u32 ret = 1 << OMAP_UNKNOWN_RST_SRC_ID_SHIFT;
358 
359 	if (prm_ll_data->read_reset_sources)
360 		ret = prm_ll_data->read_reset_sources();
361 	else
362 		WARN_ONCE(1, "prm: %s: no mapping function defined for reset sources\n", __func__);
363 
364 	return ret;
365 }
366 
367 /**
368  * prm_was_any_context_lost_old - was device context lost? (old API)
369  * @part: PRM partition ID (e.g., OMAP4430_PRM_PARTITION)
370  * @inst: PRM instance offset (e.g., OMAP4430_PRM_MPU_INST)
371  * @idx: CONTEXT register offset
372  *
373  * Return 1 if any bits were set in the *_CONTEXT_* register
374  * identified by (@part, @inst, @idx), which means that some context
375  * was lost for that module; otherwise, return 0.  XXX Deprecated;
376  * callers need to use a less-SoC-dependent way to identify hardware
377  * IP blocks.
378  */
379 bool prm_was_any_context_lost_old(u8 part, s16 inst, u16 idx)
380 {
381 	bool ret = true;
382 
383 	if (prm_ll_data->was_any_context_lost_old)
384 		ret = prm_ll_data->was_any_context_lost_old(part, inst, idx);
385 	else
386 		WARN_ONCE(1, "prm: %s: no mapping function defined\n",
387 			  __func__);
388 
389 	return ret;
390 }
391 
392 /**
393  * prm_clear_context_lost_flags_old - clear context loss flags (old API)
394  * @part: PRM partition ID (e.g., OMAP4430_PRM_PARTITION)
395  * @inst: PRM instance offset (e.g., OMAP4430_PRM_MPU_INST)
396  * @idx: CONTEXT register offset
397  *
398  * Clear hardware context loss bits for the module identified by
399  * (@part, @inst, @idx).  No return value.  XXX Deprecated; callers
400  * need to use a less-SoC-dependent way to identify hardware IP
401  * blocks.
402  */
403 void prm_clear_context_loss_flags_old(u8 part, s16 inst, u16 idx)
404 {
405 	if (prm_ll_data->clear_context_loss_flags_old)
406 		prm_ll_data->clear_context_loss_flags_old(part, inst, idx);
407 	else
408 		WARN_ONCE(1, "prm: %s: no mapping function defined\n",
409 			  __func__);
410 }
411 
412 /**
413  * prm_register - register per-SoC low-level data with the PRM
414  * @pld: low-level per-SoC OMAP PRM data & function pointers to register
415  *
416  * Register per-SoC low-level OMAP PRM data and function pointers with
417  * the OMAP PRM common interface.  The caller must keep the data
418  * pointed to by @pld valid until it calls prm_unregister() and
419  * it returns successfully.  Returns 0 upon success, -EINVAL if @pld
420  * is NULL, or -EEXIST if prm_register() has already been called
421  * without an intervening prm_unregister().
422  */
423 int prm_register(struct prm_ll_data *pld)
424 {
425 	if (!pld)
426 		return -EINVAL;
427 
428 	if (prm_ll_data != &null_prm_ll_data)
429 		return -EEXIST;
430 
431 	prm_ll_data = pld;
432 
433 	return 0;
434 }
435 
436 /**
437  * prm_unregister - unregister per-SoC low-level data & function pointers
438  * @pld: low-level per-SoC OMAP PRM data & function pointers to unregister
439  *
440  * Unregister per-SoC low-level OMAP PRM data and function pointers
441  * that were previously registered with prm_register().  The
442  * caller may not destroy any of the data pointed to by @pld until
443  * this function returns successfully.  Returns 0 upon success, or
444  * -EINVAL if @pld is NULL or if @pld does not match the struct
445  * prm_ll_data * previously registered by prm_register().
446  */
447 int prm_unregister(struct prm_ll_data *pld)
448 {
449 	if (!pld || prm_ll_data != pld)
450 		return -EINVAL;
451 
452 	prm_ll_data = &null_prm_ll_data;
453 
454 	return 0;
455 }
456