1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * OMAP4 specific common source file. 4 * 5 * Copyright (C) 2010 Texas Instruments, Inc. 6 * Author: 7 * Santosh Shilimkar <santosh.shilimkar@ti.com> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/io.h> 13 #include <linux/irq.h> 14 #include <linux/irqchip.h> 15 #include <linux/platform_device.h> 16 #include <linux/memblock.h> 17 #include <linux/of_irq.h> 18 #include <linux/of_platform.h> 19 #include <linux/export.h> 20 #include <linux/irqchip/arm-gic.h> 21 #include <linux/of_address.h> 22 #include <linux/reboot.h> 23 #include <linux/genalloc.h> 24 25 #include <asm/hardware/cache-l2x0.h> 26 #include <asm/mach/map.h> 27 #include <asm/memblock.h> 28 #include <asm/smp_twd.h> 29 30 #include "omap-wakeupgen.h" 31 #include "soc.h" 32 #include "iomap.h" 33 #include "common.h" 34 #include "prminst44xx.h" 35 #include "prcm_mpu44xx.h" 36 #include "omap4-sar-layout.h" 37 #include "omap-secure.h" 38 #include "sram.h" 39 40 #ifdef CONFIG_CACHE_L2X0 41 static void __iomem *l2cache_base; 42 #endif 43 44 static void __iomem *sar_ram_base; 45 static void __iomem *gic_dist_base_addr; 46 static void __iomem *twd_base; 47 48 #define IRQ_LOCALTIMER 29 49 50 #ifdef CONFIG_OMAP_INTERCONNECT_BARRIER 51 52 /* Used to implement memory barrier on DRAM path */ 53 #define OMAP4_DRAM_BARRIER_VA 0xfe600000 54 55 static void __iomem *dram_sync, *sram_sync; 56 static phys_addr_t dram_sync_paddr; 57 static u32 dram_sync_size; 58 59 /* 60 * The OMAP4 bus structure contains asynchronous bridges which can buffer 61 * data writes from the MPU. These asynchronous bridges can be found on 62 * paths between the MPU to EMIF, and the MPU to L3 interconnects. 63 * 64 * We need to be careful about re-ordering which can happen as a result 65 * of different accesses being performed via different paths, and 66 * therefore different asynchronous bridges. 67 */ 68 69 /* 70 * OMAP4 interconnect barrier which is called for each mb() and wmb(). 71 * This is to ensure that normal paths to DRAM (normal memory, cacheable 72 * accesses) are properly synchronised with writes to DMA coherent memory 73 * (normal memory, uncacheable) and device writes. 74 * 75 * The mb() and wmb() barriers only operate only on the MPU->MA->EMIF 76 * path, as we need to ensure that data is visible to other system 77 * masters prior to writes to those system masters being seen. 78 * 79 * Note: the SRAM path is not synchronised via mb() and wmb(). 80 */ 81 static void omap4_mb(void) 82 { 83 if (dram_sync) 84 writel_relaxed(0, dram_sync); 85 } 86 87 /* 88 * OMAP4 Errata i688 - asynchronous bridge corruption when entering WFI. 89 * 90 * If a data is stalled inside asynchronous bridge because of back 91 * pressure, it may be accepted multiple times, creating pointer 92 * misalignment that will corrupt next transfers on that data path until 93 * next reset of the system. No recovery procedure once the issue is hit, 94 * the path remains consistently broken. 95 * 96 * Async bridges can be found on paths between MPU to EMIF and MPU to L3 97 * interconnects. 98 * 99 * This situation can happen only when the idle is initiated by a Master 100 * Request Disconnection (which is trigged by software when executing WFI 101 * on the CPU). 