xref: /openbmc/linux/arch/arm/mach-omap2/prm_common.c (revision 79f08d9e)
1 /*
2  * OMAP2+ common Power & Reset Management (PRM) IP block functions
3  *
4  * Copyright (C) 2011 Texas Instruments, Inc.
5  * Tero Kristo <t-kristo@ti.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  *
12  * For historical purposes, the API used to configure the PRM
13  * interrupt handler refers to it as the "PRCM interrupt."  The
14  * underlying registers are located in the PRM on OMAP3/4.
15  *
16  * XXX This code should eventually be moved to a PRM driver.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/io.h>
23 #include <linux/irq.h>
24 #include <linux/interrupt.h>
25 #include <linux/slab.h>
26 
27 #include "soc.h"
28 #include "prm2xxx_3xxx.h"
29 #include "prm2xxx.h"
30 #include "prm3xxx.h"
31 #include "prm44xx.h"
32 #include "common.h"
33 
34 /*
35  * OMAP_PRCM_MAX_NR_PENDING_REG: maximum number of PRM_IRQ*_MPU regs
36  * XXX this is technically not needed, since
37  * omap_prcm_register_chain_handler() could allocate this based on the
38  * actual amount of memory needed for the SoC
39  */
40 #define OMAP_PRCM_MAX_NR_PENDING_REG		2
41 
42 /*
43  * prcm_irq_chips: an array of all of the "generic IRQ chips" in use
44  * by the PRCM interrupt handler code.  There will be one 'chip' per
45  * PRM_{IRQSTATUS,IRQENABLE}_MPU register pair.  (So OMAP3 will have
46  * one "chip" and OMAP4 will have two.)
47  */
48 static struct irq_chip_generic **prcm_irq_chips;
49 
50 /*
51  * prcm_irq_setup: the PRCM IRQ parameters for the hardware the code
52  * is currently running on.  Defined and passed by initialization code
53  * that calls omap_prcm_register_chain_handler().
54  */
55 static struct omap_prcm_irq_setup *prcm_irq_setup;
56 
57 /* prm_base: base virtual address of the PRM IP block */
58 void __iomem *prm_base;
59 
60 /*
61  * prm_ll_data: function pointers to SoC-specific implementations of
62  * common PRM functions
63  */
64 static struct prm_ll_data null_prm_ll_data;
65 static struct prm_ll_data *prm_ll_data = &null_prm_ll_data;
66 
67 /* Private functions */
68 
69 /*
70  * Move priority events from events to priority_events array
71  */
72 static void omap_prcm_events_filter_priority(unsigned long *events,
73 	unsigned long *priority_events)
74 {
75 	int i;
76 
77 	for (i = 0; i < prcm_irq_setup->nr_regs; i++) {
78 		priority_events[i] =
79 			events[i] & prcm_irq_setup->priority_mask[i];
80 		events[i] ^= priority_events[i];
81 	}
82 }
83 
84 /*
85  * PRCM Interrupt Handler
86  *
87  * This is a common handler for the OMAP PRCM interrupts. Pending
88  * interrupts are detected by a call to prcm_pending_events and
89  * dispatched accordingly. Clearing of the wakeup events should be
90  * done by the SoC specific individual handlers.
91  */
92 static void omap_prcm_irq_handler(unsigned int irq, struct irq_desc *desc)
93 {
94 	unsigned long pending[OMAP_PRCM_MAX_NR_PENDING_REG];
95 	unsigned long priority_pending[OMAP_PRCM_MAX_NR_PENDING_REG];
96 	struct irq_chip *chip = irq_desc_get_chip(desc);
97 	unsigned int virtirq;
98 	int nr_irq = prcm_irq_setup->nr_regs * 32;
99 
100 	/*
101 	 * If we are suspended, mask all interrupts from PRCM level,
102 	 * this does not ack them, and they will be pending until we
103 	 * re-enable the interrupts, at which point the
104 	 * omap_prcm_irq_handler will be executed again.  The
105 	 * _save_and_clear_irqen() function must ensure that the PRM
106 	 * write to disable all IRQs has reached the PRM before
107 	 * returning, or spurious PRCM interrupts may occur during
108 	 * suspend.