102 * 103 * The work-around for this errata needs all the initiators connected 104 * through an async bridge to ensure that data path is properly drained 105 * before issuing WFI. This condition will be met if one Strongly ordered 106 * access is performed to the target right before executing the WFI. 107 * 108 * In MPU case, L3 T2ASYNC FIFO and DDR T2ASYNC FIFO needs to be drained. 109 * IO barrier ensure that there is no synchronisation loss on initiators 110 * operating on both interconnect port simultaneously. 111 * 112 * This is a stronger version of the OMAP4 memory barrier below, and 113 * operates on both the MPU->MA->EMIF path but also the MPU->OCP path 114 * as well, and is necessary prior to executing a WFI. 115 */ 116 void omap_interconnect_sync(void) 117 { 118 if (dram_sync && sram_sync) { 119 writel_relaxed(readl_relaxed(dram_sync), dram_sync); 120 writel_relaxed(readl_relaxed(sram_sync), sram_sync); 121 isb(); 122 } 123 } 124 125 static int __init omap4_sram_init(void) 126 { 127 struct device_node *np; 128 struct gen_pool *sram_pool; 129 130 if (!soc_is_omap44xx() && !soc_is_omap54xx()) 131 return 0; 132 133 np = of_find_compatible_node(NULL, NULL, "ti,omap4-mpu"); 134 if (!np) 135 pr_warn("%s:Unable to allocate sram needed to handle errata I688\n", 136 __func__); 137 sram_pool = of_gen_pool_get(np, "sram", 0); 138 if (!sram_pool) 139 pr_warn("%s:Unable to get sram pool needed to handle errata I688\n", 140 __func__); 141 else 142 sram_sync = (void __iomem *)gen_pool_alloc(sram_pool, PAGE_SIZE); 143 144 return 0; 145 } 146 omap_arch_initcall(omap4_sram_init); 147 148 /* Steal one page physical memory for barrier implementation */ 149 void __init omap_barrier_reserve_memblock(void) 150 { 151 dram_sync_size = ALIGN(PAGE_SIZE, SZ_1M); 152 dram_sync_paddr = arm_memblock_steal(dram_sync_size, SZ_1M); 153 } 154 155 void __init omap_barriers_init(void) 156 { 157 struct map_desc dram_io_desc[1]; 158 159 dram_io_desc[0].virtual = OMAP4_DRAM_BARRIER_VA; 160 dram_io_desc[0].pfn = __phys_to_pfn(dram_sync_paddr); 161 dram_io_desc[0].length = dram_sync_size; 162 dram_io_desc[0].type = MT_MEMORY_RW_SO; 163 iotable_init(dram_io_desc, ARRAY_SIZE(dram_io_desc)); 164 dram_sync = (void __iomem *) dram_io_desc[0].virtual; 165 166 pr_info("OMAP4: Map %pa to %p for dram barrier\n", 167 &dram_sync_paddr, dram_sync); 168 169 soc_mb = omap4_mb; 170 } 171 172 #endif 173 174 void gic_dist_disable(void) 175 { 176 if (gic_dist_base_addr) 177 writel_relaxed(0x0, gic_dist_base_addr + GIC_DIST_CTRL); 178 } 179 180 void gic_dist_enable(void) 181 { 182 if (gic_dist_base_addr) 183 writel_relaxed(0x1, gic_dist_base_addr + GIC_DIST_CTRL); 184 } 185 186 bool gic_dist_disabled(void) 187 { 188 return !(readl_relaxed(gic_dist_base_addr + GIC_DIST_CTRL) & 0x1); 189 } 190 191 void gic_timer_retrigger(void) 192 { 193 u32 twd_int = readl_relaxed(twd_base + TWD_TIMER_INTSTAT); 194 u32 gic_int = readl_relaxed(gic_dist_base_addr + GIC_DIST_PENDING_SET); 195 u32 twd_ctrl = readl_relaxed(twd_base + TWD_TIMER_CONTROL); 196 197 if (twd_int && !(gic_int & BIT(IRQ_LOCALTIMER))) { 198 /* 199 * The local timer interrupt got lost while the distributor was 200 * disabled. Ack the pending interrupt, and retrigger it. 201 */ 202 pr_warn("%s: lost localtimer interrupt\n", __func__); 203 writel_relaxed(1, twd_base + TWD_TIMER_INTSTAT); 204 if (!(twd_ctrl & TWD_TIMER_CONTROL_PERIODIC)) { 205 writel_relaxed(1, twd_base + TWD_TIMER_COUNTER); 206 twd_ctrl |= TWD_TIMER_CONTROL_ENABLE; 207 writel_relaxed(twd_ctrl, twd_base + TWD_TIMER_CONTROL); 208 } 209 } 210 } 211 212 #ifdef CONFIG_CACHE_L2X0 213 214 void __iomem *omap4_get_l2cache_base(void) 215 { 216 return l2cache_base; 217 } 218 219 void omap4_l2c310_write_sec(unsigned long val, unsigned reg) 220 { 221 unsigned smc_op; 222 223 switch (reg) { 224 case L2X0_CTRL: 225 smc_op = OMAP4_MON_L2X0_CTRL_INDEX; 226 break; 227 228 case L2X0_AUX_CTRL: 229 smc_op = OMAP4_MON_L2X0_AUXCTRL_INDEX; 230 break; 231 232 case L2X0_DEBUG_CTRL: 233 smc_op = OMAP4_MON_L2X0_DBG_CTRL_INDEX; 234 break; 235 236 case L310_PREFETCH_CTRL: 237 smc_op = OMAP4_MON_L2X0_PREFETCH_INDEX; 238 break; 239 240 case L310_POWER_CTRL: 241 pr_info_once("OMAP L2C310: ROM does not support power control setting\n"); 242 return; 243 244 default: 245 WARN_ONCE(1, "OMAP L2C310: ignoring write to reg 0x%x\n", reg); 246 return; 247 } 248 249 omap_smc1(smc_op, val); 250 } 251 252 int __init omap_l2_cache_init(void) 253 { 254 /* Static mapping, never released */ 255 l2cache_base = ioremap(OMAP44XX_L2CACHE_BASE, SZ_4K); 256 if (WARN_ON(!l2cache_base)) 257 return -ENOMEM; 258 return 0; 259 } 260 #endif 261 262 void __iomem *omap4_get_sar_ram_base(void) 263 { 264 return sar_ram_base; 265 } 266 267 /* 268 * SAR RAM used to save and restore the HW context in low power modes. 269 * Note that we need to initialize this very early for kexec. See 270 * omap4_mpuss_early_init(). 271 */ 272 void __init omap4_sar_ram_init(void) 273 { 274 unsigned long sar_base; 275 276 /* 277 * To avoid code running on other OMAPs in 278 * multi-omap builds 279 */ 280 if (cpu_is_omap44xx()) 281 sar_base = OMAP44XX_SAR_RAM_BASE; 282 else if (soc_is_omap54xx()) 283 sar_base = OMAP54XX_SAR_RAM_BASE; 284 else 285 return; 286 287 /* Static mapping, never released */ 288 sar_ram_base = ioremap(sar_base, SZ_16K); 289 if (WARN_ON(!sar_ram_base)) 290 return; 291 } 292 293 static const struct of_device_id intc_match[] = { 294 { .compatible = "ti,omap4-wugen-mpu", }, 295 { .compatible = "ti,omap5-wugen-mpu", }, 296 { }, 297 }; 298 299 static struct device_node *intc_node; 300 301 void __init omap_gic_of_init(void) 302 { 303 struct device_node *np; 304 305 intc_node = of_find_matching_node(NULL, intc_match); 306 if (WARN_ON(!intc_node)) { 307 pr_err("No WUGEN found in DT, system will misbehave.\n"); 308 pr_err("UPDATE YOUR DEVICE TREE!\n"); 309 } 310 311 /* Extract GIC distributor and TWD bases for OMAP4460 ROM Errata WA */ 312 if (!cpu_is_omap446x()) 313 goto skip_errata_init; 314 315 np = of_find_compatible_node(NULL, NULL, "arm,cortex-a9-gic"); 316 gic_dist_base_addr = of_iomap(np, 0); 317 of_node_put(np); 318 WARN_ON(!gic_dist_base_addr); 319 320 np = of_find_compatible_node(NULL, NULL, "arm,cortex-a9-twd-timer"); 321 twd_base = of_iomap(np, 0); 322 of_node_put(np); 323 WARN_ON(!twd_base); 324 325 skip_errata_init: 326 irqchip_init(); 327 } 328