109 	 */
110 	if (prcm_irq_setup->suspended) {
111 		prcm_irq_setup->save_and_clear_irqen(prcm_irq_setup->saved_mask);
112 		prcm_irq_setup->suspend_save_flag = true;
113 	}
114 
115 	/*
116 	 * Loop until all pending irqs are handled, since
117 	 * generic_handle_irq() can cause new irqs to come
118 	 */
119 	while (!prcm_irq_setup->suspended) {
120 		prcm_irq_setup->read_pending_irqs(pending);
121 
122 		/* No bit set, then all IRQs are handled */
123 		if (find_first_bit(pending, nr_irq) >= nr_irq)
124 			break;
125 
126 		omap_prcm_events_filter_priority(pending, priority_pending);
127 
128 		/*
129 		 * Loop on all currently pending irqs so that new irqs
130 		 * cannot starve previously pending irqs
131 		 */
132 
133 		/* Serve priority events first */
134 		for_each_set_bit(virtirq, priority_pending, nr_irq)
135 			generic_handle_irq(prcm_irq_setup->base_irq + virtirq);
136 
137 		/* Serve normal events next */
138 		for_each_set_bit(virtirq, pending, nr_irq)
139 			generic_handle_irq(prcm_irq_setup->base_irq + virtirq);
140 	}
141 	if (chip->irq_ack)
142 		chip->irq_ack(&desc->irq_data);
143 	if (chip->irq_eoi)
144 		chip->irq_eoi(&desc->irq_data);
145 	chip->irq_unmask(&desc->irq_data);
146 
147 	prcm_irq_setup->ocp_barrier(); /* avoid spurious IRQs */
148 }
149 
150 /* Public functions */
151 
152 /**
153  * omap_prcm_event_to_irq - given a PRCM event name, returns the
154  * corresponding IRQ on which the handler should be registered
155  * @name: name of the PRCM interrupt bit to look up - see struct omap_prcm_irq
156  *
157  * Returns the Linux internal IRQ ID corresponding to @name upon success,
158  * or -ENOENT upon failure.
159  */
160 int omap_prcm_event_to_irq(const char *name)
161 {
162 	int i;
163 
164 	if (!prcm_irq_setup || !name)
165 		return -ENOENT;
166 
167 	for (i = 0; i < prcm_irq_setup->nr_irqs; i++)
168 		if (!strcmp(prcm_irq_setup->irqs[i].name, name))
169 			return prcm_irq_setup->base_irq +
170 				prcm_irq_setup->irqs[i].offset;
171 
172 	return -ENOENT;
173 }
174 
175 /**
176  * omap_prcm_irq_cleanup - reverses memory allocated and other steps
177  * done by omap_prcm_register_chain_handler()
178  *
179  * No return value.
180  */
181 void omap_prcm_irq_cleanup(void)
182 {
183 	int i;
184 
185 	if (!prcm_irq_setup) {
186 		pr_err("PRCM: IRQ handler not initialized; cannot cleanup\n");
187 		return;
188 	}
189 
190 	if (prcm_irq_chips) {
191 		for (i = 0; i < prcm_irq_setup->nr_regs; i++) {
192 			if (prcm_irq_chips[i])
193 				irq_remove_generic_chip(prcm_irq_chips[i],
194 					0xffffffff, 0, 0);
195 			prcm_irq_chips[i] = NULL;
196 		}
197 		kfree(prcm_irq_chips);
198 		prcm_irq_chips = NULL;
199 	}
200 
201 	kfree(prcm_irq_setup->saved_mask);
202 	prcm_irq_setup->saved_mask = NULL;
203 
204 	kfree(prcm_irq_setup->priority_mask);
205 	prcm_irq_setup->priority_mask = NULL;
206 
207 	irq_set_chained_handler(prcm_irq_setup->irq, NULL);
208 
209 	if (prcm_irq_setup->base_irq > 0)
210 		irq_free_descs(prcm_irq_setup->base_irq,
211 			prcm_irq_setup->nr_regs * 32);
212 	prcm_irq_setup->base_irq = 0;
213 }
214 
215 void omap_prcm_irq_prepare(void)
216 {
217 	prcm_irq_setup->suspended = true;
218 }
219 
220 void omap_prcm_irq_complete(void)
221 {
222 	prcm_irq_setup->suspended = false;
223 
224 	/* If we have not saved the masks, do not attempt to restore */
225 	if (!prcm_irq_setup->suspend_save_flag)
226 		return;
227 
228 	prcm_irq_setup->suspend_save_flag = false;
229 
230 	/*
231 	 * Re-enable all masked PRCM irq sources, this causes the PRCM
232 	 * interrupt to fire immediately if the events were masked
233 	 * previously in the chain handler
234 	 */
235 	prcm_irq_setup->restore_irqen(prcm_irq_setup->saved_mask);
236 }
237 
238 /**
239  * omap_prcm_register_chain_handler - initializes the prcm chained interrupt
240  * handler based on provided parameters
241  * @irq_setup: hardware data about the underlying PRM/PRCM
242  *
243  * Set up the PRCM chained interrupt handler on the PRCM IRQ.  Sets up
244  * one generic IRQ chip per PRM interrupt status/enable register pair.
245  * Returns 0 upon success, -EINVAL if called twice or if invalid
246  * arguments are passed, or -ENOMEM on any other error.
247  */
248 int omap_prcm_register_chain_handler(struct omap_prcm_irq_setup *irq_setup)
249 {
250 	int nr_regs;
251 	u32 mask[OMAP_PRCM_MAX_NR_PENDING_REG];
252 	int offset, i;
253 	struct irq_chip_generic *gc;
254 	struct irq_chip_type *ct;
255 
256 	if (!irq_setup)
257 		return -EINVAL;
258 
259 	nr_regs = irq_setup->nr_regs;
260 
261 	if (prcm_irq_setup) {
262 		pr_err("PRCM: already initialized; won't reinitialize\n");
263 		return -EINVAL;
264 	}
265 
266 	if (nr_regs > OMAP_PRCM_MAX_NR_PENDING_REG) {
267 		pr_err("PRCM: nr_regs too large\n");
268 		return -EINVAL;
269 	}
270 
271 	prcm_irq_setup = irq_setup;
272 
273 	prcm_irq_chips = kzalloc(sizeof(void *) * nr_regs, GFP_KERNEL);
274 	prcm_irq_setup->saved_mask = kzalloc(sizeof(u32) * nr_regs, GFP_KERNEL);
275 	prcm_irq_setup->priority_mask = kzalloc(sizeof(u32) * nr_regs,
276 		GFP_KERNEL);
277 
278 	if (!prcm_irq_chips || !prcm_irq_setup->saved_mask ||
279 	    !prcm_irq_setup->priority_mask) {
280 		pr_err("PRCM: kzalloc failed\n");
281 		goto err;
282 	}
283 
284 	memset(mask, 0, sizeof(mask));
285 
286 	for (i = 0; i < irq_setup->nr_irqs; i++) {
287 		offset = irq_setup->irqs[i].offset;
288 		mask[offset >> 5] |= 1 << (offset & 0x1f);
289 		if (irq_setup->irqs[i].priority)
290 			irq_setup->priority_mask[offset >> 5] |=
291 				1 << (offset & 0x1f);
292 	}
293 
294 	irq_set_chained_handler(irq_setup->irq, omap_prcm_irq_handler);
295 
296 	irq_setup->base_irq = irq_alloc_descs(-1, 0, irq_setup->nr_regs * 32,
297 		0);
298 
299 	if (irq_setup->base_irq < 0) {
300 		pr_err("PRCM: failed to allocate irq descs: %d\n",
301 			irq_setup->base_irq);
302 		goto err;
303 	}
304 
305 	for (i = 0; i < irq_setup->nr_regs; i++) {
306 		gc = irq_alloc_generic_chip("PRCM", 1,
307 			irq_setup->base_irq + i * 32, prm_base,
308 			handle_level_irq);
309 
310 		if (!gc) {
311 			pr_err("PRCM: failed to allocate generic chip\n");
312 			goto err;
313 		}
314 		ct = gc->chip_types;
315 		ct->chip.irq_ack = irq_gc_ack_set_bit;
316 		ct->chip.irq_mask = irq_gc_mask_clr_bit;
317 		ct->chip.irq_unmask = irq_gc_mask_set_bit;
318 
319 		ct->regs.ack = irq_setup->ack + i * 4;
320 		ct->regs.mask = irq_setup->mask + i * 4;
321 
322 		irq_setup_generic_chip(gc, mask[i], 0, IRQ_NOREQUEST, 0);
323 		prcm_irq_chips[i] = gc;
324 	}
325 
326 	if (of_have_populated_dt()) {
327 		int irq = omap_prcm_event_to_irq("io");
328 		if (cpu_is_omap34xx())
329 			omap_pcs_legacy_init(irq,
330 				omap3xxx_prm_reconfigure_io_chain);
331 		else
332 			omap_pcs_legacy_init(irq,
333 				omap44xx_prm_reconfigure_io_chain);
334 	}
335 
336 	return 0;
337 
338 err:
339 	omap_prcm_irq_cleanup();
340 	return -ENOMEM;
341 }
342 
343 /**
344  * omap2_set_globals_prm - set the PRM base address (for early use)
345  * @prm: PRM base virtual address
346  *
347  * XXX Will be replaced when the PRM/CM drivers are completed.
348  */
349 void __init omap2_set_globals_prm(void __iomem *prm)
350 {
351 	prm_base = prm;
352 }
353 
354 /**
355  * prm_read_reset_sources - return the sources of the SoC's last reset
356  *
357  * Return a u32 bitmask representing the reset sources that caused the
358  * SoC to reset.  The low-level per-SoC functions called by this
359  * function remap the SoC-specific reset source bits into an
360  * OMAP-common set of reset source bits, defined in
361  * arch/arm/mach-omap2/prm.h.  Returns the standardized reset source
362  * u32 bitmask from the hardware upon success, or returns (1 <<
363  * OMAP_UNKNOWN_RST_SRC_ID_SHIFT) if no low-level read_reset_sources()
364  * function was registered.
365  */
366 u32 prm_read_reset_sources(void)
367 {
368 	u32 ret = 1 << OMAP_UNKNOWN_RST_SRC_ID_SHIFT;
369 
370 	if (prm_ll_data->read_reset_sources)
371 		ret = prm_ll_data->read_reset_sources();
372 	else
373 		WARN_ONCE(1, "prm: %s: no mapping function defined for reset sources\n", __func__);
374 
375 	return ret;
376 }
377 
378 /**
379  * prm_was_any_context_lost_old - was device context lost? (old API)
380  * @part: PRM partition ID (e.g., OMAP4430_PRM_PARTITION)
381  * @inst: PRM instance offset (e.g., OMAP4430_PRM_MPU_INST)
382  * @idx: CONTEXT register offset
383  *
384  * Return 1 if any bits were set in the *_CONTEXT_* register
385  * identified by (@part, @inst, @idx), which means that some context
386  * was lost for that module; otherwise, return 0.  XXX Deprecated;
387  * callers need to use a less-SoC-dependent way to identify hardware
388  * IP blocks.
389  */
390 bool prm_was_any_context_lost_old(u8 part, s16 inst, u16 idx)
391 {
392 	bool ret = true;
393 
394 	if (prm_ll_data->was_any_context_lost_old)
395 		ret = prm_ll_data->was_any_context_lost_old(part, inst, idx);
396 	else
397 		WARN_ONCE(1, "prm: %s: no mapping function defined\n",
398 			  __func__);
399 
400 	return ret;
401 }
402 
403 /**
404  * prm_clear_context_lost_flags_old - clear context loss flags (old API)
405  * @part: PRM partition ID (e.g., OMAP4430_PRM_PARTITION)
406  * @inst: PRM instance offset (e.g., OMAP4430_PRM_MPU_INST)
407  * @idx: CONTEXT register offset
408  *
409  * Clear hardware context loss bits for the module identified by
410  * (@part, @inst, @idx).  No return value.  XXX Deprecated; callers
411  * need to use a less-SoC-dependent way to identify hardware IP
412  * blocks.
413  */
414 void prm_clear_context_loss_flags_old(u8 part, s16 inst, u16 idx)
415 {
416 	if (prm_ll_data->clear_context_loss_flags_old)
417 		prm_ll_data->clear_context_loss_flags_old(part, inst, idx);
418 	else
419 		WARN_ONCE(1, "prm: %s: no mapping function defined\n",
420 			  __func__);
421 }
422 
423 /**
424  * prm_register - register per-SoC low-level data with the PRM
425  * @pld: low-level per-SoC OMAP PRM data & function pointers to register
426  *
427  * Register per-SoC low-level OMAP PRM data and function pointers with
428  * the OMAP PRM common interface.  The caller must keep the data
429  * pointed to by @pld valid until it calls prm_unregister() and
430  * it returns successfully.  Returns 0 upon success, -EINVAL if @pld
431  * is NULL, or -EEXIST if prm_register() has already been called
432  * without an intervening prm_unregister().
433  */
434 int prm_register(struct prm_ll_data *pld)
435 {
436 	if (!pld)
437 		return -EINVAL;
438 
439 	if (prm_ll_data != &null_prm_ll_data)
440 		return -EEXIST;
441 
442 	prm_ll_data = pld;
443 
444 	return 0;
445 }
446 
447 /**
448  * prm_unregister - unregister per-SoC low-level data & function pointers
449  * @pld: low-level per-SoC OMAP PRM data & function pointers to unregister
450  *
451  * Unregister per-SoC low-level OMAP PRM data and function pointers
452  * that were previously registered with prm_register().  The
453  * caller may not destroy any of the data pointed to by @pld until
454  * this function returns successfully.  Returns 0 upon success, or
455  * -EINVAL if @pld is NULL or if @pld does not match the struct
456  * prm_ll_data * previously registered by prm_register().
457  */
458 int prm_unregister(struct prm_ll_data *pld)
459 {
460 	if (!pld || prm_ll_data != pld)
461 		return -EINVAL;
462 
463 	prm_ll_data = &null_prm_ll_data;
464 
465 	return 0;
466 }
467